JP2002327231A - Cast article of heat-resistant magnesium alloy, and manufacturing method therefor - Google Patents

Cast article of heat-resistant magnesium alloy, and manufacturing method therefor

Info

Publication number
JP2002327231A
JP2002327231A JP2002056538A JP2002056538A JP2002327231A JP 2002327231 A JP2002327231 A JP 2002327231A JP 2002056538 A JP2002056538 A JP 2002056538A JP 2002056538 A JP2002056538 A JP 2002056538A JP 2002327231 A JP2002327231 A JP 2002327231A
Authority
JP
Japan
Prior art keywords
casting
magnesium alloy
heat
content
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002056538A
Other languages
Japanese (ja)
Other versions
JP3737440B2 (en
Inventor
Sukenori Nakaura
祐典 中浦
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002056538A priority Critical patent/JP3737440B2/en
Publication of JP2002327231A publication Critical patent/JP2002327231A/en
Application granted granted Critical
Publication of JP3737440B2 publication Critical patent/JP3737440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide cast articles of a heat-resistant magnesium alloy superior in mechanical properties and creep properties, with improved castability and creep strength, and a manufacturing method therefor. SOLUTION: The cast article made from the magnesium alloy includes 1.5-6 wt.% Al, 0.5-3 wt.% Ca, 0.21-1 wt.% Sr, 0.1-1 wt.% Mn, and the balance Mg with unavoidable impurities, has a grain structure mainly comprising magnesium crystal grains principally consisting of magnesium, and crystallized products principally consisting of Al and Ca, and Al and Mn, which are crystallized in grain boundaries of the crystal grains, and is characterized in that the crystallized products occupy an area of 5-25% in a cross section of the grain structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽量化が求められ
る自動車部品、特に耐熱性が求められるトランスミッシ
ョン部品またはエンジン部品に用いて好適な自動車用耐
熱マグネシウム合金鋳造品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant magnesium alloy casting for automobiles, which is suitable for use in automobile parts requiring light weight, especially transmission parts or engine parts requiring heat resistance.

【0002】[0002]

【従来の技術】近年、自動車の軽量化のために、マグネ
シウム合金が注目されているが、耐熱性が求められるト
ランスミッション部品やエンジン部品に使用する場合に
は、高温強度、特に150℃付近(125〜175℃)
でのクリープ強度が低いと、使用中にへたりが生じて部
品を締め付けているボルトがゆるむ等の問題が生じる。
このような鋳造用マグネシウム合金としては、2〜6%
のAlを含むMg-Al系合金(ASTM規格−AM6
0B、AM50A、AM20Aなど)や、8〜10%の
Alおよび1〜3%のZnを含むMg-Al-Zn系合金
(ASTM規格−AZ91Dなど)が挙げられる。これ
らの合金は鋳造性が良好であり、ダイカストが可能であ
るが、150℃付近でのクリープ強度が低く、エンジン
周りの部品には適用することができない。例えば、代表
的なダイカスト合金であるAZ91Dは、鋳造性、強
度、耐食性において良好な特性を有するものの、クリー
プ強度はMg-Al系合金よりも劣っている。
2. Description of the Related Art In recent years, magnesium alloys have attracted attention for the purpose of reducing the weight of automobiles. However, when they are used for transmission parts and engine parts that require heat resistance, high-temperature strength, particularly around 150 ° C. Up to 175 ° C)
If the creep strength is low, there is a problem that sag occurs during use and the bolts that fasten parts are loosened.
As such a magnesium alloy for casting, 2-6%
Mg-Al alloy containing Al (ASTM-AM6
OB, AM50A, AM20A, etc.) and a Mg-Al-Zn-based alloy containing 8-10% Al and 1-3% Zn (ASTM standard-AZ91D, etc.). These alloys have good castability and can be die-casted, but have low creep strength around 150 ° C. and cannot be applied to parts around the engine. For example, AZ91D which is a typical die-cast alloy has good castability, strength and corrosion resistance, but is inferior in creep strength to Mg-Al alloy.

【0003】あるいは、希土類元素を添加した耐熱ダイ
カスト合金としてAE42が知られているが、この合金
は希土類元素を含むために高価であり、かつ鋳造性やク
リープ強度も十分とはいえない。最近、Mg-Al-Mn
系合金にCaを添加した合金が開発され、特開平6−2
5790号公報に開示されている。この公報によれば、
特にCa/Al比を0.7以上とする場合に、Mg-Ca
の金属間化合物が晶出して高いクリープ強度が得られる
とされている。しかしながら、Ca/Al比の高いマグ
ネシウム合金においては、鋳造割れ(高温割れ)が発生
し易いという問題があった。
[0003] Alternatively, AE42 is known as a heat-resistant die-casting alloy to which a rare earth element is added. However, this alloy is expensive because it contains a rare earth element, and its castability and creep strength are not sufficient. Recently, Mg-Al-Mn
An alloy in which Ca is added to a base alloy has been developed.
No. 5,790,547. According to this publication,
Particularly, when the Ca / Al ratio is set to 0.7 or more, Mg-Ca
It is said that a high creep strength is obtained by crystallization of the intermetallic compound. However, a magnesium alloy having a high Ca / Al ratio has a problem that casting cracks (hot cracks) are likely to occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決すべく成されたものであって、機械的性質とク
リープ特性に優れ、かつ鋳造性とクリープ強度を向上さ
せた自動車用などに好適な耐熱マグネシウム合金鋳造品
とその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended for an automobile having excellent mechanical properties and creep characteristics, and improved castability and creep strength. It is an object of the present invention to provide a heat-resistant magnesium alloy casting and a method for manufacturing the same, which are suitable for such applications.

【0005】[0005]

【課題を解決するための手段】本発明者等はMg-Al-
Ca系合金の鋳造性とクリープ強度に及ぼす各種添加元
素の効果について鋭意検討を重ねた結果、微量のSrを
添加することにより、鋳造性とクリープ強度を向上させ
得ることを見出した。すなわち、本発明の耐熱マグネシ
ウム合金鋳造品は、重量%でAlを1.5〜6%、Ca
を0.5〜3%、Srを0.21〜1%、Mnを0.l〜
1%含有し、残部がMgおよび不可避不純物からなり、
結晶組織が主としてマグネシウムからなるマグネシウム
結晶粒と、該結晶粒の粒界に晶出した主としてAlとC
aおよびAlとMnとからなる晶出物とから主に構成さ
れており、前記結晶組織の断面における前記晶出物の占
有面積が5〜25%の範囲であるマグネシウム合金から
なる鋳造品であることを特徴とする。次に、本発明の耐
熱マグネシウム合金鋳造品は、前記マグネシウム合金
が、重量%で0.1〜0.5%未満の希土類元素を含有す
ることを特徴とする。更に本発明のマグネシウム合金鋳
造品は、Si、Znを含有する場合もある。
Means for Solving the Problems The inventors of the present invention have proposed that Mg-Al-
As a result of intensive studies on the effects of various additional elements on the castability and creep strength of Ca-based alloys, it was found that castability and creep strength can be improved by adding a small amount of Sr. That is, the heat-resistant magnesium alloy casting of the present invention contains 1.5 to 6% Al by weight,
From 0.5 to 3%, Sr from 0.21 to 1%, and Mn from 0.1 to 0.1%.
1%, the balance consisting of Mg and unavoidable impurities,
Magnesium crystal grains whose crystal structure is mainly composed of magnesium, and mainly Al and C crystallized at grain boundaries of the crystal grains.
a cast product made of a magnesium alloy mainly composed of a and a crystallized substance composed of Al and Mn, and occupying an area of 5 to 25% of the crystallized substance in a cross section of the crystal structure. It is characterized by the following. Next, the heat-resistant magnesium alloy casting of the present invention is characterized in that the magnesium alloy contains 0.1 to less than 0.5% by weight of a rare earth element. Further, the magnesium alloy casting of the present invention may contain Si and Zn in some cases.

【0006】次に、本発明の耐熱マグネシウム合金鋳造
品の製造方法は、重量%でAlを1.5〜6%、Caを
0.5〜3%、Srを0.21〜1%、Mnを0.l〜1
%含有し、残部がMgおよび不可避不純物からなるマグ
ネシウム合金を溶製する工程と、該マグネシウム合金を
鋳造する工程とを含み、前記鋳造工程におけるマグネシ
ウム合金の冷却速度が、0.1〜100℃/秒の範囲で
あることを特徴とする。次に、本発明の耐熱マグネシウ
ム合金鋳造品の製造方法において、前記マグネシウム合
金が、重量%で0.1〜0.5%未満の希土類元素を含有
するものでも良い。
Next, the method for producing a heat-resistant magnesium alloy casting of the present invention is as follows: Al is 1.5 to 6%, Ca is 0.5 to 3%, Sr is 0.21 to 1%, 0.1 to 1
%, And a step of ingot-making a magnesium alloy consisting of Mg and inevitable impurities, and a step of casting the magnesium alloy. It is in the range of seconds. Next, in the method for producing a heat-resistant magnesium alloy casting of the present invention, the magnesium alloy may contain a rare earth element in an amount of 0.1 to less than 0.5% by weight.

【0007】以下に本発明に係る耐熱マグネシウム鋳造
品に用いられるマグネシウム合金の組成について説明す
る。なお、本願明細書において特に指定しない限り、2
つの数値を〜で結んで範囲を指定する場合、以上、以下
を示すものとする。例えば1〜3%は、特に指定しない
限り1%以上、3%以下の範囲を示すものとする。更
に、本願明細書において%は特に指定しない限りは重量
%を示すものとする。
The composition of the magnesium alloy used in the heat-resistant magnesium casting according to the present invention will be described below. Unless otherwise specified in the present specification, 2
When the range is specified by connecting two numerical values with ~, the following is shown above. For example, 1 to 3% indicates a range of 1% or more and 3% or less unless otherwise specified. Further, in the specification of the present application,% means% by weight unless otherwise specified.

【0008】Al(1.5〜6重量%):Alはその含
有量が6%まではマグネシウムの地に固溶して固溶体硬
化により強度を高め、またCaと結合して結晶粒界上に
Al-Ca系晶出物のネットワークを形成することによ
りマグネシウム合金のクリープ特性を向上させる。さら
に、鋳造性を向上させる作用がある。しかし、その含有
量が1.5%未満であるとこれらの効果が小さく、特に
その強度が低くなるため実用的ではない。一方、Alの
含有量が6%を超えるとクリープ特性が急激に劣化す
る。従ってAl含有量を1.5〜6%の範囲とした。
Al (1.5 to 6% by weight): When the content of Al is up to 6%, it forms a solid solution in magnesium ground to increase the strength by solid solution hardening, and combines with Ca to form on the grain boundaries. The creep characteristics of the magnesium alloy are improved by forming a network of Al-Ca-based crystals. Further, it has an effect of improving castability. However, if the content is less than 1.5%, these effects are small, and particularly its strength is low, so that it is not practical. On the other hand, when the content of Al exceeds 6%, the creep characteristics deteriorate rapidly. Therefore, the Al content is set in the range of 1.5 to 6%.

【0009】また、Al含有量が1.5〜4.0%の場合
には、引張強さや耐力が比較的小さくなるため、高い引
張強さや耐力が必要な場合などにおいては、Al含有量
は4.0%を超えて6%以下の範囲とされることがより
好ましい。
Further, when the Al content is 1.5 to 4.0%, the tensile strength and proof stress are relatively small. Therefore, when high tensile strength and proof stress are required, the Al content is reduced. More preferably, it is set to be more than 4.0% and 6% or less.

【0010】Ca(0.5〜3重量%):Caは、その
含有量の増加に伴ってクリープ抵抗を向上させる効果を
有するが、含有量が重量%で0.5%未満ではその改善
効果が小さく、一方、3%を超えるとその改善効果は飽
和する。また、Caには、溶湯の難燃性を高める作用が
あるが、0.5%未満では十分ではない。ところが、C
a含有量が増加するほど鋳造割れが生じやすい傾向があ
る。従って、Ca含有量を重量%で0.5〜3%の範囲
とした。その範囲の中でも1.0〜2.5%が好ましい。
Ca (0.5 to 3% by weight): Ca has the effect of improving the creep resistance as its content increases, but if its content is less than 0.5% by weight, its improving effect is obtained. Is small, while if it exceeds 3%, the improvement effect is saturated. Further, Ca has an effect of increasing the flame retardancy of the molten metal, but less than 0.5% is not sufficient. However, C
Casting cracks tend to be more likely to occur as the a content increases. Therefore, the Ca content is set in the range of 0.5 to 3% by weight. In that range, 1.0% to 2.5% is preferable.

【0011】Sr(0.21〜1重量%):Srは、そ
の含有量の増加に伴ってクリープ抵抗を増加させ、同時
に鋳造割れを生じにくくする効果を有する。また、鋳物
に生じるミクロシュリンケージポロシティの発生を抑制
し、鋳物の健全性を高め、引張強さ、伸びを向上させる
効果がある。しかし、0.21%未満ではそれらの改善
効果が小さく、一方、1%を超えるとそれらの改善効果
は飽和する。従ってSr含有量を重量%で0.21〜1
%の範囲とした。更に好ましいのは0.21〜0.5%の
範囲である。
Sr (0.21 to 1% by weight): Sr has the effect of increasing the creep resistance as its content increases and, at the same time, making casting cracks less likely to occur. Further, there is an effect of suppressing the occurrence of microshrinkage porosity generated in the casting, improving the soundness of the casting, and improving the tensile strength and elongation. However, if it is less than 0.21%, the improvement effect is small, while if it exceeds 1%, the improvement effect is saturated. Therefore, the Sr content is 0.21 to 1 by weight%.
%. More preferably, it is in the range of 0.2% to 0.5%.

【0012】Mn(0.1〜1重量%):Mnは耐食性
を向上させ、さらにマグネシウムの地に固溶してクリー
プ強度および耐力、特に高温耐力を向上させる。しか
し、0.1%未満ではそれらの効果は少なく、一方、1
%を超えると多量のMn単層が晶出するようになるた
め、マグネシウム合金が脆くなり強度が低下する。従っ
てMn含有量を0.1〜1%の範囲とした。好ましくは
0.4〜0.7%の範囲である。
Mn (0.1 to 1% by weight): Mn improves corrosion resistance, and further forms a solid solution with magnesium to improve creep strength and proof strength, especially high-temperature proof strength. However, if the content is less than 0.1%, the effect is small, while
%, A large amount of Mn monolayer is crystallized, so that the magnesium alloy becomes brittle and the strength is reduced. Therefore, the Mn content is set in the range of 0.1 to 1%. Preferably, it is in the range of 0.4 to 0.7%.

【0013】希土類元素(0.1〜0.5重量%):希土
類元素としては、例えばイットリウム、ネオジウム、ラ
ンタン、セリウム、ミッシュメタル(La:15%、C
e:60%、Nd:15%、Pr+Sm:10%)など
を用いることができる。このような希土類元素を添加す
ると、アルミニウムと希土類元素の化合物が生成してク
リープ特性が向上する。しかし、希土類元素の含有量が
0.1%未満の場合には十分な効果が得られず、また、
0.5%以上を含有させると鋳造時に割れや焼き付きが
発生しやすくなる。更に、0.5%以上の高濃度添加で
は、ミッシュメタルが高価なため、経済面で問題を生じ
るおそれがあり、極力少ない量に抑えることが好まし
い。従って、希土類元素の含有量は重量%で0.1%以
上、0.5%未満の範囲とした。また、希土類元素を添
加すると耐食性の著しい改善が認められ、この効果を得
るには0.2%以上が好ましく、0.5%以上で効果は飽
和するので、0.2%以上、0.5%未満の範囲がより好
ましい。
Rare earth elements (0.1 to 0.5% by weight): Examples of rare earth elements include yttrium, neodymium, lanthanum, cerium, and misch metal (La: 15%, C
e: 60%, Nd: 15%, Pr + Sm: 10%) and the like. When such a rare earth element is added, a compound of aluminum and the rare earth element is generated, and the creep characteristics are improved. However, when the content of the rare earth element is less than 0.1%, a sufficient effect cannot be obtained.
When the content is 0.5% or more, cracks and seizure are likely to occur during casting. Further, when the high concentration of 0.5% or more is added, the misch metal is expensive, which may cause a problem in economy, and it is preferable to keep the amount as small as possible. Therefore, the content of the rare earth element is set in the range of 0.1% or more and less than 0.5% by weight. When a rare earth element is added, a remarkable improvement in corrosion resistance is recognized. To obtain this effect, the effect is preferably 0.2% or more, and the effect is saturated at 0.5% or more. % Is more preferable.

【0014】SiやZnについては、下記のような割合
で含有されていると、下記に述べるような特徴が更に奏
される。即ち、本発明のマグネシウム合金には、上記成
分の他にSiが0.1〜1%、(好ましくは0.2〜0.
6%)含有される場合もある。また、上記成分の他にZ
nが0.2〜1%(好ましくは0.4〜0.8%)含有さ
れる場合もある。即ち、上記のような割合でSiが更に
含有された本発明のマグネシウム合金は鋳造性が向上
し、鋳造割れが起き難くなる傾向が奏される。また、上
記のような割合でZnが更に含有された本発明のマグネ
シウム合金は、固溶硬化により強度が向上する特徴が奏
される。
[0014] When Si and Zn are contained in the following proportions, the following features are further exhibited. That is, in the magnesium alloy of the present invention, in addition to the above components, 0.1 to 1% of Si (preferably 0.2 to 0.2%) is contained.
6%) in some cases. In addition to the above components, Z
n may be contained in an amount of 0.2 to 1% (preferably 0.4 to 0.8%). That is, the magnesium alloy of the present invention further containing Si at the above ratio has an improved castability and a tendency that casting cracks hardly occur. Further, the magnesium alloy of the present invention further containing Zn at the above ratio has a feature that strength is improved by solid solution hardening.

【0015】[0015]

【発明の実施の形態】次に、先に説明した本発明に係る
組成系の耐熱マグネシウム合金からなる鋳造品の結晶組
織について述べる。本発明の耐熱マグネシウム合金鋳造
品の結晶組織は主としてMgからなる結晶粒と、その粒
界に晶出した主としてAlとCaおよびAlとMnから
なる晶出物から構成されており、この晶出物のマグネシ
ウム合金鋳造品断面における面積率が5〜25%とされ
ている。これは、AlおよびCaを含有するマグネシウ
ム合金鋳造品のクリープ機構が、主にMg結晶粒の粒界
滑りを起因とするものであり、Mg結晶粒の粒界に晶出
物が存在すると、この晶出物が抵抗となって粒界滑りを
抑制する効果を得ることができるためである。また、上
記のように晶出物の面積率を限定した理由は、上記面積
率が5%未満では粒界滑りを抑制する効果が十分に得ら
れないためにクリープ特性に劣るものとなり、25%を
超えると鋳造性が劣化するとともに、マトリクス中への
Al、Caなどの固溶量が減少し、固溶硬化が低下する
とともに、この晶出物が粗大化して強度や伸びが低下す
るためである。晶出物の面積率において先の範囲の中で
も10〜20%が好ましい。
Next, the crystal structure of a casting made of the above-described composition-based heat-resistant magnesium alloy of the present invention will be described. The crystal structure of the heat-resistant magnesium alloy casting of the present invention is composed of crystal grains mainly composed of Mg and crystallized substances mainly composed of Al and Ca and Al and Mn crystallized at the grain boundaries. Is 5 to 25% in the section of the magnesium alloy casting. This is because the creep mechanism of the magnesium alloy casting containing Al and Ca is mainly caused by the grain boundary sliding of the Mg crystal grains. This is because the crystallized material serves as a resistance, and an effect of suppressing grain boundary slip can be obtained. Also, the reason for limiting the area ratio of the crystallized substance as described above is that if the area ratio is less than 5%, the effect of suppressing grain boundary slip cannot be sufficiently obtained, resulting in inferior creep characteristics. Exceeding the above, the castability is deteriorated, the solid solution amount of Al, Ca, etc. in the matrix is reduced, the solid solution hardening is reduced, and the crystallized material is coarsened and the strength and elongation are reduced. is there. The area ratio of the crystallized product is preferably from 10 to 20% in the above range.

【0016】上記の合金成分を有する耐熱マグネシウム
合金鋳造品は、一般的なマグネシウム合金の鋳造技術に
よって製造することができる。例えば、鉄製の坩堝を用
いて溶製することができる。また、鋳造においては、ダ
イカスト法、重力鋳造法などの各種鋳造方法を用いるこ
とが可能であり、本願発明では特にダイカスト法、重力
鋳造法に限定されるものではないが、ダイカスト法、重
力鋳造法により製造することが一般的には有効である。
The heat-resistant magnesium alloy casting having the above alloy components can be manufactured by a general magnesium alloy casting technique. For example, it can be melted using an iron crucible. In the casting, various casting methods such as a die casting method and a gravity casting method can be used. The present invention is not particularly limited to the die casting method and the gravity casting method. Is generally effective.

【0017】また、本発明に係る耐熱マグネシウム合金
鋳造品は、鋳造工程における冷却速度が、0.1℃/秒
以上、100℃/秒以下の範囲とされることが好まし
い。これは、上記冷却速度が0.1℃/秒未満である
と、Mg結晶粒の粒界に析出する晶出物が多くなり、A
l固溶量が少なくなるために強度が低下するからであ
り、100℃/秒を超えるとMg結晶粒の粒界に晶出す
る晶出物の面積率が低下してクリープ強度が低下するか
らである。
Further, in the heat-resistant magnesium alloy casting according to the present invention, the cooling rate in the casting step is preferably in the range of 0.1 ° C./sec to 100 ° C./sec. This is because if the cooling rate is less than 0.1 ° C./sec, the amount of crystallized substances precipitated at the grain boundaries of Mg crystal grains increases.
This is because the strength decreases because the amount of solid solution decreases, and if the temperature exceeds 100 ° C./sec, the area ratio of crystallized substances crystallized at the grain boundaries of Mg crystal grains decreases, and the creep strength decreases. It is.

【0018】[0018]

【実施例】以下、実施例を用いて本発明の効果を明らか
にする。ただし、本発明は以下の実施例に限定されるも
のではない。後述する表1、2に示す組成のマグネシウ
ム合金を鉄製坩堝を用いてSF6/CO2/Airの混合
ガス雰囲気下で電気炉にて溶解し、コールドチャンバー
ダイカストマシンにより図1(a)、(b)に示す形状
の鋳物をそれぞれ鋳造した。なお、希土類元素(R.
E.)についてはミッシュメタルの状態で添加した。
尚、本例における鋳造時の冷却速度は70℃/秒とし
た。図1(a)、(b)に示す鋳造品1は、全体が幅7
0mm、高さ150mmの板材であって、この板材の下
部から高さ方向に1/3の部分4が厚さ3mm、次の1
/3の部分3が厚さ2mm、残りの1/3の部分2が厚
さ1mmとされている。そして、溶製した金属を型に注
入する側のビスケット部5側に厚さ3mmの部分4が配
置されており、厚さ1mmの部分2から外側に鋳込み金
属がオーバーフローするようにオーバーフロー部6が形
成されている。
EXAMPLES The effects of the present invention will be clarified using examples. However, the present invention is not limited to the following examples. Magnesium alloys having the compositions shown in Tables 1 and 2 to be described later were melted in an electric furnace using a steel crucible under a mixed gas atmosphere of SF 6 / CO 2 / Air, and FIG. Castings having the shapes shown in b) were respectively cast. Note that rare earth elements (R.
E.) was added in the state of misch metal.
The cooling rate during casting in this example was 70 ° C./sec. The casting 1 shown in FIGS. 1A and 1B has a width 7 as a whole.
0 mm, 150 mm high plate material, 1/3 of the portion 4 in the height direction from the bottom of the plate material is 3 mm thick, and the next 1
The 3 portion 3 has a thickness of 2 mm, and the remaining 3 portion 2 has a thickness of 1 mm. A portion 4 having a thickness of 3 mm is arranged on the side of the biscuit portion 5 on the side where the melted metal is injected into the mold, and an overflow portion 6 is formed so that the cast metal overflows from the portion 2 having a thickness of 1 mm to the outside. Is formed.

【0019】上記にて作製された鋳造品の厚さ3mmの
部分の板厚中央部について二次電子像を撮影し、その分
析から鋳造品内部におけるAlとCaおよびAlとMn
を主成分とする晶出物の鋳造品断面に対する面積率を求
めた。また、後述する比較例25は重力鋳造法で舟型に
鋳込み、肉厚中央部の断面で測定した。図2に実施例の
鋳造品断面の二次電子像を模式的に示す。この図に示す
ように、本例のマグネシウム合金鋳造品は、複数のマグ
ネシウム結晶粒11…から主に構成されており、隣接す
る結晶粒11…が結晶粒界を形成している。そして、粒
界にAlとCaの化合物(Al2Ca)およびAlとM
nの化合物を主成分とする晶出物12が晶出している。
この晶出物12の面積を測定して視野の全面積で除する
ことにより晶出物の占有面積率を算出することができ
る。
A secondary electron image was taken of the central part of the 3 mm thick part of the cast product prepared above, and from the analysis, Al and Ca and Al and Mn inside the cast product were analyzed.
The area ratio of the crystallized product containing as a main component to the cross section of the cast product was determined. In Comparative Example 25 to be described later, a boat was cast by a gravity casting method, and measurement was performed on a cross section of the center part of the wall thickness. FIG. 2 schematically shows a secondary electron image of a cross section of the cast product of the example. As shown in this figure, the magnesium alloy casting of this example is mainly composed of a plurality of magnesium crystal grains 11, and adjacent crystal grains 11 form crystal grain boundaries. The compound of Al and Ca (Al 2 Ca) and Al and M
A crystallized substance 12 having a compound of n as a main component is crystallized.
By measuring the area of the crystallized matter 12 and dividing it by the entire area of the visual field, the occupied area ratio of the crystallized matter can be calculated.

【0020】本発明に係るマグネシウム合金鋳造品のダ
イカスト鋳造性は、鋳造時の鋳造割れ(高温割れ)と金
型への焼き付きにより評価した。鋳造割れは、図1に示
す鋳造品の厚さが1mmから2mmに変化する付近にお
いて凝固収縮中の応力集中に起因して生じる。以下の表
1に示す組成の各合金に対し、それぞれ100ショット
製造し、最初の30ショットは廃棄して、残りの70シ
ョットについて一個あたりの平均鋳造割れ長さを求め、
鋳造割れの評価とした。各試料のマグネシウム合金鋳造
品において金型への焼き付きについては目視で評価し
た。
The castability of the magnesium alloy casting according to the present invention was evaluated by casting cracks (hot cracking) during casting and seizure to a mold. Casting cracks occur near the point where the thickness of the casting shown in FIG. 1 changes from 1 mm to 2 mm due to stress concentration during solidification shrinkage. For each alloy having the composition shown in Table 1 below, 100 shots were manufactured, the first 30 shots were discarded, and the average casting crack length per piece was determined for the remaining 70 shots.
The casting crack was evaluated. In the magnesium alloy casting of each sample, the seizure to the mold was visually evaluated.

【0021】また、図1に示す鋳造品1の板厚3mmの
部分より板状試験片を切り出し、引張試験とクリープ試
験を実施した。引張試験は10トンオートグラフ試験機
を用いて室温にて引張速度5mm/分で行った。また、
クリープ試験は150℃にて荷重50MPa、試験時間
100時間で行い、クリープ曲線より最小クリープ速度
を求め、クリープ特性の評価とした。以上の条件にて実
施した評価の結果を以下の表3、4に示す。また、一部
の実施例と比較例については、試験片に対して塩水を2
40時間噴霧した場合の腐食速度を耐食性の指標として
示した。
Further, a plate-like test piece was cut out from a portion having a thickness of 3 mm of the casting 1 shown in FIG. 1 and a tensile test and a creep test were performed. The tensile test was performed at room temperature at a tensile speed of 5 mm / min using a 10-ton autograph tester. Also,
The creep test was performed at 150 ° C. under a load of 50 MPa and a test time of 100 hours, and a minimum creep rate was determined from a creep curve to evaluate creep characteristics. The results of the evaluation performed under the above conditions are shown in Tables 3 and 4 below. In addition, for some of the examples and the comparative examples, the test pieces were exposed to 2 mL of saline.
The corrosion rate when sprayed for 40 hours was shown as an index of corrosion resistance.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表3に示すように、本発明の要件を満たす
実施例1〜24の耐熱マグネシウム合金鋳造品は、優れ
た引張強さと耐力を有し、最小クリープ速度も小さく、
鋳造割れ長さも短いことがわかる。また、これら実施例
1〜24の耐熱マグネシウム合金鋳造品においては鋳造
時の焼き付きの発生がなく優れた特性を有する鋳造品で
あることがわかる。
As shown in Table 3, the heat-resistant magnesium alloy castings of Examples 1 to 24 satisfying the requirements of the present invention have excellent tensile strength and proof stress, low minimum creep rate,
It can be seen that the casting crack length is also short. In addition, it can be seen that these heat-resistant magnesium alloy castings of Examples 1 to 24 have excellent properties without seizure during casting.

【0027】上記実施例の耐熱マグネシウム合金鋳造品
に対して、Al含有量を本発明範囲よりも低い1%とし
た比較例1〜4の鋳造品は鋳造割れ長さが大きくなっ
た。また、比較例1、3の試料は鋳造時の焼き付きが発
生した。
With respect to the heat-resistant magnesium alloy casting of the above example, the castings of Comparative Examples 1 to 4 in which the Al content was 1%, which was lower than the range of the present invention, had a larger casting crack length. The samples of Comparative Examples 1 and 3 suffered burn-in during casting.

【0028】次に、表1に示す実施例15と同等の合金
組成のマグネシウム合金を溶製し、コールドチャンバー
ダイカストマシーン及び重力鋳造を用いて、鋳造工程に
おける冷却速度を変化させて比較例25、26の耐熱マ
グネシウム合金鋳造品を作製した。但し、比較例25は
重力鋳造法で作製した。これら実施例15、比較例2
5、26の鋳造品は、鋳造工程における冷却速度を主に
変化させ、合金組成はほぼ同一である。これらの試料の
比較から、冷却速度が遅すぎる場合は鋳造割れ長さはほ
とんど変わらないものの、クリープ特性が悪化し、冷却
速度が100℃/sを超えて速くなると鋳造割れ長さが
長くなり、クリープ特性も悪化することが明らかであ
る。
Next, a magnesium alloy having an alloy composition equivalent to that of Example 15 shown in Table 1 was melted, and the cooling rate in the casting process was changed using a cold chamber die casting machine and gravity casting. 26 heat-resistant magnesium alloy castings were produced. However, Comparative Example 25 was produced by a gravity casting method. Example 15 and Comparative Example 2
The castings of Nos. 5 and 26 mainly change the cooling rate in the casting process, and have almost the same alloy composition. From the comparison of these samples, when the cooling rate is too slow, the casting crack length hardly changes, but the creep characteristics deteriorate, and when the cooling rate is higher than 100 ° C./s, the casting crack length becomes longer, It is clear that the creep properties also deteriorate.

【0029】比較例5の試料はCaを本発明範囲よりも
低い0.1%含有するので、最小クリープ速度が大きい
といった問題がある。更に希土類元素を0.5%以上含
有する比較例3、13、16の鋳造品は、焼き付きが発
生した。また、試験例1として作製した希土類元素を
0.05%含む鋳造品は、表4に示すように最小クリー
プ速度のみがやや大きかった以外は実施例3の鋳造品と
同等の特性を示した。
Since the sample of Comparative Example 5 contains 0.1% of Ca, which is lower than the range of the present invention, there is a problem that the minimum creep rate is large. Further, in the castings of Comparative Examples 3, 13, and 16 containing 0.5% or more of the rare earth element, seizure occurred. In addition, as shown in Table 4, the cast product prepared as Test Example 1 and containing 0.05% of a rare earth element showed the same characteristics as the cast product of Example 3 except that only the minimum creep rate was slightly large.

【0030】Al含有量が5%の比較例7、8の鋳造品
において、比較例7は、Ca含有量が少ないために最小
クリープ速度が大きく、比較例8はCa含有量が多すぎ
て鋳造割れ長さが著しく大きいものであった。Al含有
量が6%あるいは6%に近い5.9%であるが、Ca含
有量の少ない比較例10、11および試験例2の鋳造品
のうち、比較例10、11の鋳造品は最小クリープ速度
が大きい。また、試験例2として作製した希土類元素を
0.05%含む鋳造品は、表4に示すように最小クリー
プ速度のみがやや大きかった以外は、実施例22の鋳造
品とほぼ同等の特性を示した。
In the castings of Comparative Examples 7 and 8 having an Al content of 5%, Comparative Example 7 had a low minimum creep rate due to a low Ca content, and Comparative Example 8 had a high Ca content due to an excessively high Ca content. The crack length was extremely large. Among the castings of Comparative Examples 10 and 11 and Test Example 2 having an Al content of 6% or 5.9% close to 6% but having a low Ca content, the castings of Comparative Examples 10 and 11 have the minimum creep. Speed is great. Further, the cast product containing 0.05% of the rare earth element produced as Test Example 2 exhibited almost the same characteristics as the cast product of Example 22 except that only the minimum creep rate was slightly higher as shown in Table 4. Was.

【0031】比較例22、23の試料はAl含有量が多
く、Ca含有量を増加させた試料であるが、いずれも最
小クリープ速度が大きくなった。比較例24はCa、S
r、Mnを含有していない組成系であるが、いずれも最
小クリープ速度が大きく、鋳造割れ長さも長く、焼き付
きを生じた。比較例25、26は冷却速度を小さくし過
ぎるか大きくし過ぎた試料であるがいずれも最小クリー
プ速度が大きくなった。比較例14、15はMnを多く
含んだ試料であるが、引張り強さが低くなるという問題
を生じた。
The samples of Comparative Examples 22 and 23 had a high Al content and an increased Ca content, but both had a high minimum creep rate. Comparative Example 24 is Ca, S
Although the composition system did not contain r and Mn, the minimum creep rate was large, the casting crack length was long, and seizure occurred. In Comparative Examples 25 and 26, the cooling rates were too low or too high, but the minimum creep rates were both high. Comparative Examples 14 and 15 are samples containing a large amount of Mn, but had a problem that the tensile strength was low.

【0032】次に、Sr含有量を0.21〜1%の範囲
に限定したのは以下のような理由による。図3はA1含
有量が5%、Ca含有量が1.5%、Mn含有量が0.3
%の場合におけるMg合金の最小クリープ速度に及ぼす
Sr含有量の影響を示すグラフである。図4はAl含有
量が5%、Ca含有量が1.5、Mn含有量が0.3%の
場合におけるMg合金の鋳造割れ性に及ばすSr含有量
の影響を示すグラフである。
Next, the Sr content is limited to the range of 0.21 to 1% for the following reasons. FIG. 3 shows that the A1 content is 5%, the Ca content is 1.5%, and the Mn content is 0.3.
6 is a graph showing the effect of the Sr content on the minimum creep rate of a Mg alloy in the case of%. FIG. 4 is a graph showing the effect of the Sr content on the casting cracking resistance of the Mg alloy when the Al content is 5%, the Ca content is 1.5, and the Mn content is 0.3%.

【0033】これらの図3及び図4に示す測定結果か
ら、Sr含有量の増加に伴って最小クリープ速度は減少
する傾向にあり、かつ、鋳造割れも起き難くなることが
判る。この効果は、Sr含有量が0.20%未満では小
さく、逆に、1%を越えると飽和状態に達する。また、
図3に示すクリープ速度の低下状況から見れば、0.2
1〜1%の範囲で低い状態が維持され、それよりも高い
含有量の範囲で若干の上昇が見られる。図4を見ると、
Srを0.1%以下の範囲で微量でも添加すると急激に
鋳造割れ長さが低下し、0.1%程度の含有量まで急激
な低下が続くが、0.1%を超える含有量であると平均
鋳造割れ長さ10mmを確実に切るようになり、0.2
0%を超える含有量、即ち0.21%以上では殆ど問題
にならない程度に低下している。
From the measurement results shown in FIGS. 3 and 4, it can be seen that the minimum creep rate tends to decrease as the Sr content increases, and that casting cracks are less likely to occur. This effect is small when the Sr content is less than 0.20%, and reaches a saturated state when the Sr content exceeds 1%. Also,
In view of the creep speed decrease shown in FIG.
The low state is maintained in the range of 1 to 1%, and a slight increase is observed in the range of higher contents. Looking at FIG.
When a small amount of Sr is added in a range of 0.1% or less, the casting crack length is sharply reduced, and the content continues to sharply decrease to a content of about 0.1%, but the content exceeds 0.1%. And the average casting crack length of 10 mm was reliably cut, and 0.2
If the content exceeds 0%, that is, 0.21% or more, the content is reduced to a level that causes little problem.

【0034】以上のような背景から、本発明に係る合金
の基本組成系においてはSr含有量を0.21〜1%の
範囲が好ましいと判断した。この範囲内でも上述の事情
から0.21〜0.5%の範囲がより好ましい。
From the above background, it was determined that the Sr content is preferably in the range of 0.21 to 1% in the basic composition system of the alloy according to the present invention. Even within this range, the range of 0.221 to 0.5% is more preferable from the above-mentioned circumstances.

【0035】[0035]

【発明の効果】以上詳細に説明したように、本発明によ
れば、耐熱マグネシウム合金鋳造品の添加元素であるA
l、Ca、Sr、Mnあるいは希土類元素の含有量を上
記の範囲に設定し、マグネシウムを主成分とする結晶粒
の粒界に晶出したAl、Caを主成分とする晶出物の面
積率を5%以上、25%以下としたことにより優れたク
リープ強度を有し、自動車のエンジン周りの部品として
用いて好適な耐熱マグネシウム合金鋳造品を提供するこ
とができる。
As described in detail above, according to the present invention, A, which is an additive element of a heat-resistant magnesium alloy casting, is used.
The content of l, Ca, Sr, Mn or the rare earth element is set in the above range, and the area ratio of the crystallized substance mainly composed of Al and Ca crystallized at the grain boundaries of the crystal grains mainly composed of magnesium. Is set to 5% or more and 25% or less, a heat-resistant magnesium alloy casting having excellent creep strength and suitable for use as a part around an engine of an automobile can be provided.

【0036】また、本発明に係る耐熱マグネシウム合金
鋳造品の製造方法は、鋳造時の冷却速度を0.1℃/秒
〜100℃/秒とすることにより、クリープ特性に優れ
る耐熱マグネシウム合金鋳造品を安定して製造すること
ができる。
Further, the method for producing a heat-resistant magnesium alloy casting according to the present invention is characterized in that the cooling rate during casting is 0.1 ° C./sec to 100 ° C./sec. Can be manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(a)は本発明の実施例で得られた鋳造
品の側面図、図1(b)は鋳造品の平面図である。
FIG. 1 (a) is a side view of a cast product obtained in an example of the present invention, and FIG. 1 (b) is a plan view of the cast product.

【図2】 図2は、本発明の実施例12の鋳造品の二次
電子像を模式的に示す図である。
FIG. 2 is a diagram schematically showing a secondary electron image of a casting of Example 12 of the present invention.

【図3】 図3は本発明に係る基本組成系合金のSr含
有量と最小クリープ速度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the Sr content and the minimum creep rate of the basic composition alloy according to the present invention.

【図4】 図4は本発明に係る基本組成系合金のSr含
有量ど平均鋳造割れ長さとの関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the Sr content of the basic composition alloy according to the present invention and the average casting crack length.

【符号の説明】[Explanation of symbols]

1…鋳造品、 2…厚さ1mmの部分、 3…厚さ2m
mの部分、4…厚さ3mmの部分、 5…ビスケット
部、 6…オーバーフロー部、11…結晶粒、 12…
晶出物。
1: Cast product, 2: 1mm thick part, 3: 2m thick
m part, 4 ... part of thickness 3 mm, 5 ... biscuit part, 6 ... overflow part, 11 ... crystal grain, 12 ...
Crystallization.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性および鋳造性に優れたマグネシウ
ム合金であって、重量%でAlを1.5〜6%、Caを
0.5〜3%、Srを0.21〜1%、Mnを0.l〜1
%含有し、残部がMgおよび不可避不純物からなり、結
晶組織が主としてマグネシウムからなるマグネシウム結
晶粒と、該結晶粒の粒界に晶出した主としてAlとCa
およびAlとMnとからなる晶出物とから主に構成され
ており、前記結晶組織の断面における前記晶出物の占有
面積が5〜25%の範囲であるマグネシウム合金からな
る鋳造品であることを特徴とする耐熱マグネシウム合金
鋳造品。
1. A magnesium alloy having excellent heat resistance and castability, comprising 1.5 to 6% of Al, 0.5 to 3% of Ca, 0.2 to 1% of Sr, Mn by weight%. 0.1 to 1
%, The balance being Mg and unavoidable impurities, the crystal structure of which is mainly magnesium, and magnesium and aluminum and crystallized mainly at the grain boundaries of the crystal grains.
And a cast product made of a magnesium alloy which is mainly composed of a crystallized substance composed of Al and Mn, and occupies an area of 5 to 25% of the crystallized substance in a cross section of the crystal structure. Heat-resistant magnesium alloy casting.
【請求項2】 前記マグネシウム合金が、重量%で0.
1〜0.5%未満の希土類元素を含有することを特徴と
する請求項1に記載の耐熱マグネシウム合金鋳造品。
2. The method according to claim 1, wherein the magnesium alloy is contained in an amount of 0.1% by weight.
The heat-resistant magnesium alloy casting according to claim 1, comprising 1 to less than 0.5% of a rare earth element.
【請求項3】 Siが0.1〜1%含有されてなること
を特徴とする請求項1または2に記載の耐熱マグネシウ
ム鋳造品。
3. The heat-resistant magnesium casting according to claim 1, wherein the content of Si is 0.1 to 1%.
【請求項4】 Znが0.2〜1%含有されてなること
を特徴とする請求項1〜3のいずれかに記載の耐熱マグ
ネシウム鋳造品。
4. The heat-resistant magnesium casting according to claim 1, wherein Zn is contained in an amount of 0.2 to 1%.
【請求項5】 請求項1〜4のいずれかに記載の合金組
成のマグネシウム合金を溶製する工程と、該マグネシウ
ム合金を鋳造する工程とを含み、前記鋳造工程における
マグネシウム合金の冷却速度が、0.1〜100℃/秒
の範囲であることを特徴とする耐熱マグネシウム合金鋳
造品の製造方法。
5. A method for producing a magnesium alloy having the alloy composition according to claim 1 and a step of casting the magnesium alloy, wherein the cooling rate of the magnesium alloy in the casting step is: A method for producing a heat-resistant magnesium alloy casting, wherein the temperature is in the range of 0.1 to 100 ° C / sec.
JP2002056538A 2001-03-02 2002-03-01 Heat-resistant magnesium alloy casting and manufacturing method thereof Expired - Fee Related JP3737440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002056538A JP3737440B2 (en) 2001-03-02 2002-03-01 Heat-resistant magnesium alloy casting and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-58644 2001-03-02
JP2001058644 2001-03-02
JP2002056538A JP3737440B2 (en) 2001-03-02 2002-03-01 Heat-resistant magnesium alloy casting and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002327231A true JP2002327231A (en) 2002-11-15
JP3737440B2 JP3737440B2 (en) 2006-01-18

Family

ID=26610537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056538A Expired - Fee Related JP3737440B2 (en) 2001-03-02 2002-03-01 Heat-resistant magnesium alloy casting and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3737440B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member
JP2004238678A (en) * 2003-02-05 2004-08-26 Dead Sea Magnesium Ltd Magnesium alloy
JP2005113260A (en) * 2003-09-18 2005-04-28 Toyota Motor Corp Heat-resistant magnesium die casting alloy and die cast product of the same
JP2008081842A (en) * 2006-09-01 2008-04-10 National Institute Of Advanced Industrial & Technology Flame-resistant magnesium alloy having high-strength and high-ductility, and method for producing the same
WO2008120497A1 (en) * 2007-04-03 2008-10-09 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
JP2008540129A (en) * 2005-05-04 2008-11-20 スターリング エフゲニー How to form a sea cucumber and a sea cucumber
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
CN102330118A (en) * 2011-03-03 2012-01-25 华东理工大学 Method for preparing Mg-Sr alloy through molten salt electrolytic codeposition
CN103695742A (en) * 2014-01-16 2014-04-02 张霞 Creep-resistant magnesium alloy and preparation method thereof
CN103710599A (en) * 2014-01-16 2014-04-09 张霞 Boron nitride reinforced anti-creep magnesium alloy and preparation method thereof
CN104099504A (en) * 2014-08-06 2014-10-15 农彩丽 High-strength magnesium alloy and production method thereof
CN104099505A (en) * 2014-08-06 2014-10-15 农彩丽 Wrought magnesium alloy and preparation method thereof
CN104233026A (en) * 2014-06-06 2014-12-24 河南科技大学 Heat-resistant magnesium alloy and preparation method thereof
CN114318094A (en) * 2021-12-20 2022-04-12 重庆大学 Mn particle reinforced Mg-Zn composite material and preparation method thereof
CN115449682A (en) * 2022-09-28 2022-12-09 广东汇天航空航天科技有限公司 Magnesium-based alloy compounded by rare earth and alkaline earth elements and preparation method thereof
CN115652157A (en) * 2022-10-19 2023-01-31 重庆理工大学 AZ series high-performance cast magnesium alloy with low aluminum content and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6814446B2 (en) * 2019-03-12 2021-01-20 本田技研工業株式会社 Flame-retardant magnesium alloy and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145872A (en) * 1992-11-06 1994-05-27 Kobe Steel Ltd Mg alloy excellent in creep strength and its production
JPH0841576A (en) * 1994-07-28 1996-02-13 Honda Motor Co Ltd High strneght magnesium alloy and heat treatment for magnesium alloy casting
JPH0853722A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd Production of magnesium-base alloy excellent in high temperature creep strength
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
JPH09291332A (en) * 1996-02-27 1997-11-11 Honda Motor Co Ltd Heat resistant magnesium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145872A (en) * 1992-11-06 1994-05-27 Kobe Steel Ltd Mg alloy excellent in creep strength and its production
JPH0841576A (en) * 1994-07-28 1996-02-13 Honda Motor Co Ltd High strneght magnesium alloy and heat treatment for magnesium alloy casting
JPH0853722A (en) * 1994-08-10 1996-02-27 Kobe Steel Ltd Production of magnesium-base alloy excellent in high temperature creep strength
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
JPH09291332A (en) * 1996-02-27 1997-11-11 Honda Motor Co Ltd Heat resistant magnesium alloy

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064438A (en) * 2001-08-23 2003-03-05 Japan Steel Works Ltd:The Magnesium alloy having excellent corrosion resistance, and magnesium alloy member
JP4526769B2 (en) * 2003-02-05 2010-08-18 デッド シー マグネシウム エルティーディー Magnesium alloy
JP2004238678A (en) * 2003-02-05 2004-08-26 Dead Sea Magnesium Ltd Magnesium alloy
JP2005113260A (en) * 2003-09-18 2005-04-28 Toyota Motor Corp Heat-resistant magnesium die casting alloy and die cast product of the same
US8459330B2 (en) 2005-05-04 2013-06-11 Evgenij Sterling Method for the production of pigs, and pigs
JP2008540129A (en) * 2005-05-04 2008-11-20 スターリング エフゲニー How to form a sea cucumber and a sea cucumber
JP2008081842A (en) * 2006-09-01 2008-04-10 National Institute Of Advanced Industrial & Technology Flame-resistant magnesium alloy having high-strength and high-ductility, and method for producing the same
JPWO2008120497A1 (en) * 2007-04-03 2010-07-15 株式会社豊田自動織機 Heat resistant magnesium alloy
WO2008120497A1 (en) * 2007-04-03 2008-10-09 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy
US9180515B2 (en) 2008-11-14 2015-11-10 Kabushiki Kaisha Toyota Jidoshokki Magnesium alloy and magnesium-alloy cast product
WO2010055897A1 (en) 2008-11-14 2010-05-20 株式会社豊田自動織機 Magnesium alloy and magnesium alloy casting
EP2369025A4 (en) * 2008-11-14 2016-03-09 Toyota Jidoshokki Kk Magnesium alloy and magnesium alloy casting
CN102330118A (en) * 2011-03-03 2012-01-25 华东理工大学 Method for preparing Mg-Sr alloy through molten salt electrolytic codeposition
CN102330118B (en) * 2011-03-03 2014-08-27 华东理工大学 Method for preparing Mg-Sr alloy through molten salt electrolytic codeposition
CN103710599A (en) * 2014-01-16 2014-04-09 张霞 Boron nitride reinforced anti-creep magnesium alloy and preparation method thereof
CN103695742A (en) * 2014-01-16 2014-04-02 张霞 Creep-resistant magnesium alloy and preparation method thereof
CN104233026A (en) * 2014-06-06 2014-12-24 河南科技大学 Heat-resistant magnesium alloy and preparation method thereof
CN104099504A (en) * 2014-08-06 2014-10-15 农彩丽 High-strength magnesium alloy and production method thereof
CN104099505A (en) * 2014-08-06 2014-10-15 农彩丽 Wrought magnesium alloy and preparation method thereof
CN114318094A (en) * 2021-12-20 2022-04-12 重庆大学 Mn particle reinforced Mg-Zn composite material and preparation method thereof
CN115449682A (en) * 2022-09-28 2022-12-09 广东汇天航空航天科技有限公司 Magnesium-based alloy compounded by rare earth and alkaline earth elements and preparation method thereof
CN115449682B (en) * 2022-09-28 2024-04-26 广东汇天航空航天科技有限公司 Rare earth and alkaline earth element compounded magnesium-based alloy and preparation method thereof
CN115652157A (en) * 2022-10-19 2023-01-31 重庆理工大学 AZ series high-performance cast magnesium alloy with low aluminum content and preparation method thereof

Also Published As

Publication number Publication date
JP3737440B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
EP1127950B1 (en) Die casting magnesium alloy
RU2213796C2 (en) High-temperature magnesium alloy
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
JP2006291327A (en) Heat-resistant magnesium alloy casting
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
US7041179B2 (en) High strength creep resistant magnesium alloys
US20040091384A1 (en) Heat resistant magnesium alloy
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP3737371B2 (en) Magnesium alloy for die casting
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2005187895A (en) Heat resistant magnesium alloy casting
JP4526769B2 (en) Magnesium alloy
JP2005120449A (en) Heat resistant magnesium alloy for casting, casting made of magnesium alloy, and its production method
JP3865430B2 (en) Heat and wear resistant magnesium alloy
JP2004232060A (en) Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
JP4700488B2 (en) Heat-resistant magnesium alloy
JP2005240130A (en) Heat resistant magnesium alloy casting
JP2006176873A (en) Magnesium alloy and method for manufacturing magnesium alloy member
KR100421102B1 (en) Die casting magnesium alloy
JP2005187894A (en) Heat resistant magnesium alloy casting
JP2011219820A (en) Heat resisting magnesium alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees