JP2002325830A - Bone tissue regeneration guiding membrane - Google Patents

Bone tissue regeneration guiding membrane

Info

Publication number
JP2002325830A
JP2002325830A JP2001131355A JP2001131355A JP2002325830A JP 2002325830 A JP2002325830 A JP 2002325830A JP 2001131355 A JP2001131355 A JP 2001131355A JP 2001131355 A JP2001131355 A JP 2001131355A JP 2002325830 A JP2002325830 A JP 2002325830A
Authority
JP
Japan
Prior art keywords
bone tissue
tissue regeneration
membrane
lactic acid
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001131355A
Other languages
Japanese (ja)
Other versions
JP4448260B2 (en
Inventor
Kensho Shirahama
憲昭 白濱
Takatoshi Ito
貴俊 伊藤
Takao Okada
隆雄 岡田
Yukari Imamura
由賀里 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
SB Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc, Taki Chemical Co Ltd filed Critical Kawasumi Laboratories Inc
Priority to JP2001131355A priority Critical patent/JP4448260B2/en
Publication of JP2002325830A publication Critical patent/JP2002325830A/en
Application granted granted Critical
Publication of JP4448260B2 publication Critical patent/JP4448260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bone tissue regeneration guiding membrane which is excellent in operability, moldability, and shape keeping stability for bone regeneration at an operation site upon damage or fracture of a bone and is fixed to shield an infected part and guides bone regeneration. SOLUTION: This bone tissue regeneration guiding membrane is constituted of at least a double layer membrane. The outer layer membrane is constituted of a material with modulus of rigidity 500-5,000 MPa at room temperature and glass transition temperature within the range 40-60 deg.C and the inner layer a material with modules of rigidity 2.0-500 MPa and glass transition temperature within the range 4-37 deg.C. A whole of the bone tissue regeneration guiding membrane has modulus of rigidity within the range 500-2,000 MPa at 4-40 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、骨の損傷や骨折時にお
いて手術現場での易操作性、易成形性及び骨再生のため
の形状維持安定性に優れた、骨が形成されるまで患部に
固定、遮蔽及び骨再生を誘導する膜に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a diseased part until a bone is formed, which is excellent in operability at the operation site, easy formability, and stability in shape maintenance for bone regeneration at the time of bone damage or fracture. And a membrane that induces fixation, shielding and bone regeneration.

【0002】[0002]

【従来の技術と課題】整形外科や口腔外科での骨欠損に
対する治療法は自家骨移植、同種骨移植、異種骨移植及
び人工骨移植が適用されている。しかし、骨採取量及び
免疫問題などから人工骨による治療が有効である。人工
骨材料としては金属材料、セラミックス材料、合成高分
子材料等がインプラント材料として使用されている。現
在、金属材料及びセラミックス材料が広く臨床に使用さ
れているが、特に金属材料は生体組織より物理的、機械
的強度が大きくなりすぎることと、腐食による含有金属
の生体に対する毒性のため生体親和性も劣っており、生
体内に於いても非吸収性材料であるため形成された骨組
織内に残存して新生骨の成長に影響を与え、骨の強度が
低下するという問題がある。
2. Description of the Related Art Autologous bone transplantation, allogeneic bone transplantation, xenogeneic bone transplantation, and artificial bone transplantation have been applied as treatments for bone defects in orthopedic surgery and oral surgery. However, treatment with artificial bone is effective due to problems such as the amount of bone collected and immunity. As an artificial bone material, a metal material, a ceramic material, a synthetic polymer material, or the like is used as an implant material. At present, metal materials and ceramic materials are widely used clinically, but especially metal materials have physical and mechanical strengths that are too large compared to living tissues, and biocompatibility due to the toxicity of contained metals to living bodies due to corrosion. However, since it is a non-absorbable material even in a living body, it remains in the formed bone tissue, affects the growth of new bone, and has a problem that the strength of the bone is reduced.

【0003】このようなことから機械的強度が高すぎる
ことなく、かつ生体内で分解吸収され生体適合性にすぐ
れた材料であるポリ乳酸系共重合体材料が活発に開発さ
れ、臨床に用いられている。また、これらの材料を使用
した骨組織再生誘導(GBR)法が注目され研究されて
いる。この治療法は骨の自己再生能力を活かして治療部
位に軟組織の侵入を防ぐ遮蔽膜を固定する方法であり、
手術法も極めて簡便な治療法であり、口腔外科では多く
の良好な結果が得られている。
[0003] For these reasons, polylactic acid-based copolymer materials, which do not have excessively high mechanical strength, are decomposed and absorbed in vivo, and have excellent biocompatibility, have been actively developed and are used clinically. ing. In addition, a bone tissue regeneration induction (GBR) method using these materials has attracted attention and has been studied. This treatment uses a self-renewal ability of bone to fix a shielding film that prevents soft tissue from entering the treatment site.
Surgery is also a very simple treatment, and oral surgery has yielded many good results.

【0004】しかし、整形外科では口腔外科の比較的小
さな治療部位とは異なり、大きな骨欠損部への治療が対
象となる。そのため、吸収性合成高分子材料による遮蔽
膜においても骨形成の初期段階で軟組織の侵入を防ぐ膜
の形状維持が特に重要となっている。
However, in orthopedic surgery, unlike a relatively small treatment site in oral surgery, treatment for a large bone defect is targeted. For this reason, it is particularly important to maintain the shape of the membrane for preventing invasion of soft tissue in the initial stage of bone formation even in a shielding membrane made of an absorbable synthetic polymer material.

【0005】ここでの形状維持は、膜の単一方向への引
張りもしくは伸び等の機械強度に依存するものではな
く、骨組織が再生されるまでの軟組織等の侵入圧力に対
する膜の剛性が大きく関係する。しかし、臨床で実際に
使用されているものは易操作性もしくは形状維持を優先
させたものに二分され、それぞれに問題が生じている。
The maintenance of the shape here does not depend on mechanical strength such as tension or elongation of the membrane in a single direction. Rigidity of the membrane against penetration pressure of soft tissue or the like until bone tissue is regenerated is large. Involved. However, those actually used in the clinic are divided into those which prioritize easy operability or shape maintenance, and each has a problem.

【0006】室温において剛性率1,000MPa程度
を示す吸収性合成高分子材料膜はハサミによる切断ある
いは骨欠損部位への縫合、設置など易操作性及び易成形
性に優れている。しかし、生体内の体温付近では剛性率
の極端な減少から形態維持安定性に乏しく遮蔽効果が弱
まり、骨組織再生を妨げる軟組織が侵入して治療効果に
悪影響を及ぼす。また、形態維持安定性を優先し、体温
付近で剛性率1,000MPa程度を示す吸収性合成高
分子材料膜は、室温において剛性率は極端に高くなり、
骨欠損部への固定するための曲げ成形、ハサミによる切
断、縫合糸での縫合等の処置において膜が割れるなどに
よる問題が生じる。そのため実作業では高温の滅菌生理
食塩液中に浸漬して膜を柔軟化して使用する場合もあり
術式は簡便であるものの、極めて操作性が悪いものであ
った。
An absorptive synthetic polymer material film having a rigidity of about 1,000 MPa at room temperature is excellent in operability and formability such as cutting with scissors or suturing or setting at a bone defect site. However, near body temperature in a living body, the rigidity is extremely reduced, the shape maintenance stability is poor, and the shielding effect is weakened, and soft tissue which hinders bone tissue regeneration invades and adversely affects the therapeutic effect. Also, giving priority to shape maintenance stability, the absorbent synthetic polymer material film showing a rigidity of about 1,000 MPa near body temperature, the rigidity becomes extremely high at room temperature,
Problems such as breakage of the membrane occur in procedures such as bending for fixing to a bone defect, cutting with scissors, and suturing with a suture. For this reason, in actual work, the membrane may be softened by immersion in a high-temperature sterile physiological saline solution, so that the operation method is simple, but the operability is extremely poor.

【0007】このようなことから、使用する温度範囲
(4℃から40℃)全般において剛性率が500〜20
00MPaの範囲内である吸収性合成高分子材料膜の開
発が望まれていた。しかし、ポリ乳酸系共重合体材料
は、本来熱可塑性高分子の一種であり、その熱的性質の
ひとつのガラス転移温度(Tg)は0〜65℃付近であ
り、温度に対して膜の物性が非常に影響を受けやすい。
そのため温度依存的に剛性率の変化が大きく、単一材料
では適用する温度範囲において剛性率が上記条件を満た
す材料は存在しない。特許平9−14785では乳酸/
ε−カプロラクトン共重合体の積層した材料を使用して
いるが適切な剛性は得られていない。この問題を解決す
るために、リン酸カルシウム材料等の他の吸収性材料に
よって複合材料化して剛性の調整を行っているが、いま
だ適切な材料には到っていない。
Therefore, the rigidity is 500 to 20 over the entire temperature range (4 ° C. to 40 ° C.).
It has been desired to develop an absorbent synthetic polymer material film having a pressure within the range of 00 MPa. However, a polylactic acid-based copolymer material is originally a kind of thermoplastic polymer, and one of its thermal properties has a glass transition temperature (Tg) of about 0 to 65 ° C. But very susceptible.
For this reason, the change in the rigidity is large in a temperature-dependent manner, and there is no single material having a rigidity satisfying the above condition in the temperature range to be applied. Patent Hei 9-14785 states that lactic acid /
Although a laminated material of ε-caprolactone copolymer is used, appropriate rigidity has not been obtained. In order to solve this problem, the rigidity is adjusted by forming a composite material using another absorbent material such as a calcium phosphate material, but an appropriate material has not yet been obtained.

【0008】[0008]

【課題を解決するための手段】[1]本発明は、少なく
とも二層膜よりなる骨組織再生誘導膜において、外層膜
は、室温において、剛性率が500〜5000MPa、
ガラス転移温度が40〜60℃の範囲にある材料から構
成され、内層膜は、室温において、剛性率が2.0〜5
00MPa、ガラス転移温度が4〜37℃の範囲にある
材料から構成され、かつ骨組織再生誘導膜全体は、4〜
40℃において、剛性率が500〜2000MPaの範
囲にある骨組織再生誘導膜を提供する。 [2]本発明は、外層膜は乳酸系重合体を20重量%以
上含有した材料より構成され、内層膜は乳酸/グリコー
ル酸/ε−カプロラクトンの三元系共重合体とリン酸カ
ルシウム系材料の複合体よりなり、かつ三元系共重合体
を5重量%以上含有した材料より構成されている[1]
に記載の骨組織再生誘導膜を提供する。 [3]本発明は、前記外層膜を構成する乳酸系重合体
は、(a)生体吸収性のポリ乳酸単体または(b)ポリ
乳酸とリン酸カルシウム系材料との複合体または(c)
乳酸/グリコール酸/ε−カプロラクトンの三元系共重
合体とリン酸カルシウム系材料の複合体または(d)乳
酸と乳酸以外のヒドロキシカルボン酸からなる共重合体
である[1]ないし[2]に記載の骨組織再生誘導膜を
提供する。 [4]本発明は、外層膜及び内層膜を構成する乳酸/グ
リコール酸/ε−カプロラクトンの三元系共重合体の数
平均分子量は20000から200000である[1]
ないし[3]に記載の骨組織再生誘導膜を提供する。 [5]本発明は、乳酸/グリコール酸/ε−カプロラク
トンの三元系共重合体の組成モル比が5〜90:3〜7
5:5〜40モル%の範囲である[1]ないし[4]に
記載の骨組織再生誘導膜を提供する。 [6]本発明は、骨組織再生誘導膜が外層膜と内層膜と
を熱融着することにより積層されたものである[1]な
いし[5]に記載の骨組織再生誘導膜を提供する。
Means for Solving the Problems [1] The present invention provides a bone tissue regeneration-inducing membrane comprising at least a bilayer membrane, wherein the outer layer membrane has a rigidity of 500 to 5000 MPa at room temperature.
The inner layer film is made of a material having a glass transition temperature in the range of 40 to 60 ° C., and has a rigidity of 2.0 to 5 at room temperature.
00MPa, made of a material having a glass transition temperature in the range of 4-37 ° C.
At 40 ° C., a bone tissue regeneration-inducing membrane having a rigidity in the range of 500 to 2000 MPa is provided. [2] In the present invention, the outer layer film is composed of a material containing 20% by weight or more of a lactic acid-based polymer, and the inner layer film is a composite of a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone and a calcium phosphate-based material. [1] composed of a material and composed of a material containing 5% by weight or more of a terpolymer.
2. A bone tissue regeneration-inducing membrane according to item 1. [3] In the present invention, the lactic acid-based polymer constituting the outer layer film may be (a) a bioabsorbable polylactic acid simple substance or (b) a composite of polylactic acid and a calcium phosphate-based material or (c)
[1] or [2], which is a complex of a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone and a calcium phosphate-based material or (d) a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid. And a bone tissue regeneration-inducing membrane. [4] In the present invention, the ternary copolymer of lactic acid / glycolic acid / ε-caprolactone constituting the outer layer film and the inner layer film has a number average molecular weight of 20,000 to 200,000 [1].
Or a bone tissue regeneration-inducing membrane according to [3]. [5] In the present invention, the terpolymer of lactic acid / glycolic acid / ε-caprolactone has a composition molar ratio of 5 to 90: 3 to 7
5: The bone tissue regeneration-inducing membrane according to [1] to [4], which is in a range of 5 to 40 mol%. [6] The present invention provides the bone tissue regeneration-inducing membrane according to any one of [1] to [5], wherein the bone tissue regeneration-inducing membrane is laminated by heat-sealing an outer layer film and an inner layer film. .

【0009】[0009]

【発明の実施の形態】図1は、本発明の骨組織再生誘導
膜1の一例を示す概略図である。図2は、骨組織再生誘
導膜1を構成する積層体2の一部拡大断面図である。骨
組織再生誘導膜1は外層膜3と内層膜4より構成され
る。本発明で外層膜3とは骨組織再生誘導膜1を構成す
る最外層の膜で、本発明で内層膜4とは骨組織再生誘導
膜1を構成する最内層の膜である。積層体2を三層以上
で構成する場合、これらの外層膜3と内層膜4の間に一
層以上の中間層膜が配置される。
FIG. 1 is a schematic view showing one example of a bone tissue regeneration-inducing membrane 1 of the present invention. FIG. 2 is a partially enlarged cross-sectional view of the laminate 2 constituting the bone tissue regeneration-inducing membrane 1. The bone tissue regeneration-inducing membrane 1 is composed of an outer membrane 3 and an inner membrane 4. In the present invention, the outer membrane 3 is the outermost layer constituting the bone tissue regeneration-inducing membrane 1, and in the present invention, the inner layer membrane 4 is the innermost membrane constituting the bone tissue regeneration-inducing membrane 1. When the laminate 2 is composed of three or more layers, one or more intermediate layer films are arranged between the outer layer film 3 and the inner layer film 4.

【0010】前記外層膜3は乳酸系重合体より構成さ
れ、該乳酸系重合体は、(a)生体吸収性のポリ乳酸単
体または(b)ポリ乳酸とリン酸カルシウム系材料との
複合体または(c)乳酸/グリコール酸/ε−カプロラ
クトンの三元系共重合体とリン酸カルシウム系材料の複
合体または(d)乳酸と乳酸以外のヒドロキシカルボン
酸からなる共重合体である。乳酸と乳酸以外のヒドロキ
シカルボン酸からなる共重合体とは、グリコール酸、α
・β・γ−ヒドロキシ酪酸、α−ヒドロキシ吉草酸、ヒ
ドロキシカプロン酸等あるいはグリコリド、ε−カプロ
ラクトン、テトラメチルグリコリド、トリメチレンカー
ボネート、δ−バレロラクトン、β−ブチロラクトン、
γ−ブチロラクトン等との環状モノマーが例示される。
これら化合物は各々組み合わせで使用してもよいし、ラ
クチドに関しては、L体・DL体・D体等の何れも単独
あるいは混合物として使用できる。外層膜3は、室温に
おいて、ガラス転移温度が40〜60℃であり、かつ剛
性率が500〜5000MPaに設定される。ガラス転
移温度が40℃未満では生体内での形状が維持できず、
60℃を超えると手術場での成形が困難であるため不適
である。また外層膜3をポリ乳酸とリン酸カルシウム系
材料との複合体より構成する場合は、重量比でポリ乳酸
を80重量%から100重量%未満、より好ましくは9
0重量%から100重量%未満含むことが好ましい。外
層膜3はより好ましくはポリ乳酸単体で形成するのが好
ましい。
The outer layer film 3 is composed of a lactic acid-based polymer. The lactic acid-based polymer is composed of (a) a bioabsorbable polylactic acid alone or (b) a composite of polylactic acid and a calcium phosphate-based material or (c). A) a ternary copolymer of lactic acid / glycolic acid / ε-caprolactone and a calcium phosphate-based material, or (d) a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid. A copolymer comprising lactic acid and a hydroxycarboxylic acid other than lactic acid is glycolic acid, α
Β-γ-hydroxybutyric acid, α-hydroxyvaleric acid, hydroxycaproic acid or the like or glycolide, ε-caprolactone, tetramethyl glycolide, trimethylene carbonate, δ-valerolactone, β-butyrolactone,
Examples include cyclic monomers with γ-butyrolactone and the like.
Each of these compounds may be used in combination, and lactide may be used alone or as a mixture of any of L-form, DL-form and D-form. The outer layer film 3 has a glass transition temperature of 40 to 60 ° C. and a rigidity of 500 to 5000 MPa at room temperature. If the glass transition temperature is less than 40 ° C., the shape in vivo cannot be maintained,
If the temperature is higher than 60 ° C., it is not suitable because molding at the operating site is difficult. When the outer layer film 3 is composed of a composite of polylactic acid and a calcium phosphate-based material, the polylactic acid is contained in a weight ratio of 80% by weight to less than 100% by weight, more preferably 9% by weight.
Preferably, it contains 0% to less than 100% by weight. The outer layer film 3 is more preferably formed of polylactic acid alone.

【0011】前記内層膜4は乳酸/グリコール酸/ε−
カプロラクトンの三元系共重合体とリン酸カルシウム系
材料との複合体より構成され、室温において、剛性率が
2.0〜500MPa、ガラス転移温度が4〜37℃に
設定される。ガラス転移温度が37℃を超えるとハサミ
による切断、縫合糸での縫合等の処置において膜が割れ
るので、好ましくない。前記外層膜3及び内層膜4を構
成する乳酸/グリコール酸/ε−カプロラクトンの三元
系共重合体の数平均分子量は20000以上から200
000以下のものが使用される。数平均分子量が200
00以下では硬いワックス状となるため、膜としての成
形が困難であるため不適である。200000を超える
と加水分解速度が低下して組織再生を阻害する可能性が
あることに加えて、後述のリン酸カルシウムとの混合操
作が困難となり、共重合体中におけるリン酸カルシウム
の分散性が不均一となる。
The inner layer film 4 is made of lactic acid / glycolic acid / ε-
It is composed of a composite of a terpolymer of caprolactone and a calcium phosphate material, and has a rigidity of 2.0 to 500 MPa and a glass transition temperature of 4 to 37 ° C. at room temperature. If the glass transition temperature exceeds 37 ° C., it is not preferable because the membrane breaks in a procedure such as cutting with scissors or suturing with a suture. The number average molecular weight of the tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone constituting the outer layer film 3 and the inner layer film 4 is from 20,000 or more to 200
000 or less are used. Number average molecular weight is 200
If it is less than 00, it becomes hard wax, and it is not suitable because it is difficult to form a film. When it exceeds 200,000, in addition to the possibility that the rate of hydrolysis is reduced and tissue regeneration may be inhibited, the mixing operation with calcium phosphate described below becomes difficult, and the dispersibility of calcium phosphate in the copolymer becomes uneven. .

【0012】前記外層膜3(乳酸/グリコール酸/ε−
カプロラクトンの三元系共重合体とリン酸カルシウム系
材料の複合体より構成する場合)は重量比で乳酸/グリ
コール酸/ε−カプロラクトンの三元系共重合体を80
重量%から20重量%、より好ましくは60重量%から
40重量%、より好ましくは50重量%含むことが好ま
しい。また前記内層膜4は重量比で乳酸/グリコール酸
/ε−カプロラクトンの三元系共重合体を5重量%以
上、より好ましくは20重量%以上から40重量%、よ
り好ましくは50重量%含むことが好ましい。
The outer layer film 3 (lactic acid / glycolic acid / ε-
In the case of a composite of a terpolymer of caprolactone and a calcium phosphate-based material), the terpolymer of lactic acid / glycolic acid / ε-caprolactone is 80% by weight.
Preferably, it comprises from 20% to 20% by weight, more preferably from 60% to 40% by weight, more preferably 50% by weight. The inner layer film 4 contains a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone in a weight ratio of 5% by weight or more, more preferably 20% by weight to 40% by weight, and more preferably 50% by weight. Is preferred.

【0013】本発明で、前記外層膜3及び内層膜4に前
記乳酸系重合体を使用するのは、生体内において分解吸
収され、分解生成物も組織に対する毒性が少ない生体適
合性に優れた材料であり、さらに、その組成、分子量を
調整することにより適正な強度、分解速度、また可撓性
から高強度をすることができるためである。前記乳酸系
重合体の製法は、一般的な方法により製造するものであ
れ何れの方法によるものであってもよい。その一例を挙
げれば、ラクチド、グリコリド、ε−カプロラクトンを
オクタン酸スズ、塩化スズ、ジラウリン酸ジブチルス
ズ、アルミニウムイソプロポキシド、チタニウムテトラ
イソプロポキシド、トリエチル亜鉛等の触媒存在下で加
熱して、100℃〜250℃で開環重合を行うことによ
って製造することができる。本発明で、前記外層膜3及
び内層膜4の膜厚はそれぞれ100〜1000μm、よ
り好ましくは50〜500μmの範囲が好ましい。必要
とされる膜厚は適応部位によって異なるが、100μm
以下では分解が速く、1000μm以上では分解が遅く
治療効果に悪影響を及ぼす。
In the present invention, the use of the lactic acid-based polymer for the outer layer film 3 and the inner layer film 4 is made of a material which is decomposed and absorbed in a living body, and a decomposition product is less toxic to tissues and has excellent biocompatibility. In addition, by adjusting the composition and the molecular weight, it is possible to increase the strength from the appropriate strength, decomposition rate, and flexibility. The method for producing the lactic acid-based polymer may be any of the general method and any method. For example, lactide, glycolide, and ε-caprolactone are heated in the presence of a catalyst such as tin octoate, tin chloride, dibutyltin dilaurate, aluminum isopropoxide, titanium tetraisopropoxide, and triethylzinc at 100 ° C. It can be produced by performing ring-opening polymerization at ~ 250 ° C. In the present invention, the thickness of each of the outer layer film 3 and the inner layer film 4 is preferably in the range of 100 to 1000 μm, more preferably 50 to 500 μm. The required film thickness depends on the application site,
In the following, the decomposition is fast, and when it is 1000 μm or more, the decomposition is slow, which adversely affects the therapeutic effect.

【0014】本発明の骨組織再生誘導膜1は、(a)生
体吸収性のポリ乳酸単体または(b)ポリ乳酸とリン酸
カルシウム系材料との複合体または(c)乳酸/グリコ
ール酸/ε−カプロラクトンの三元系共重合体とリン酸
カルシウム系材料の複合体または(d)乳酸と乳酸以外
のヒドロキシカルボン酸からなる共重合体より構成され
る外層膜3と、乳酸/グリコール酸/ε−カプロラクト
ンの三元系共重合体とリン酸カルシウム系材料との複合
体より構成される内層膜4を積層することにより、骨組
織再生誘導膜全体として、4℃から40℃において剛性
率が500〜2000MPaに設定される。本発明では
積層体として、二層の例を示したが、三層以上の積層体
としても良い。要するに最外層は、室温において、剛性
率が500〜5000MPa、ガラス転移温度が40〜
60℃の材料から構成され、最内層は、室温において、
剛性率が2.0〜500MPa、ガラス転移温度が4〜
37℃の材料から構成され、骨組織再生誘導膜全体は、
4℃から40℃において、剛性率が500〜2000M
Paであれば良い。
The bone tissue regeneration-inducing membrane 1 of the present invention comprises (a) a bioabsorbable polylactic acid alone or (b) a complex of polylactic acid and a calcium phosphate material or (c) lactic acid / glycolic acid / ε-caprolactone. (D) an outer layer film 3 composed of a composite of a terpolymer and a calcium phosphate-based material or (d) a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid; and a lactic acid / glycolic acid / ε-caprolactone By laminating the inner layer film 4 composed of the composite of the base copolymer and the calcium phosphate-based material, the rigidity of the whole bone tissue regeneration-inducing membrane is set at 500 to 2000 MPa at 4 ° C. to 40 ° C. . In the present invention, an example of a two-layer laminate is shown, but a laminate of three or more layers may be used. In short, the outermost layer has a rigidity of 500 to 5000 MPa and a glass transition temperature of 40 to
60 ° C. material, the innermost layer at room temperature
Rigidity is 2.0 ~ 500MPa, glass transition temperature is 4 ~
Consisting of 37 ° C. material, the entire bone tissue regeneration-inducing membrane is
From 4 ° C to 40 ° C, rigidity is 500-2000M
Pa may be used.

【0015】また、前記内外層の材料に含まれるリン酸
カルシウム材料にはリン酸三カルシウム、ヒドロキシア
パタイト、第二リン酸カルシウム等が例示される。その
中でも、共重合体と親和性がよく、生体内で吸収崩壊し
て新組織と置換され骨組織修復を促進するリン酸三カル
シウムが最も好ましい。平均粒径としては、200μm
以下のリン酸カルシウムを用いる。平均粒径200μm
を超えると薄膜成形が困難であるため不適である。
The calcium phosphate material contained in the material of the inner and outer layers is exemplified by tricalcium phosphate, hydroxyapatite, dibasic calcium phosphate and the like. Among them, tricalcium phosphate, which has a good affinity for the copolymer, absorbs and disintegrates in vivo, is replaced by new tissue, and promotes bone tissue repair, is most preferred. The average particle size is 200 μm
The following calcium phosphate is used. Average particle size 200μm
If it exceeds, it is not suitable because it is difficult to form a thin film.

【0016】また本発明に使用する前記三元系共重合体
の乳酸:グリコール酸:ε−カプロラクトンの組成モル
比は、5〜90:3〜75:5〜40モル%の範囲であ
る乳酸/グリコール酸/ε−カプロラクトンの三元系共
重合体であることが望ましい。また、数平均分子量は2
0000〜200000であることが望ましい。共重合
体の分子量がこの範囲を逸脱し、20000を下回ると
硬いワックス状となるため、膜としての成形が困難であ
るため不適である。また逆に、200000を超えると
加水分解速度が低下して組織再生を阻害する可能性があ
ることに加えて、後述のリン酸カルシウムとの混合操作
が困難となり、共重合体中におけるリン酸カルシウムの
分散性が不均一となる。
The tertiary copolymer used in the present invention has a composition molar ratio of lactic acid: glycolic acid: ε-caprolactone of 5 to 90: 3 to 75: 5 to 40 mol%. It is preferably a terpolymer of glycolic acid / ε-caprolactone. The number average molecular weight is 2
Desirably, it is 0000 to 200,000. If the molecular weight of the copolymer deviates from this range and is lower than 20,000, the copolymer becomes a hard wax and is not suitable because it is difficult to form a film. Conversely, if it exceeds 200,000, the rate of hydrolysis may be reduced and tissue regeneration may be inhibited. In addition, the mixing operation with calcium phosphate described below becomes difficult, and the dispersibility of calcium phosphate in the copolymer is reduced. It becomes uneven.

【0017】また、若干の誤差、幅の変動はあるが、本
発明の骨組織再生誘導膜を使用する温度範囲とは4から
40℃を意味し、室温とは10〜30℃を意味し、低温
とは10℃未満を意味し、体温とは35から38℃を意
味する。
Although there are slight errors and fluctuations in width, the temperature range in which the bone tissue regeneration-inducing membrane of the present invention is used means 4 to 40 ° C., and the room temperature means 10 to 30 ° C. Low temperature means below 10 ° C and body temperature means 35 to 38 ° C.

【0018】また本発明の骨組織再生誘導膜1の製造方
法としては圧縮成形が好適である。例えば、図3に示す
ように、各層の材料5をそれぞれプレス金型6の上に置
き、プレス機7にて加熱圧縮し、それぞれの膜8、9を
成形する。次に膜8、9を重ね合わせてプレス金型10
の上に置きプレス機11にて圧縮して積層膜12を得
る。
As a method for producing the bone tissue regeneration-inducing membrane 1 of the present invention, compression molding is preferred. For example, as shown in FIG. 3, the material 5 of each layer is placed on a press die 6 and heated and compressed by a press machine 7 to form respective films 8 and 9. Next, the membranes 8 and 9 are superimposed, and the
And press it with a press 11 to obtain a laminated film 12.

【0019】[0019]

【実施例】以下に実施例を挙げて更に本発明を詳細に説
明するが、本発明はこれに限定されるものではない。ポ
リ乳酸単体のみまたは該ポリ乳酸とリン酸カルシウム系
材料との複合体より構成される外層3と、数平均分子量
が50000から100000の乳酸/グリコール酸/
ε−カプロラクトンの三元系共重合体とリン酸カルシウ
ム系材料との複合体より構成される内層4を前記図3の
ように積層して骨組織再生誘導膜1(積層膜)を製造
し、以下の項目を調べ評価した。なお、種々の条件(実
施例1から5、比較例1から6)で作製した骨組織再生
誘導膜1の構成材料、ガラス転移温度、複合体組成及び
剛性率を表1、表2に示した。また、その骨組織再生誘
導膜1(積層膜)の剛性率・低温時の切断・40℃での
加工性・骨組織再生誘導能評価を表3に示した。 (1)剛性率 JIS K6745 プラスチックの転移温度測定方法
に準拠し、クラッシュバーグ式柔軟度試験機を使用し
て、剛性率を測定した。 (2)低温時の切断性 一日以上の4℃の冷蔵庫保存を行った後、手術バサミに
よる切断を行った。それによる膜の割れ、破損の有無を
観測した。 (3)40℃での加工性 40℃の温生理食塩液中に3分間浸漬した後、手作業に
より円筒状に成形した。それによる膜の成形性、割れ、
破損の有無を観測した。 (4)骨再生誘導能評価 ビーグル犬(体重約10kg)の脛骨骨欠損(20m
m)人工モデルを作製、エチレンオキサイドガス滅菌さ
れた膜を、欠損部を覆う形で円筒状に縫合固定し、創外
固定器により固定しながら、固定後4週間、8週間にエ
ックス線および切開して目視により骨組織の再生の程度
を調べた。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. An outer layer 3 composed of polylactic acid alone or a composite of the polylactic acid and a calcium phosphate-based material, and a lactic acid / glycolic acid / polylactic acid having a number average molecular weight of 50,000 to 100,000
An inner layer 4 composed of a composite of a ternary copolymer of ε-caprolactone and a calcium phosphate-based material is laminated as shown in FIG. 3 to produce a bone tissue regeneration-inducing membrane 1 (laminated membrane). The items were examined and evaluated. Tables 1 and 2 show the constituent materials, glass transition temperature, composite composition, and rigidity of the bone tissue regeneration-inducing membrane 1 produced under various conditions (Examples 1 to 5 and Comparative Examples 1 to 6). . Table 3 shows the rigidity of the bone tissue regeneration-inducing film 1 (laminated film), cutting at low temperature, workability at 40 ° C., and evaluation of bone tissue regeneration-inducing ability. (1) Rigidity The rigidity was measured using a Crashberg type flexibility tester in accordance with JIS K6745 Plastic Transition Temperature Measurement Method. (2) Cutting properties at low temperature After storing in a refrigerator at 4 ° C. for one day or more, cutting was performed with surgical scissors. It was observed whether the film was cracked or damaged. (3) Workability at 40 ° C. After being immersed in a warm physiological saline solution at 40 ° C. for 3 minutes, it was formed into a cylindrical shape by hand. The resulting film formability, cracking,
The presence or absence of damage was observed. (4) Evaluation of bone regeneration inducing ability Tibial bone defect (20 m) of a beagle dog (body weight: about 10 kg)
m) The artificial model was prepared, and the membrane sterilized with ethylene oxide gas was fixed by suture and fixed in a cylindrical shape so as to cover the defect, and while fixed with an external fixator, X-ray and incision were performed 4 weeks and 8 weeks after the fixation. The extent of bone tissue regeneration was visually examined.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】表1と表3に示すように実施例1〜6の積
層膜では、室温(25℃)においての剛性率が2.0〜
500MPa、ガラス転移温度4〜37℃の軟質膜から
なる内層と室温(25℃)においての剛性率500〜5
000MPa、ガラス転移温度40〜60℃である硬質
膜からなる外層を張り合わせることにより、この積層膜
は全ての温度条件(4〜37℃)で剛性率範囲500〜
2,000MPaの条件を満たし、低温での切断性・4
0℃での加工性にも問題も見られず、易操作性・易成形
性・形態維持安定性の特性を有する積層膜であった。ま
た、骨組織再生誘導能評価も、積層膜の固定後4週間、
8週間に切開して目視により骨組織の再生を調べた結
果、術部は良好な骨組織の修復が認められた。
As shown in Tables 1 and 3, in the laminated films of Examples 1 to 6, the rigidity at room temperature (25 ° C.) was 2.0 to 2.0.
500 MPa, inner layer made of a soft film having a glass transition temperature of 4 to 37 ° C. and a rigidity of 500 to 5 at room temperature (25 ° C.)
By laminating an outer layer composed of a hard film having a glass transition temperature of 40 to 60 ° C., the laminated film has a rigidity range of 500 to 500 ° C. under all temperature conditions (4 to 37 ° C.).
Satisfies the condition of 2,000MPa, cutting performance at low temperature.
No problem was observed in the workability at 0 ° C., and the laminate film had characteristics of easy operability, easy moldability, and shape maintenance stability. In addition, the evaluation of the ability to induce bone tissue regeneration was performed 4 weeks after the fixation of the laminated film.
As a result of incision for 8 weeks and visual inspection of the regeneration of the bone tissue, good repair of the bone tissue was confirmed in the surgical site.

【0024】表2と表3に示すように比較例1のガラス
転移温度4℃の乳酸/グリコール酸/ε−カプロラクト
ンの三元系共重合体からなる単一膜では、低温での切断
性は良好であるものの、室温・体温(25〜37℃)付
近での剛性率が2から5MPaと非常に低いため形状維
持が不可能であった。また、比較例2のガラス転移温度
37℃の乳酸/グリコール酸/ε−カプロラクトンの三
元系共重合体の単一膜では、低温(4℃)での剛性率が
2000MPaを超える(2157MPa)ためハサミ
による切断で破損・割れが発生し、さらに、体温付近
(37℃)での剛性率が500MPaをはるかに下まわ
るため(27MPa)比較例1と同様に形状維持が不可
能であった。そのため骨組織再生誘導能評価も比較例1
・2では形態維持安定性を有していないことにより術部
は骨組織の修復が少なく、骨組織表面に軟組織の進入が
認められた。
As shown in Tables 2 and 3, the single film composed of a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone having a glass transition temperature of 4 ° C. in Comparative Example 1 had a low-temperature cuttability. Although good, the rigidity near room temperature and body temperature (25 to 37 ° C.) was very low at 2 to 5 MPa, so that the shape could not be maintained. Further, in the single film of the tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone having a glass transition temperature of 37 ° C. in Comparative Example 2, the rigidity at low temperature (4 ° C.) exceeds 2000 MPa (2157 MPa). Breaking and cracking occurred by cutting with scissors, and the rigidity near body temperature (37 ° C.) was much lower than 500 MPa (27 MPa), so that the shape could not be maintained as in Comparative Example 1. Therefore, the evaluation of the ability to induce bone tissue regeneration was also performed in Comparative Example 1.
In the case of No. 2, the operative site had little bone tissue repair due to lack of morphological maintenance stability, and penetration of soft tissue on the bone tissue surface was observed.

【0025】比較例3のガラス転移温度が60℃のポリ
乳酸の単一膜では、体温付近(37℃)での剛性率が5
00MPaを超える(739MPa)ため形状維持性は
有するものの、低温(4℃)での剛性率が2000MP
aを大きく超えるため(3672MPa)ハサミによる
切断で破損・割れが発生し、骨再生誘導能評価も縫合糸
による固定の際に割れてしまい評価不可能であった。
In the polylactic acid single film having a glass transition temperature of 60 ° C. in Comparative Example 3, the rigidity around body temperature (37 ° C.) was 5%.
Although it has a shape retention because it exceeds 00MPa (739MPa), its rigidity at low temperature (4 ° C) is 2000MPa.
Since it greatly exceeded a (3672 MPa), breakage and cracking occurred by cutting with scissors, and the bone regeneration inducing ability was also broken at the time of fixation with a suture, making evaluation impossible.

【0026】比較例4〜6の積層膜では、比較例4は内
層のガラス転移温度が37℃を超え(41℃)、比較例
5・6では外層のガラス転移温度が60℃を超える(6
5℃)膜の組み合わせによる積層膜であるため、低温
(4℃)での剛性率が3000MPaを超え(3581
から3654MPa)、低温(4℃)での切断性は全て
破損・割れてしまう状態であった。また50℃の加工性
は良好であるものの、室温(25℃)での剛性率も20
00MPaを大きく超える(2760から2846MP
a)ことから、手術場での加工後に破損・割れが発生
し、骨組織再生誘導能評価も縫合糸による固定により全
て破損してしまうため評価不可能となり、極めて取り扱
いの悪い積層膜であった。
In the laminated films of Comparative Examples 4 to 6, in Comparative Example 4, the glass transition temperature of the inner layer exceeded 37 ° C. (41 ° C.), and in Comparative Examples 5.6, the glass transition temperature of the outer layer exceeded 60 ° C. (6
5 ° C.), the rigidity at low temperature (4 ° C.) exceeds 3000 MPa (3581).
To 3654 MPa) at a low temperature (4 ° C.). Although the workability at 50 ° C. is good, the rigidity at room temperature (25 ° C.) is also 20%.
Greatly exceeds 00MPa (2760 to 2846MPa
a) Therefore, damage / cracking occurred after processing in the operating theater, and the evaluation of the ability to induce bone tissue regeneration was completely impossible due to breakage due to fixation with sutures, and the laminated film was extremely poorly handled. .

【0027】[0027]

【発明の作用効果】本発明は、生体適合性に優れ、且
つ、適正な強度及び分解速度を有する組織再生に有効な
膜材料を使用して、特別な処理や装置を使用することな
く軟質膜と硬質膜のプレス成形の応用により、易操作性
・易成形性及び生体内での形態維持安定性等の機能性を
両立する骨組織再生誘導(GBR)法のために使用され
る剛性率範囲500〜2,000MPaの骨組織再生誘
導膜を提供することができる。
The present invention uses a membrane material which is excellent in biocompatibility and has an appropriate strength and decomposition rate and which is effective for tissue regeneration without using any special treatment or device. Stiffness range used for bone tissue regeneration induction (GBR) method that achieves both easy operability, easy moldability, and functions such as stability of shape maintenance in a living body by applying press forming of hard film and hard film It is possible to provide a bone tissue regeneration-inducing membrane of 500 to 2,000 MPa.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の骨組織再生誘導膜の一例を示す概略図FIG. 1 is a schematic view showing an example of a bone tissue regeneration-inducing membrane of the present invention.

【図2】本発明の骨組織再生誘導膜を構成する積層体の
一部拡大断面図
FIG. 2 is a partially enlarged cross-sectional view of a laminate constituting the bone tissue regeneration-inducing membrane of the present invention.

【図3】本発明の骨組織再生誘導膜の製造方法の一例を
示す概略図
FIG. 3 is a schematic view showing an example of the method for producing a bone tissue regeneration-inducing membrane of the present invention.

【図4】本発明の骨組織再生誘導膜の製造方法の一例を
示す概略図
FIG. 4 is a schematic view showing an example of the method for producing a bone tissue regeneration-inducing membrane of the present invention.

【符号の説明】[Explanation of symbols]

1 骨組織再生誘導膜 2 積層体 3 外層 4 内層 5 各層の材料 6 プレス金型 7 プレス機 8 膜 9 膜 10 プレス金型 11 プレス機 REFERENCE SIGNS LIST 1 bone tissue regeneration-inducing membrane 2 laminate 3 outer layer 4 inner layer 5 material of each layer 6 press mold 7 press machine 8 membrane 9 membrane 10 press mold 11 press machine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 隆雄 兵庫県加古川市平岡町新在家2081−5 (72)発明者 今村 由賀里 兵庫県姫路市東今宿4−2−22 Fターム(参考) 4C081 AB02 AB04 BA16 BB08 CA171 CB011 CC01 CF012 DA02 DC02 DC04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takao Okada 2081-5 Hiraoka-cho Shinzai, Kakogawa-shi, Hyogo Prefecture (72) Inventor Yukari Imamura 4-2-22 Higashi-Imajuku, Himeji-shi, Hyogo Prefecture BB08 CA171 CB011 CC01 CF012 DA02 DC02 DC04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも二層膜よりなる骨組織再生誘導
膜において、 外層膜は、室温において、剛性率が500〜5000M
Pa、ガラス転移温度が40〜60℃の範囲にある材料
から構成され、 内層膜は、室温において、剛性率が2.0〜500MP
a、ガラス転移温度が4〜37℃の範囲にある材料から
構成され、 かつ骨組織再生誘導膜全体は、4〜40℃において、剛
性率が500〜2000MPaの範囲にある、ことを特
徴とする骨組織再生誘導膜。
1. A bone tissue regeneration-inducing membrane comprising at least a two-layer membrane, wherein the outer membrane has a rigidity of 500 to 5000 M at room temperature.
The inner layer film has a rigidity of 2.0 to 500MP at room temperature.
a, It is made of a material having a glass transition temperature in the range of 4 to 37 ° C, and the whole bone tissue regeneration-inducing membrane has a rigidity in the range of 500 to 2000 MPa at 4 to 40 ° C. Bone tissue regeneration-inducing membrane.
【請求項2】外層膜は乳酸系重合体を20重量%以上含
有した材料より構成され、 内層膜は乳酸/グリコール酸/ε−カプロラクトンの三
元系共重合体とリン酸カルシウム系材料の複合体よりな
り、かつ三元系共重合体を5重量%以上含有した材料よ
り構成されている、ことを特徴とする請求項1に記載の
骨組織再生誘導膜。
2. The outer layer is made of a material containing 20% by weight or more of a lactic acid-based polymer, and the inner layer is made of a composite of a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone and a calcium phosphate-based material. 2. The bone tissue regeneration-inducing membrane according to claim 1, wherein the membrane is made of a material containing 5% by weight or more of a ternary copolymer.
【請求項3】前記外層膜を構成する乳酸系重合体は、
(a)生体吸収性のポリ乳酸単体または(b)ポリ乳酸
とリン酸カルシウム系材料との複合体または(c)乳酸
/グリコール酸/ε−カプロラクトンの三元系共重合体
とリン酸カルシウム系材料の複合体または(d)乳酸と
乳酸以外のヒドロキシカルボン酸からなる共重合体であ
る、ことを特徴とする請求項1ないし請求項2に記載の
骨組織再生誘導膜。
3. The lactic acid-based polymer constituting the outer layer film,
(A) Bioabsorbable polylactic acid alone or (b) a composite of polylactic acid and a calcium phosphate-based material or (c) a composite of a tertiary copolymer of lactic acid / glycolic acid / ε-caprolactone and a calcium phosphate-based material Or (d) a copolymer of lactic acid and a hydroxycarboxylic acid other than lactic acid, wherein the bone tissue regeneration-inducing membrane according to claim 1 or 2, wherein
【請求項4】外層膜及び内層膜を構成する乳酸/グリコ
ール酸/ε−カプロラクトンの三元系共重合体の数平均
分子量は20000から200000である、ことを特
徴とする請求項1ないし請求項3に記載の骨組織再生誘
導膜。
4. The ternary copolymer of lactic acid / glycolic acid / ε-caprolactone constituting the outer layer film and the inner layer film has a number average molecular weight of 20,000 to 200,000. 4. The bone tissue regeneration-inducing membrane according to 3.
【請求項5】乳酸/グリコール酸/ε−カプロラクトン
の三元系共重合体の組成モル比が5〜90:3〜75:
5〜40モル%の範囲である請求項1ないし請求項4に
記載の骨組織再生誘導膜。
5. The terpolymer of lactic acid / glycolic acid / ε-caprolactone has a composition molar ratio of 5 to 90: 3 to 75:
The bone tissue regeneration-inducing membrane according to any one of claims 1 to 4, wherein the amount ranges from 5 to 40 mol%.
【請求項6】骨組織再生誘導膜が外層膜と内層膜とを熱
融着することにより積層されたものであることを特徴と
する請求項1ないし請求項5に記載の骨組織再生誘導
膜。
6. The bone tissue regeneration-inducing membrane according to claim 1, wherein the bone tissue regeneration-inducing membrane is formed by laminating an outer layer film and an inner layer film by heat fusion. .
JP2001131355A 2001-04-27 2001-04-27 Bone tissue regeneration inducing membrane Expired - Fee Related JP4448260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131355A JP4448260B2 (en) 2001-04-27 2001-04-27 Bone tissue regeneration inducing membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131355A JP4448260B2 (en) 2001-04-27 2001-04-27 Bone tissue regeneration inducing membrane

Publications (2)

Publication Number Publication Date
JP2002325830A true JP2002325830A (en) 2002-11-12
JP4448260B2 JP4448260B2 (en) 2010-04-07

Family

ID=18979558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131355A Expired - Fee Related JP4448260B2 (en) 2001-04-27 2001-04-27 Bone tissue regeneration inducing membrane

Country Status (1)

Country Link
JP (1) JP4448260B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757315A1 (en) * 2004-04-30 2007-02-28 Sunstar Suisse SA Biocompatible membrane and process for producing the same
JP2012024384A (en) * 2010-07-26 2012-02-09 Gunze Ltd Bioabsorbable film for bone regeneration, and membrane for gbr
WO2015030228A1 (en) 2013-09-02 2015-03-05 株式会社ラステック Porous plate for medical use and production method for porous plate for medical use
AT516116A1 (en) * 2014-08-05 2016-02-15 Dietmar Dr Sonnleitner Method for producing a multilayer film
KR20180058347A (en) * 2016-11-24 2018-06-01 (주)오스테오닉 Biodegradable plate for fixing bone, which is capable of forming in normal temporature
CN113713184A (en) * 2021-07-13 2021-11-30 扬子江药业集团广州海瑞药业有限公司 Bone tissue regeneration guide membrane and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005105164A1 (en) * 2004-04-30 2008-03-13 サンスター スイス エスエー Biocompatible membrane and method for producing the same
EP1757315A4 (en) * 2004-04-30 2008-11-26 Sunstar Suisse Sa Biocompatible membrane and process for producing the same
JP5008396B2 (en) * 2004-04-30 2012-08-22 サンスター スイス エスエー Biocompatible membrane and method for producing the same
EP1757315A1 (en) * 2004-04-30 2007-02-28 Sunstar Suisse SA Biocompatible membrane and process for producing the same
JP2012024384A (en) * 2010-07-26 2012-02-09 Gunze Ltd Bioabsorbable film for bone regeneration, and membrane for gbr
US10213239B2 (en) 2013-09-02 2019-02-26 Fukushima Medical University Porous plate for medical use and manufacturing method of porous plate for medical use
WO2015030228A1 (en) 2013-09-02 2015-03-05 株式会社ラステック Porous plate for medical use and production method for porous plate for medical use
AT516116A1 (en) * 2014-08-05 2016-02-15 Dietmar Dr Sonnleitner Method for producing a multilayer film
AT516116B1 (en) * 2014-08-05 2016-05-15 Dietmar Dr Sonnleitner Method for producing a multilayer film
US10624747B2 (en) 2014-08-05 2020-04-21 Dietmar SONNLEITNER Method for producing a multilayer film
KR20180058347A (en) * 2016-11-24 2018-06-01 (주)오스테오닉 Biodegradable plate for fixing bone, which is capable of forming in normal temporature
KR101898219B1 (en) * 2016-11-24 2018-09-12 (주)오스테오닉 Biodegradable plate for fixing bone, which is capable of forming in normal temporature
CN113713184A (en) * 2021-07-13 2021-11-30 扬子江药业集团广州海瑞药业有限公司 Bone tissue regeneration guide membrane and preparation method thereof

Also Published As

Publication number Publication date
JP4448260B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
Kanno et al. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery
Williams et al. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration
Vert et al. Stereoregular bioresorbable polyesters for orthopaedic surgery
EP1000958B1 (en) Shape-memory, biodegradable and absorbable material
US10561484B2 (en) Hernia mesh and its preparation method
WO2001012240A1 (en) Biological materials
Teo et al. A novel bioresorbable implant for repair of orbital floor fractures
Kim Application of the three-dimensionally printed biodegradable polycaprolactone (PCL) mesh in repair of orbital wall fractures
Lieger et al. Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates
EP2218466A1 (en) Lactide/ -caprolactone copolymer for medical implant, method for producing lactide/ -caprolactone copolymer for medical implant, medical implant and artificial dura mater
JPH0263465A (en) Tooth surrounding tissue reproduction material
Gierek et al. Absorbable sutures in general surgery–review, available materials, and optimum choices
WO2015043496A1 (en) Bone injury repair and fixation instrument and method of manufacturing same
van Leeuwen et al. Composite materials based on poly (trimethylene carbonate) and β‐tricalcium phosphate for orbital floor and wall reconstruction
CN104606722A (en) Degradable gasket with anti-bacterial anti-adhesion performance
Holmes et al. MacroPore resorbable devices in craniofacial surgery
Losken et al. Biodegradation of Inion fast-absorbing biodegradable plates and screws
JP4448260B2 (en) Bone tissue regeneration inducing membrane
RU2650648C2 (en) Absorbable monofilament fibers based on a copolymer of p-dioxanone and glycolide retaining strength in the medium term after implantation
JP3559885B2 (en) Artificial dura
Vatchha et al. Biodegradable implants in orthopaedics
RU2733383C2 (en) Segmented n-dioxanone-rich copolymers of p-dioxanone and epsilon-caprolactone for medical use and medical devices made therefrom
Huang A Comparison of the Properties and Performance of Polyvinylidene Fluoride and Polypropylene Barbed Sutures in Tendon Repair.
JP3743566B2 (en) Artificial dura mater
KR101367978B1 (en) Block-polymer membranes for attenuation of scar tissue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees