JP2002324760A - Film forming method - Google Patents

Film forming method

Info

Publication number
JP2002324760A
JP2002324760A JP2001129556A JP2001129556A JP2002324760A JP 2002324760 A JP2002324760 A JP 2002324760A JP 2001129556 A JP2001129556 A JP 2001129556A JP 2001129556 A JP2001129556 A JP 2001129556A JP 2002324760 A JP2002324760 A JP 2002324760A
Authority
JP
Japan
Prior art keywords
substrate
temperature
reaction tube
processed
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001129556A
Other languages
Japanese (ja)
Other versions
JP4138269B2 (en
Inventor
Kazuyuki Toyoda
一行 豊田
Katsuhiko Yamamoto
克彦 山本
Yasuhiro Inokuchi
泰啓 井ノ口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001129556A priority Critical patent/JP4138269B2/en
Publication of JP2002324760A publication Critical patent/JP2002324760A/en
Application granted granted Critical
Publication of JP4138269B2 publication Critical patent/JP4138269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the temperature difference between a pretreatment and a film forming and the temperature rise/fall time to raise the process speed (throughput). SOLUTION: A reaction tube 1 is heated at 500 deg.C inside, hydrogen gas is fed into a discharge tube 7, an oscillator 12 feeds a high frequency output power to electrode ends 4 through a matching unit 13 to generate a plasma 15 in the discharge tube 7, thereby activating introduced hydrogen which is then fed to a spinning substrate 2 under processing through many small holes 14 of the discharge tube 7. Impurities such as natural oxide film, etc., on the surface of the substrate 2 are removed mainly by the activated hydrogen. After completing the removable of impurities such as natural oxide film, monogerman (GeH4 ) and monosilane (SiH4 ) are introduced from a gas feed pipe 17 to form a film of silicon germanium (SiGe) at 500 deg.C under a controlled pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成膜装置に関し、
特に、シリコン基板に薄膜を形成する半導体製造装置に
関する。
TECHNICAL FIELD The present invention relates to a film forming apparatus,
In particular, the present invention relates to a semiconductor manufacturing apparatus for forming a thin film on a silicon substrate.

【0002】[0002]

【従来の技術】従来技術について図5、図6を参照して
説明する。図5(A)は従来の成膜装置の反応室部分を
上から見た横断面図であり、図5(B)は、図5(A)
のDD線縦断面図である。図6は従来の成膜装置におけ
るプロセス温度を示した図である。反応管1内部には複
数枚の被処理基板2を多段に同一間隔で載置できるボー
ト16が設けられている。ボート16の下端の軸161
は、シャッター23を回転可能かつ気密に貫通する構造
となっている。回転部22は磁気シール等で気密を保持
している。ボート16は図示しないエレベータ機構によ
り上下し、反応管1に出し入れできるようになってい
る。また被処理基板2の処理の均一性を向上するために
ボート16を回転するための図示しない回転駆動部が設
けてある。ボート16が上限まで上昇した状態ではシャ
ッター23はフランジ3と気密に連結される構造となっ
ている。多段にボート16に載置された複数の被処理基
板2はボート16、反応管1とともにヒータ10によっ
て所定の温度に加熱される。反応ガスはガス導入管17
から反応管1内部に導入され、また反応管1内のガスは
排気管18から排気される。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. FIG. 5A is a cross-sectional view of a reaction chamber portion of a conventional film forming apparatus as viewed from above, and FIG. 5B is a cross-sectional view of FIG.
3 is a vertical sectional view taken along the line DD in FIG. FIG. 6 is a diagram showing a process temperature in a conventional film forming apparatus. Inside the reaction tube 1, there is provided a boat 16 on which a plurality of substrates 2 to be processed can be placed in multiple stages at the same interval. The shaft 161 at the lower end of the boat 16
Has a structure in which the shutter 23 is rotatably and airtightly penetrated. The rotating part 22 is kept airtight by a magnetic seal or the like. The boat 16 is moved up and down by an elevator mechanism (not shown) so that it can be taken in and out of the reaction tube 1. Further, a rotation drive unit (not shown) for rotating the boat 16 is provided to improve the uniformity of the processing of the substrate 2 to be processed. When the boat 16 is raised to the upper limit, the shutter 23 has a structure in which the shutter 23 is airtightly connected to the flange 3. The plurality of substrates 2 placed on the boat 16 in multiple stages are heated to a predetermined temperature by the heater 10 together with the boat 16 and the reaction tube 1. The reaction gas is supplied through a gas introduction pipe 17.
Is introduced into the reaction tube 1, and the gas in the reaction tube 1 is exhausted from the exhaust pipe 18.

【0003】次に動作を説明する。図示しないエレベー
タ機構でボート16を下げた状態で複数の被処理基板2
をボート16に載置した後、ボート16を上昇させて反
応管1内部に挿入する。この時フランジ3とシャッター
23は気密を保持するように連結し、反応管1内部を排
気管18から図示しないポンプで排気し、同時に水素
(H)を導入し反応管1内部の窒素等のガスを水素で
置換する。その後、ヒータ10に電源を投入し、反応管
1および内部のボート16,被処理基板2などを700
℃に加熱する。反応管1内部の各部の温度が700℃に
なったら、水素を導入したままボート16を回転させ被
処理基板表面の自然酸化膜などを除去し清浄化する。こ
の処理を30分程度実行した後、反応管1内部の温度を
500℃まで降温し反応管1内部の温度が安定したらモ
ノゲルマン(GeH)とモノシラン(SiH)をガ
ス導入管17から導入しシリコンゲルマニウム(SiG
e)を成膜する。反応管1内部の圧力は排気管18の下
流側に設けた図示しない圧力調節機構で調節する。
Next, the operation will be described. While the boat 16 is lowered by an elevator mechanism (not shown),
Is placed on the boat 16, the boat 16 is raised and inserted into the reaction tube 1. At this time, the flange 3 and the shutter 23 are connected so as to maintain airtightness, and the inside of the reaction tube 1 is evacuated from the exhaust tube 18 by a pump (not shown), and at the same time, hydrogen (H 2 ) is introduced to remove nitrogen and the like inside the reaction tube 1. The gas is replaced with hydrogen. Thereafter, power is supplied to the heater 10, and the reaction tube 1, the internal boat 16, the substrate 2 to be processed,
Heat to ° C. When the temperature of each part inside the reaction tube 1 reaches 700 ° C., the boat 16 is rotated while hydrogen is introduced to remove and clean the natural oxide film on the surface of the substrate to be processed. After performing this process for about 30 minutes, the temperature inside the reaction tube 1 is lowered to 500 ° C., and when the temperature inside the reaction tube 1 is stabilized, monogermane (GeH 4 ) and monosilane (SiH 4 ) are introduced from the gas introduction tube 17. Silicon germanium (SiG
e) is formed. The pressure inside the reaction tube 1 is adjusted by a pressure adjusting mechanism (not shown) provided downstream of the exhaust pipe 18.

【0004】この従来の成膜装置では、図6の成膜シー
ケンスに示すように、反応管1の加熱を開始してから処
理を終えて降温が終了するまで230分を要する。この
成膜シーケンスからわかるように反応管1の昇温あるい
は降温の時間が長いため、装置としての被処理基板の処
理スピード(スループット)が低下してしまう。このた
め反応管1の昇降温時間を短縮して処理スピード(スル
ープット)を向上させることが課題となる。
In this conventional film forming apparatus, as shown in the film forming sequence of FIG. 6, it takes 230 minutes from the start of heating of the reaction tube 1 to the end of the processing to the end of the temperature drop. As can be seen from this film forming sequence, the time required to raise or lower the temperature of the reaction tube 1 is long, so that the processing speed (throughput) of the substrate to be processed as an apparatus is reduced. For this reason, it is an issue to shorten the temperature rise / fall time of the reaction tube 1 to improve the processing speed (throughput).

【0005】[0005]

【発明が解決しようとする課題】上述のように、前処理
と成膜時の温度が異なるため、反応管の加熱、冷却に長
時間を要しスループットが低下してしまう。従って、前
処理と成膜の温度差を小さくして、反応管1の昇降温時
間を短縮して処理スピード(スループット)を向上させ
ることが求められている。
As described above, since the temperature at the time of the pretreatment and the temperature at the time of film formation are different, it takes a long time to heat and cool the reaction tube, and the throughput is reduced. Therefore, it is required to reduce the temperature difference between the pretreatment and the film formation, shorten the temperature rise / fall time of the reaction tube 1, and improve the processing speed (throughput).

【0006】[0006]

【課題を解決するための手段】本発明の第1の態様によ
れば、減圧状態の反応室においてリモートプラズマで生
成した水素の活性種を利用して被処理基板表面を前処理
し、その後、前記反応室内で前記前処理温度の場合と同
じ温度で前記被処理基板表面に半導体を単結晶成長させ
るようにしたことを特徴とする成膜装置が提供される。
According to a first aspect of the present invention, a surface of a substrate to be processed is pretreated using active species of hydrogen generated by remote plasma in a reaction chamber in a reduced pressure state. A film forming apparatus is provided, wherein a semiconductor is grown as a single crystal on the surface of the substrate to be processed at the same temperature as the preprocessing temperature in the reaction chamber.

【0007】このように、前処理に用いる水素をリモー
トプラズマ機構によって活性化し、被処理基板の清浄化
を低温で可能とする。これにより前処理の温度と後に同
一の反応室内で行う単結晶成長の温度とを同一にするこ
とができるので、前処理に必用であった単結晶成長温度
より高い温度への昇温の時間と単結晶成長温度への降温
の時間とを省略することができるようになり、その分、
処理スピード(スループット)を向上させることができ
る。なお、リモートプラズマで生成した水素の活性種を
利用して行う被処理基板表面の前処理では、被処理基板
表面の自然酸化膜などの不純物の除去等を行う。
As described above, the hydrogen used for the pretreatment is activated by the remote plasma mechanism, and the substrate to be processed can be cleaned at a low temperature. This makes it possible to make the temperature of the pretreatment and the temperature of the single crystal growth performed later in the same reaction chamber the same, so that the time for raising the temperature to a temperature higher than the single crystal growth temperature necessary for the pretreatment and The time for cooling down to the single crystal growth temperature can be omitted, and
Processing speed (throughput) can be improved. In the pretreatment of the surface of the substrate to be processed using active species of hydrogen generated by remote plasma, impurities such as a natural oxide film on the surface of the substrate to be processed are removed.

【0008】また、本発明の第2の態様によれば、減圧
状態の反応室においてリモートプラズマで生成した水素
の活性種を利用して基板を700℃以下の温度に加熱し
て基板表面を前処理し、その後、前記反応室内で前記前
処理温度の場合と同じ温度で前記基板表面にシリコンゲ
ルマニウム膜を形成させるようにしたことを特徴とする
成膜装置が提供される。
According to a second aspect of the present invention, a substrate is heated to a temperature of 700 ° C. or less by utilizing active species of hydrogen generated by remote plasma in a reaction chamber under reduced pressure, so that the surface of the substrate is pretreated. After that, a silicon germanium film is formed on the surface of the substrate at the same temperature as the pretreatment temperature in the reaction chamber.

【0009】このように、前処理に用いる水素をリモー
トプラズマ機構によって活性化し、被処理基板の清浄化
を低温で可能とする。これにより前処理の温度と後に同
一の反応室内で700℃以下の温度で行うシリコンゲル
マニウム膜の形成温度とを同一にすることができるの
で、前処理に必用であったシリコンゲルマニウム膜の形
成温度より高い温度への昇温の時間とシリコンゲルマニ
ウム膜の形成温度への降温の時間とを省略することがで
きるようになり、その分、処理スピード(スループッ
ト)を向上させることができる。なお、リモートプラズ
マで生成した水素の活性種を利用して行う被処理基板表
面の前処理では、被処理基板表面の自然酸化膜などの不
純物の除去等を行う。
As described above, the hydrogen used for the pretreatment is activated by the remote plasma mechanism, and the substrate to be processed can be cleaned at a low temperature. This makes it possible to make the temperature of the pretreatment and the temperature of forming the silicon germanium film to be performed at a temperature of 700 ° C. or less in the same reaction chamber later equal to the temperature of forming the silicon germanium film necessary for the pretreatment. The time for raising the temperature to a high temperature and the time for lowering the temperature to the formation temperature of the silicon germanium film can be omitted, and the processing speed (throughput) can be improved accordingly. In the pretreatment of the surface of the substrate to be processed using active species of hydrogen generated by remote plasma, impurities such as a natural oxide film on the surface of the substrate to be processed are removed.

【0010】好ましくは、反応室の壁を石英などの誘電
体で構成し、その外側に配置したヒータによって反応室
の壁と反応室内の基板の温度が同一になるように加熱す
るホットウォール構造とする。
[0010] Preferably, a wall of the reaction chamber is made of a dielectric material such as quartz, and a hot wall structure in which a heater disposed outside the chamber heats the walls of the reaction chamber and the substrate in the reaction chamber so as to have the same temperature. I do.

【0011】上記本発明の成膜装置は、基板を1枚だけ
反応室内部に載置して処理する構造としてもよく、被処
理基板を2枚以上重ねて反応室内部に載置して処理する
構造としてもよい。
The above-described film forming apparatus of the present invention may have a structure in which only one substrate is placed in the reaction chamber for processing. Two or more substrates to be processed are stacked and placed in the reaction chamber. It is good also as a structure which does.

【0012】好ましくは、基板がシリコンウェーハで、
単結晶させる半導体がシリコン(Si)またはシリコン
ゲルマニウム(SiGe)である。
Preferably, the substrate is a silicon wafer,
The semiconductor to be single-crystal is silicon (Si) or silicon germanium (SiGe).

【0013】シリコンゲルマニウム(SiGe)膜を形
成する際に、減圧状態の反応室に供給する原料ガスは、
好ましくは、モノゲルマン(GeH)とモノシラン
(SiH)である。
When forming a silicon germanium (SiGe) film, the source gas supplied to the reaction chamber under reduced pressure is as follows:
Preferably, a mono germane (GeH 4) and monosilane (SiH 4).

【0014】[0014]

【発明の実施の形態】図1、図2、図3、図4を参照し
て、本発明の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, and 4. FIG.

【0015】(第1の実施の形態)図1(A)は本実施
の形態の反応室部分の上から見た横断面図であり、図1
(B)は、図1(A)のAA線縦断面図を示したもので
ある。図2は図1の横断面の切り口を変えたもので、図
2(A)は本実施の形態の反応室部分の上から見た横断
面図であり、図2(B)は、図2(A)のBB線縦断面
図を示したものである。なお、ヒータ10を省略して示
してある。
(First Embodiment) FIG. 1A is a cross-sectional view of a reaction chamber portion of the present embodiment viewed from above.
FIG. 1B is a vertical sectional view taken along the line AA of FIG. FIG. 2 is a cross-sectional view of FIG. 1 with a different cross-section, FIG. 2A is a cross-sectional view of the reaction chamber portion of the present embodiment viewed from above, and FIG. FIG. 3A is a vertical sectional view taken along the line BB of FIG. Note that the heater 10 is omitted.

【0016】反応管1内部には複数枚の被処理基板2を
多段に同一間隔で載置できるボート16が設けられてい
る。該ボート16は図示しないエレベータ機構により反
応管1に出し入れできるようになっている。ボート16
下部の軸161は、シャッター23を回転可能かつ気密
に貫通する構造となっている。回転部22は磁気シール
等で気密を保持するが、マグネットカップリングのよう
な機構でもよい。また処理の均一性を向上するためにボ
ート16を回転するための図示しない回転駆動部が設け
てある。図1に示したように、ボート16が上限まで上
昇した状態ではシャッター23はフランジ3と気密に連
結される構造となっている。
Inside the reaction tube 1, there is provided a boat 16 on which a plurality of substrates 2 to be processed can be mounted in multiple stages at the same interval. The boat 16 can be taken in and out of the reaction tube 1 by an elevator mechanism (not shown). Boat 16
The lower shaft 161 has a structure in which the shutter 23 is rotatably and airtightly penetrated. The rotating part 22 is kept airtight by a magnetic seal or the like, but may be a mechanism such as a magnet coupling. Further, a rotation drive unit (not shown) for rotating the boat 16 is provided to improve the uniformity of the processing. As shown in FIG. 1, when the boat 16 is raised to the upper limit, the shutter 23 is configured to be airtightly connected to the flange 3.

【0017】反応管1内部の壁面近くにはプラズマ発生
源として細長い導電性の電極5を誘電体の保護管6で覆
って2本並べて配置し、該2本の電極の電極端部4に発
振器12の発する高周波電力を整合器13を介して印加
する構造となっている。電極5の端部付近は放電防止の
ため絶縁体8を介してシールド9が設けてある。このシ
ールドによって反応管1内部の放電は被処理基板2近傍
に限定されるようになっている。電極端部4は、反応管
1下部に気密に連結された金属製のフランジ3を貫通し
て反応管1の外に引き出されているが、保護管6の中は
保護管6とフランジ3が気密にシールされているため反
応管1内部と独立した空間になっており、常に大気圧と
なっている。
Near the wall surface inside the reaction tube 1, two elongated conductive electrodes 5 serving as plasma sources are covered with a dielectric protection tube 6 and arranged side by side, and an oscillator is provided at an electrode end 4 of the two electrodes. In this structure, the high-frequency power generated by the power supply 12 is applied through the matching unit 13. Near the end of the electrode 5, a shield 9 is provided via an insulator 8 to prevent discharge. This shield limits the discharge inside the reaction tube 1 to the vicinity of the substrate 2 to be processed. The electrode end 4 is drawn out of the reaction tube 1 through a metal flange 3 airtightly connected to the lower portion of the reaction tube 1, and the inside of the protection tube 6 is formed by the protection tube 6 and the flange 3. Since it is hermetically sealed, it is a space independent of the inside of the reaction tube 1 and is always at atmospheric pressure.

【0018】また、図2に示すように、電極5に挟まれ
た反応管1内の空間に、ガス吹出し用の***14を複数
個設けた誘電体製の放電管7を設け、被処理基板2を処
理する水素ガスを反応管1内部に導入する際、ガスが該
***14を通過する構造とするとよい。2本並べて配置
した細長い電極5間に高周波電力を印加してプラズマ1
5発生させると、プラズマ15で生成される水素の活性
種が***14を通過して被処理基板2に供給される。こ
の時プラズマ15で生成された荷電粒子の***14から
の吹き出しを抑制するために、放電管7の構造と***1
4の大きさ、数、位置などを処理の目的によって最適化
する。本実施の形態では***14の位置を被処理基板2
間の中間になるようにしている。これによりボート16
上の各被処理基板2に均等に水素の活性種が供給され
る。なお、放電管7はなくてもよいが、放電管7でプラ
ズマ生成空間を限定することで、プラズマ15からの荷
電粒子の拡散を抑制することができ、被処理基板2への
イオン等によるダメージを低減できる。
As shown in FIG. 2, a dielectric discharge tube 7 having a plurality of small holes 14 for blowing gas is provided in a space inside the reaction tube 1 sandwiched between the electrodes 5, and a substrate to be processed is provided. When introducing the hydrogen gas for treating 2 into the inside of the reaction tube 1, the gas may pass through the small hole 14. A high-frequency power is applied between two elongated electrodes 5 arranged side by side to generate plasma 1
When 5 is generated, active species of hydrogen generated by the plasma 15 are supplied to the substrate 2 to be processed through the small holes 14. At this time, the structure of the discharge tube 7 and the small holes 1 are controlled in order to suppress the discharge of the charged particles generated by the plasma 15 from the small holes 14.
The size, number, position, etc. of 4 are optimized according to the purpose of processing. In the present embodiment, the position of the small hole 14 is
It is in between. This makes the boat 16
Active species of hydrogen are uniformly supplied to each of the substrates 2 to be processed. Although the discharge tube 7 may be omitted, diffusion of charged particles from the plasma 15 can be suppressed by limiting the plasma generation space with the discharge tube 7, and damage to the substrate 2 due to ions or the like can be suppressed. Can be reduced.

【0019】次に動作を説明する。Next, the operation will be described.

【0020】図示しないエレベータ機構でボート16を
下げて複数の被処理基板2をボート16に載置した後、
ボート16を上昇させて反応管1内部に挿入し、反応管
1内部を図示しないポンプで排気し、水素ガスを導入し
て、反応管1内部の窒素等のガスを水素で置換する。
After the boat 16 is lowered by an elevator mechanism (not shown) and a plurality of substrates 2 are mounted on the boat 16,
The boat 16 is raised and inserted into the reaction tube 1, the inside of the reaction tube 1 is evacuated by a pump (not shown), hydrogen gas is introduced, and a gas such as nitrogen in the reaction tube 1 is replaced with hydrogen.

【0021】ヒータ10に電源を投入し、反応管1およ
び内部のボート16,被処理基板2などを500℃に加
熱する。反応管1内部の各部の温度が500℃になった
らボート16を回転させながら、被処理基板2の表面を
清浄化するための水素ガスを放電管7に導入する。反応
管1内部の圧力を図示しない圧力調整機構で調節し、所
定の値になったら発振器12の出力する高周波電力を整
合器13を介して電極端部4に供給する。これによって
放電管7内部にプラズマ15が発生し導入した水素が活
性化され、放電管7に多数設けた***14から回転して
いる被処理基板2に供給される。被処理基板2表面の自
然酸化膜などの不純物は主に活性化された水素によって
除去される。
Power is supplied to the heater 10, and the reaction tube 1, the internal boat 16, the substrate 2 and the like are heated to 500.degree. When the temperature of each part inside the reaction tube 1 reaches 500 ° C., hydrogen gas for cleaning the surface of the substrate 2 is introduced into the discharge tube 7 while rotating the boat 16. The pressure inside the reaction tube 1 is adjusted by a pressure adjusting mechanism (not shown). As a result, the plasma 15 is generated inside the discharge tube 7 and the introduced hydrogen is activated, and is supplied to the rotating substrate 2 through the small holes 14 provided in the discharge tube 7. Impurities such as a natural oxide film on the surface of the substrate to be processed 2 are removed mainly by activated hydrogen.

【0022】自然酸化膜などの不純物の除去が完了した
ら、ガス導入管17からモノゲルマン(GeH)とモ
ノシラン(SiH)を導入し圧力を調節しながらシリ
コンゲルマニウム(SiGe)を500℃で成膜する。
反応管1内部の圧力は排気管18の下流側に設けた図示
しない圧力調整機構で調整する。
When the removal of impurities such as a natural oxide film is completed, monogermane (GeH 4 ) and monosilane (SiH 4 ) are introduced from the gas inlet pipe 17 and silicon germanium (SiGe) is formed at 500 ° C. while adjusting the pressure. Film.
The pressure inside the reaction tube 1 is adjusted by a pressure adjustment mechanism (not shown) provided downstream of the exhaust pipe 18.

【0023】図4の成膜シーケンスに示すように、反応
管1の加熱を開始してから処理を終えて降温が終了する
までの時間は、前処理の温度を成膜温度と同じ500℃
とすることにより、従来技術(破線参照)で230分を
要していた処理時間は、155分に短縮される。
As shown in the film forming sequence of FIG. 4, the time from the start of heating of the reaction tube 1 to the end of the processing to the end of the temperature drop is set at 500 ° C., which is the same as the film forming temperature.
As a result, the processing time that required 230 minutes in the related art (see the broken line) is reduced to 155 minutes.

【0024】(第2の実施の形態)図3は本発明の第2
の実施の形態を示す図で、ヒータは省略して示してあ
る。図3(A)は本実施の形態の反応室部分の上から見
た横断面図であり、図3(B)は、図3(A)のCC線
縦断面図を示したものである。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
In the drawings showing the embodiment, the heater is omitted. FIG. 3A is a cross-sectional view of the reaction chamber portion of the present embodiment viewed from above, and FIG. 3B is a vertical cross-sectional view taken along line CC of FIG. 3A.

【0025】反応管1内部には複数枚の被処理基板2を
多段に同一間隔で載置できるボート16が設けられてお
り、主な構造は図1と同様である。
Inside the reaction tube 1, there is provided a boat 16 on which a plurality of substrates 2 to be processed can be placed at the same interval in multiple stages, and the main structure is the same as that of FIG.

【0026】フランジ3には活性ガス導入管19が設け
てあり、リモートプラズマユニット24で生成された水
素の活性種を活性種導入管19から反応管1内部に供給
する構造となっている。リモートプラズマユニット24
のプラズマ源としてはICP(Inductively Coupled Pl
asma)型やマイクロ波型が好適である。またリモートプ
ラズマユニット24の放電部の材質は石英、アルミナ、
サファイアなどが好適である。
An active gas introduction pipe 19 is provided on the flange 3, and the active species of hydrogen generated by the remote plasma unit 24 is supplied from the active species introduction pipe 19 into the reaction tube 1. Remote plasma unit 24
ICP (Inductively Coupled Pl)
Asma) type and microwave type are preferable. The material of the discharge part of the remote plasma unit 24 is quartz, alumina,
Sapphire and the like are preferred.

【0027】次に動作を説明する。Next, the operation will be described.

【0028】図示しないエレベータ機構でボート16を
下げて被処理基板2をボート16に載置した後、ボート
16を上昇させて反応管1内部に挿入し、反応管1内部
を図示しないポンプで排気し、水素を導入して、反応管
1内部の窒素等のガスを水素で置換する。水素の導入は
ガス導入管21から行う。
After the substrate 16 is placed on the boat 16 by lowering the boat 16 by an elevator mechanism (not shown), the boat 16 is raised and inserted into the reaction tube 1, and the inside of the reaction tube 1 is evacuated by a pump (not shown). Then, hydrogen is introduced, and a gas such as nitrogen in the reaction tube 1 is replaced with hydrogen. Hydrogen is introduced from the gas introduction pipe 21.

【0029】ヒータ10に電源を投入し、反応管1およ
び内部のボート16、被処理基板2などを500℃に加
熱する。
Power is supplied to the heater 10, and the reaction tube 1, the internal boat 16, the substrate 2 and the like are heated to 500 ° C.

【0030】反応管1内部の各部の温度が500℃にな
ったら、反応管1内部の圧力を図示しない圧力調整機構
で調節し、所定の値になったらリモートプラズマユニッ
ト24を動作させ該リモートプラズマユニット24で生
成した水素の活性種を活性種導入管19によって反応管
1内部に導入し、回転中のボート16に載置された被処
理基板2の表面の自然酸化膜等の不純物除去を行う。
When the temperature of each part inside the reaction tube 1 reaches 500 ° C., the pressure inside the reaction tube 1 is adjusted by a pressure adjusting mechanism (not shown), and when the pressure reaches a predetermined value, the remote plasma unit 24 is operated to operate the remote plasma unit. The active species of hydrogen generated by the unit 24 are introduced into the reaction tube 1 by the active species introduction pipe 19 to remove impurities such as a natural oxide film on the surface of the substrate 2 to be processed placed on the rotating boat 16. .

【0031】その後の成膜は前述の方法と同様である。The subsequent film formation is the same as the above-mentioned method.

【0032】なお、上記第1および第2の実施の形態で
は、被処理基板を複数枚一括処理する例を示したが、1
枚ずつ処理する装置についても、同様である。
In the first and second embodiments, an example in which a plurality of substrates to be processed are collectively processed has been described.
The same applies to an apparatus for processing sheets one by one.

【0033】本発明によればSiGeやSiの成膜を行
う前の被処理基板表面の清浄化の温度を従来より下げる
ことができるため、成膜温度と同一にできる。そして成
膜前の被処理基板の清浄化の温度と成膜温度が同一にな
ることから、反応管の昇降温の時間を省略できるため装
置のスループットが向上する。
According to the present invention, the temperature for cleaning the surface of the substrate to be processed before forming the film of SiGe or Si can be lower than that of the prior art, so that it can be made the same as the film forming temperature. Since the temperature for cleaning the substrate to be processed before the film formation is the same as the film formation temperature, the time for raising and lowering the temperature of the reaction tube can be omitted, thereby improving the throughput of the apparatus.

【0034】[0034]

【発明の効果】本発明によれば、被処理基板の水素によ
る表面清浄化の温度を下げることができ、その結果、前
処理のための昇降温の時間が省略できるため装置のスル
ープットが向上する。
According to the present invention, the temperature for cleaning the surface of the substrate to be treated with hydrogen can be lowered, and as a result, the time for raising and lowering the temperature for the pretreatment can be omitted, thereby improving the throughput of the apparatus. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の成膜装置を説明す
るための図であり、図1(A)は横断面図であり、図1
(B)は、図1(A)のAA線縦断面図である。
FIG. 1 is a view for explaining a film forming apparatus according to a first embodiment of the present invention, and FIG. 1 (A) is a cross-sectional view;
FIG. 2B is a vertical sectional view taken along the line AA of FIG.

【図2】本発明の第1の実施の形態の成膜装置を説明す
るための図であり、図2(A)は横断面図であり、図2
(B)は、図2(A)のBB線縦断面図である。
FIG. 2 is a view for explaining a film forming apparatus according to a first embodiment of the present invention, and FIG. 2 (A) is a cross-sectional view;
FIG. 2B is a vertical sectional view taken along the line BB of FIG.

【図3】本発明の第2の実施の形態の成膜装置を説明す
るための図であり、図3(A)は横断面図であり、図3
(B)は、図3(A)のCC線縦断面図である。
FIG. 3 is a view for explaining a film forming apparatus according to a second embodiment of the present invention, and FIG. 3 (A) is a transverse sectional view;
FIG. 3B is a vertical sectional view taken along line CC in FIG.

【図4】本発明の第1の実施の形態におけるプロセス時
間を説明する図である。
FIG. 4 is a diagram illustrating a process time according to the first embodiment of the present invention.

【図5】従来の成膜装置を説明するための図であり、図
5(A)は横断面図であり、図5(B)は、図5(A)
のAA線縦断面図である。
5A and 5B are views for explaining a conventional film forming apparatus, FIG. 5A is a cross-sectional view, and FIG. 5B is FIG.
3 is a vertical sectional view taken along line AA of FIG.

【図6】従来のプロセス時間を説明する図である。FIG. 6 is a diagram illustrating a conventional process time.

【符号の説明】[Explanation of symbols]

1 …反応管 2 …被処理基板 3 …フランジ 4 …電極端部 5 …電極 6 …保護管 7 …放電管 8 …絶縁材 9 …シールド 10…ヒータ 12…発振器 13…整合器 14…*** 15…プラズマ 16…ボート 17…ガス導入管 18…排気管 19…活性種導入管 21…ガス導入管 22…回転部 23…シャッター 24…リモートプラズマユニット DESCRIPTION OF SYMBOLS 1 ... Reaction tube 2 ... Substrate to be processed 3 ... Flange 4 ... Electrode end 5 ... Electrode 6 ... Protective tube 7 ... Discharge tube 8 ... Insulating material 9 ... Shield 10 ... Heater 12 ... Oscillator 13 ... Matching device 14 ... Small hole 15 ... Plasma 16 Boat 17 Gas introduction pipe 18 Exhaust pipe 19 Activated species introduction pipe 21 Gas introduction pipe 22 Rotating part 23 Shutter 24 Remote plasma unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井ノ口 泰啓 東京都中野区東中野三丁目14番20号 株式 会社日立国際電気内 Fターム(参考) 4K030 AA05 AA06 BA09 BA48 BB02 CA04 CA12 DA06 FA03 JA10 5F045 AA06 AB01 AB02 AC01 AD09 AF03 BB09 DP19 DP28 DQ05 EB13 EE13 EF03 EH04 EH05 EH18 EK06 HA01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuhiro Inoguchi 3-14-20 Higashinakano, Nakano-ku, Tokyo F-term (reference) 4K030 AA05 AA06 BA09 BA48 BB02 CA04 CA12 DA06 FA03 JA10 5F045 AA06 AB01 AB02 AC01 AD09 AF03 BB09 DP19 DP28 DQ05 EB13 EE13 EF03 EH04 EH05 EH18 EK06 HA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】減圧状態の反応室においてリモートプラズ
マで生成した水素の活性種を利用して被処理基板表面を
前処理し、その後、前記反応室内で前記前処理温度の場
合と同じ温度で前記被処理基板表面に半導体を単結晶成
長させるようにしたことを特徴とする成膜装置。
In a reaction chamber under reduced pressure, a surface of a substrate to be processed is pretreated by using active species of hydrogen generated by remote plasma, and thereafter, the same temperature as the pretreatment temperature is applied in the reaction chamber. A film forming apparatus wherein a semiconductor is grown on a surface of a substrate to be processed by single crystal.
【請求項2】減圧状態の反応室においてリモートプラズ
マで生成した水素の活性種を利用して被処理基板を70
0℃以下の温度に加熱して被処理基板表面を前処理し、
その後、前記反応室内で前記前処理温度の場合と同じ温
度で前記被処理基板表面にシリコンゲルマニウム膜を形
成させるようにしたことを特徴とする成膜装置。
2. A substrate to be processed is heated to 70% by utilizing active species of hydrogen generated by remote plasma in a reaction chamber under reduced pressure.
Pre-treating the surface of the substrate to be treated by heating to a temperature of 0 ° C.
Thereafter, a silicon germanium film is formed on the surface of the substrate to be processed at the same temperature as the pre-processing temperature in the reaction chamber.
JP2001129556A 2001-04-26 2001-04-26 Semiconductor manufacturing equipment Expired - Lifetime JP4138269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129556A JP4138269B2 (en) 2001-04-26 2001-04-26 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129556A JP4138269B2 (en) 2001-04-26 2001-04-26 Semiconductor manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008095389A Division JP2008182267A (en) 2008-04-01 2008-04-01 Method for manufacturing substrate and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2002324760A true JP2002324760A (en) 2002-11-08
JP4138269B2 JP4138269B2 (en) 2008-08-27

Family

ID=18978062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129556A Expired - Lifetime JP4138269B2 (en) 2001-04-26 2001-04-26 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4138269B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044970A1 (en) * 2002-11-11 2004-05-27 Hitachi Kokusai Electric Inc. Substrate processing device
WO2005083766A1 (en) * 2004-02-27 2005-09-09 Hitachi Kokusai Electric Inc. Substrate processing device
JP2006100551A (en) * 2004-09-29 2006-04-13 Mitsubishi Heavy Ind Ltd Plasma deposition method, plasma processing device, solar cell and manufacturing method thereof
US7524769B2 (en) 2005-03-31 2009-04-28 Tokyo Electron Limited Method and system for removing an oxide from a substrate
US8092598B2 (en) * 2004-12-16 2012-01-10 Fusionaid Co., Ltd. Apparatus and method for thin film deposition
KR101390785B1 (en) * 2008-07-30 2014-04-30 (주)소슬 Apparatus for processing substrate and method for processing substrate
JP2015092637A (en) * 2015-02-12 2015-05-14 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707819B1 (en) * 2002-11-11 2007-04-13 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing device
CN100389482C (en) * 2002-11-11 2008-05-21 株式会社日立国际电气 Substrate processing device
US9169553B2 (en) 2002-11-11 2015-10-27 Hitachi Kokusai Electric Inc. Semiconductor device producing method
WO2004044970A1 (en) * 2002-11-11 2004-05-27 Hitachi Kokusai Electric Inc. Substrate processing device
US8518182B2 (en) 2004-02-27 2013-08-27 Hitachi Kokusai Electric Inc. Substrate processing apparatus
WO2005083766A1 (en) * 2004-02-27 2005-09-09 Hitachi Kokusai Electric Inc. Substrate processing device
KR100817644B1 (en) * 2004-02-27 2008-03-27 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing device
US7958842B2 (en) 2004-02-27 2011-06-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus
JP2006100551A (en) * 2004-09-29 2006-04-13 Mitsubishi Heavy Ind Ltd Plasma deposition method, plasma processing device, solar cell and manufacturing method thereof
JP4576190B2 (en) * 2004-09-29 2010-11-04 三菱重工業株式会社 Plasma processing equipment
US8092598B2 (en) * 2004-12-16 2012-01-10 Fusionaid Co., Ltd. Apparatus and method for thin film deposition
US7524769B2 (en) 2005-03-31 2009-04-28 Tokyo Electron Limited Method and system for removing an oxide from a substrate
KR101390785B1 (en) * 2008-07-30 2014-04-30 (주)소슬 Apparatus for processing substrate and method for processing substrate
JP2015092637A (en) * 2015-02-12 2015-05-14 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP4138269B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US20210010160A1 (en) Method and apparatus for precleaning a substrate surface prior to epitaxial growth
US5011705A (en) Plasma processing method
EP2276328B1 (en) Microwave plasma processing device
KR101188574B1 (en) Method for forming insulating film and method for manufacturing semiconductor device
TW201028804A (en) Substrate processing method
CN101151712A (en) A method and system for removing an oxide from a substrate
WO2007040718A2 (en) Multi-source method and system for forming an oxide layer
WO2003026004A1 (en) Method of plasma treatment
JP2002324760A (en) Film forming method
JP4126517B2 (en) Vapor processing equipment
JPH06333857A (en) Device and method for forming film
JP2009164519A (en) Method of forming protective film for low-temperature polysilicon, apparatus for forming protective film for low-temperature polysilicon, and low-temperature polysilicon tft
JP2008182267A (en) Method for manufacturing substrate and substrate processing apparatus
JP2009117569A (en) Reflection preventive film forming method, and reflection preventive film forming device
US20100224128A1 (en) Semiconductor manufacturing apparatus
JP2740789B2 (en) Processing method
KR20210097045A (en) Etching method, substrate processing apparatus, and substrate processing system
JP4059792B2 (en) Semiconductor manufacturing method
JP2008159763A (en) Plasma processing apparatus
JP2000294548A (en) Microwave plasma treatment apparatus using dielectrics window
JP3258441B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JP2847708B2 (en) Plasma vapor deposition method
JP4355490B2 (en) Deposited film forming equipment
JP5727853B2 (en) Plasma generation method
JP2500765B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4138269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term