JP2002323387A - Dynamic quantity sensor element - Google Patents

Dynamic quantity sensor element

Info

Publication number
JP2002323387A
JP2002323387A JP2001338131A JP2001338131A JP2002323387A JP 2002323387 A JP2002323387 A JP 2002323387A JP 2001338131 A JP2001338131 A JP 2001338131A JP 2001338131 A JP2001338131 A JP 2001338131A JP 2002323387 A JP2002323387 A JP 2002323387A
Authority
JP
Japan
Prior art keywords
pressure
sensor element
quantity sensor
sensitive body
resistance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001338131A
Other languages
Japanese (ja)
Other versions
JP4124413B2 (en
Inventor
Mitsuru Asai
満 浅井
Hiroaki Makino
浩明 牧野
Shin Tajima
伸 田島
Toshiharu Mikami
俊春 三上
Kaori Fujita
かおり 藤田
Toshitada Wada
敏忠 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Koki KK
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK, Toyota Central R&D Labs Inc filed Critical Toyoda Koki KK
Priority to JP2001338131A priority Critical patent/JP4124413B2/en
Publication of JP2002323387A publication Critical patent/JP2002323387A/en
Application granted granted Critical
Publication of JP4124413B2 publication Critical patent/JP4124413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic quantity sensor element capable of measuring dynamic quantity with high accuracy and facilitating the securement of insulation for its pressure sensing body. SOLUTION: This element has the pressure sensing body 11 integral with electrically insulating pressure receiving bodies 12. The sensing body 11 is made of a composite ceramic made by dispersing a material having a pressure-resistive effect or magnetoresistive effect in a ceramic. The receiving bodies 12 are made of a ceramic and disposed on pressure receiving surfaces of the sensing body 11. Preferably, the receiving bodies are sintered integrally with the sensing body. Preferably, the receiving bodies are joined to the sensing body with an adhesive. Preferably, the ceramic constituting the receiving bodies is the same as the ceramic constituting the sensing body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,力,圧力,トルク,速度,加速
度,位置,変位,衝撃力,重量質量,真空度,回転力,
振動,騒音等の力学的な変化量を測定する力学量センサ
素子の構造に関する。
TECHNICAL FIELD The present invention relates to force, pressure, torque, speed, acceleration, position, displacement, impact force, weight and mass, degree of vacuum, rotational force,
The present invention relates to a structure of a physical quantity sensor element for measuring a mechanical change amount such as vibration and noise.

【0002】[0002]

【従来技術】力,圧力,トルク,速度,加速度,位置,
変位,衝撃力,重量質量,真空度,回転力,振動,騒音
等の力学的な変化量を歪み(応力)を介して計測するに
あたり,一般に圧力抵抗効果もしくは磁気抵抗効果材料
を利用して構成した力学量センサ素子が広く利用されて
いる。圧力抵抗効果とは,材料に圧縮応力,引張応力,
剪断応力,静水圧応力が加わった際に,材料の電気抵抗
が変化する現象のことである。このような材料よりなる
感圧体に絶縁体を介して外部から力学量を加えること
で,感圧体の電気抵抗を変動させ,この変動を検出する
ことで力学量を測定する。
2. Description of the Related Art Force, pressure, torque, speed, acceleration, position,
When measuring mechanical changes such as displacement, impact force, weight mass, vacuum degree, rotational force, vibration, noise, etc. through strain (stress), it is generally configured using a pressure resistance effect or magnetoresistive effect material The dynamic quantity sensor element is widely used. The pressure resistance effect is defined as compressive stress, tensile stress,
A phenomenon in which the electrical resistance of a material changes when shear stress or hydrostatic stress is applied. By applying a mechanical quantity from the outside to the pressure-sensitive body made of such a material via an insulator, the electric resistance of the pressure-sensitive body is changed, and the change is detected to measure the mechanical quantity.

【0003】[0003]

【解決しようとする課題】しかしながら,従来知られた
力学量センサ素子では,適当な絶縁体を介して力学量セ
ンサ素子に測定すべき外部力学量を加える構成となって
いる。このため,力学量が小さい場合はともかく,力学
量として高圧力等を加えるような高荷重の測定に供した
場合,内部の感圧体に対する荷重の加わり具合のバラン
スが悪く,精密な力学量測定が難しく,また,感圧体の
絶縁確保が難しかった。更に,感圧体に対する絶縁確保
のため,素子の計測システム等に対する組み込みが面倒
であった。
However, the conventionally known mechanical quantity sensor element has a configuration in which an external physical quantity to be measured is added to the mechanical quantity sensor element via an appropriate insulator. For this reason, even when the mechanical quantity is small, when applied to the measurement of a high load that applies high pressure or the like as the mechanical quantity, the balance of the load applied to the internal pressure-sensitive body is poor, and the precise mechanical quantity measurement is performed. It was difficult to secure the insulation of the pressure-sensitive body. Furthermore, in order to secure insulation against the pressure-sensitive element, it is troublesome to incorporate the element into a measurement system or the like.

【0004】本発明は,かかる従来の問題点に鑑みてな
されたもので,精度高い力学量の測定ができ,感圧体の
絶縁確保が容易である力学量センサ素子を提供しようと
するものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a mechanical quantity sensor element capable of measuring a physical quantity with high accuracy and easily securing insulation of a pressure-sensitive body. is there.

【0005】[0005]

【課題の解決手段】請求項1に記載の発明は,セラミッ
クス中に圧力抵抗効果もしくは磁気抵抗効果を有する材
料が分散してなる複合セラミックスよりなる感圧体と,
該感圧体の受圧面に配設されたセラミックスよりなる電
気絶縁性の受圧体とを一体的に有することを特徴とする
力学量センサ素子にある。
According to a first aspect of the present invention, there is provided a pressure-sensitive body made of a composite ceramic in which a material having a pressure resistance effect or a magnetoresistance effect is dispersed in ceramic,
The physical quantity sensor element is characterized in that it integrally has an electrically insulating pressure-receiving body made of ceramics disposed on the pressure-receiving surface of the pressure-sensitive body.

【0006】次に,本発明の作用につき説明する。本発
明にかかる力学量センサ素子では,感圧体に対し直接受
圧体が設けてある。このため,受圧体を介して力学量が
感圧体にかかるために,感圧体に対する力学量のかかり
具合を均一とすることができ,正確な力学量の測定がで
きる。更に,感圧体と受圧体とが一体構造であるので,
感圧体に対する絶縁性の確保が容易となる。
Next, the operation of the present invention will be described. In the physical quantity sensor element according to the present invention, a pressure receiving body is provided directly to the pressure sensitive body. For this reason, since the mechanical quantity is applied to the pressure-sensitive body via the pressure-receiving body, the degree of application of the mechanical quantity to the pressure-sensitive body can be made uniform, and the accurate mechanical quantity can be measured. Furthermore, since the pressure-sensitive element and the pressure-receiving element are integrated,
It is easy to secure insulation against the pressure-sensitive body.

【0007】また,本構造にかかる力学量センサ素子は
素子本体のみで感圧体に対する絶縁が確保されており,
この素子を計測システム等に組み込む際に,特に絶縁性
についての考慮が不要であり,使い勝手に優れている。
Further, the physical quantity sensor element according to the present structure is insulated from the pressure-sensitive body only by the element body.
When this element is incorporated in a measurement system or the like, it is not necessary to particularly consider insulation properties, and it is excellent in usability.

【0008】以上,本発明によれば,精度高い力学量の
測定ができ,感圧体の絶縁確保が容易である力学量セン
サ素子を提供することができる。
As described above, according to the present invention, it is possible to provide a physical quantity sensor element capable of measuring a physical quantity with high accuracy and easily securing insulation of a pressure-sensitive body.

【0009】なお,上記感圧体中の圧力抵抗効果あるい
は磁気抵抗効果を有する材料としては,例えば,ペロブ
スカイト構造の(Ln1-xMax1-yMbO3-z(ここに
0<x≦0.5,0≦y≦0.2,0≦z≦0.6,L
n;希土類元素,Ma;1種類またはそれ以上のアルカ
リ土類元素,Mb;1種類またはそれ以上の遷移金属元
素),層状ペロブスカイト構造の(Ln2-uMa1+u
1-vMb27-w(ここに0<u≦1.0,0≦v≦0.
2,0≦w≦1.0,Ln;希土類元素,Ma;1種類
またはそれ以上のアルカリ土類元素,Mb;1種類また
はそれ以上の遷移金属元素),Si及びこれらに微量の
添加元素を加えた物質のいずれか1種以上よりなる材料
を用いることができる。
[0009] As a material having a pressure resistance effect or a magnetic resistance effect in the pressure sensitive substance, for example, (Ln 1-x Ma x ) of perovskite structure 1-y MbO 3-z (here 0 <x ≤0.5, 0≤y≤0.2, 0≤z≤0.6, L
n: rare earth element, Ma: one or more alkaline earth elements, Mb: one or more transition metal elements), (Ln 2-u Ma 1 + u ) having a layered perovskite structure
1-v Mb 2 O 7-w (where 0 <u ≦ 1.0, 0 ≦ v ≦ 0.
2, 0 ≦ w ≦ 1.0, Ln; rare earth element, Ma; one or more kinds of alkaline earth elements, Mb; one or more kinds of transition metal elements), Si and a trace amount of additional elements A material composed of any one or more of the added substances can be used.

【0010】また,上記受圧体としては,後述するジル
コニアの他,例えば,以下にかかる材料より構成された
ものを用いることができる。つまり,Al23,MgA
24,SiO2,3Al23・2SiO2,Y23,C
eO2,La23,Si34等を用いることができる。
また,上記感圧体には電極を設ける必要がある。この電
極としては,Ag,Au,Pt,Al,Ni,Cu等の
電極を用いることができる。
[0010] As the pressure receiving member, besides zirconia, which will be described later, for example, a member made of the following materials can be used. That is, Al 2 O 3 , MgA
l 2 O 4 , SiO 2 , 3Al 2 O 3 .2SiO 2 , Y 2 O 3 , C
eO 2 , La 2 O 3 , Si 3 N 4 and the like can be used.
Further, it is necessary to provide an electrode on the pressure-sensitive body. As this electrode, an electrode of Ag, Au, Pt, Al, Ni, Cu or the like can be used.

【0011】また,力学量センサ素子を製造するにあた
り,感圧体はドクターブレード,押出成形,印刷(スク
リーン印刷,転写等),金型プレスを利用した粉末成形
等の各プロセスを利用して作製することができる。ま
た,受圧体はドクターブレード,押出成形,金型プレス
を利用した粉末成形等の各プロセスを利用して作製する
ことができる。感圧体と受圧体を同じプロセスで作製す
ることもできるし,異なるプロセスで作製することもで
きる。
In manufacturing the dynamic quantity sensor element, the pressure-sensitive element is manufactured by using various processes such as doctor blade, extrusion molding, printing (screen printing, transfer, etc.), and powder molding using a die press. can do. Further, the pressure receiving member can be manufactured by using various processes such as doctor blade, extrusion molding, powder molding using a mold press, and the like. The pressure-sensitive body and the pressure-receiving body can be manufactured by the same process, or can be manufactured by different processes.

【0012】次に,請求項2に記載の発明のように,上
記受圧体は,上記感圧体と一体的に焼結されていること
が好ましい。これにより,上記受圧体の焼結工程と上記
感圧体の焼結工程を統合して一度に行なうことができ,
工程の合理化を図ることができる。また,上記受圧体と
上記感圧体とのセラミック部分同士を焼結によって一体
化させることができ,強度の高いセンサ素子を得ること
ができる。
Next, as in the second aspect of the present invention, it is preferable that the pressure receiving body is sintered integrally with the pressure sensitive body. As a result, the sintering step of the pressure-receiving body and the sintering step of the pressure-sensitive body can be integrated and performed at once.
The process can be streamlined. Further, the ceramic portions of the pressure receiving body and the pressure sensitive body can be integrated by sintering, and a high-strength sensor element can be obtained.

【0013】次に,請求項3に記載の発明のように,上
記受圧体は,上記感圧体と接着剤により接合することも
できる。これにより,上記受圧体と感圧体とが焼結によ
りうまく一体化できない場合等に,容易に両者の一体化
を実現することができる。また,上記接着剤として,有
機系及び無機系の接着剤,または低融点ガラスよりなる
ものを用いることができる。
Next, as in the third aspect of the present invention, the pressure receiving body can be joined to the pressure sensitive body with an adhesive. Thus, when the pressure receiving body and the pressure sensitive body cannot be successfully integrated by sintering, the integration of the two can be easily realized. Further, as the adhesive, an organic or inorganic adhesive or a low melting glass can be used.

【0014】次に,請求項4に記載の発明のように,上
記受圧体を構成するセラミックスと上記感圧体を構成す
るセラミックスとは同じセラミックスであることが好ま
しい。これにより,受圧体と感圧体とがより強固に一体
的に結合することができる。
Next, as in the fourth aspect of the present invention, it is preferable that the ceramics constituting the pressure receiving body and the ceramics constituting the pressure sensitive body are the same ceramics. Thus, the pressure receiving body and the pressure sensitive body can be more firmly and integrally connected.

【0015】次に,請求項5に記載の発明のように,上
記受圧体を構成するセラミックスと上記感圧体を構成す
るセラミックスとはいずれもジルコニアであることが好
ましい。なお,ここに記載したジルコニアとは,3Y−
ZrO2,12Ce−ZrO2等の各種組成のものを含め
た物質を指している。ジルコニアは,多くの機械部品等
に使われている強度の高いセラミックスであるため,こ
れで構成される素子も高強度の素子となることができ
る。
Next, as in the fifth aspect of the present invention, it is preferable that both the ceramic constituting the pressure receiving body and the ceramic constituting the pressure sensitive body are zirconia. The zirconia described here is 3Y-
It refers to substances including those having various compositions such as ZrO 2 and 12 Ce-ZrO 2 . Zirconia is a high-strength ceramic used in many mechanical parts and the like, so that an element formed of zirconia can also be a high-strength element.

【0016】また,請求項6に記載の発明のように,上
記圧力抵抗効果もしくは磁気抵抗効果を有する材料とし
ては,ペロプスカイト構造の(Ln1-xMax1-yMb
3-z,層状ペロブスカイト構造の(Ln2-uMa1+u
1-vMb27-w,及びこれらに微量の添加元素を加えた
物質のいずれか1種類以上よりなる(ここに,0<x≦
0.5,0≦y≦0.2,0≦z≦0.6,0<u≦
1.0,0≦v≦0.2,0≦w≦1.0,Ln:希土
類元素,Ma:1種類またはそれ以上のアルカリ土類元
素,Mb:1種類またはそれ以上の遷移金属元素であ
る)を用いることができる。
Further, as in the invention according to claim 6, as the material having the pressure resistance effect or magnetic resistance effect, (Ln 1-x Ma x ) of perovskite structure 1-y Mb
O 3-z , (Ln 2-u Ma 1 + u ) having a layered perovskite structure
1-v Mb 2 O 7-w , or any one or more of these substances to which a trace amount of an additional element is added (where 0 <x ≦
0.5, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.6, 0 <u ≦
1.0, 0 ≦ v ≦ 0.2, 0 ≦ w ≦ 1.0, Ln: rare earth element, Ma: one or more alkaline earth elements, Mb: one or more transition metal elements A) can be used.

【0017】次に,請求項7に記載の発明のように,上
記感圧体を構成する圧力抵抗効果もしくは磁気抵抗効果
を有する材料は,La1-xSrxMnO3粒子(0<x≦
0.5)であることが好ましい。これにより,大きい圧
力抵抗変化率と平坦な温度抵抗変化率を有する感圧体を
構成することができる。
Next, as in the invention according to claim 7, the material having a pressure resistance effect or a magnetoresistance effect constituting the pressure-sensitive body is La 1-x Sr x MnO 3 particles (0 <x ≦
0.5). Thus, a pressure-sensitive body having a large rate of change in pressure resistance and a flat rate of change in temperature resistance can be configured.

【0018】上記組成においてxの値が0の場合は,圧
力抵抗効果を発現しない,もしくは発現したとしても充
分な値の圧力抵抗効果ではない,または補正し難い大き
な温度抵抗変化率となるおそれがある。xの値が0.5
を越えた場合も同様の問題が生じるおそれがある。
When the value of x is 0 in the above composition, the pressure resistance effect does not appear, or even if it appears, the pressure resistance effect does not have a sufficient value, or a large temperature resistance change rate that is difficult to correct may occur. is there. The value of x is 0.5
The same problem may occur when the value exceeds.

【0019】また,請求項8に記載の発明のように,上
記受圧体には圧力抵抗効果もしくは磁気抵抗効果を有す
る材料を,電気伝導性を発現しない範囲内で混合してな
ることが好ましい。この場合には,上記感圧体と受圧体
の両方に上記圧力抵抗効果もしくは磁気抵抗効果を有す
る材料が含まれることとなり,上記感圧体と受圧体との
間の反応が抑制され,感圧体と受圧体との収縮率が近す
ぎ,界面での歪みが小さくなり,また繰り返しによる劣
化を防止することができる。それ故,上記感圧体の本来
の抵抗値を発現させることができ,比抵抗値のばらつき
を小さくすることができる。
It is preferable that the pressure receiving member is formed by mixing a material having a pressure resistance effect or a magnetoresistance effect within a range that does not exhibit electrical conductivity. In this case, both the pressure-sensitive body and the pressure-receiving body contain the material having the pressure resistance effect or the magneto-resistance effect, and the reaction between the pressure-sensitive body and the pressure-receiving body is suppressed, and the pressure-sensitive body is suppressed. The contraction rate between the body and the pressure receiving body is too close, the distortion at the interface is reduced, and deterioration due to repetition can be prevented. Therefore, the original resistance value of the pressure-sensitive body can be developed, and the variation in the specific resistance value can be reduced.

【0020】また,請求項9に記載の発明のように,上
記受圧体への上記圧力抵抗効果もしくは磁気抵抗効果を
有する材料の添加量は,5〜15%であることが好まし
い。上記添加量が5%未満の場合には,上記圧力抵抗効
果もしくは磁気抵抗効果を有する材料を添加することに
よる比抵抗値のばらつき低減効果が十分に発揮されない
という問題がある。一方,15%を超える場合には,上
記受圧体の絶縁性を確保することが困難となるという問
題がある。
Preferably, the amount of the material having the pressure resistance effect or the magnetoresistance effect added to the pressure receiving member is 5 to 15%. When the addition amount is less than 5%, there is a problem that the effect of reducing the variation in the specific resistance value by adding the material having the pressure resistance effect or the magnetoresistance effect is not sufficiently exhibited. On the other hand, if it exceeds 15%, there is a problem that it is difficult to ensure the insulation of the pressure receiving body.

【0021】また,請求項10に記載の発明のように,
上記受圧体が含有する上記圧力抵抗効果もしくは磁気抵
抗効果を有する材料としては,ペロプスカイト構造の
(Ln 1-xMax1-yMbO3-z,層状ペロブスカイト構
造の(Ln2-uMa1+u1-vMb27-w,及びこれらに
微量の添加元素を加えた物質のいずれか1種類以上より
なる(ここに,0<x≦0.5,0≦y≦0.2,0≦
z≦0.6,0<u≦1.0,0≦v≦0.2,0≦w
≦1.0,Ln:希土類元素,Ma:1種類またはそれ
以上のアルカリ土類元素,Mb:1種類またはそれ以上
の遷移金属元素である)を用いることができる。
Further, as in the invention according to claim 10,
The pressure resistance effect or magnetic resistance contained in the pressure receiver
As a material having an anti-effect, a perovskite structure
(Ln 1-xMax)1-yMbO3-z, Layered perovskite structure
(Ln2-uMa1 + u)1-vMbTwoO7-wAnd these
From at least one of the substances to which trace amounts of additional elements are added
(Where 0 <x ≦ 0.5, 0 ≦ y ≦ 0.2, 0 ≦
z ≦ 0.6, 0 <u ≦ 1.0, 0 ≦ v ≦ 0.2, 0 ≦ w
≦ 1.0, Ln: rare earth element, Ma: 1 type or it
Alkaline earth element above, Mb: 1 type or more
Is a transition metal element).

【0022】また,請求項11の発明のように,上記受
圧体が含有する上記圧力抵抗効果もしくは磁気抵抗効果
を有する材料は,(La,Sr)MnO3粒子であるこ
とが好ましい。この場合には,上記比抵抗値のばらつき
低減効果を容易に得ることができる。
Further, as in the eleventh aspect of the present invention, the material having the pressure resistance effect or the magnetoresistance effect contained in the pressure receiver is preferably (La, Sr) MnO 3 particles. In this case, the effect of reducing the variation in the specific resistance value can be easily obtained.

【0023】[0023]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる力学量センサ素子について
説明する。本例の力学量センサ素子は,セラミックスと
圧力抵抗効果もしくは磁気抵抗効果を有する材料とを混
合してなる感圧体と,該感圧体の受圧面に配設されたセ
ラミックスよりなる電気絶縁性の受圧体と,電極とを一
体的に有する構造である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A physical quantity sensor element according to an embodiment of the present invention will be described. The physical quantity sensor element of this example is composed of a pressure-sensitive body made of a mixture of ceramics and a material having a pressure resistance effect or a magnetoresistance effect, and an electrical insulating material made of ceramics disposed on a pressure-receiving surface of the pressure-sensitive body. The pressure receiving member and the electrode are integrally formed.

【0024】図1に示すごとく,本例の力学量センサ素
子1は,感圧体11の表面に一対の受圧体12が一体的
に配置されると共に該感圧体11の他の表面には一対の
電極13が配設されている。また,力学量センサ素子1
は,受圧体12に同図に示す矢線に示されるような力学
量が加わることで,該力学量が感圧体に伝達され,感圧
体11の電気抵抗が変化し,この電気抵抗の変化を電極
13を介して測定することで,力学量の大きさを測定す
ることができる。本例において,上記感圧体11は圧力
抵抗効果もしくは磁気抵抗効果を有するLa0.75Sr
0.25MnO3と12wt%のCeO2を添加したZrO2
とよりなり,上記受圧体12は12wt%CeO2添加
ZrO2セラミックよりなる。また,電極13は銀電極
である。
As shown in FIG. 1, a dynamic quantity sensor element 1 of this embodiment has a pair of pressure receiving bodies 12 integrally arranged on the surface of a pressure sensitive body 11 and another surface of the pressure sensitive body 11. A pair of electrodes 13 is provided. In addition, the physical quantity sensor element 1
Is applied to the pressure receiving body 12 by applying a mechanical quantity as indicated by an arrow in the figure, the mechanical quantity is transmitted to the pressure sensitive body, and the electrical resistance of the pressure sensitive body 11 changes. By measuring the change via the electrode 13, the magnitude of the mechanical quantity can be measured. In the present embodiment, the pressure-sensitive body 11 is La 0.75 Sr having a pressure resistance effect or a magnetoresistance effect.
0.25 MnO 3 and ZrO 2 with the addition of 12 wt% of CeO 2
The pressure receiving body 12 is made of ZrO 2 ceramic with 12 wt% CeO 2 added. The electrode 13 is a silver electrode.

【0025】本例の力学量センサ素子1の製造方法につ
いて説明する。感圧体11用の材料として,圧力抵抗効
果もしくは磁気抵抗効果材料であるLa0.75Sr0.25
nO3とセラミックスである12wt%CeO2添加Zr
2とを分散混合したものを準備する。12wt%Ce
2添加ZrO2とLa0.75Sr 0.25MnO3との混合割
合は7:3である。上記粉末をボールミルで4時間混
合,粉砕し,その後乾燥して,混合粉を得た。この混合
粉と樹脂バインダー,水,分散剤とをボールミルまたは
強制撹拌混合機で混合し,スラリーを調整した後,ドク
ターブレード法により厚さ100μmの感圧体用シート
を成形した。
A method for manufacturing the physical quantity sensor element 1 of this embodiment will be described.
Will be described. As a material for the pressure sensitive body 11, a pressure resistance effect
Or La which is a magnetoresistive effect material0.75Sr0.25M
nOThreeAnd 12 wt% CeO which is ceramicTwoZr added
OTwoAnd a mixture prepared by dispersing and mixing is prepared. 12wt% Ce
OTwoZrO addedTwoAnd La0.75Sr 0.25MnOThreeMixed with
In this case, the ratio is 7: 3. Mix the above powder in a ball mill for 4 hours
In this case, the mixture was pulverized and then dried to obtain a mixed powder. This mixture
Powder and resin binder, water, dispersant and ball mill or
After mixing with a forced agitator and adjusting the slurry,
100μm thick sheet for pressure sensitive element by tar blade method
Was molded.

【0026】受圧体12用の材料として,12wt%C
eO2添加ZrO2を準備した。上記と同様に12wt%
CeO2添加ZrO2と樹脂バインダー,水,分散剤とを
ボールミルまたは強制撹拌混合機で混合した後,ドクタ
ーブレード法で厚さ100μmの受圧体用シートを成形
した。
As a material for the pressure receiving body 12, 12 wt% C
eO 2 -added ZrO 2 was prepared. 12 wt% as above
After mixing the CeO 2 -added ZrO 2 with the resin binder, water, and the dispersant by a ball mill or a forced stirring mixer, a 100 μm-thick pressure receiving sheet was formed by a doctor blade method.

【0027】感圧体用シート,受圧体用シートを40m
m×40mmに切断し,感圧体用シート2枚の両面に受
圧体用シートを片側15枚づつ重ね合わせ,合計32枚
のシート積層体を得た。この積層体をホットプレスによ
り各シートを熱圧着した。次いで,圧着体を脱脂炉で樹
脂バインダーを分解除去した。そして,CIP(冷間静
水圧プレス)した後,焼結炉にて,1400℃,4時間
の条件で焼結した。これにより感圧体11と受圧体12
とが一体的に焼結された。得られた焼結体を素子形状
(5mm×5mm×1.5mm)に切断加工した。さら
に,上記感圧体11の側面(受圧体12が存在しない
面)に対し銀ペーストを焼きつけて電極13となし,以
上により図1にかかる力学量センサ素子1を得た。
The pressure-sensitive body sheet and the pressure-receiving body sheet have a length of 40 m.
The sheet was cut into a size of mx 40 mm, and two sheets of the pressure-sensitive element were laminated with 15 sheets of the pressure-receiving element on each side to obtain a total of 32 sheet laminates. Each sheet of the laminate was hot-pressed by hot pressing. Next, the resin binder was decomposed and removed from the pressed body in a degreasing furnace. After CIP (cold isostatic pressing), sintering was performed in a sintering furnace at 1400 ° C. for 4 hours. Thereby, the pressure sensing element 11 and the pressure receiving body 12
Were sintered integrally. The obtained sintered body was cut into an element shape (5 mm × 5 mm × 1.5 mm). Further, a silver paste was baked on the side surface of the pressure-sensitive body 11 (the surface on which the pressure-receiving body 12 did not exist) to form an electrode 13, whereby the mechanical quantity sensor element 1 shown in FIG. 1 was obtained.

【0028】上記製法により得られた力学量センサ素子
1を用いて,これに実際に応力を付与し,その抵抗変化
率を測定した。その測定結果を図2に示す。同図は横軸
に受圧体12に加えた応力を,縦軸に感圧体11におけ
る比抵抗の変化率をとったものである。同図より,本例
にかかるように力学量センサ素子1では,受圧体12を
感圧体11に対し一体的に設けた構成とすることで,応
力と比抵抗変化率とが300MPaという高応力まで直
線的に比例することがわかった。
Using the physical quantity sensor element 1 obtained by the above-described method, a stress was actually applied to the element, and the rate of change in resistance was measured. FIG. 2 shows the measurement results. In the figure, the horizontal axis represents the stress applied to the pressure receiving body 12, and the vertical axis represents the rate of change in the specific resistance of the pressure sensitive body 11. As shown in the figure, in the physical quantity sensor element 1 according to the present example, the pressure and the resistance change rate are as high as 300 MPa by forming the pressure receiving body 12 integrally with the pressure sensitive body 11. Was found to be linearly proportional.

【0029】本例の作用効果について説明する。本例に
かかる力学量センサ素子1は,感圧体11と受圧体12
とは一体的に焼成されており,感圧体11に直接受圧体
12を設けた構造を有する。このため,受圧体12を介
して力学量が感圧体11に伝わるために感圧体11で測
定すべき力学量のかかり具合を均一とすることができ,
受圧体12に加えた力学量(本例では応力について測定
した)と比抵抗との関係が高力学量においても直線的に
変化する(図2参照)。よって,正確な力学量の測定が
できる。更に,感圧体11に対する絶縁性の確保が容易
となる。
The operation and effect of this embodiment will be described. The physical quantity sensor element 1 according to the present embodiment includes a pressure sensitive body 11 and a pressure receiving body 12.
Are integrally fired, and have a structure in which the pressure receiving body 12 is directly provided on the pressure sensitive body 11. For this reason, since the mechanical quantity is transmitted to the pressure-sensitive body 11 via the pressure-receiving body 12, it is possible to make the degree of application of the mechanical quantity to be measured by the pressure-sensitive body 11 uniform.
The relationship between the mechanical quantity (measured for stress in this example) applied to the pressure receiving body 12 and the specific resistance changes linearly even with a high mechanical quantity (see FIG. 2). Therefore, an accurate measurement of the dynamic quantity can be performed. Further, it is easy to secure the insulating property with respect to the pressure sensitive body 11.

【0030】また,本構造にかかる力学量センサ素子1
は素子本体のみで感圧体11に対する絶縁が確保されて
おり,この素子を計測システム等に組み込む際に,特に
絶縁性についての考慮が不要であり,使い勝手に優れて
いる。また,感圧体11と受圧体12とを一体で焼結し
た素子は,受圧体12を別途加工する工程と,感圧体1
1と受圧体12とを接着する工程を省くことができるた
め,素子の製造コストを安価とすることができる。
The physical quantity sensor element 1 according to the present structure
Is insulated from the pressure-sensitive body 11 only by the element body. When this element is incorporated in a measurement system or the like, it is not necessary to particularly consider insulation properties, and it is excellent in usability. Further, an element obtained by sintering the pressure-sensitive body 11 and the pressure-receiving body 12 integrally is formed by separately processing the pressure-receiving body 12 and the pressure-sensitive body 1.
Since the step of bonding the pressure receiving member 1 and the pressure receiving body 12 can be omitted, the manufacturing cost of the element can be reduced.

【0031】以上,本例によれば,精度高い力学量の測
定ができ,感圧体の絶縁確保が容易である力学量センサ
素子を提供することができる。
As described above, according to the present embodiment, it is possible to provide a dynamic quantity sensor element which can measure a dynamic quantity with high accuracy and can easily secure insulation of a pressure sensitive body.

【0032】実施形態例2 実施形態例1と同様の構成にかかる力学量センサ素子の
他の製造方法について説明する。感圧体用シートは,実
施形態例1と同じ混合粉に樹脂バインダー,水,分散剤
を混練して混合し,押出成形機で押出成形により作製し
た。このシートの厚さは200μmである。
Second Embodiment Another manufacturing method of a physical quantity sensor element having the same configuration as that of the first embodiment will be described. The sheet for the pressure-sensitive body was prepared by kneading and mixing a resin binder, water, and a dispersant with the same mixed powder as in Example 1 and extruding with an extruder. The thickness of this sheet is 200 μm.

【0033】受圧体用シートは,12wt%CeO2
加ZrO2と樹脂バインダー,水,分散剤とを混練機で
混合し,押出成形機で押出成形により作製した。このシ
ートの厚さは1.5mmである。感圧体用シート,受圧
体用シートを40mm×40mmに切断し,感圧体用シ
ート1枚の両面に受圧体用シートを1枚づつ重ね合わ
せ,ホットプレスで各シートを熱圧着した。
The pressure receiving sheet was prepared by mixing ZrO 2 with 12 wt% CeO 2 , a resin binder, water, and a dispersant by a kneader and extruding with an extruder. The thickness of this sheet is 1.5 mm. The pressure-sensitive body sheet and the pressure-receiving body sheet were cut into 40 mm × 40 mm, and the pressure-sensitive body sheets were superposed one by one on both sides of one pressure-sensitive body sheet, and each sheet was thermocompressed by hot pressing.

【0034】その後,脱脂炉で樹脂バインダーを分解除
去し,CIPし,焼結炉中1400℃,4時間で焼結し
た。感圧体を素子形状に切断加工して,側面に銀ペース
トを焼きつけて電極となし,力学量センサ素子を得た。
その他の詳細は実施形態例1と同様である。また,この
ようにして作製した力学量センサ素子についても,実施
形態例1と同様の作用効果を有する。
Thereafter, the resin binder was decomposed and removed in a degreasing furnace, CIPed, and sintered at 1400 ° C. for 4 hours in a sintering furnace. The pressure-sensitive element was cut into an element shape, and silver paste was baked on the side surface to form electrodes, and a physical quantity sensor element was obtained.
Other details are the same as in the first embodiment. Further, the mechanical quantity sensor element manufactured as described above has the same operation and effect as the first embodiment.

【0035】実施形態例3 実施形態例1と同様の構成にかかる力学量センサ素子の
他の製造方法について説明する。12wt%CeO2
加ZrO2とLa0.75Sr0.25MnO3との混合割合を
5:5とし,この混合粉を樹脂バインダーと水,分散剤
と共にボールミルまたは強制撹拌混合機に投入し,感圧
体用の印刷ペーストを得た。また受圧体用シートは,実
施形態例2と同様に押出成形で作製した。そして,1枚
の受圧体用シート片面に感圧体用ペーストを厚さ10μ
mでスクリーン印刷した。その上にもう1枚の受圧体用
シートを配置し,ホットプレスして熱圧着した。
Embodiment 3 Another method of manufacturing a physical quantity sensor element having the same configuration as that of Embodiment 1 will be described. 12 wt% CeO 2 added ZrO 2 and La 0.75 Sr 0.25 The mixing ratio of the MnO 3 5: a 5 was charged with the mixed powder resin binder and water, in a ball mill or forced stirring mixer with a dispersant, for pressure sensitive element Was obtained. Further, the pressure receiving sheet was manufactured by extrusion in the same manner as in the second embodiment. Then, a pressure-sensitive body paste having a thickness of 10 μm is applied to one surface of one pressure-receiving body sheet.
m and screen printed. Another sheet for the pressure receiving member was placed thereon, and hot pressed and thermocompressed.

【0036】その後,脱脂炉で樹脂バインダーを分解除
去し,CIPし,焼結炉中1400℃,4時間で焼結し
た。そして,感圧体の側面に銀ペーストを焼きつけて電
極となし,力学量センサ素子を得た。その他の詳細は実
施形態例1と同様である。また,このようにして作製し
た力学量センサ素子についても,実施形態例1と同様の
作用効果を有する。
Thereafter, the resin binder was decomposed and removed in a degreasing furnace, CIPed, and sintered in a sintering furnace at 1400 ° C. for 4 hours. Then, silver paste was baked on the side surface of the pressure-sensitive body to form electrodes, thereby obtaining a mechanical quantity sensor element. Other details are the same as in the first embodiment. The mechanical quantity sensor element manufactured in this manner also has the same operation and effect as the first embodiment.

【0037】実施形態例4 実施形態例1と同様の構成にかかる力学量センサ素子の
他の製造方法について説明する。12wt%CeO2
加ZrO2とLa0.75Sr0.25MnO3との混合割合を
8:2とし,この混合粉を金型プレスで薄板状の成形体
とした。この成形体をCIPし,1400℃で焼成し,
感圧体を得た。その後,上記感圧体の側面に銀ペースト
を焼きつけて電極を形成した。また,ZrO2粉末を金
型プレスで板状の成形体とした。この成形体をCIP
し,1400℃で焼成し,受圧体を得た。そして,感圧
体の両面に受圧体をエポキシ系の接着剤(3M製220
2)で貼り合わせ,力学量センサ素子を得た。その他の
詳細は実施形態例1と同様である。また,このようにし
て作製した力学量センサ素子についても,実施形態例1
と同様の作用効果を有する。
Fourth Embodiment Another manufacturing method of a physical quantity sensor element having the same configuration as that of the first embodiment will be described. The mixing ratio of the 12 wt% CeO 2 added ZrO 2 and La 0.75 Sr 0.25 MnO 3 8: 2 and then, the mixed powder was a thin plate of the molding in a die press. This molded product is CIPed and fired at 1400 ° C.
A pressure-sensitive body was obtained. Thereafter, silver paste was baked on the side surface of the pressure-sensitive body to form an electrode. Further, a ZrO 2 powder was formed into a plate-like molded body by a die press. This molded product is CIP
Then, it was fired at 1400 ° C. to obtain a pressure receiving body. Then, a pressure-receiving body is attached to both sides of the pressure-sensitive body with an epoxy adhesive (3M 220
By bonding in 2), a mechanical quantity sensor element was obtained. Other details are the same as in the first embodiment. Further, the physical quantity sensor element manufactured in this manner is also described in the first embodiment.
It has the same function and effect as described above.

【0038】実施形態例5 実施形態例1と同様の構成にかかる力学量センサ素子の
他の製造方法について説明する。12wt%CeO2
加ZrO2とLa0.75Sr0.25MnO3との混合割合を
8:2とした感圧体用の混合粉を作製した。受圧体であ
るZrO2粉末を金型プレスで成形し,その成形体の上
に感圧体である混合粉を成形し,さらにその混合粉の上
に受圧体であるZrO2粉をプレスして,受圧体/感圧
体/受圧体の3層構造の成形体(直径40mm×厚さ
2.4mm)を得た。この成形体をCIPし,1400
℃,4時間で焼結した。そして,感圧体の側面で銀ペー
ストを焼きつけて電極となし,力学量センサ素子を得
た。その他の詳細は実施形態例1と同様である。また,
このようにして作製した力学量センサ素子についても,
実施形態例1と同様の作用効果を有する。
Fifth Embodiment Another manufacturing method of a physical quantity sensor element having the same configuration as that of the first embodiment will be described. The mixing ratio of the 12 wt% CeO 2 added ZrO 2 and La 0.75 Sr 0.25 MnO 3 8: to prepare a mixed powder for 2 was pressure sensitive element. The ZrO 2 powder as the pressure receiving body is molded by a die press, the mixed powder as the pressure sensitive body is molded on the molded body, and the ZrO 2 powder as the pressure receiving body is pressed on the mixed powder. Thus, a molded product (diameter 40 mm × thickness 2.4 mm) having a three-layer structure of a pressure receiving member / pressure sensing member / pressure receiving member was obtained. This molded product is subjected to CIP and 1400
Sintered at 4 ° C for 4 hours. Then, silver paste was baked on the side of the pressure-sensitive body to form electrodes, and a mechanical quantity sensor element was obtained. Other details are the same as in the first embodiment. Also,
The physical quantity sensor element fabricated in this way also
It has the same function and effect as the first embodiment.

【0039】実施形態例6 12wt%CeO2添加ZrO2とLa0.75Sr0.25Mn
3との混合割合を8:2とした感圧体用の混合粉を作
製した。感圧体用の混合粉を金型プレスで成形し,直径
40mm×厚さ0.8mmに成形した。受圧体である1
2wt%CeO2添加ZrO2を同様に金型プレスにより
直径40mm×厚さ0.8mmに成形した。成形した感
圧体の両側に受圧体となる成形体を配置し,CIPする
ことにより,3層構造の成形体を作製した。これ以降は
実施形態例5と同様なプロセスで,力学量センサ素子を
得た。その他の詳細は実施形態例1と同様である。ま
た,このようにして作製した力学量センサ素子について
も,実施形態例1と同様の作用効果を有する。
The embodiment 6 12 wt% CeO 2 added ZrO 2 and La 0.75 Sr 0.25 Mn
A mixed powder for a pressure-sensitive body having a mixing ratio of 8: 2 with O 3 was prepared. The mixed powder for the pressure-sensitive body was molded by a mold press to form a diameter of 40 mm and a thickness of 0.8 mm. 1 is the pressure receiver
Similarly, ZrO 2 with 2 wt% CeO 2 was formed into a diameter of 40 mm × a thickness of 0.8 mm by die pressing. A molded body serving as a pressure receiving body was arranged on both sides of the molded pressure-sensitive body, and subjected to CIP to produce a molded body having a three-layer structure. Thereafter, a mechanical quantity sensor element was obtained by a process similar to that of the fifth embodiment. Other details are the same as in the first embodiment. Further, the mechanical quantity sensor element manufactured as described above has the same operation and effect as the first embodiment.

【0040】実施形態例7 本例は,実施形態例1と同様の構成の力学量センサ素子
1において,上記受圧体に圧力抵抗効果もしくは磁気抵
抗効果を有する材料を添加したことによる効果を示す例
である。本例では,5種類の力学量センサ素子(試料1
〜5)を準備し,その比抵抗値および比抵抗値のばらつ
きを求めた。
Embodiment 7 This embodiment is an example showing the effect of adding a material having a pressure resistance effect or a magnetoresistance effect to the pressure receiving member in the physical quantity sensor element 1 having the same configuration as that of Embodiment 1. It is. In this example, five types of physical quantity sensor elements (sample 1
To 5) were prepared, and the specific resistance value and the variation of the specific resistance value were determined.

【0041】本例の受圧体12および感圧体11(図
1)の母材には,ZrO2を用いた。感圧体11に分散
させた圧力抵抗効果もしくは磁気抵抗効果を有する材料
には,La0.75Sr0.25MnO3を用いた。感圧体11
には,La0.75Sr0.25MnO3を26重量%分散させ
た。26重量%分散させることにより,導電パスが形成
される。受圧体12には,添加量を変えてLa0.75Sr
0.25MnO3を添加した。具体的には,表1に示すごと
く,試料1は添加なし(0重量%),試料2は5重量
%,試料3は10重量%,試料4は15重量%,試料4
は20重量%の添加量とした。
ZrO 2 was used as a base material of the pressure receiving body 12 and the pressure sensitive body 11 (FIG. 1) of this example. La 0.75 Sr 0.25 MnO 3 was used as a material having a pressure resistance effect or a magnetoresistance effect dispersed in the pressure sensitive body 11. Pressure sensitive body 11
Was dispersed with 26% by weight of La 0.75 Sr 0.25 MnO 3 . By dispersing 26% by weight, a conductive path is formed. La 0.75 Sr was added to the pressure receiving body 12 by changing the amount of addition.
0.25 MnO 3 was added. Specifically, as shown in Table 1, sample 1 was not added (0% by weight), sample 2 was 5% by weight, sample 3 was 10% by weight, sample 4 was 15% by weight, sample 4
Was 20% by weight.

【0042】本例の各試料(力学量センサ素子)を製造
するに当たっては,まず感圧体11および受圧体12と
もに上記の配合比となるようにスラリーを調整して,ス
プレードライにより造粒紛を製造した。次いで,金型
(φ40mm)内に,受圧体/感圧体/受圧体の順に,
それぞれの造粒紛を順次充填したのち,1000kg/
cm2の圧力でプレス成形し,その後3000kg/c
2でCIP処理をした。
In manufacturing each sample (mechanical quantity sensor element) of this example, first, the slurry was adjusted so that both the pressure-sensitive body 11 and the pressure-receiving body 12 have the above-mentioned mixing ratio, and the granulated powder was spray-dried. Was manufactured. Then, in the mold (φ40mm), in the order of pressure receiving body / pressure sensing body / pressure receiving body,
After filling each granulated powder sequentially, 1000kg /
Press molding at a pressure of cm 2 , then 3000 kg / c
It was the CIP process in m 2.

【0043】次に,焼結炉において温度1400℃で4
時間で焼結した。焼結体を切断加工し,5mm×5mm
の力学量センサ素子を各試料ごとに9個ずつ作製した。
さらに,抵抗値測定用のAg電極を,素子の両端面に焼
きつけて試料1〜5を得た。
Next, in a sintering furnace at a temperature of 1400.degree.
Sintered in time. Cut the sintered body, 5mm x 5mm
Nine physical quantity sensor elements were manufactured for each sample.
Further, Ag electrodes for measuring a resistance value were baked on both end surfaces of the element to obtain Samples 1 to 5.

【0044】次に,得られた試料1〜5の比抵抗値と,
比抵抗値のばらつきを測定した。比抵抗値は,抵抗計を
用いて室温で測定した。比抵抗値ばらつきは9個の標準
偏差の3倍を平均値で除した値で評価した。測定結果を
表1に示す。
Next, the specific resistance values of the obtained Samples 1 to 5,
The variation of the specific resistance value was measured. The specific resistance value was measured at room temperature using a resistance meter. The specific resistance variation was evaluated by dividing three times the standard deviation of nine pieces by the average value. Table 1 shows the measurement results.

【0045】表1より知られるごとく,試料1の比抵抗
値は試料2〜4のそれいに比べ30〜50倍高く,比抵
抗値ばらつきも30%と大きい。また試料5では,受圧
体12に導電性が発現して力学量センサ素子に用いるこ
とができない。一方,試料2〜4の比抵抗値は,感圧体
単層の比抵抗値25(Ω・cm)に近く,良好な比抵抗
値ばらつきを発現しているこが明らかである。
As can be seen from Table 1, the resistivity of Sample 1 is 30 to 50 times higher than those of Samples 2 to 4, and the variation in resistivity is as large as 30%. Further, in the sample 5, conductivity is exhibited in the pressure receiving body 12 and cannot be used as a physical quantity sensor element. On the other hand, the specific resistance values of the samples 2 to 4 are close to the specific resistance value of 25 (Ω · cm) of the single layer of the pressure sensitive body, and it is clear that the specific resistance value variation is exhibited.

【0046】以上,本例では,各試料を金型プレス成形
により製造した例を示したが,とくに製造プロセスを限
定するものでなく,ドクターブレード,押し出し成形,
印刷(スクリーン印刷,転写)によっても,また,これ
らを組み合わせて製造しても良い。
As described above, in this example, each sample was manufactured by die press molding. However, the manufacturing process is not particularly limited.
It may be manufactured by printing (screen printing, transfer) or by combining them.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】上述のごとく,本発明によれば,精度高
い力学量の測定ができ,感圧体の絶縁確保が容易である
力学量センサ素子を提供することができる。
As described above, according to the present invention, it is possible to provide a dynamic quantity sensor element which can measure a dynamic quantity with high accuracy and can easily secure insulation of a pressure sensitive body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,力学量センサ素子を示
す説明図。
FIG. 1 is an explanatory diagram showing a physical quantity sensor element according to a first embodiment.

【図2】実施形態例1における,力学量センサ素子に加
えられた応力と感圧体における抵抗変化率との関係を示
す線図。
FIG. 2 is a diagram showing a relationship between a stress applied to a physical quantity sensor element and a resistance change rate in a pressure-sensitive body in the first embodiment.

【符号の説明】[Explanation of symbols]

1...力学量センサ素子, 11...感圧体, 12...受圧体, 13...電極, 1. . . 10. Physical quantity sensor element, . . 11. pressure-sensitive body, . . 12. pressure receiver, . . electrode,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 浩明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 田島 伸 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 三上 俊春 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (72)発明者 藤田 かおり 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (72)発明者 和田 敏忠 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroaki Makino 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. 41, Yokomichi, Toyoda Central Research Laboratory Co., Ltd. (72) Inventor Toshiharu Mikami 1-1-1 Asahi-cho, Kariya-shi, Aichi Prefecture Toyota Koki Co., Ltd. (72) Inventor Kaori Fujita, Asahi-cho, Kariya-shi, Aichi 1-1-1, Toyota Koki Co., Ltd. (72) Inventor Toshitada Wada 1-1-1, Asahi-cho, Kariya City, Aichi Prefecture Inside Toyota Koki Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス中に圧力抵抗効果もしくは
磁気抵抗効果を有する材料が分散してなる複合セラミッ
クスよりなる感圧体と,該感圧体の受圧面に配設された
セラミックスよりなる電気絶縁性の受圧体とを一体的に
有することを特徴とする力学量センサ素子。
1. A pressure-sensitive body made of a composite ceramic in which a material having a pressure resistance effect or a magnetoresistance effect is dispersed in ceramics, and an electric insulation made of ceramics disposed on a pressure-receiving surface of the pressure-sensitive body. A dynamic quantity sensor element, comprising:
【請求項2】 請求項1において,上記受圧体は,上記
感圧体と一体的に焼結されていることを特徴とする力学
量センサ素子。
2. The physical quantity sensor element according to claim 1, wherein the pressure receiving body is sintered integrally with the pressure sensitive body.
【請求項3】 請求項1において,上記受圧体は,上記
感圧体と接着剤により接合されていることを特徴とする
力学量センサ素子。
3. The physical quantity sensor element according to claim 1, wherein the pressure receiving body is joined to the pressure sensitive body by an adhesive.
【請求項4】 請求項1〜3のいずれか1項において,
上記受圧体を構成するセラミックスと上記感圧体を構成
するセラミックスとは同じセラミックスであることを特
徴とする力学量センサ素子。
4. The method according to claim 1, wherein:
The ceramics constituting the pressure receiving body and the ceramics constituting the pressure sensitive body are the same ceramics.
【請求項5】 請求項1〜4のいずれか1項において,
上記受圧体を構成するセラミックスと上記感圧体を構成
するセラミックスとはいずれもジルコニアであることを
特徴とする力学量センサ素子。
5. The method according to claim 1, wherein:
A mechanical quantity sensor element, wherein both the ceramics constituting the pressure receiving body and the ceramics constituting the pressure sensitive body are zirconia.
【請求項6】 請求項1〜5のいずれか1項において,
上記圧力抵抗効果もしくは磁気抵抗効果を有する材料
は,ペロプスカイト構造の(Ln1-xMax1- yMbO
3-z,層状ペロブスカイト構造の(Ln2-uMa1+u1-v
Mb27-w,及びこれらに微量の添加元素を加えた物質
のいずれか1種類以上よりなる(ここに,0<x≦0.
5,0≦y≦0.2,0≦z≦0.6,0<u≦1.
0,0≦v≦0.2,0≦w≦1.0,Ln:希土類元
素,Ma:1種類またはそれ以上のアルカリ土類元素,
Mb:1種類またはそれ以上の遷移金属元素である)こ
とを特徴とする力学量センサ素子。
6. The method according to claim 1, wherein:
Materials having the above-mentioned pressure resistance effect or magnetic resistance effect, the perovskite structure (Ln 1-x Ma x) 1- y MbO
3-z , (Ln 2-u Ma 1 + u ) 1-v of layered perovskite structure
Mb 2 O 7-w and any one or more of these substances to which a trace amount of an additional element is added (where 0 <x ≦ 0.
5,0 ≦ y ≦ 0.2,0 ≦ z ≦ 0.6,0 <u ≦ 1.
0, 0 ≦ v ≦ 0.2, 0 ≦ w ≦ 1.0, Ln: rare earth element, Ma: one or more alkaline earth elements,
Mb: one or more transition metal elements).
【請求項7】 請求項1〜6のいずれか1項において,
上記感圧体を構成する圧力抵抗効果もしくは磁気抵抗効
果を有する材料は,La1-xSrxMnO3粒子(0<x
≦0.5)であることを特徴とする力学量センサ素子。
7. The method according to claim 1, wherein:
The material having a pressure resistance effect or a magnetoresistance effect constituting the pressure sensitive body is La 1-x Sr x MnO 3 particles (0 <x
≦ 0.5).
【請求項8】 請求項1〜7のいずれか1項において,
上記受圧体には圧力抵抗効果もしくは磁気抵抗効果を有
する材料を,電気伝導性を発現しない範囲内で混合して
なることを特徴とする力学量センサ素子。
8. The method according to claim 1, wherein:
A dynamic quantity sensor element comprising a material having a pressure resistance effect or a magnetoresistance effect mixed in the pressure receiving body within a range that does not exhibit electrical conductivity.
【請求項9】 請求項8において,上記受圧体への上記
圧力抵抗効果もしくは磁気抵抗効果を有する材料の添加
量は,5〜15%であることを特徴とする力学量センサ
素子。
9. The physical quantity sensor element according to claim 8, wherein the amount of the material having the pressure resistance effect or the magnetoresistance effect added to the pressure receiving body is 5 to 15%.
【請求項10】 請求項8又は9において,上記受圧体
が含有する上記圧力抵抗効果もしくは磁気抵抗効果を有
する材料は,ペロプスカイト構造の(Ln1- xMax
1-yMbO3-z,層状ペロブスカイト構造の(Ln2-u
1+u1-vMb27-w,及びこれらに微量の添加元素を
加えた物質のいずれか1種類以上よりなる(ここに,0
<x≦0.5,0≦y≦0.2,0≦z≦0.6,0<
u≦1.0,0≦v≦0.2,0≦w≦1.0,Ln:
希土類元素,Ma:1種類またはそれ以上のアルカリ土
類元素,Mb:1種類またはそれ以上の遷移金属元素で
ある)ことを特徴とする力学量センサ素子。
10. The method of claim 8 or 9, material having the above-mentioned pressure resistance effect or magnetic resistance effect said pressure receiving member is contained, the perovskite structure (Ln 1- x Ma x)
1-y MbO 3-z , a layered perovskite structure (Ln 2-u M
a 1 + u ) 1-v Mb 2 O 7-w , and any one or more of these substances to which a small amount of additional elements are added (here, 0
<X ≦ 0.5, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.6, 0 <
u ≦ 1.0, 0 ≦ v ≦ 0.2, 0 ≦ w ≦ 1.0, Ln:
A rare earth element, Ma: one or more alkaline earth elements, and Mb: one or more transition metal elements).
【請求項11】 請求項8又は9において,上記受圧体
が含有する上記圧力抵抗効果もしくは磁気抵抗効果を有
する材料は,(La,Sr)MnO3粒子であることを
特徴とする力学量センサ素子。
11. The physical quantity sensor element according to claim 8, wherein the material having the pressure resistance effect or the magnetoresistance effect contained in the pressure receiving member is (La, Sr) MnO 3 particles. .
JP2001338131A 2001-02-26 2001-11-02 Mechanical quantity sensor element Expired - Fee Related JP4124413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338131A JP4124413B2 (en) 2001-02-26 2001-11-02 Mechanical quantity sensor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-50275 2001-02-26
JP2001050275 2001-02-26
JP2001338131A JP4124413B2 (en) 2001-02-26 2001-11-02 Mechanical quantity sensor element

Publications (2)

Publication Number Publication Date
JP2002323387A true JP2002323387A (en) 2002-11-08
JP4124413B2 JP4124413B2 (en) 2008-07-23

Family

ID=26610092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338131A Expired - Fee Related JP4124413B2 (en) 2001-02-26 2001-11-02 Mechanical quantity sensor element

Country Status (1)

Country Link
JP (1) JP4124413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147583A1 (en) * 2011-04-28 2012-11-01 日産自動車株式会社 Layered complex oxide, oxidation catalyst and diesel particulate filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147583A1 (en) * 2011-04-28 2012-11-01 日産自動車株式会社 Layered complex oxide, oxidation catalyst and diesel particulate filter
JP5773337B2 (en) * 2011-04-28 2015-09-02 日産自動車株式会社 Oxidation catalyst and diesel particulate filter

Also Published As

Publication number Publication date
JP4124413B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4776902B2 (en) Mechanical quantity sensor element
US6245439B1 (en) composite material and method for the manufacture
US7007553B2 (en) Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
JP3250558B2 (en) Mechanical quantity sensor material
TWI238105B (en) Method for producing ceramic
JP6945129B2 (en) Temperature sensor
US7224257B2 (en) Physical quantity sensing element having improved structure suitable for electrical connection and method of fabricating same
EP0930490B1 (en) High sensitivity sensor for detecting a mechanical quantity
JP4067295B2 (en) Mechanical sensor element structure
Simon et al. PZT and PT screen-printed thick films
JP4940389B2 (en) Lead-free piezoelectric ceramic composite and piezoelectric element using the same
Belavic et al. The application of thick-film technology in C-MEMS
JP4124413B2 (en) Mechanical quantity sensor element
JP4247936B2 (en) Piezoelectric ceramic composition
CN109456059A (en) A kind of preparation method of lanthanum manganate and the negative temperature coefficient heat-sensitive composite ceramic material of yttrium oxide double-layer structure
JP2005189116A (en) Dynamic quantity sensor structure
EP0166445B1 (en) Reinforced zirconia-base sintered body, process for producing the same, and plate-like zirconia-base electrolyte function element
JP2000241263A (en) High sensitivity mechanical quantity sensor material
CN109336593A (en) A kind of high-temperature resistant piezoelectric ceramic and its preparation process
Cotton et al. A new binderless thick-film piezoelectric paste
JP3393261B2 (en) Porcelain composition for thermistor
JP2003063868A (en) Dynamic quantity sensor material
JP2008292410A (en) Pressure-sensitive body, pressure-sensitive element and pressure-detecting method using the same
JP2013012583A (en) Critical temperature thermistor, thermistor element for the same and method for manufacturing the thermistor element
Zhuo et al. The effects of hydrostatic pressure on the dielectric response of Pb (Zn1/3Nb2/3) O3-based relaxor ferroelectric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080320

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees