JP2002322537A - Galvanized steel sheet having excellent ductility and stretch formability, and production method therefor - Google Patents

Galvanized steel sheet having excellent ductility and stretch formability, and production method therefor

Info

Publication number
JP2002322537A
JP2002322537A JP2001127216A JP2001127216A JP2002322537A JP 2002322537 A JP2002322537 A JP 2002322537A JP 2001127216 A JP2001127216 A JP 2001127216A JP 2001127216 A JP2001127216 A JP 2001127216A JP 2002322537 A JP2002322537 A JP 2002322537A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
less
martensite
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127216A
Other languages
Japanese (ja)
Other versions
JP3907963B2 (en
Inventor
Hiroshi Akamizu
宏 赤水
Chikayuki Ikeda
周之 池田
Koichi Makii
浩一 槙井
Yosuke Shinto
陽介 新堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001127216A priority Critical patent/JP3907963B2/en
Publication of JP2002322537A publication Critical patent/JP2002322537A/en
Application granted granted Critical
Publication of JP3907963B2 publication Critical patent/JP3907963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a galvanized steel sheet (inclusive of a galvannealed steel sheet) which has low strength of <500 MPa, and has excellent ductility and stretching formability even though the steel sheet has a composite structure containing martensite, and to provide a production method therefor. SOLUTION: A cold rolled steel sheet having substantial components containing, by weight, 0.010 to 0.06% C, <=0.5% Si, 0.5 to <2.0% Mn, <=0.20% P, <=0.01% S, 0.005 to 0.10% Al, <=0.005% N, <=1.0% Cr and 1.9 to 2.3%Mn+1.3Cr, and the balance Fe, and having a structure consisting of ferrite and a second phase inclusive of martensite, and in which the area ratio of the second phase is <=20%, also, the ratio of martensite occupying in the second phase is >=50%, and the closest intergranular spacing between the martensitic grains is <=5.4 μm on the average is used as a base material, and a galvanized layer is formed on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、低強度、高延性の
強度−延性バランスおよび張り出し成形性に優れた溶融
亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)
およびその製造方法に関する。
[0001] The present invention relates to a hot-dip galvanized steel sheet (including an alloyed hot-dip galvanized steel sheet) excellent in low strength, high ductility balance and ductility.
And its manufacturing method.

【0002】[0002]

【従来の技術】自動車用鋼板等には、プレス加工性が求
められ、また耐食性も要求される場合がある。このよう
なプレス加工性と優れた耐食性とを兼ね備えた鋼板とし
て、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が
ある。合金化溶融亜鉛めっき鋼板は、冷延鋼板を母材と
して、これに溶融亜鉛めっきを施した後、さらに亜鉛め
っき層と母材鋼板との密着性を向上させるため、550
℃前後の温度で加熱して亜鉛めっき層を合金化処理した
ものである。以下、単に溶融亜鉛めっき鋼板という場合
は、合金化溶融亜鉛めっき鋼板をも含むものとする。
2. Description of the Related Art In some cases, steel sheets for automobiles are required to have press workability and corrosion resistance. As a steel sheet having such press workability and excellent corrosion resistance, there is a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet. The alloyed hot-dip galvanized steel sheet is prepared by using a cold-rolled steel sheet as a base material and subjecting the same to hot-dip galvanizing, and further improving the adhesion between the galvanized layer and the base material steel sheet by 550.
The zinc-plated layer is alloyed by heating at a temperature of about ° C. Hereinafter, when simply referred to as a hot-dip galvanized steel sheet, it also includes an alloyed hot-dip galvanized steel sheet.

【0003】[0003]

【発明が解決しようとする課題】溶融亜鉛めっき鋼板の
母材鋼板として、高強度化をねらってフェライトの他に
マルテンサイト、ベイナイトを生成させた複合組織鋼板
が用いられる場合がある。例えば、特開昭58−397
70号公報には、フェライト+マルテンサイト+ベイナ
イトからなる3相組織鋼板を、また特開昭55−122
821号公報にはフェライト+マルテンサイトからなる
2相組織鋼板を母材とする溶融亜鉛めっき鋼板が記載さ
れている。これらの複合鋼板は、高強度でありながら降
伏比(YR)も低く、形状凍結性に優れる。
As a base steel sheet of a hot-dip galvanized steel sheet, a composite structure steel sheet in which martensite and bainite are generated in addition to ferrite in order to increase the strength is sometimes used. For example, JP-A-58-397
No. 70 discloses a three phase steel sheet composed of ferrite + martensite + bainite.
No. 821 describes a hot-dip galvanized steel sheet using a two-phase structure steel sheet composed of ferrite and martensite as a base material. These composite steel sheets have a low yield ratio (YR) while having high strength, and are excellent in shape freezing property.

【0004】しかしながら、これらの複合組織鋼板を母
材とした溶融亜鉛めっき鋼板は、マルテンサイトやベイ
ナイトの量が多く、通常、強度が500MPa 以上であ
り、多くは600MPa 以上である。このため、プレス成
形に際して、軟質鋼板用のプレス成形装置を使用するの
に問題があり、高強度鋼板成形用の特別なプレス成形装
置が必要とされる。また、従来のマルテンサイト、ベイ
ナイトを生成させた溶融亜鉛めっき鋼板では、張り出し
成形性が非常に低く、張り出し成形に適さないため、成
形形状が制約されるという問題がある。
However, the hot-dip galvanized steel sheet using these composite structure steel sheets as a base material has a large amount of martensite and bainite, and usually has a strength of 500 MPa or more, and often 600 MPa or more. For this reason, there is a problem in using a press forming apparatus for a soft steel sheet in press forming, and a special press forming apparatus for forming a high-strength steel sheet is required. In addition, the conventional hot-dip galvanized steel sheet in which martensite and bainite are formed has a problem that the stretched formability is extremely low and is not suitable for stretch-formed, so that the formed shape is restricted.

【0005】本発明はかかる問題に鑑みなされたもの
で、マルテンサイトを含む複合組織でありながら、強度
が500MPa 未満であり、延性に優れ、しかも優れた張
り出し成形性を有する、溶融亜鉛めっき鋼板(合金化溶
融亜鉛めっき鋼板を含む。)およびその製造方法を提供
することを目的とする。
The present invention has been made in view of the above problems, and has a composite structure containing martensite, but has a strength of less than 500 MPa, has excellent ductility, and has excellent stretch forming properties. (Including an alloyed hot-dip galvanized steel sheet) and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の溶融亜鉛めっき
鋼板は、化学成分が重量%で、C :0.010〜0.
06%、Si:0.5%以下、Mn:0.5%以上、
2.0%未満、P :0.20%以下、S :0.01
%以下、Al:0.005〜0.10%、N :0.0
05%以下、Cr:1.0%以下、かつMn+1.3C
r:1.9〜2.3%および残部Feを本質的成分と
し、組織がフェライトとマルテンサイトを含む第2相と
からなり、組織中の第2相の割合が面積率で20%以下
であり、かつ第2相に占めるマルテンサイトの割合が5
0%以上であり、しかもマルテンサイト粒子同士の最近
接粒子間距離が平均で5.4μm 以下である冷延鋼板を
母材とし、その表面に溶融亜鉛めっき層あるいは合金化
溶融亜鉛めっき層が形成されたものである。前記冷延鋼
板の母材は、組織中の第2相の割合を面積率で10%以
下とし、かつ第2相に占めるマルテンサイトの割合を9
0%以上とし、さらにマルテンサイト粒子同士の最近接
粒子間距離を平均で2.7μm 以下することが好まし
い。
The hot-dip galvanized steel sheet of the present invention has a chemical composition of C: 0.010-0.
06%, Si: 0.5% or less, Mn: 0.5% or more,
Less than 2.0%, P: 0.20% or less, S: 0.01
% Or less, Al: 0.005 to 0.10%, N: 0.0
05% or less, Cr: 1.0% or less, and Mn + 1.3C
r: 1.9 to 2.3% and the balance Fe as an essential component, and the structure is composed of ferrite and a second phase containing martensite, and the ratio of the second phase in the structure is 20% or less in area ratio. And the proportion of martensite in the second phase is 5
The base material is a cold-rolled steel sheet that is 0% or more and the average distance between the closest particles between martensite particles is 5.4 μm or less, and a hot-dip galvanized layer or an alloyed hot-dip galvanized layer is formed on the surface of the cold-rolled steel sheet. It was done. In the base material of the cold-rolled steel sheet, the ratio of the second phase in the structure is 10% or less in area ratio, and the ratio of martensite in the second phase is 9%.
It is preferable to set it to 0% or more, and further to make the average distance between the closest particles between the martensite particles 2.7 μm or less.

【0007】また、本発明の溶融亜鉛めっき鋼板の製造
方法は、前記化学成分を有する鋼材を熱間圧延後、55
0℃以下の温度で巻き取り、その後冷間圧延を施し、こ
れによって得られた冷延鋼板を連続焼鈍めっきラインに
てフェライト+オーステナイトの2相共存領域に加熱し
て再結晶焼鈍を行った後、焼鈍温度からめっき温度まで
1〜10℃/sの第1冷却速度で冷却して溶融亜鉛めっ
きを施した後、冷却するものである。この場合、第1冷
却速度を1〜3℃/sとし、溶融亜鉛めっき後の第2冷
却速度を10℃/s以上として冷却することによって、
組織中の第2相の割合を10%以下に低減するとともに
第2相に占めるマルテンサイトの割合を90%以上に増
大することができる。また、前記第1冷却速度で冷却し
て前記溶融亜鉛めっきを施した後、さらに溶融亜鉛めっ
き層の合金化処理を施し、その後10℃/s以上の第2
冷却速度で冷却することができる。この場合において
も、第1冷却速度を1〜3℃/sとすることは、前記し
たとおり、第2相の割合を低減し、第2相中のマルテン
サイトの割合を増大させる上で有効である。
[0007] The method for producing a hot-dip galvanized steel sheet according to the present invention comprises the steps of:
After winding at a temperature of 0 ° C. or lower, cold rolling is performed, and the obtained cold-rolled steel sheet is heated in a continuous annealing plating line to a two-phase coexisting region of ferrite and austenite to perform recrystallization annealing. After cooling from the annealing temperature to the plating temperature at a first cooling rate of 1 to 10 ° C./s to perform hot-dip galvanizing, cooling is performed. In this case, the first cooling rate is set to 1 to 3 ° C./s, and the second cooling rate after hot-dip galvanizing is set to 10 ° C./s or more for cooling.
The proportion of the second phase in the tissue can be reduced to 10% or less, and the proportion of martensite in the second phase can be increased to 90% or more. Further, after cooling at the first cooling rate and performing the hot-dip galvanizing, an alloying treatment is further performed on the hot-dip galvanized layer, and thereafter, the second hot-dip galvanized layer is subjected to a second heat treatment at 10 ° C.
It can be cooled at a cooling rate. Also in this case, setting the first cooling rate to 1 to 3 ° C./s is effective in reducing the ratio of the second phase and increasing the ratio of martensite in the second phase as described above. is there.

【0008】[0008]

【発明の実施の形態】本発明は、母材冷延鋼板として複
合組織鋼板を用いるものの、強度の高いマルテンサイト
を含む第2相を少なくし、さらに第2相中のマルテンサ
イト量を抑制することで、マルテンサイトを含む複合組
織ながら、500MPa 以下の低強度化を実現しつつ、1
7000MPa*%程度以上の優れた強度−延性バランスを
備えるものとし、さらにマルテンサイトを微細に分散さ
せることで、球頭肩半径25mm(rp25)の球頭ポン
チによる張り出し試験によって測定される張り出し高さ
(以下、h(rp25)と表示する。)が21.9mm程
度以上の従来の軟鋼板並の優れた張り出し成形性を兼備
させることに成功したものである。なお、第2相とは、
フェライト以外の相を意味し、マルテンサイトのほか、
ベイナイトおよび/またはパーライトからなる。本発明
の成分系では、ベイナイトとパーライトの区別は付きに
くく、これらは棒状あるいは球状の炭化物(主にセメン
タイト)を含む組織として観察される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention uses a composite structure steel sheet as a base material cold-rolled steel sheet, but reduces the second phase containing high-strength martensite, and further suppresses the amount of martensite in the second phase. As a result, while achieving a low strength of 500 MPa or less, despite the composite structure containing martensite,
An overhang height measured by an overhang test using a ball-head punch having a ball-head shoulder radius of 25 mm (rp25) by providing an excellent strength-ductility balance of about 7000 MPa *% or more and further dispersing martensite finely. (Hereinafter referred to as h (rp25).) It has succeeded in having excellent overhang formability comparable to that of a conventional mild steel sheet having about 21.9 mm or more. The second phase is
Means phases other than ferrite, besides martensite,
It consists of bainite and / or perlite. In the component system of the present invention, it is difficult to distinguish between bainite and pearlite, and these are observed as a structure containing rod-like or spherical carbides (mainly cementite).

【0009】すなわち、本発明の本発明の溶融亜鉛めっ
き鋼板は、化学成分が重量%で、C :0.010〜
0.06%、Si:0.5%以下、Mn:0.5%以
上、2.0%未満、P :0.20%以下、S :0.
01%以下、Al:0.005〜0.10%、N :
0.005%以下、Cr:1.0%以下、かつMn+
1.3Cr:1.9〜2.3%および残部Feを本質的
成分とし、組織がフェライトとマルテンサイトとを含む
第2相からなり、組織中の第2相の割合が面積率で20
%以下であり、かつ第2相に占めるマルテンサイトの割
合が50%以上であり、しかもマルテンサイト粒子同士
の最近接粒子間距離が平均で5.4μm 以下である冷延
鋼板を母材とし、その表面に溶融亜鉛めっき層あるいは
合金化溶融亜鉛めっき層が形成されたものである。「M
n+1.3Cr」中の元素記号は各元素の含有量wt%を
示す。
That is, in the hot-dip galvanized steel sheet of the present invention, the chemical composition is expressed in terms of% by weight, and C: 0.010 to 10%.
0.06%, Si: 0.5% or less, Mn: 0.5% or more, less than 2.0%, P: 0.20% or less, S: 0.
01% or less, Al: 0.005 to 0.10%, N:
0.005% or less, Cr: 1.0% or less, and Mn +
1.3Cr: 1.9 to 2.3% and the balance Fe as an essential component, the structure is composed of a second phase containing ferrite and martensite, and the ratio of the second phase in the structure is 20 in area ratio.
% Or less, and the proportion of martensite in the second phase is 50% or more, and the distance between the closest particles between the martensite particles is 5.4 μm or less on average. A hot-dip galvanized layer or an alloyed hot-dip galvanized layer is formed on the surface. "M
The element symbol in “n + 1.3Cr” indicates the content wt% of each element.

【0010】まず、母材冷延鋼板の成分限定理由(単位
はwt%)について説明する。 C:0.010〜0.06% プレス加工性を向上させるにはC量は少ない程よいが、
0.010%未満ではフェライト+オーステナイトの2
相領域が狭く、オーステナイトからマルテンサイトが生
成しにくくなるため工業的に生産することが困難であ
る。一方0.06%を超えると強度が高くなり、軟質鋼
板としてのプレス成形性が劣化する。このため、本発明
ではC量の下限を0.010%、好ましくは0.015
%、より好ましくは0.020%とし、上限を0.06
%、好ましくは0.04%とする。
First, the reasons for limiting the components of the cold rolled steel sheet (unit: wt%) will be described. C: 0.010-0.06% To improve the press workability, the smaller the C content, the better.
If less than 0.010%, 2 of ferrite + austenite
Since the phase region is narrow and martensite is hardly generated from austenite, it is difficult to industrially produce it. On the other hand, if it exceeds 0.06%, the strength becomes high, and the press formability as a soft steel sheet is deteriorated. Therefore, in the present invention, the lower limit of the C content is 0.010%, preferably 0.015%.
%, More preferably 0.020%, and the upper limit is 0.06%.
%, Preferably 0.04%.

【0011】Si:0.5%以下 Siは固溶強化元素として鋼板の強度向上に寄与する
が、その一方で延性を低下させる。また、過多に添加す
ると溶融亜鉛めっき付着性を著しく劣化させる。このた
め、本発明では上限を0.5%、好ましくは0.2%と
する。
Si: 0.5% or less Si contributes to the improvement of the strength of the steel sheet as a solid solution strengthening element, but on the other hand, it lowers the ductility. In addition, excessive addition significantly deteriorates the galvanizing adhesion. Therefore, in the present invention, the upper limit is set to 0.5%, preferably 0.2%.

【0012】Mn:0.5%以上、2.0%未満 Mnは焼入性向上元素であり、0.5%未満では焼入性
が過少であり、マルテンサイトの生成が困難となる。ま
た、熱間加工性も低下するようになる。一方、2.0%
以上ではめっき密着性が低下し、めっき不良が生じるよ
うになる。このため、Mn量を0.5%以上、好ましく
は0.8%以上とし、一方2.0%未満、好ましくは
1.8%以下とする。
Mn: 0.5% or more and less than 2.0% Mn is an element for improving hardenability, and if it is less than 0.5%, hardenability is too low and formation of martensite becomes difficult. In addition, the hot workability also decreases. On the other hand, 2.0%
Above, the plating adhesion is reduced and plating failure occurs. Therefore, the Mn content is set to 0.5% or more, preferably 0.8% or more, while less than 2.0%, preferably 1.8% or less.

【0013】P:0.20%以下 Pは安価な固溶強化元素であり、鋼を強化するには有用
な元素であるが、本発明では延性の向上を重視するた
め、少ないほどよく、0.20%以下に止める。好まし
くは0.10%以下とするのがよい。
P: 0.20% or less P is an inexpensive solid solution strengthening element and is a useful element for strengthening steel. However, in the present invention, since emphasis is placed on improving ductility, the smaller the better, the better. Keep below 20%. Preferably, it is 0.10% or less.

【0014】S:0.01%以下 SはS系析出物(主にMnS)を生成し、延性を劣化さ
せるので、少ない程よく、本発明では0.01%以下、
好ましくは0.006%以下に止める。
S: 0.01% or less S forms S-based precipitates (mainly MnS) and deteriorates ductility.
Preferably, it is limited to 0.006% or less.

【0015】Al:0.005〜0.10% Alは主に脱酸剤として作用し、少なくとも0.005
%添加する必要がある。しかし、過多に添加すると脱酸
効果が飽和するだけでなく、アルミナ系介在物の生成に
より延性劣化、連鋳ノズル詰まりによる生産性の劣化等
の問題を引き起こすので、上限を0.10%とする。
Al: 0.005 to 0.10% Al mainly acts as a deoxidizing agent and has a content of at least 0.005%.
% Must be added. However, excessive addition not only saturates the deoxidizing effect, but also causes problems such as deterioration of ductility due to formation of alumina-based inclusions and deterioration of productivity due to clogging of a continuous casting nozzle. Therefore, the upper limit is set to 0.10%. .

【0016】N:0.005%以下 Nはその含有量が多いほど、Nを固定するのに要する窒
化物形成元素添加量が増えて製造コスト高を招き、また
延性を阻害するようになるので、本発明では少ないほど
よく、N量の上限を0.005%、好ましくは0.00
3%とする。
N: 0.005% or less As the content of N increases, the amount of addition of a nitride-forming element required for fixing N increases, leading to an increase in manufacturing cost and hindering ductility. In the present invention, the smaller the better, the better. The upper limit of the N content is 0.005%, preferably 0.005%.
3%.

【0017】Cr:1.0%以下 Crは焼入性向上元素であり、Mnと同様の作用を有す
る。また、固溶強化能が小さく本発明のような低強度D
P鋼に向くため、好ましくは0.3%以上含有させるの
がよいが、1.0%超では Cr73が生成して延性が
劣化するので、1.0%以下、好ましくは0.7%以下
とするのがよい。
Cr: 1.0% or less Cr is a hardenability improving element and has the same effect as Mn. Further, the solid solution strengthening ability is small, and the low strength
Since it is suitable for P steel, it is preferable to contain 0.3% or more. However, if it exceeds 1.0%, Cr 7 C 3 is generated and ductility is deteriorated. It is better to be 7% or less.

【0018】Mn+1.3Cr:1.9〜2.3% Mn+1.3Crは焼入性を表す指標であり、この値が
1.9%未満では焼入性が不十分でマルテンサイト量が
不足する。一方、2.3%超ではめっき性を悪化させ、
めっき不良を誘発する。このため、Mn+1.3Crの
下限を1.9%、好ましくは2.1%とし、一方上限を
2.3%、好ましくは2.2%とする。
Mn + 1.3Cr: 1.9 to 2.3% Mn + 1.3Cr is an index indicating hardenability. If this value is less than 1.9%, hardenability is insufficient and the amount of martensite is insufficient. . On the other hand, if the content exceeds 2.3%, the plating property deteriorates,
Induces poor plating. For this reason, the lower limit of Mn + 1.3Cr is set to 1.9%, preferably 2.1%, while the upper limit is set to 2.3%, preferably 2.2%.

【0019】本発明の溶融亜鉛めっき鋼板の母材冷延鋼
板は、以上の基本成分のほか、残部Feを本質的成分と
し、前記基本成分、残部Feおよび不可避的不純物から
なる組成をもつほか、前記基本成分の各作用を妨げない
範囲で、他の元素や、材質特性を向上させる元素を添加
することができる。
The base material cold-rolled steel sheet of the hot-dip galvanized steel sheet according to the present invention has, in addition to the above basic components, a balance of Fe as an essential component, and a composition comprising the basic component, the balance of Fe and unavoidable impurities. Other elements and elements for improving the material properties can be added as long as the functions of the basic components are not hindered.

【0020】母材冷延鋼板の組織は、フェライトと第2
相(マルテンサイトのほか、ベイナイトおよび/または
パーライト、)とからなり、組織中の前記第2相の割合
は、面積%で20%以下、好ましくは15%以下、より
好ましくは10%以下とされる。20%超では、強度が
高くなり、プレス成形性が低下するようになる。また、
第2相に占めるマルテンサイトの割合は50%以上、好
ましくは80%以上、より好ましくは85%以上とされ
る。第2相中にベイナイトあるいはパーライトが50%
超占めるようになると、フェライトに導入される可動転
位密度が小さくなり降伏強度(降伏比)が上昇するた
め、延性が低下するようになるからである。各組織の量
は顕微鏡観察によって面積率で測定される。なお、先に
述べたとおり、本発明の成分系においては、ベイナイト
とパーライトとは区別し難く、フェライト、マルテンサ
イト以外の相は棒状、球状の炭化物を含む相として観察
される。
The microstructure of the base material cold-rolled steel sheet is ferrite and second
Phase (besides martensite, bainite and / or pearlite), and the ratio of the second phase in the structure is 20% or less, preferably 15% or less, more preferably 10% or less in area%. You. If it exceeds 20%, the strength is increased, and the press formability is reduced. Also,
The proportion of martensite in the second phase is at least 50%, preferably at least 80%, more preferably at least 85%. 50% bainite or perlite in phase 2
This is because, when the ferrite is over-occupied, the mobile dislocation density introduced into the ferrite decreases and the yield strength (yield ratio) increases, so that the ductility decreases. The amount of each tissue is measured by area ratio by microscopic observation. As described above, in the component system of the present invention, it is difficult to distinguish between bainite and pearlite, and phases other than ferrite and martensite are observed as phases containing rod-like and spherical carbides.

【0021】また、本発明では前記マルテンサイトの粒
子同士の最近接粒子距離が平均で5.4μm 以下、好ま
しくは3.0μm 以下、より好ましくは2.7μm 以下
とされる。マルテンサイト粒子同士の最近接粒子間距離
を規定したのは、張り出し成形性向上のポイントとなる
マルテンサイト粒子の微細分散状態を定量的に表現する
ためであり、最近接粒子距離を5.4μm 以下とするこ
とで、良好な張り出し成形性が得られる。本発明者がマ
ルテンサイト粒子の分散状態と張り出し成形性との相関
について実験に基づいて詳細に調査したところ、前記第
2相の割合、および第2相中のマルテンサイト相の割合
に加え、この最近接粒子間距離を導入することで張り出
し成形性とマルテンサイト粒子の微細分散状態との相関
関係を正しく評価できることが見出された。より詳細に
説明すると、第2相および第2相中のマルテンサイト相
の割合が一定であれば、個々のマルテンサイト粒が大き
くなる程、言い換えるとマルテンサイト粒の単位面積あ
たりの個数が減少する程、個々の粒子間の間隔は広が
り、最近接粒子間距離が大きくなる。逆に、マルテンサ
イト相の量が同じであれば、粒子のサイズが小さけれ
ば、単位面積当たりの個数は増加し、個々の粒子間の距
離は近くなり、最近接粒子距離が小さくなる。従って、
第2相中のマルテンサイト相の割合および第2相中のマ
ルテンサイト粒子間の距離、すなわち最近接粒子間距離
の平均値を求めることにより第2相中のマルテンサイト
粒の微細分散状態を表現することとが可能となる。前記
マルテンサイト粒子の最近接粒子間距離は、例えば図1
に示すように、マルテンサイト粒を内接する方形枠を求
め、その枠間距離を測定することで求めることができ
る。かかる測定は、組織観察写真をコンピュータを用い
て画像解析することに容易に実施することができる。
In the present invention, the closest particle distance between the martensite particles is 5.4 μm or less on average, preferably 3.0 μm or less, more preferably 2.7 μm or less. The reason for defining the distance between the closest particles between the martensite particles is to quantitatively express the finely dispersed state of the martensite particles, which is a point for improving the stretch formability, and the distance between the closest particles is 5.4 μm or less. By doing so, good overhang formability can be obtained. The present inventor has conducted detailed investigations on the correlation between the dispersion state of the martensite particles and the stretch formability based on experiments, and found that the ratio of the second phase, and the ratio of the martensite phase in the second phase, It was found that the correlation between the overhang formability and the finely dispersed state of the martensite particles can be correctly evaluated by introducing the distance between the closest particles. More specifically, if the ratio of the second phase and the martensite phase in the second phase is constant, the larger the individual martensite grains, the smaller the number of martensite grains per unit area decreases. As the distance between the particles increases, the distance between the nearest particles increases. Conversely, if the amount of the martensite phase is the same, if the size of the particles is small, the number per unit area increases, the distance between the individual particles becomes shorter, and the distance between the nearest particles becomes smaller. Therefore,
The fine dispersion state of the martensite grains in the second phase is expressed by calculating the ratio of the martensite phase in the second phase and the distance between the martensite grains in the second phase, that is, the average value of the distance between the closest grains. It is possible to do. The distance between the closest particles of the martensite particles is, for example, as shown in FIG.
As shown in Fig. 5, a square frame inscribed with martensite grains is obtained, and the distance between the frames is measured. Such measurement can be easily performed by analyzing the tissue observation photograph using a computer.

【0022】以上の成分、組織とすることで、強度が5
00MPa 未満に低下し、延性が向上して強度−延性バラ
ンス(TS×El)が17500(MPa ・%)以上とす
ることができ、しかも降伏比が低くなって形状凍結性に
優れ、しかも良好な張り出し成形性が得られる。特に、
前記第2相を組織全体の10%以下とし、かつ第2相中
のマルテンサイトを90%以上とすることによって、強
度が500MPa未満であっても、39%程度以上の優
れた延性および17000MPa*%程度以上の優れた強度
−延性バランスが得られ、しかも降伏比を50%程度以
下に低減させることができる。さらに、前記マルテンサ
イトの量的条件の下で、マルテンサイト粒子同士の最近
接粒子間距離を2.7μm 以下とすることによって、よ
り優れた張り出し成形性を得ることができる。このた
め、軟質鋼板用のプレス成形装置においても、優れた張
り出し成形性を得ることができる。
By making the above components and structures, the strength is 5
It is reduced to less than 00 MPa, ductility is improved, and the strength-ductility balance (TS × El) can be 17500 (MPa ·%) or more. In addition, the yield ratio is low, so that the shape is freezing and excellent. Overhang formability is obtained. In particular,
By making the second phase 10% or less of the whole structure and the martensite in the second phase 90% or more, even if the strength is less than 500 MPa, excellent ductility of about 39% or more and 17000 MPa * are obtained. % Or more, an excellent strength-ductility balance can be obtained, and the yield ratio can be reduced to about 50% or less. Further, by setting the distance between the closest particles of martensite particles to 2.7 μm or less under the above-mentioned martensite quantitative conditions, more excellent stretch formability can be obtained. For this reason, even in a press forming apparatus for a soft steel plate, excellent overhang formability can be obtained.

【0023】本発明の溶融亜鉛めっき鋼板の母材冷延鋼
板は、前記化学成分を有する鋼を溶製し、その鋼片を加
熱し、熱間圧延した後、特定の温度範囲にて巻き取り、
酸洗後、常法にて冷間圧延されたものである。巻き取り
温度を除き、熱延条件、冷延条件は通常の条件に従えば
よく、例えば、鋼片の加熱温度は1100〜1250℃
程度とすればよく、熱延仕上げ温度はAr3点以上とすれ
ばよい。また、冷延率は40%程度以上、好ましくは5
0%程度以上とすればよい。巻き取り温度は製造条件に
おいて重要であり、550℃以下とすることが必要であ
る。母材冷延鋼板は、従来、550〜750℃で巻き取
られていたが、本発明では巻き取り温度を550℃以下
にする。これによって、微細な炭化物が生成し、冷間圧
延後の焼鈍時の再結晶過程において、微細なフェライ
ト、オーステナイトの結晶粒が生成し、焼鈍後のマルテ
ンサイト組織もより微細に分散し、マルテンサイト粒子
同士の最近接粒子間距離を前記所定範囲内にすることが
可能となり、その結果、張出し成形性が向上する。巻き
取り温度は低い程、微細な炭化物の析出がより促進さ
れ、マルテンサイト粒の最近接粒子間距離もより一層小
さくなるため、巻き取り温度は好ましくは540℃以
下、より好ましくは500℃以下とするのがよい。
The base material cold-rolled steel sheet of the hot-dip galvanized steel sheet of the present invention is obtained by melting a steel having the above-mentioned chemical composition, heating the steel slab, hot rolling, and winding the steel in a specific temperature range. ,
After pickling, it is cold rolled by a conventional method. Except for the winding temperature, the hot rolling conditions and the cold rolling conditions may be in accordance with ordinary conditions. For example, the heating temperature of the steel slab is 1100 to 1250 ° C.
And the hot-rolling finishing temperature may be Ar 3 points or more. The cold rolling rate is about 40% or more, preferably 5%.
It may be about 0% or more. The winding temperature is important in the production conditions and needs to be 550 ° C. or lower. Conventionally, the base material cold rolled steel sheet has been wound at 550 to 750 ° C, but in the present invention, the winding temperature is set to 550 ° C or less. As a result, fine carbides are generated, and fine ferrite and austenite crystal grains are generated in a recrystallization process at the time of annealing after cold rolling, and the martensite structure after annealing is more finely dispersed. The distance between the particles closest to each other can be set within the above-mentioned predetermined range, and as a result, the stretch formability is improved. As the winding temperature is lower, the precipitation of fine carbides is further promoted and the distance between the closest particles of martensite grains is further reduced, so that the winding temperature is preferably 540 ° C or lower, more preferably 500 ° C or lower. Good to do.

【0024】このようにして得られた冷延鋼板は、連続
焼鈍めっきラインにてフェライト+オーステナイトの2
相共存領域に加熱して再結晶焼鈍が行われた後、焼鈍温
度からめっき温度まで1〜10℃/s、好ましくは1〜
3℃/sの第1冷却速度で徐冷されて溶融亜鉛めっきが
施された後、冷却されて、溶融亜鉛めっき鋼板とされ
る。溶融亜鉛めっき後の第2冷却は、放冷でもよいが、
好ましくは10℃/s以上の冷却速度にて冷却するのが
よい。溶融亜鉛めっき層に合金化処理を施す場合には、
前記第1冷却速度にて徐冷して溶融亜鉛めっき処理を施
し、合金化処理を行った後、10℃/s以上の第2冷却
速度で急冷することが好ましい。
The cold-rolled steel sheet thus obtained was subjected to a continuous ferrite + austenite by a continuous annealing plating line.
After the recrystallization annealing is performed by heating the phase coexistence region, from the annealing temperature to the plating temperature, 1 to 10 ° C./s, preferably 1 to 10 ° C./s.
After being gradually cooled at a first cooling rate of 3 ° C./s and subjected to hot-dip galvanizing, it is cooled to obtain a hot-dip galvanized steel sheet. The second cooling after hot-dip galvanizing may be allowed to cool,
Preferably, the cooling is performed at a cooling rate of 10 ° C./s or more. When performing alloying treatment on the hot-dip galvanized layer,
It is preferable that the steel sheet is gradually cooled at the first cooling rate, subjected to a hot-dip galvanizing treatment, alloyed, and then rapidly cooled at a second cooling rate of 10 ° C./s or more.

【0025】前記冷延鋼板の処理条件をより詳しく説明
する。図2は、前記冷延鋼板の熱処理線図を示してお
り、上記のように、冷延鋼板は連続焼鈍めっきラインに
て再結晶焼鈍された後、溶融亜鉛めっきが施される。再
結晶焼鈍はフェライト+オーステナイトの2相領域であ
る、760〜840℃程度で行えばよい。焼鈍温度が7
60℃未満では熱延鋼板の炭化物がオーステナイトに十
分に溶け込まないため、炭化物が残存し、延性が低下す
る。一方、840℃を越えると第2相の面積率を20%
未満にするのに焼鈍温度からの第1冷却速度(1CR)
を非常に遅くすることが必要となるため、工業的生産が
困難になる。好ましくは、下限を780℃、上限を82
0℃とするのがよい。焼鈍時間は、連続焼鈍めっきライ
ンの場合、通常、数秒〜十数秒程度である。
The processing conditions for the cold rolled steel sheet will be described in more detail. FIG. 2 shows a heat treatment diagram of the cold-rolled steel sheet. As described above, the cold-rolled steel sheet is subjected to recrystallization annealing in a continuous annealing plating line, and then subjected to hot-dip galvanizing. Recrystallization annealing may be performed at about 760 to 840 ° C., which is a two-phase region of ferrite and austenite. Annealing temperature 7
If the temperature is lower than 60 ° C., the carbide of the hot-rolled steel sheet does not sufficiently dissolve into austenite, so that the carbide remains and the ductility decreases. On the other hand, when the temperature exceeds 840 ° C., the area ratio of the second phase is reduced to 20%.
1st cooling rate from annealing temperature (1CR)
Needs to be very slow, which makes industrial production difficult. Preferably, the lower limit is 780 ° C and the upper limit is 82.
The temperature is preferably set to 0 ° C. The annealing time is usually about several seconds to about several tens of seconds in the case of a continuous annealing plating line.

【0026】再結晶焼鈍後、溶融亜鉛めっき浴に浸漬す
るまでの第1冷却速度(1CR)は本発明において重要
に条件であり、1℃/s以上、10℃/s以下とする。
1℃/s未満ではパーライト変態が生じて、フェライト
量、マルテンサイト量が不足し、強度−延性バランスが
低下する。一方、10℃/s超では、フェライトの生成
に伴うオーステナイト中のC濃度の上昇によるベイナイ
ト変態の遅延が期待することができず、第2相の量およ
び第2相中のベイナイト量が増大し、延性が劣化するよ
うになる。このため、1CRを1℃/s以上とし、一方
10℃/s以下、好ましくは6℃/s以下とする。特
に、フェライト量を増やし、第2相を全組織の10%以
下にするには、1CRを1℃/s以上、3℃/s以下に
することが望ましい。かかる冷却速度は、通常、焼鈍後
の鋼板の板厚に応じて制御される。前記第1冷却速度
は、従来に比して遅い冷却速度であり、焼鈍後の鋼板に
カバーを被せたり、カバー内に加熱空気を送給するなど
の積極的方策によって、鋼板の板厚に拘わらず、所期の
冷却速度を得ることもできる。
After the recrystallization annealing, the first cooling rate (1CR) until immersion in the hot-dip galvanizing bath is an important condition in the present invention, and is set to 1 ° C./s or more and 10 ° C./s or less.
If it is less than 1 ° C./s, pearlite transformation occurs, the amount of ferrite and the amount of martensite become insufficient, and the strength-ductility balance decreases. On the other hand, when the temperature exceeds 10 ° C./s, the delay of bainite transformation due to an increase in the C concentration in austenite due to ferrite formation cannot be expected, and the amount of the second phase and the amount of bainite in the second phase increase. , The ductility deteriorates. For this reason, 1CR is set to 1 ° C./s or more, while it is set to 10 ° C./s or less, preferably 6 ° C./s or less. In particular, in order to increase the amount of ferrite and make the second phase 10% or less of the entire structure, it is desirable that 1CR be 1 ° C / s or more and 3 ° C / s or less. The cooling rate is usually controlled according to the thickness of the steel sheet after annealing. The first cooling rate is a cooling rate that is slower than the conventional cooling rate, and the first cooling rate is not limited by the thickness of the steel sheet by aggressive measures such as covering the annealed steel sheet with a cover or feeding heated air into the cover. Instead, the desired cooling rate can be obtained.

【0027】溶融亜鉛めっきは、めっき温度が通常40
0〜480℃程度の溶融亜鉛めっき浴に浸漬することに
よって行われる。めっき後、亜鉛めっき層を合金化しな
い場合はそのまま冷却する。この場合、めっき温度から
の冷却となり、冷却過程でパーライト変態が生じ難いた
め、めっき処理後の第2冷却速度(2aCR)の制限は
特になく、放冷するだけでよい。もっとも、2aCRを
10℃/s以上で急冷することで、オーステナイトがパ
ーライト、ベイナイトに変態するのを一層抑制すること
ができ、これによって第2相中のマルテンサイト量を一
層増大させることができ、延性をより一層向上させるこ
とができる。特に、第2相中のマルテンサイト量を90
%以上とするには、2aCRを10℃/s以上、好まし
くは30℃/s以上にすることが望ましい。10℃/s
以上の冷却速度を得るには、強制空冷、冷却ローラによ
る搬送、あるいはミスト冷却を行えばよい。第2冷却速
度の上限は特に制限されないが、実際には冷却設備の冷
却能力により自ずから上限が定まる。
In the case of hot-dip galvanizing, the plating temperature is usually 40
It is performed by immersing in a hot-dip galvanizing bath at about 0 to 480 ° C. After the plating, if the galvanized layer is not alloyed, it is cooled as it is. In this case, since the cooling is performed from the plating temperature and the pearlite transformation hardly occurs in the cooling process, there is no particular limitation on the second cooling rate (2aCR) after the plating treatment, and it is only necessary to allow the cooling. However, by rapidly cooling 2aCR at 10 ° C./s or more, the transformation of austenite into pearlite and bainite can be further suppressed, whereby the amount of martensite in the second phase can be further increased, Ductility can be further improved. In particular, the amount of martensite in the second phase is 90
%, It is desirable that 2aCR be 10 ° C./s or more, preferably 30 ° C./s or more. 10 ° C / s
In order to obtain the above cooling rate, forced air cooling, conveyance by a cooling roller, or mist cooling may be performed. Although the upper limit of the second cooling rate is not particularly limited, in practice, the upper limit is naturally determined by the cooling capacity of the cooling equipment.

【0028】一方、溶融亜鉛めっき後に亜鉛めっき層を
合金化する場合には、めっき後、500〜700℃程度
の温度で、通常、数秒〜十数秒程度加熱する合金化処理
を行う。500℃未満では、合金化に時間がかかるた
め、工業的生産に不適であり、一方700℃を超えると
過度に合金化が進み、プレス成形時にパウダリング等の
問題が生じるようになる。好ましくは、550〜600
℃程度である。
On the other hand, when the galvanized layer is alloyed after the hot-dip galvanizing, an alloying treatment is carried out after the galvanizing by heating at a temperature of about 500 to 700 ° C., usually for about several seconds to about several tens of seconds. If the temperature is lower than 500 ° C., it takes a long time for alloying, which is not suitable for industrial production. On the other hand, if it exceeds 700 ° C., alloying proceeds excessively, and problems such as powdering at the time of press molding arise. Preferably, 550-600
It is about ° C.

【0029】合金化処理後は、10℃/s以上、好まし
くは30℃/s以上の第2冷却速度(2bCR)で冷却
する。合金化後の第2冷却速度2bCRは、10℃/s
未満の徐冷ではオーステナイトがパーライト、ベイナイ
トに変態し、第2相中のパーライト、ベイナイト量が増
大し、延性が劣化するようになる。母材冷延鋼板の第2
相の量が10%以下の少量の場合、2bCRを25℃/
s以上、好ましくは30℃/s以上とすることで、第2
相中のマルテンサイト量を90%以上とすることができ
る。以下、実施例により本発明をさらに説明するが、本
発明はかかる実施例によって限定的に解釈されるもので
はない。
After the alloying treatment, cooling is performed at a second cooling rate (2bCR) of 10 ° C./s or more, preferably 30 ° C./s or more. The second cooling rate 2bCR after alloying is 10 ° C / s
When the cooling rate is lower than 10%, austenite is transformed into pearlite and bainite, the amount of pearlite and bainite in the second phase is increased, and ductility is deteriorated. Second base cold-rolled steel sheet
When the amount of the phase is as small as 10% or less, 2 bCR is added at 25 ° C. /
s or more, preferably 30 ° C./s or more,
The amount of martensite in the phase can be 90% or more. Hereinafter, the present invention will be further described with reference to examples, but the present invention is not construed as being limited to such examples.

【0030】[0030]

【実施例】下記表1に記載した化学成分の鋼を真空誘導
溶解にて溶製し、その鋼片を1150℃にて加熱し、仕
上温度を850℃として熱間圧延を行い、480℃、6
80℃にて巻取り、酸洗後、冷延率60%で冷間圧延を
行い、厚さ1.2mmの冷延鋼板を得た。この冷延鋼板を
連続焼鈍めっきラインにて、800℃×60秒で再結晶
焼鈍を行い、表2および表3に示すように、800℃か
ら冷却速度1CR(℃/s)にて冷却した後、溶融亜鉛
めっき処理(めっき浴温460℃、浸漬時間20秒)を
施し、試料No. 20〜41については放冷(2aCR=
4℃/s)あるいはミスト冷却(2aCR=10〜30
℃/s)を行った。一方、試料No. 1〜19,42,4
3については、前記条件にて溶融亜鉛めっき後、さらに
550℃×15秒にて合金化処理を行い、その後ミスト
冷却(2bCR=30℃/s)、あるいは放冷(2bC
R=4℃/s)により冷却した。
EXAMPLES Steels having the chemical components described in Table 1 below were melted by vacuum induction melting, and the steel slabs were heated at 1150 ° C., hot-rolled at a finishing temperature of 850 ° C., and heated at 480 ° C. 6
After winding at 80 ° C. and pickling, cold rolling was performed at a cold rolling rate of 60% to obtain a cold-rolled steel sheet having a thickness of 1.2 mm. This cold-rolled steel sheet was subjected to recrystallization annealing at 800 ° C. × 60 seconds in a continuous annealing plating line, and was cooled from 800 ° C. at a cooling rate of 1 CR (° C./s) as shown in Tables 2 and 3. And hot-dip galvanizing treatment (plating bath temperature 460 ° C., immersion time 20 seconds), and the samples No. 20 to 41 were allowed to cool (2aCR =
4 ° C / s) or mist cooling (2aCR = 10-30)
° C / s). On the other hand, sample Nos. 1 to 19, 42, 4
For No. 3, after hot-dip galvanizing under the above conditions, an alloying treatment was further performed at 550 ° C. × 15 seconds, and then mist cooling (2 bCR = 30 ° C./s) or cooling (2 bC
(R = 4 ° C./s).

【0031】得られた試料から組織観察試験片を採取
し、ミクロ組織を以下の要領で観察した。試験片からめ
っき層を除去し、ナイタール腐食後、1000倍でSE
M観察した組織を画像解析により第2相(M+Bあるい
はM+P、但しM:マルテンサイト、B:ベイナイト、
P:パーライト)の面積率を測定した。次にレペラ腐食
後、1000倍で光学顕微鏡観察した組織を画像解析し
てマルテンサイト量を測定し、第2相に占めるマルテン
サイトの割合(M/第2相)を求めた。また、マルテン
サイト粒子の分散状態(最近接粒子間距離)は、レペラ
ー腐食後の組織写真よりマルテンサイト粒子をトレース
して市販の画像解析ソフト(商品名:画像解析システム
LUZEX−F、製造メーカ:ニレコ)を用いて求め
た。画像解析ソフトでは組織写真中の全マルテンサイト
粒子の各々について最近接粒子間距離を測定し、それら
の平均を求めた。また、得られた試料から引張試験片
(JIS5号試験片)および張り出し成形性評価用試験
片を採取し、引張試験(JIS2241に定められた試
験法)によって機械的性質を調べた。また、半径50mm
の球頭ポンチによる張り出し試験によって張り出し高さ
を測定し、張り出し高さによって張り出し成形性を評価
した。これらの調査結果を表2および表3に併せて示
す。同表中、M粒子間距離は、マルテンサイト粒子間の
最近接粒子間距離の平均値を意味する。
From the obtained sample, a specimen for tissue observation was collected, and the microstructure was observed in the following manner. The plating layer was removed from the test piece, and after nital corrosion, SE was increased by 1000 times.
The M-observed tissue was analyzed by image analysis to obtain a second phase (M + B or M + P, where M: martensite, B: bainite,
P: pearlite). Next, after the repeller corrosion, the structure observed by an optical microscope at a magnification of 1000 was image analyzed to measure the amount of martensite, and the ratio of martensite in the second phase (M / second phase) was determined. In addition, the dispersion state of martensite particles (distance between closest particles) can be determined by tracing martensite particles from a photograph of the structure after repeller corrosion and commercially available image analysis software (trade name: image analysis system LUZEX-F, manufacturer: Nireco). With the image analysis software, the distance between the closest particles was measured for each of all the martensite particles in the structure photograph, and the average thereof was obtained. In addition, a tensile test piece (JIS No. 5 test piece) and a test piece for stretch formability evaluation were collected from the obtained sample, and mechanical properties were examined by a tensile test (a test method defined in JIS2241). In addition, radius 50mm
The overhang height was measured by an overhang test using a ball-head punch, and the overhang height was used to evaluate the overhang formability. The results of these investigations are shown in Tables 2 and 3. In the table, the distance between M particles means the average value of the distance between the closest particles between the martensite particles.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表2、表3より、本発明の鋼成分を有する
鋼種B〜F、L〜P、Uを用い、焼鈍後の冷却速度1C
Rを10℃/s以下で徐冷してめっき処理を行った溶融
亜鉛めっき鋼板の発明例(試料No. 22,24,27,
29,31,37,39,41)、合金化処理後の冷却
速度2bCRを10℃/s以上とした合金化溶融亜鉛め
っき鋼板の発明例(No. 3,5,11,13,15,4
3)では、いずれも第2相が組織全体の20%以下に止
まっており、またその内にマルテンサイト量が80%以
上となり、またマルテンサイト粒子間の最近接粒子間距
離の平均が5.4μm 以下となっている。このため、強
度が500MPa 未満に低減される一方、強度−延性バラ
ンスが17000MPa*%程度以上であり、しかも降伏比
が最大でも53%である。さらに、張り出し高さ(h
(rp25))が21.9mm以上となっており、優れた
延性を備え、張り出し成形性に優れることがわかる。特
に、試料No. 37,39,41,43では、第2相面積
率が10%以下で、しかも第2相中のマルテンサイト量
が90%であり、第2相量を減らしつつ、第2相中のマ
ルテンサイト量を増やしたので、伸びが39%以上で、
降伏比が50%以下となっており、さらにマルテンサイ
ト粒子間の最近接粒子間距離の平均が2.7μm 以下と
なり、より優れた張り出し成形性を有していることがわ
かる。
From Tables 2 and 3, it can be seen that steel types BF, LP and U having the steel components of the present invention were used, and the cooling rate after annealing was 1 C.
Invention Examples of Galvanized Steel Sheets (Sample Nos. 22, 24, 27,
29, 31, 37, 39, 41), invention examples of alloyed hot-dip galvanized steel sheet with a cooling rate of 2 bCR after alloying treatment of 10 ° C./s or more (Nos. 3, 5, 11, 13, 15, 15 and 4)
In (3), in all cases, the second phase is less than 20% of the whole structure, the martensite content is 80% or more, and the average distance between closest particles between martensite particles is 5. It is 4 μm or less. Therefore, while the strength is reduced to less than 500 MPa, the strength-ductility balance is about 17000 MPa *% or more, and the yield ratio is 53% at the maximum. In addition, the overhang height (h
(Rp25)) is 21.9 mm or more, which means that it has excellent ductility and excellent stretch formability. In particular, in Sample Nos. 37, 39, 41, and 43, the area ratio of the second phase was 10% or less, and the amount of martensite in the second phase was 90%. Since the amount of martensite in the phase was increased, the growth was 39% or more,
The yield ratio was 50% or less, and the average of the distance between the closest particles between the martensite particles was 2.7 μm or less, indicating that there was more excellent stretch formability.

【0036】[0036]

【発明の効果】本発明の溶融亜鉛めっき鋼板によれば、
マルテンサイトを含む複合組織であるにもかからわず、
500MPa 未満と強度が低く、また強度−延性バランス
に優れ、さらに降伏比も低いので、延性に優れ、優れた
張り出し成形性を備える。また、本発明の製造方法によ
れば、特に巻き取り温度を550℃以下とし、再結晶焼
鈍後の第1冷却速度を1〜10℃/sとし、また溶融亜
鉛めっき層に合金化処理を施す場合には前記第1冷却速
度にて冷却するほか、合金化処理後の冷却速度を10℃
/s以上とするので、マルテンサイトを含む第2相を減
らしつつ、その中のマルテンサイト量を増やすことがで
き、さらにマルテンサイトを微細分散させることがで
き、前記張り出し成形性の優れた溶融亜鉛めっき鋼板を
容易に製造することができる。
According to the hot-dip galvanized steel sheet of the present invention,
Despite being a composite organization containing martensite,
Since the strength is low at less than 500 MPa, the strength-ductility balance is excellent, and the yield ratio is low, so that it has excellent ductility and excellent stretch formability. According to the production method of the present invention, the winding temperature is set to 550 ° C. or lower, the first cooling rate after recrystallization annealing is set to 1 to 10 ° C./s, and the galvannealed layer is alloyed. In this case, besides cooling at the first cooling rate, the cooling rate after the alloying treatment is 10 ° C.
/ S or more, it is possible to increase the amount of martensite therein while reducing the amount of the second phase containing martensite, furthermore, it is possible to finely disperse martensite, and the above-described molten zinc having excellent stretch forming properties. A plated steel sheet can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マルテンサイト粒の最近接粒子間距離の測定要
領説明図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a procedure for measuring a distance between closest particles of martensite grains.

【図2】本発明にかかる溶融亜鉛めっき鋼板のの製造過
程を示す熱処理線図である。
FIG. 2 is a heat treatment diagram showing a production process of a hot-dip galvanized steel sheet according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 2/40 C23C 2/40 (72)発明者 槙井 浩一 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 新堂 陽介 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4K027 AA02 AA05 AA23 AB02 AB28 AB42 AB43 AC12 AC72 AC73 AD27 AE12 4K037 EA01 EA05 EA11 EA15 EA18 EA23 EA25 EA27 EB05 EB11 FB00 FE01 FG00 FH01 FK02 FK03 GA05 HA00 JA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C23C 2/40 C23C 2/40 (72) Inventor Koichi Makii 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture No. 5 Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Yosuke Shindo 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture F-term in Kobe Steel Co., Ltd. Kobe Research Institute 4K027 AA02 AA05 AA23 AB02 AB28 AB42 AB43 AC12 AC72 AC73 AD27 AE12 4K037 EA01 EA05 EA11 EA15 EA18 EA23 EA25 EA27 EB05 EB11 FB00 FE01 FG00 FH01 FK02 FK03 GA05 HA00 JA06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が重量%で、C :0.010
〜0.06%、Si:0.5%以下、Mn:0.5%以
上、2.0%未満、P :0.20%以下、S :0.
01%以下、Al:0.005〜0.10%、N :
0.005%以下、Cr:1.0%以下、かつMn+
1.3Cr:1.9〜2.3%および残部Feを本質的
成分とし、組織がフェライトとマルテンサイトを含む第
2相とからなり、組織中の第2相の割合が面積率で20
%以下であり、かつ第2相に占めるマルテンサイトの割
合が50%以上であり、しかもマルテンサイト粒子同士
の最近接粒子間距離が平均で5.4μm 以下である冷延
鋼板を母材とし、その表面に溶融亜鉛めっき層が形成さ
れた、延性および張り出し成形性に優れる溶融亜鉛めっ
き鋼板。
C. 0.010% by weight of a chemical component.
0.06%, Si: 0.5% or less, Mn: 0.5% or more, less than 2.0%, P: 0.20% or less, S: 0.
01% or less, Al: 0.005 to 0.10%, N:
0.005% or less, Cr: 1.0% or less, and Mn +
1.3Cr: 1.9 to 2.3% and the balance Fe as essential components, and the structure is composed of a ferrite and a second phase containing martensite, and the ratio of the second phase in the structure is 20 in area ratio.
% Or less, and the proportion of martensite in the second phase is 50% or more, and the distance between the closest particles between the martensite particles is 5.4 μm or less on average. Hot-dip galvanized steel sheet with a hot-dip galvanized layer formed on its surface and excellent in ductility and stretch formability.
【請求項2】 組織中の第2相の割合が面積率で10%
以下であり、かつ第2相に占めるマルテンサイトの割合
が90%以上であり、しかもマルテンサイト粒子同士の
最近接粒子間距離が平均で2.7μm 以下である請求項
1に記載した溶融亜鉛めっき鋼板。
2. The ratio of the second phase in the tissue is 10% in area ratio.
2. The hot-dip galvanized steel according to claim 1, wherein the ratio of martensite in the second phase is 90% or more, and the distance between closest martensite particles is 2.7 μm or less on average. steel sheet.
【請求項3】 請求項1または2に記載した冷延鋼板を
母材とし、その表面に合金化溶融亜鉛めっき層が形成さ
れた、延性および張り出し成形性に優れる溶融亜鉛めっ
き鋼板。
3. A hot-dip galvanized steel sheet having excellent ductility and stretch formability, wherein the cold-rolled steel sheet according to claim 1 or 2 is used as a base material and an alloyed hot-dip galvanized layer is formed on the surface thereof.
【請求項4】 請求項1に記載した化学成分を有する鋼
材を熱間圧延後、550℃以下の温度で巻き取り、その
後冷間圧延を施し、これによって得られた冷延鋼板を連
続焼鈍めっきラインにてフェライト+オーステナイトの
2相共存領域に加熱して再結晶焼鈍を行った後、焼鈍温
度からめっき温度まで1〜10℃/sの第1冷却速度で
冷却して溶融亜鉛めっきを施した後、冷却する、延性お
よび張り出し成形性に優れる溶融亜鉛めっき鋼板の製造
方法。
4. A steel material having the chemical composition described in claim 1 is hot-rolled, then wound at a temperature of 550 ° C. or lower, and then cold-rolled, and the cold-rolled steel sheet obtained by this is subjected to continuous annealing plating. After heating the two-phase coexistence region of ferrite + austenite in the line to perform recrystallization annealing, the steel sheet was cooled from the annealing temperature to the plating temperature at a first cooling rate of 1 to 10 ° C./s to perform hot-dip galvanizing. A method for producing a galvanized steel sheet having excellent ductility and stretch formability after cooling.
【請求項5】 焼鈍温度からめっき温度まで1〜3℃/
sの第1冷却速度で冷却して溶融亜鉛めっきを施した
後、10℃/s以上の第2冷却速度で冷却する請求項4
に記載した溶融亜鉛めっき鋼板の製造方法。
5. An annealing temperature to a plating temperature of 1 to 3 ° C.
5. After cooling at a first cooling rate of s to perform hot-dip galvanizing, cooling at a second cooling rate of 10 ° C./s or more.
2. A method for producing a hot-dip galvanized steel sheet according to item 1.
【請求項6】 請求項1に記載した化学成分を有する鋼
材を熱間圧延後、550℃以下の温度で巻き取り、その
後冷間圧延を施し、これによって得られた冷延鋼板を連
続焼鈍めっきラインにてフェライト+オーステナイトの
2相共存領域に加熱して再結晶焼鈍を行った後、焼鈍温
度からめっき温度まで1〜10℃/sの第1冷却速度で
冷却して溶融亜鉛めっきを施した後、さらに溶融亜鉛め
っき層の合金化処理を施し、その後10℃/s以上の第
2冷却速度で冷却する、延性および張り出し成形性に優
れる溶融亜鉛めっき鋼板の製造方法。
6. A steel material having the chemical composition described in claim 1 is hot-rolled, then wound at a temperature of 550 ° C. or lower, and then cold-rolled, and the cold-rolled steel sheet obtained by this is subjected to continuous annealing plating. After heating the two-phase coexistence region of ferrite + austenite in the line to perform recrystallization annealing, the steel sheet was cooled from the annealing temperature to the plating temperature at a first cooling rate of 1 to 10 ° C./s to perform hot-dip galvanizing. Thereafter, a method for producing a hot-dip galvanized steel sheet having excellent ductility and stretch formability, wherein the hot-dip galvanized layer is further alloyed and then cooled at a second cooling rate of 10 ° C./s or more.
【請求項7】 焼鈍温度からめっき温度まで1〜3℃/
sの第1冷却速度で冷却する請求項6に記載した溶融亜
鉛めっき鋼板の製造方法。
7. From an annealing temperature to a plating temperature, 1 to 3 ° C. /
The method for producing a hot-dip galvanized steel sheet according to claim 6, wherein the steel sheet is cooled at a first cooling rate of s.
JP2001127216A 2001-04-25 2001-04-25 Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same Expired - Fee Related JP3907963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127216A JP3907963B2 (en) 2001-04-25 2001-04-25 Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127216A JP3907963B2 (en) 2001-04-25 2001-04-25 Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002322537A true JP2002322537A (en) 2002-11-08
JP3907963B2 JP3907963B2 (en) 2007-04-18

Family

ID=18976121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127216A Expired - Fee Related JP3907963B2 (en) 2001-04-25 2001-04-25 Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3907963B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077510A (en) * 2006-11-16 2007-03-29 Jfe Steel Kk High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
WO2007080810A1 (en) * 2006-01-11 2007-07-19 Jfe Steel Corporation Hot-dip zinc-coated steel sheets and process for production thereof
US7559997B2 (en) 2002-06-25 2009-07-14 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
CN102597292A (en) * 2009-11-09 2012-07-18 新日本制铁株式会社 High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing same
CN103146998A (en) * 2013-02-28 2013-06-12 首钢总公司 Over-400Mpa galvanized high-strength structural steel and production method thereof
EP2169091A4 (en) * 2007-07-11 2016-11-30 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with low yield strength and with less material quality fluctuation and process for producing the same
EP2184374A4 (en) * 2007-07-11 2017-01-04 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and process for producing the same
CN113286910A (en) * 2019-03-29 2021-08-20 日本制铁株式会社 Steel sheet and method for producing same
CN113825846A (en) * 2019-05-07 2021-12-21 美国钢铁公司 Method for producing continuously cast hot-rolled high-strength steel sheet product
CN114555846A (en) * 2019-10-31 2022-05-27 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115181916A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1280 MPa-level low-carbon low-alloy ultrahigh-strength hot-dip galvanized dual-phase steel and rapid heat treatment hot-dip galvanizing manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559997B2 (en) 2002-06-25 2009-07-14 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
EP1972698A4 (en) * 2006-01-11 2014-06-18 Jfe Steel Corp Hot-dip zinc-coated steel sheets and process for production thereof
WO2007080810A1 (en) * 2006-01-11 2007-07-19 Jfe Steel Corporation Hot-dip zinc-coated steel sheets and process for production thereof
JP2007211338A (en) * 2006-01-11 2007-08-23 Jfe Steel Kk Hot dip galvanized steel sheet and its manufacturing method
EP1972698A1 (en) * 2006-01-11 2008-09-24 JFE Steel Corporation Hot-dip zinc-coated steel sheets and process for production thereof
JP2007077510A (en) * 2006-11-16 2007-03-29 Jfe Steel Kk High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
EP2169091A4 (en) * 2007-07-11 2016-11-30 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with low yield strength and with less material quality fluctuation and process for producing the same
EP2184374A4 (en) * 2007-07-11 2017-01-04 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and process for producing the same
EP2500445A1 (en) * 2009-11-09 2012-09-19 Nippon Steel Corporation High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
CN102597292A (en) * 2009-11-09 2012-07-18 新日本制铁株式会社 High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing same
EP2500445A4 (en) * 2009-11-09 2017-05-17 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
US8911567B2 (en) 2009-11-09 2014-12-16 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
CN103146998A (en) * 2013-02-28 2013-06-12 首钢总公司 Over-400Mpa galvanized high-strength structural steel and production method thereof
CN113286910A (en) * 2019-03-29 2021-08-20 日本制铁株式会社 Steel sheet and method for producing same
CN113825846A (en) * 2019-05-07 2021-12-21 美国钢铁公司 Method for producing continuously cast hot-rolled high-strength steel sheet product
CN114555846B (en) * 2019-10-31 2023-11-24 杰富意钢铁株式会社 Steel sheet, component, and method for producing same
CN114555846A (en) * 2019-10-31 2022-05-27 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN115181916A (en) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 1280 MPa-level low-carbon low-alloy ultrahigh-strength hot-dip galvanized dual-phase steel and rapid heat treatment hot-dip galvanizing manufacturing method
CN115181916B (en) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 1280 MPa-level low-carbon low-alloy ultrahigh-strength hot dip galvanized dual-phase steel and rapid heat treatment hot dip galvanizing manufacturing method

Also Published As

Publication number Publication date
JP3907963B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
US10570475B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
RU2567960C1 (en) High-strength steel sheet galvanised by hot immersion
JP2001207237A (en) Hot dip galvanized steel sheet excellent in ductility and producing method therefor
EP2128295B1 (en) High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
EP3255164B1 (en) High-strength steel sheet and production method therefor
EP2998416B1 (en) High-strength, high-young&#39;s modulus steel plate, and manufacturing method thereof
RU2573455C2 (en) High strength hot galvanised steel plate and method of its production
EP3517643A1 (en) Steel plate
EP2998415B1 (en) High-strength, high-young&#39;s modulus steel plate, and manufacturing method thereof
EP3255162B1 (en) High-strength steel sheet and production method therefor
EP3255163B1 (en) High-strength steel sheet and production method therefor
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
EP1486574A1 (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
JP6841383B2 (en) Steel plate and its manufacturing method
JP3596316B2 (en) Manufacturing method of high tensile high ductility galvanized steel sheet
EP3715493A1 (en) High strength steel sheet and method for producing same
JP6809652B2 (en) Steel plate and its manufacturing method
JP3907963B2 (en) Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same
JP2003213370A (en) High strength steel sheet, high strength galvanized steel sheet and high strength galvannealed steel sheet having excellent shape freezability and collision resistance, and production method therefor
JP6809651B2 (en) Steel plate and its manufacturing method
US11970758B2 (en) Hot-rolled steel sheet
JP3905318B2 (en) Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same
JP2001152288A (en) Hot dip galvanized steel sheet excellent in ductility and producing method therefor
EP4382628A1 (en) High-strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3907963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees