JP2002309944A - Intercooler and control apparatus for internal combustion engine using the same - Google Patents

Intercooler and control apparatus for internal combustion engine using the same

Info

Publication number
JP2002309944A
JP2002309944A JP2001116308A JP2001116308A JP2002309944A JP 2002309944 A JP2002309944 A JP 2002309944A JP 2001116308 A JP2001116308 A JP 2001116308A JP 2001116308 A JP2001116308 A JP 2001116308A JP 2002309944 A JP2002309944 A JP 2002309944A
Authority
JP
Japan
Prior art keywords
flow path
heat radiating
discharge
suction
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116308A
Other languages
Japanese (ja)
Inventor
Satoshi Iko
訓 位高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001116308A priority Critical patent/JP2002309944A/en
Publication of JP2002309944A publication Critical patent/JP2002309944A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop low speed torque and to reduce emission of exhaust gas at a low speed operation as well as improvement in output on a high speed side at a high speed operation, by switching intake passages that are the same size and disposed in a heat radiation portion of an intercooler, depending on the low speed operation and high speed operation, in an internal combustion engine with supercharger. SOLUTION: The internal combustion engine with supercharger has the intercooler 11 in a supercharger pipe extending from an exhaust turbo supercharger 4 to an intake pipe 2. The intercooler 11 comprises; an intake side passage partition board 18 and a discharge side passage partition board 27 to vertically partition the intercooler into three segments; the heat radiating portion 15 having three passages partitioned by the two partition boards; and an intake portion open/close valve 21 and a discharge portion open/close valve 30 that can be opened and closed and are respectively arranged on an intake side and a discharge side of the heat radiating portion 15. When the open/close valves on the intake and discharge sides are opened, the passages function as a one-directional passage divided into three segments. On the other hand, when the open/close valves on the intake and discharge sides are closed, the passages are changed to an S-shaped passage of reciprocating type.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インタークーラとこれ
を用いた内燃機関を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intercooler and an apparatus for controlling an internal combustion engine using the intercooler.

【0002】[0002]

【従来の技術】過給機を備えた内燃機関においては、一
般に過給機によって圧縮された過給空気は、その温度が
高くなっていることにより、内燃機関に対する充填効率
が、温度の上昇分だけ低下する。そこで、この温度の上
昇による充填効率の低下を防止する為に、前記過給機か
ら内燃機関に至る過給管路の途中にインタークーラを設
け、このインタークーラにて過給空気を冷却するように
構成しているものがあることは周知の通りである。(例
えば特開平5−187236号公報等参照。)また、従
来、インタークーラの大きさは車両搭載上あまり大きく
することができず、又インタークーラの放熱部内の吸入
空気の入口から出口までの流路構造は、一般的に、吸入
空気の通路としてのチューブと冷却用のフィンとを1つ
の層とした多層式の一定方向流路である。
2. Description of the Related Art In an internal combustion engine provided with a supercharger, the charging efficiency of the supercharged air compressed by the supercharger is generally increased by increasing the temperature of the supercharged air. Just drop. Therefore, in order to prevent a decrease in the charging efficiency due to the rise in temperature, an intercooler is provided in the middle of a supercharging line from the supercharger to the internal combustion engine, and the supercooled air is cooled by the intercooler. Is well known. (See, for example, Japanese Patent Application Laid-Open No. 5-187236.) Also, conventionally, the size of the intercooler cannot be made too large because of the mounting on the vehicle, and the flow of the intake air from the inlet to the outlet in the heat radiating portion of the intercooler. The passage structure is generally a multilayered one-way passage having a single layer of a tube as a passage for intake air and a fin for cooling.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のインタークーラでは、放熱部のサイズや放熱
部内の吸入空気の流路が固定されていることにより、低
速運転時と高速運転時の双方の要求を両立することは困
難である。例えば、ガソリンエンジンにおいては、放熱
部内の流路長を長くした場合には、空気流量の少ない低
速運転時では、長い流路長により放熱性能を上げること
で充填効率を高め、低速トルクを上げる事ができる。一
方、空気流量の多い高速運転時では、放熱部内の流路長
が長い為に、インタークーラの圧損が大きくなり、十分
な空気量が内燃機関に供給できず、高速側の出力向上が
図れなくなる。逆に、放熱部内の流路長を短くした場合
には、低速運転時では短い流路長の為、放熱性能が上が
らず、充填効率が上がらない為に、低速トルクが上げら
れない。一方、高速運転時では、短い流路長によりイン
タークーラの圧損が小さいので、十分な空気量が内燃機
関に供給でき、高速側の出力向上が図れる。又、ディー
ゼルエンジンにおいても同様に、放熱部内の流路長を長
くした場合には、低速運転時で、長い流路長により放熱
性能を上げて充填効率を高めれば、パティキュレートや
NOxを低減できる。一方、高速運転時で、放熱部内の
流路長が長い為に、インタークーラによる圧損が大きく
なり、十分な空気量が内燃機関に供給できず、高速側の
出力向上が図れなくなる。逆に放熱部内の流路長を短く
した場合には、低速運転時で、短い流路長の為、放熱性
能が上がらず、充填効率が上がらない為に、パティキュ
レートやNOxの低減が図れない。一方、高速運転時
で、短い流路長によりインタークーラによる圧損が小さ
いので、十分な空気量が内燃機関に供給でき、高速側の
出力向上が図れる。
However, in such a conventional intercooler, the size of the radiator and the flow path of the intake air in the radiator are fixed, so that both the low-speed operation and the high-speed operation are performed. It is difficult to satisfy both requirements. For example, in a gasoline engine, when the flow path length in the heat radiating section is increased, during low-speed operation with a small air flow rate, the charging efficiency is increased by increasing the heat radiation performance by the long flow path length, and the low-speed torque is increased. Can be. On the other hand, at the time of high-speed operation with a large air flow rate, the pressure loss of the intercooler increases due to the long flow path length in the heat radiating section, and a sufficient amount of air cannot be supplied to the internal combustion engine, and the output on the high-speed side cannot be improved. . Conversely, when the flow path length in the heat radiating section is shortened, the heat flow performance is not improved due to the short flow path length at the time of low-speed operation, and the filling efficiency is not increased, so that the low-speed torque cannot be increased. On the other hand, at the time of high-speed operation, since the pressure loss of the intercooler is small due to the short flow path length, a sufficient amount of air can be supplied to the internal combustion engine, and the output on the high-speed side can be improved. Similarly, in the case of a diesel engine, when the flow path length in the heat radiating section is lengthened, particulates and NOx can be reduced by increasing the heat radiation performance by increasing the flow path length and increasing the filling efficiency during low-speed operation. . On the other hand, at the time of high-speed operation, since the flow path length in the heat radiating section is long, the pressure loss due to the intercooler becomes large, and a sufficient amount of air cannot be supplied to the internal combustion engine, and the output on the high-speed side cannot be improved. Conversely, when the flow path length in the heat radiating section is shortened, during low-speed operation, the heat radiation performance does not increase due to the short flow path length, and the filling efficiency does not increase, so that reduction of particulates and NOx cannot be achieved. . On the other hand, during high-speed operation, since the pressure loss due to the intercooler is small due to the short flow path length, a sufficient amount of air can be supplied to the internal combustion engine, and the output on the high-speed side can be improved.

【0004】本発明は、かかる事情に鑑みてなされたも
のであり、低速運転時は放熱時間を長くし放熱性能をあ
げ、高速運転時は放熱時間を短くすることにより内燃機
関に十分な空気を供給できるような、低速運転時と高速
運転時の互いに相反する要求を両立可能なインタークー
ラ構造およびそれを用いた制御装置を提供することを目
的とする。
[0004] The present invention has been made in view of the above-described circumstances, and provides sufficient air to the internal combustion engine by increasing the heat radiation time and improving the heat radiation performance during low-speed operation, and shortening the heat radiation time during high-speed operation. It is an object of the present invention to provide an intercooler structure capable of satisfying mutually contradictory requirements during low-speed operation and high-speed operation, and a control device using the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成する
為、本発明では、請求項1で、過給機から内燃機関まで
の吸気管中に、インタークーラを配置して成る過給機付
き内燃機関のインタークーラ装置において、前記インタ
ークーラは、吸入空気を導入する吸入部と、吸入空気と
外気との熱交換を行う放熱部と、熱交換を行った吸入空
気を吐出する吐出部とで構成され、前記放熱部の長手方
向の一端部に前記吸入部が接続し、前記放熱部の長手方
向の他端部に前記吐出部が接続し、放熱部には、内部を
幅方向に3分割する2枚の流路仕切り板が設けられ、一
方の流路仕切り板は、放熱部の他端部側から長手方向に
延び、放熱部の一端部側で、一度放熱部の幅方向中心側
に屈曲し、放熱部の一端で、再び長手方向に屈曲し、吸
入部途中まで長手方向に延設し、他方の流路仕切り板
は、放熱部の一端部側から長手方向に延び、放熱部の他
端部側で、一度放熱部の幅方向中心側に屈曲し、放熱部
の他端で、再び長手方向に屈曲し、吐出部途中まで長手
方向に延設し、放熱部には、前記2枚の流路仕切り板に
よって、一方の放熱部の側壁と一方の流路仕切り板との
間に形成される第1の放熱部流路と、一方の流路仕切り
板と他方の流路仕切り板との間に形成される第2の放熱
部流路と、他方の放熱部の側壁と他方の流路仕切り板と
の間に形成される第3の放熱部流路が形成され、前記吸
入部は、中空の拡管された形状をし、前記一方の流路仕
切り板により、流路が吸入部途中から2分割され、前記
2分割された流路の内、第1の放熱部流路へと接続され
る側を第1の吸入部流路、他方を第2の吸入部流路とし、
該第2の吸入部流路の一端は、前記放熱部へと接続し、
第2の吸入部流路が拡管開始する位置に、第2の吸入部流
路の開閉を自在にする吸入部開閉弁を配置し、前記吐出
部は、中空の拡管された形状をし、前記他方の流路仕切
り板により、流路が吐出部途中から2分割され、前記2
分割された流路の内、前記第3の放熱部流路へと接続さ
れる側を第1の吐出部流路、他方を第2の吐出部流路と
し、該第2の吐出部流路の一端は、前記放熱部へと接続
し、第2の吐出部流路が拡管開始する位置に、第2の吐出
部流路の開閉を自在にする吐出部開閉弁を配置し、前記
吸入部開閉弁と、吐出部開閉弁とを開閉することによ
り、吸入空気の流路を切換える構成とした。
In order to achieve the above-mentioned object, according to the present invention, a supercharger is provided in which an intercooler is disposed in an intake pipe from a supercharger to an internal combustion engine. In the intercooler device for an internal combustion engine, the intercooler includes an intake section that introduces intake air, a heat radiation section that exchanges heat between the intake air and the outside air, and a discharge section that discharges the intake air that has exchanged heat. The suction unit is connected to one longitudinal end of the heat radiating unit, the discharge unit is connected to the other longitudinal end of the heat radiating unit, and the inside of the heat radiating unit is divided into three parts in the width direction. Two flow path partition plates are provided, and one flow path partition plate extends in the longitudinal direction from the other end side of the heat radiating section, and once at the one end side of the heat radiating section, once at the center in the width direction of the heat radiating section. It bends and bends in the longitudinal direction again at one end of the heat radiating part. The other flow path partition plate extends in the longitudinal direction from one end of the heat radiating portion, and is bent once at the other end of the heat radiating portion toward the center in the width direction of the heat radiating portion. At the end, it bends in the longitudinal direction again and extends in the longitudinal direction to the middle of the discharge part, and the heat radiating part is formed by the two flow path partitioning plates, the side wall of one heat radiating part and the one flow path partitioning plate. A first radiating portion flow path formed between the first radiating portion flow path, a second radiating portion flow path formed between one flow path partition plate and the other flow path partition plate, and a side wall of the other radiating portion. A third heat radiating portion flow path formed between the first flow path partition plate and the other flow path partition plate is formed, and the suction portion has a hollow expanded shape. Is divided into two parts in the middle of the suction part. Of the two divided flow paths, the side connected to the first heat radiation part flow path is the first suction part flow path, and the other is the second suction part. The road,
One end of the second suction part flow path is connected to the heat radiation part,
At the position where the second suction part flow path starts to expand, a suction part opening / closing valve for freely opening and closing the second suction part flow path is arranged, and the discharge part has a hollow expanded shape, The other flow path partition plate divides the flow path into two parts in the middle of the discharge part,
Of the divided flow paths, the side connected to the third heat radiating section flow path is a first discharge section flow path, the other side is a second discharge section flow path, and the second discharge section flow path One end of the suction port is connected to the heat radiating section, and a discharge section opening / closing valve for freely opening and closing the second discharge section flow path is arranged at a position where the second discharge section flow path starts expanding. By opening and closing the on-off valve and the discharge part on-off valve, the flow path of the intake air is switched.

【0006】また、請求項2では、吸入空気の流路の切
換えとして、吸入部開閉弁と吐出部開閉弁とが同時に閉
じた時には、吸入部から入る吸入空気は、第1の吸入部
流路を通った後、第1の放熱部流路、第2の放熱部流
路、第3の放熱部流路の順にS字を描く様に通った後、
第1の吐出部流路を通って吐出され、前記吸入部開閉弁
と吐出部開閉弁とが同時に開いた時には、吸入部から入
る吸入空気は、一方の流路仕切り板により、第1の吸入
部流路と、第2の吸入部流路に別れ、放熱部に入った時
は、第1の吸入部流路を通った吸入空気は、第1の放熱
部流路を通り、第2の吸入部流路を通った吸入空気は、
第2の放熱部流路と第3の放熱部流路に別れ、都合3分割
されて通った後、第1の放熱部流路と第2の放熱部流路
を通った吸入空気は、第2の吐出部流路に合流し、第3の
放熱部流路を通った吸入空気は、第1の吐出部流路を通
り、第1の吐出部流路と第2の吐出部流路を通った吸入空
気は、吐出部端部で合流し吐出される構成とした。
According to a second aspect of the present invention, when the suction-port opening / closing valve and the discharge-port opening / closing valve are simultaneously closed to switch the flow path of the suction air, the suction air entering from the suction section flows into the first suction-port flow path. After passing through the first heat radiating section flow path, the second heat radiating section flow path, and the third heat radiating section flow path in order of drawing an S-shaped,
When the air is discharged through the first discharge section flow path and the suction section open / close valve and the discharge section open / close valve are simultaneously opened, the intake air entering from the suction section is supplied to the first suction section by one of the flow path partition plates. When the air enters the heat radiating portion, the air flowing through the first suction portion flow path passes through the first heat radiating portion flow path and passes through the second heat radiating portion flow path. The intake air passing through the intake passage is
After being divided into the second heat radiating section flow path and the third heat radiating section flow path, which is conveniently divided into three, the intake air passing through the first heat radiating section flow path and the second heat radiating section flow path is The intake air that has merged into the second discharge section flow path and passed through the third heat radiating section flow path passes through the first discharge section flow path and passes through the first discharge section flow path and the second discharge section flow path. The passed intake air is configured to be merged and discharged at the end of the discharge section.

【0007】請求項3では、吸入部開閉弁及び吐出部開
閉弁は、略円弧状の形状をし、弁閉時には、各々の開閉
弁は、前記インタークーラの放熱部に向かって凹部を形
成し、かつ弁開時には、吸入部側の開閉弁の前記凹部
は、吸入部の他方の側壁側を向き、吐出部側の開閉弁の
前記凹部は、吐出部の一方の側壁側を向き、且つ、吸入
部開閉弁の放熱部側の一端が、放熱部の他方の側壁側を
向き、吐出部開閉弁の放熱部側の一端が、放熱部の一方
の側壁側を向くような構成とした。
According to a third aspect of the present invention, the on-off valve and the on-off valve have a substantially arc shape, and when the valves are closed, each on-off valve forms a recess toward the heat radiating portion of the intercooler. And, when the valve is open, the concave portion of the on-off valve on the suction side faces the other side wall of the suction portion, the concave portion of the on-off valve on the discharge portion faces one side wall side of the discharge portion, and One end of the suction opening / closing valve on the heat radiating section side faces the other side wall of the heat radiating section, and one end of the discharge section opening / closing valve on the heat radiating section side faces one side wall side of the heat radiating section.

【0008】請求項4では、過給機から内燃機関までの
吸気管中に、上記請求項1或は請求項2或は請求項3記
載のインタークーラ装置を配置して成る内燃機関のイン
タークーラ装置の開閉弁の開閉を制御する制御装置にお
いて、吸気管内圧力に基づいて前記開閉弁を開閉制御す
る構成とした。
According to a fourth aspect of the present invention, there is provided an intercooler for an internal combustion engine, wherein the intercooler according to the first, second, or third aspect is disposed in an intake pipe from the supercharger to the internal combustion engine. In the control device for controlling the opening and closing of the on-off valve of the device, the on-off valve is controlled to open and close based on the pressure in the intake pipe.

【0009】請求項5では、過給機入口の圧力と吸気管
内の圧力の差圧が、ある所定値以上に達した時にのみ、
吸入部開閉弁と吐出部開閉弁を同時に開くように制御す
る構成とした。
According to the present invention, only when the pressure difference between the pressure at the inlet of the supercharger and the pressure in the intake pipe reaches a certain predetermined value or more,
The suction opening / closing valve and the discharge opening / closing valve are controlled to open simultaneously.

【0010】請求項6では、吸気管路内流量の値によっ
て決まる吸気管内の圧力が、ある所定値以上となった時
にのみ、吸入部開閉弁と吐出部開閉弁を同時に開くよう
に制御する構成とした。
According to a sixth aspect of the present invention, control is performed such that the suction opening / closing valve and the discharge opening / closing valve are simultaneously opened only when the pressure in the intake pipe determined by the value of the flow rate in the intake pipe exceeds a predetermined value. And

【0011】[0011]

【作用】請求項1記載の内燃機関のインタークーラ装置
において、2枚の流路仕切り板と吸入側と吐出側の2つ
の開閉弁の開閉により、運転状態に応じて流路を切換え
ることが可能となる。
In the intercooler device for an internal combustion engine according to the first aspect, the flow path can be switched according to the operation state by opening and closing the two flow path partition plates and the two on-off valves on the suction side and the discharge side. Becomes

【0012】請求項2記載の内燃機関のインタークーラ
装置において、2枚の流路仕切り板と吸入側と吐出側の
2つの開閉弁の開閉により、放熱部面積を拡大すること
なく、放熱部を3分割した一定方向に流れる流路と、S
字を描く往復式の流路の2通りの流路の切換えが可能と
なる。
In the intercooler device for an internal combustion engine according to the second aspect, by opening and closing the two flow path partition plates and the two on-off valves on the suction side and the discharge side, the heat radiation part can be formed without increasing the area of the heat radiation part. A flow path that flows in a fixed direction divided into three parts,
It is possible to switch between two kinds of flow paths of a reciprocating flow path that draws a character.

【0013】したがって、インタークーラ内の空気の流
量が少ない低速運転時は、S字を描く往復式の流路にし
て、流路長を長くすることで、放熱時間を長くし、放熱
効果をあげることができる。逆に、流量の多い高速運転
時は、放熱部を3分割した一定方向に流れる流路にし
て、前記往復式の流路に対して流路面積を広げること
で、インタークーラの圧損を減らすことが可能となる。
Therefore, during low-speed operation in which the flow rate of air in the intercooler is small, a reciprocating flow path that draws an S-shape is used, and the length of the flow path is lengthened, so that the heat radiation time is prolonged and the heat radiation effect is improved. be able to. Conversely, at the time of high-speed operation with a large flow rate, the pressure loss of the intercooler is reduced by dividing the heat radiating section into three flow paths that flow in a fixed direction and increasing the flow path area with respect to the reciprocating flow path. Becomes possible.

【0014】請求項3記載の内燃機関のインタークーラ
装置において、略円弧状の吸入部開閉弁と吐出部開閉弁
が、弁閉時には、前記インタークーラの放熱部に向かっ
て凹部を形成し、かつ弁開時には、前記凹部は、吸入部
の側壁と流路仕切り板、または吐出部の側壁と流路仕切
り板で形成された流路の側壁側を向き、開閉弁の放熱部
側の一端を放熱部内を上下方向に前記2枚の流路仕切り
板で仕切られた3つの流路に対して、各々外側の流路に
向かうように位置させたことにより、弁閉時は、インタ
ークーラ内の空気が淀みなくスムースに流れる往復式の
流路を形成し、弁開時は、インタークーラ内の空気が3
分割された放熱部全体を均等に流れる一定方向流路を形
成することが可能となる。
According to a third aspect of the present invention, in the intercooler device for an internal combustion engine, the substantially arc-shaped intake opening / closing valve and the discharge opening / closing valve form a recess toward the heat radiating portion of the intercooler when the valves are closed, and When the valve is open, the recess faces the side wall of the suction unit and the side wall of the flow path formed by the side wall of the discharge unit and the side wall of the discharge unit and the flow path partition plate. When the valve is closed, the air inside the intercooler is located at the time of closing the valve by arranging the three passages vertically divided in the inside of the section toward the outer passages with respect to the three passages separated by the two passage partitioning plates. Forms a reciprocating flow path that flows smoothly without stagnation, and when the valve is open, the air in the intercooler
It is possible to form a fixed-direction flow path that uniformly flows through the entire divided heat radiating portion.

【0015】請求項4記載の内燃機関のインタークーラ
制御装置において、吸気管内圧力に基づいて吸入部開閉
弁及び吐出部開閉弁を制御することにより、低速運転時
と高速運転時の運転条件に応じた制御が可能となる。
In the intercooler control device for an internal combustion engine according to the present invention, the intake opening / closing valve and the discharge opening / closing valve are controlled on the basis of the pressure in the intake pipe so as to be adapted to the operating conditions at the time of low speed operation and high speed operation. Control becomes possible.

【0016】請求項5記載の内燃機関のインタークーラ
制御装置において、吸入部開閉弁と吐出部開閉弁の開閉
制御を過給機入口の圧力と吸気管内の圧力の差圧で行う
ことにより、簡素な構成による制御が可能となる。
According to a fifth aspect of the present invention, in the intercooler control apparatus for an internal combustion engine, the opening / closing control of the intake opening / closing valve and the discharge opening / closing valve is performed by the differential pressure between the pressure at the inlet of the supercharger and the pressure in the intake pipe. Control with a simple configuration becomes possible.

【0017】請求項6記載の内燃機関のインタークーラ
制御装置において、吸入部開閉弁と吐出部開閉弁の開閉
制御を吸気管路内流量の値によって決まる吸気管路内の
圧力によって、機械的或は電気的に開閉制御をすること
により、機械的開閉制御の場合は、より簡素な構成で制
御が可能となり、電気的開閉制御の場合は、精密な開閉
切換えの制御が可能となる。
In the intercooler control device for an internal combustion engine according to the present invention, the opening / closing control of the intake opening / closing valve and the discharge opening / closing valve is controlled mechanically or mechanically by the pressure in the intake pipe determined by the value of the flow rate in the intake pipe. By electrically controlling the opening and closing, in the case of mechanical opening and closing control, it is possible to perform control with a simpler configuration, and in the case of electrical opening and closing control, precise opening and closing switching control is possible.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。図
1及び図2に本発明の第1実施例を示す。まず図1は全
体構成を示し、符号1は、複数の気筒を備えたガソリン
エンジンを示し、該ガソリンエンジン1には、各気筒へ
吸入空気を導く吸気管2と、各気筒から排出される排気
ガスを通す排気管3とが接続する。
Embodiments of the present invention will be described below. 1 and 2 show a first embodiment of the present invention. First, FIG. 1 shows an overall configuration, and reference numeral 1 denotes a gasoline engine having a plurality of cylinders. The gasoline engine 1 has an intake pipe 2 for guiding intake air to each cylinder, and exhaust gas discharged from each cylinder. An exhaust pipe 3 through which gas passes connects.

【0019】符号4は排気ターボ過給機を示し、該排気
ターボ過給機4は、前記排気管3に接続した排気タービン
5と、この排気タービン5に直結したコンプレッサ6とから
なる。該コンプレッサ6の吸い込み側には、エアフロー
メータ7とエアクリーナ8と吸気導入口9とを、各々吸気
ダクト10を介して接続する。
Reference numeral 4 denotes an exhaust turbocharger. The exhaust turbocharger 4 is an exhaust turbine connected to the exhaust pipe 3.
5 and a compressor 6 directly connected to the exhaust turbine 5. An air flow meter 7, an air cleaner 8, and an intake port 9 are connected to the suction side of the compressor 6 via intake ducts 10, respectively.

【0020】また、前記コンプレッサ6の吐出側には、
空冷式インタークーラ11とスロットルチャンバー12の一
端が、過給管13を介して接続されており、スロットルチ
ャンバー12の他端には、吸気管2が接続する。
Further, on the discharge side of the compressor 6,
One end of the air-cooled intercooler 11 and one end of the throttle chamber 12 are connected via a supercharging pipe 13, and the other end of the throttle chamber 12 is connected to the intake pipe 2.

【0021】これにより、排気管3からの排気ガスの流
れによって排気タービン5が駆動され、排気タービン5に
直結しているコンプレッサ6が駆動されることにより、
吸気導入口9から吸入された空気が圧縮され、圧縮され
た吸入空気は、インタークーラ11で冷却された後、スロ
ットルチャンバー12を通過し、ガソリンエンジン1に導
入される。
As a result, the exhaust turbine 5 is driven by the flow of the exhaust gas from the exhaust pipe 3, and the compressor 6 directly connected to the exhaust turbine 5 is driven.
The air taken in from the intake port 9 is compressed, and the compressed intake air is cooled by the intercooler 11, passes through the throttle chamber 12, and is introduced into the gasoline engine 1.

【0022】次に、図2は前記インタークーラ11の構成
を示す。インタークーラ11は、図中の破線部を境にし
て、吸入空気が導入する吸入部14と、外気と吸入空気と
の熱交換を行う放熱部15と、熱交換を行った吸入空気を
内燃機関へ導く吐出部16に大きく分けられる。
Next, FIG. 2 shows the structure of the intercooler 11. The intercooler 11 is provided with an intake section 14 for introducing intake air, a heat radiating section 15 for exchanging heat between the outside air and the intake air, and an internal combustion engine To the discharge section 16 that leads to the

【0023】前記吸入部14は、吸入口17から放熱部15に
向けて2段階に拡管され、放熱部15に接続する。吸入部1
4の略中央付近から放熱部15に向けて、吸入部14内管路
下部から約1/3の高さに仕切る、吸入部流路仕切り板
18aを設けることにより、狭い側の流路を第1の吸入部
流路19、広い側の流路を第2の吸入部流路20として形成
される。第2の吸入部流路20が拡管開始する端部に、略
円弧形状の吸入部開閉弁21を設ける。該吸入部開閉弁21
は、吸入部作動ロッド22を介して、吸入部ダイヤフラム
型アクチュエータ23に接続される。該吸入部ダイヤフラ
ム型アクチュエータ23の吸入部側の一方には、吸気ダク
ト10内圧力を導く吸気ダクト内圧力配管24が接続され、
他方には、吸気管2内圧力を導く吸気管内圧力配管25が
接続される。
The suction part 14 is expanded in two stages from the suction port 17 to the heat radiation part 15 and connected to the heat radiation part 15. Inhalation part 1
A suction part flow path partition plate that partitions from the vicinity of the center of 4 toward the heat radiation part 15 to a height of about 1/3 from the lower part of the pipe in the suction part 14.
By providing 18a, the narrow channel is formed as the first suction channel 19 and the wide channel is formed as the second suction channel 20. At the end where the second suction passage 20 starts to expand, a substantially arc-shaped suction opening / closing valve 21 is provided. The suction part opening / closing valve 21
Is connected to a suction part diaphragm type actuator 23 via a suction part operation rod 22. An intake duct pressure pipe 24 for guiding the pressure in the intake duct 10 is connected to one of the intake section sides of the intake section diaphragm type actuator 23,
The other end is connected to an intake pipe pressure pipe 25 that guides the intake pipe 2 pressure.

【0024】吐出部16は、吐出口26から放熱部15に向け
て拡管され、放熱部15に接続する。吐出部16の略中央付
近から放熱部15に向けて、吐出部16内管路上部から約1
/3の高さに仕切る、吐出部流路仕切り板27aを設ける
ことにより、狭い側の流路を第1の吐出部流路28、広い
側の流路を第2の吐出部流路29として形成される。第2の
吐出部流路29が拡管開始する端部に、略円弧形状の吐出
部開閉弁30を設ける。該吐出部開閉弁30は、吐出部作動
ロッド31を介して、吐出部ダイヤフラム型アクチュエー
タ32に接続される。該吐出部ダイヤフラム型アクチュエ
ータ32の吐出部16側の一方には、吸気ダクト10内圧力を
導く吸気ダクト内圧力配管24が接続され、他方には、吸
気管2内圧力を導く吸気管内圧力配管25が接続される。
The discharge section 16 is expanded from the discharge port 26 toward the heat radiating section 15 and is connected to the heat radiating section 15. From about the center of the discharge section 16 toward the heat radiating section 15, about 1
By providing the discharge part flow path partition plate 27a, which is divided at a height of / 3, the narrow side flow path is used as the first discharge part flow path 28, and the wide side flow path is used as the second discharge part flow path 29. It is formed. A discharge section opening / closing valve 30 having a substantially arc shape is provided at an end where the second discharge section flow path 29 starts expanding. The discharge section opening / closing valve 30 is connected to a discharge section diaphragm type actuator 32 via a discharge section operation rod 31. One of the discharge section diaphragm-type actuators 32 on the discharge section 16 side is connected to an intake pipe pressure pipe 24 for guiding the pressure in the intake duct 10, and the other is connected to an intake pipe pressure pipe 25 for guiding the pressure in the intake pipe 2. Is connected.

【0025】放熱部15は、吸入部14と吐出部16との間に
あり、それぞれと接続される。放熱部15は、吸入空気の
通路としてのチューブ39と冷却用のフィン40を1つの層
とした多層積層構造であり、放熱部15を幅方向に略3等
分する位置のチューブの代わりに、これらの層の間に設
けられた、2枚の放熱部流路仕切り板18b、27bにより流
路を略3等分される。尚、前記2枚の放熱部流路仕切り
板18b、27bは、新たに設けず、幅方向に略3等分する位
置に対応する位置にある、チューブの壁を利用してもよ
い。前記放熱部流路仕切り板18bは、吸入部14の端部
で、前記吸入部流路切り板18aの放熱部15側の一端と接
続され、流路仕切り板としての吸入側流路仕切り板18を
形成する。放熱部流路仕切り板27bは、吐出部16の端部
で、前記吐出部流路仕切り板27aの放熱部14側の一端と
接続され、流路仕切り板としての吐出側流路仕切り板27
を形成する。放熱部15の吸入側流路仕切り板18と吐出側
流路仕切り板27で仕切られた3つの流路を、下から第1
の放熱部流路33、第2の放熱部流路34、第3の放熱部流路
35とする。尚、前記3つの流路は、前記吸入側及び吐出
側の流路仕切り板と、放熱部の側壁との間にある複数の
チューブより形成されている。
The heat radiating section 15 is located between the suction section 14 and the discharge section 16 and is connected to each of them. The heat dissipating part 15 has a multilayer laminated structure in which a tube 39 as a passage of the intake air and a cooling fin 40 are formed in one layer. Instead of the tube at a position where the heat dissipating part 15 is divided into approximately three equal parts in the width direction, The flow path is divided into approximately three equal parts by two heat-radiating-part flow path partition plates 18b and 27b provided between these layers. The two heat-radiating portion flow path partitioning plates 18b and 27b may not be newly provided, and a tube wall at a position corresponding to a position substantially equally divided into three in the width direction may be used. The heat radiating section flow path partition plate 18b is connected to one end of the suction section flow path partition plate 18a on the heat radiating section 15 side at an end of the suction section 14, and the suction side flow path partition plate 18 serving as a flow path partition plate. To form The heat radiating section flow path partition plate 27b is connected to one end of the discharge section flow path partition plate 27a on the heat radiating section 14 side at an end of the discharge section 16, and the discharge side flow path partition plate 27 serving as a flow path partition plate.
To form The three flow paths partitioned by the suction-side flow path partition plate 18 and the discharge-side flow path partition plate 27 of the heat radiation unit 15 are
Radiator channel 33, second radiator channel 34, third radiator channel
35. The three flow paths are formed by a plurality of tubes between the suction side and discharge side flow path partition plates and the side wall of the heat radiating portion.

【0026】よって吸入側流路仕切り板18により、第1
の吸入部流路19と第1の放熱部流路33が他の流路と隔離
した一連の流路として形成され、吐出部流路仕切り板27
により、第3の放熱部流路35と第1の吐出部流路28が他の
流路と隔離した一連の流路として形成される。
Therefore, the suction side flow path partition plate 18 allows the first
The suction section flow path 19 and the first heat radiating section flow path 33 are formed as a series of flow paths separated from other flow paths, and the discharge section flow path partition plate 27 is formed.
Thereby, the third heat radiating section flow path 35 and the first discharge section flow path 28 are formed as a series of flow paths separated from other flow paths.

【0027】次に、図3と図4により、吸入部開閉弁21と
吐出部開閉弁30の開閉時の流路について説明する。まず
図3は、吸入部開閉弁21と吐出部開閉弁30が共に閉じた
状態の流路を示す。この状態において、各開閉弁の略円
弧形状の凹部は、放熱部側を向いて配置されている。
Next, referring to FIG. 3 and FIG. 4, the flow paths at the time of opening / closing of the suction part opening / closing valve 21 and the discharge part opening / closing valve 30 will be described. First, FIG. 3 shows a flow path in a state in which both the suction part on-off valve 21 and the discharge part on-off valve 30 are closed. In this state, the substantially arc-shaped concave portions of the respective on-off valves are arranged facing the heat radiating portion side.

【0028】吸入口17から吸入部14に導入された吸入空
気は、吸入部開閉弁21が閉じていることにより、第2の
吸入部流路20が塞がれて、すべて第1の吸入部流路19に
流入する。第1の吸入部流路19に流入した吸入空気は、
放熱部15の第1の放熱部流路33を流れる。第1の放熱部流
路33の吐出部16付近に来た吸入空気は、吐出部開閉弁30
が閉じていることにより、第2の吐出部流路29が塞がれ
て、第2の放熱部流路34を流れるように放熱部15内を折
り返す。さらに、第2の放熱部流路34の吸入部14付近に
来た吸入空気は、吸入部開閉弁21が閉じていることによ
り、第3の放熱部流路35を流れるように放熱部15内を再
び折り返す。第3の放熱部流路35を流れた吸入空気は、
吐出部16の第1の吐出部流路28を流れ、吐出口26より吐
出される。
The suction air introduced from the suction port 17 into the suction section 14 is completely blocked by the second suction section opening / closing valve 21 so that the second suction section flow path 20 is closed. It flows into the flow path 19. The intake air flowing into the first intake section flow path 19 is
It flows through the first radiating section flow path 33 of the radiating section 15. The intake air coming near the discharge section 16 of the first heat radiating section flow path 33 is discharged from the discharge section opening / closing valve 30.
Is closed, the second discharge part flow path 29 is closed, and the inside of the heat radiation part 15 is turned back so as to flow through the second heat radiation part flow path 34. Further, the intake air that has come near the suction part 14 of the second heat radiation part flow path 34 in the heat radiation part 15 so as to flow through the third heat radiation part flow path 35 by closing the suction part opening / closing valve 21. Wrap again. The intake air flowing through the third heat radiating section flow path 35 is
The liquid flows through the first discharge channel 28 of the discharge unit 16 and is discharged from the discharge port 26.

【0029】よって、吸入部開閉弁21と吐出部開閉弁30
が共に閉じた状態では、各開閉弁21、30の略円弧形状の
凹部が、放熱部側を向いて閉じていることにより、図3
で示す様に、インタークーラ11内の流路は、第1の放熱
部流路33、第2の放熱部流路34及び第3の放熱部流路35が
1つの連続した流路としてつながり、前記各開閉弁21、3
0の凹部が、吸気の流れを滑らかに反転させ、放熱部15
の3つの流路を、下から上へとスムースに流れるS字を
描く往復式の流路となる。以って、流路が長くなり、放
熱時間が長くなるので、放熱性能が向上する。
Therefore, the suction part opening / closing valve 21 and the discharge part opening / closing valve 30
When both are closed, the substantially arc-shaped concave portions of the respective on-off valves 21 and 30 are closed facing the heat radiating portion side, so that FIG.
As shown by, the flow path in the intercooler 11, the first heat radiation part flow path 33, the second heat radiation part flow path 34 and the third heat radiation part flow path 35 are connected as one continuous flow path, Each on-off valve 21, 3
The concave portion of 0 smoothly reverses the flow of intake air,
These three flow paths are reciprocating flow paths that draw an S-shape that flows smoothly from bottom to top. Accordingly, the flow path becomes longer and the heat radiation time becomes longer, so that the heat radiation performance is improved.

【0030】次に、図4は、吸入部開閉弁21と吐出部開
閉弁30が共に開いた状態の流路を示している。吸入部開
閉弁21と吐出部開閉弁30が共に開いている時は、各開閉
弁21、30の略円弧形状の凹部は、各々対応する流路仕切
り板18、27と反対側を向き、且つ、各開閉弁21、30の放熱
部側の一端が、吸入部開閉弁21では、第3の放熱部流路
35側を向き、吐出部開閉弁30では、第1の放熱部流路33
側を向いている。
Next, FIG. 4 shows a flow path in a state where both the suction part opening / closing valve 21 and the discharge part opening / closing valve 30 are open. When both the suction opening / closing valve 21 and the discharge opening / closing valve 30 are open, the substantially arc-shaped concave portions of the opening / closing valves 21 and 30 face the opposite sides of the corresponding flow path partition plates 18 and 27, respectively, and One end of each of the on-off valves 21 and 30 on the radiating section side is connected to the third radiating section flow path in the suction section on-off valve 21.
In the discharge section opening / closing valve 30, the first heat radiating section flow path 33
Looking to the side.

【0031】吸入口17から吸入部14に導入された吸入空
気は、吸入部開閉弁21が開いていることにより、第1の
吸入部流路19と第2の吸入部流路20に別れる。第1の吸入
部流路19を通過した吸入空気は、放熱部15の第1の放熱
部流路33を流れる。一方、第2の吸入部流路20を通過し
た吸入空気は、吸入部開閉弁21が前記の様に、略円弧形
状の凹部が、吸入側流路仕切り板18と反対側を向き、且
つ、放熱部側の一端が、第3の放熱部流路35側を向いて
位置していることにより、第2の放熱部流路34、第3の
放熱部流路35に均等に分配されて流れる。よって放熱部
15内は、流路が3分割されて吸入部14から吐出部16へと
流れる。第3の放熱部流路35を流れる吸入空気は、第1
の吐出部流路28を流れ、吐出口26より吐出される。一
方、第1の放熱部流路33と第2の放熱部流路34を流れる
吸入空気は、吐出部開閉弁30が前記の様に、略円弧形状
の凹部が、吐出部流路仕切り板27と反対側を向き、且
つ、放熱部側の一端が、第1の放熱部流路33側を向いて
位置していることにより、第2の吐出部流路29へとスム
ースに合流され、吐出口26より吐出される。
The suction air introduced from the suction port 17 into the suction section 14 is separated into a first suction section flow path 19 and a second suction section flow path 20 by opening the suction section opening / closing valve 21. The suction air that has passed through the first suction part flow path 19 flows through the first heat radiation part flow path 33 of the heat radiation part 15. On the other hand, the suction air that has passed through the second suction portion flow path 20, the suction portion opening / closing valve 21 has the substantially arc-shaped concave portion facing the opposite side to the suction side flow channel partition plate 18 as described above, and Since one end on the heat radiating portion side is located facing the third heat radiating portion flow channel 35 side, the second heat radiating portion flow channel 34 and the third heat radiating portion flow channel 35 are uniformly distributed and flow. . Therefore the heat radiating part
Inside 15, the flow path is divided into three and flows from the suction part 14 to the discharge part 16. The intake air flowing through the third heat radiating section flow path 35 is
And flows from the discharge port 26. On the other hand, the intake air flowing through the first heat radiating section flow path 33 and the second heat radiating section flow path 34 has a substantially arc-shaped recess formed by the discharge section opening / closing valve 30 as described above. And the one end on the heat radiating portion side is located facing the first heat radiating portion flow channel 33 side, so that the fluid flows smoothly into the second discharge portion flow channel 29 and is discharged. It is discharged from the outlet 26.

【0032】よって、吸入部開閉弁21と吐出部開閉弁30
が共に開いている時は、各開閉弁21、30の略円弧形状の
凹部は、各々対応する吸入部及び吐出部流路仕切り板1
8、27と反対側を向き、且つ、各開閉弁21、30の放熱部側
の一端が、吸入部開閉弁21では、第3の放熱部流路35側
を向き、吐出部開閉弁30では、第1の放熱部流路33側を
向いていることにより、図3で示す様に、インタークー
ラ内の流路は、第1の放熱部流路33、第2の放熱部流路3
4、第3の放熱部流路35の3分割された一定方向に流れる
流路となり、吸入部開閉弁21を通過した吸入空気が、第
3の放熱部流路35側にも十分に誘導され、又、第1の放熱
部流路33、第2の放熱部流路34からの吸入空気が、吐出
部開閉弁30を通過する際は、スムースに合流できること
により、吸入空気が放熱部全体に均等に流れる様にな
り、以って、前記往復式の流路に対して流路面積を広げ
ることで、インタークーラの圧損が低減される。
Therefore, the suction part opening / closing valve 21 and the discharge part opening / closing valve 30
When both are open, the substantially arc-shaped concave portions of the respective on-off valves 21 and 30 are provided with the corresponding suction part and discharge part flow path partition plate 1 respectively.
8 and 27, and one end of each on-off valve 21, 30 on the heat radiating part side faces the third heat radiating part flow path 35 side in the suction part on-off valve 21, and in the discharge part on-off valve 30 By facing the first heat radiating section flow path 33 side, as shown in FIG. 3, the flow path in the intercooler is divided into the first heat radiating section flow path 33 and the second heat radiating section flow path 3.
4, the third heat radiating section flow path 35 becomes a flow path that is divided into three and flows in a certain direction, and the intake air that has passed through the suction
When the intake air from the first heat radiating section flow path 33 and the second heat radiating section flow path 34 passes through the discharge section open / close valve 30, , The air can be smoothly merged, so that the intake air flows evenly throughout the heat radiating portion. Thus, the flow area of the reciprocating flow path is increased, thereby reducing the pressure loss of the intercooler. .

【0033】次に、吸入部開閉弁21と吐出部開閉弁30の
動作について説明する。吸入部開閉弁21には、スロット
ルチャンバー7下流の吸気管2内圧力と、コンプレッサ6
上流の吸気ダクト10内圧力の差圧が、ある所定値以上の
時に、前記吸入部開閉弁21を開くように作動させる吸入
部ダイアフラム型アクチュエータ23が、途中に間接部を
もつ吸入部作動ロッド22を介して接続される。同様に、
吐出部開閉弁30についても、前記吐出部開閉弁30を吸入
部ダイアフラム型アクチュエータ23と同一所定値で開く
ように作動させる吐出部ダイアフラム型アクチュエータ
32が、途中に間接部をもつ吐出部作動ロッド31を介して
接続される。
Next, the operation of the suction part opening / closing valve 21 and the discharge part opening / closing valve 30 will be described. The suction opening / closing valve 21 is provided with the pressure in the intake pipe 2 downstream of the throttle chamber 7 and the compressor 6
When the differential pressure of the pressure in the upstream intake duct 10 is equal to or greater than a predetermined value, a suction part diaphragm type actuator 23 that operates to open the suction part opening / closing valve 21 is provided with a suction part operating rod 22 having an indirect part in the middle. Connected via Similarly,
As for the discharge section opening / closing valve 30, a discharge section diaphragm type actuator which operates to open the discharge section opening / closing valve 30 at the same predetermined value as the suction section diaphragm type actuator 23.
32 is connected via a discharge part operating rod 31 having an indirect part in the middle.

【0034】よって、吸入部開閉弁21と吐出部開閉弁30
は、スロットルチャンバー7下流の吸気管2内圧力とコン
プレッサ6入口の吸気ダクト10内圧力の差圧がある所定
値以上の時にのみ同時に開き、所定値未満の時は閉じる
ことになる。
Therefore, the suction part opening / closing valve 21 and the discharge part opening / closing valve 30
Is simultaneously opened only when the differential pressure between the pressure in the intake pipe 2 downstream of the throttle chamber 7 and the pressure in the intake duct 10 at the inlet of the compressor 6 is equal to or higher than a predetermined value, and is closed when the pressure difference is lower than the predetermined value.

【0035】次に、図5で、吸入部開閉弁21及び吐出部
開閉弁30の動作領域について説明する。図5のグラフ
は、グラフの縦軸は吸気管内圧力Pbを示し、横軸は吸
気ダクト内空気流量Gを示す。屈曲した右上がりの直線
は、車両の最高出力線を示し、車両で使用される使用域
は、前記最高出力線右側部分にあたる。又、スロットル
チャンバー7下流の吸気管2内圧力と、コンプレッサ6上
流の吸気ダクト10内圧力との差圧をある所定値とした時
の特性線は、前記使用域を2分する位置にある右下がり
の開閉切換え線として表される。これは、コンプレッサ
6上流の吸気ダクト10内圧力は、吸気ダクト内流量G
が増えると徐々に下がる一方、吸気管内圧力Pbは、吸
気ダクト内流量Gが増えると急激に上がる。よって、吸
気ダクト内吸気量Gが増えると、吸気管内圧力Pbと吸
気ダクト10内圧力の差圧が急激に広がることになり、
開閉切換え線としては、吸気管内圧力Pbをある程度下
げても十分前記吸気管内圧力Pbと吸気ダクト10内圧
力の差圧が確保できるので、右下がりの線として表せ
る。また、弁の開閉については、前記切換え線より上側
で開閉弁開に、逆に下側で開閉弁閉なる。これによりグ
ラフ上の使用域の左下側が低速領域であり、右上側が高
速領域となるので、低速領域で空気流量が少ないと、前
記吸入部開閉弁21と吐出部開閉弁30が閉じて、インター
クーラ11はS字を描く往復式の流路となる。逆に高速領
域で空気流量が多くなると前記吸入部開閉弁21と吐出部
開閉弁30が開いて放熱部15が3分割された一定方向に流
れる流路となる。
Next, referring to FIG. 5, the operation areas of the suction part opening / closing valve 21 and the discharge part opening / closing valve 30 will be described. In the graph of FIG. 5, the vertical axis of the graph indicates the pressure Pb in the intake pipe, and the horizontal axis indicates the air flow rate G in the intake duct. The bent right-upward straight line indicates the maximum output line of the vehicle, and the use area used by the vehicle corresponds to the right side of the maximum output line. When the pressure difference between the pressure in the intake pipe 2 downstream of the throttle chamber 7 and the pressure in the intake duct 10 upstream of the compressor 6 is set to a predetermined value, the characteristic line indicates that the right It is represented as a downward switching line. This is because the pressure in the intake duct 10 upstream of the compressor 6 is equal to the flow rate G in the intake duct.
Increases, the pressure Pb in the intake pipe increases rapidly when the flow rate G in the intake duct increases. Therefore, when the intake air amount G in the intake duct increases, the differential pressure between the intake pipe internal pressure Pb and the intake duct 10 internal pressure increases rapidly,
Since the pressure difference between the intake pipe pressure Pb and the pressure in the intake duct 10 can be sufficiently secured even if the intake pipe pressure Pb is reduced to some extent, the open / close switching line can be expressed as a downward-sloping line. Regarding opening and closing of the valve, the opening and closing valve is opened above the switching line and closed on the lower side. As a result, the lower left side of the use area on the graph is the low-speed area, and the upper right side is the high-speed area.If the air flow rate is low in the low-speed area, the intake opening / closing valve 21 and the discharge opening / closing valve 30 close and the intercooler Reference numeral 11 denotes a reciprocating flow path that draws an S-shape. Conversely, when the air flow rate increases in the high-speed region, the suction-port opening / closing valve 21 and the discharge-port opening / closing valve 30 are opened, and the heat radiating section 15 is divided into three and flows in a fixed direction.

【0036】以上により、低速運転時には、放熱部15の
3つの流路を下から上へとスムースに流れるS字を描く
往復式の流路となり、流路が長くなり、放熱時間が長く
なるので、放熱性能が向上する。一方、高速運転時に
は、放熱部15は、3分割された一定方向に流れる流路と
なり、前記往復式の流路に対して流路面積を広げること
で、インタークーラの圧損が低減される。これにより、
低速運転時と高速運転時の相反する要求が、比較的安価
な構成で両立できる。
As described above, at the time of low-speed operation, the three flow paths of the heat radiating portion 15 become a reciprocating flow path in which an S-shaped flow smoothly flows from the bottom to the top, and the flow path becomes longer and the heat radiation time becomes longer. , Heat dissipation performance is improved. On the other hand, at the time of high-speed operation, the heat radiating portion 15 is a three-part flow path that flows in a fixed direction, and the pressure loss of the intercooler is reduced by increasing the flow path area with respect to the reciprocating flow path. This allows
Conflicting demands during low-speed operation and high-speed operation can be achieved with a relatively inexpensive configuration.

【0037】次に、図6で第2実施例の全体構成図を示
す。第2実施例は、図1で示した第1実施例に対して、
吸気ダクト10内圧力を導く吸気ダクト内圧力配管24を削
除したものであり、吸気管2内圧力と吸気ダクト10内圧
力の差圧が、ある所定圧力で作動させるダイアフラム型
アクチュエータをもつ第1実施例に対して、吸気管2内
圧力のみがある所定圧力で作動させるダイアフラム型ア
クチュエータを持つことになる。
Next, FIG. 6 shows an overall configuration diagram of the second embodiment. The second embodiment differs from the first embodiment shown in FIG.
The first embodiment has a diaphragm-type actuator in which the pressure duct 24 in the intake duct for guiding the pressure in the intake duct 10 is eliminated, and the differential pressure between the pressure in the intake pipe 2 and the pressure in the intake duct 10 is operated at a predetermined pressure. In contrast to the example, only the pressure in the intake pipe 2 has a diaphragm type actuator that operates at a certain pressure.

【0038】よって、図7で示す様に、吸入部開閉弁21
及び吐出部開閉弁30の動作領域については、第2実施例
の開閉弁の開閉を切換える開閉切換え線が、第1実施例
と異なり直線となる。これは吸気ダクト内圧力配管24を
削除したことにより、ある単一の吸気管内圧力Pbだけ
で開閉するようになった為である。
Therefore, as shown in FIG.
Regarding the operation area of the discharge section opening / closing valve 30, the opening / closing switching line for switching the opening / closing of the opening / closing valve of the second embodiment is a straight line unlike the first embodiment. This is because the pressure pipe 24 in the intake duct has been removed, so that it can be opened and closed only by a certain single pressure Pb in the intake pipe.

【0039】この様に、第2実施例は、第1実施例に対
して、開閉弁の切り換えを制御する為の圧力配管の配索
を簡素化したものである。
As described above, in the second embodiment, the arrangement of the pressure pipe for controlling the switching of the on-off valve is simplified as compared with the first embodiment.

【0040】次に、第3実施例を示す。第1実施例と第
2実施例で吸入部開閉弁21と吐出部開閉弁30を開閉駆動
する機構が、機械的なダイアフラム型アクチュエータで
あったことに対して、第3実施例では、吸入部開閉弁21
と吐出部開閉弁30を開閉駆動する機構が、電子制御型モ
ータアクチュエータであることが異なる。
Next, a third embodiment will be described. In the first embodiment and the second embodiment, the mechanism for opening and closing the suction opening / closing valve 21 and the discharge opening / closing valve 30 is a mechanical diaphragm type actuator. On-off valve 21
The difference is that the mechanism for opening and closing the discharge opening / closing valve 30 is an electronically controlled motor actuator.

【0041】以下、図8に第3実施例の全体構成図を示
す。第3実施例の第1実施例との違いのみを説明する
と、エアフロメータ7で検出した吸気ダクト内空気流量
Gの信号と、吸気管2で検出した吸気管内圧力Pbの信
号を制御回路部38に接続し、吸入部開閉弁21の駆動信号
を吸入部モータアクチュエータ36に、吐出部開閉弁30の
駆動信号を吐出部モータアクチュエータ37に、それぞれ
接続する。前記吸入部モータアクチュエータ36は、吸入
部開閉弁20を吸入部作動ロッド22を介して駆動し、吐出
部モータアクチュエータ37は、吐出部開閉弁30を吐出部
作動ロッド31を介して駆動する。
FIG. 8 shows an overall configuration diagram of the third embodiment. Only the difference between the third embodiment and the first embodiment will be described. The signal of the air flow rate G in the intake duct detected by the air flow meter 7 and the signal of the pressure Pb in the intake pipe detected by the intake pipe 2 are transmitted to the control circuit unit 38. The drive signal of the suction opening / closing valve 21 is connected to the suction motor actuator 36, and the drive signal of the discharge opening / closing valve 30 is connected to the discharge motor actuator 37. The suction unit motor actuator 36 drives the suction unit opening / closing valve 20 via the suction unit operating rod 22, and the discharge unit motor actuator 37 drives the discharge unit opening / closing valve 30 via the discharge unit operating rod 31.

【0042】次に、図9に示すフローチャートで、弁開
閉の制御について説明する。ステップS1で、吸気管内
圧力Pbと吸気ダクト内空気流量Gを検出する。次い
で、ステップS2で、図10に示すような縦軸を吸気管内
圧力Pb、横軸を吸気管内空気流量Gにとった制御マッ
プにおいて、車両の最高出力線右側の使用域を2分する
様に右下がりの曲線となる開閉切換え線を境に、上側を
開閉弁開領域、下側を開閉弁閉領域とし、前記吸気ダク
ト内空気流量Gと前記吸気コレクタ内圧力Pbの点が、
上記マップ上のどちらの領域にいるか判定する。そし
て、もし開閉弁開領域にいるならば、ステップS3によ
り、吸入部開閉弁21と吐出部開閉弁30を開く。逆に、も
し開閉弁閉領域にいるならば、ステップS4により、吸
入部開閉弁21と吐出部開閉弁30を閉じる。ここで、図10
の開閉切換え線は、車両により理想とされる切換え曲線
を表す。
Next, control of valve opening and closing will be described with reference to a flowchart shown in FIG. In step S1, the intake pipe pressure Pb and the intake duct air flow rate G are detected. Next, in step S2, in the control map in which the vertical axis is the intake pipe pressure Pb and the horizontal axis is the intake pipe air flow rate G as shown in FIG. With the opening / closing switching line forming a downward-sloping curve as a boundary, the upper side is the opening / closing valve open area, the lower side is the opening / closing valve closed area, and the points of the air flow rate G in the intake duct and the pressure Pb in the intake collector are:
It is determined which area on the map is located. If it is in the open / close valve open area, the suction unit open / close valve 21 and the discharge unit open / close valve 30 are opened in step S3. Conversely, if it is in the on-off valve closing area, the suction part on-off valve 21 and the discharge part on-off valve 30 are closed in step S4. Here, FIG.
Open / close switching line represents a switching curve that is ideal for the vehicle.

【0043】以上により、第3実施例は、第2実施例や
第1実施例に対して、開閉弁の切り換え駆動機構をモー
タによる電子制御としたことにより、低速運転時と高速
運転時共に、理想的な切換え制御が可能となる。尚、別
の開閉弁の切り換え駆動機構として、電磁式ソレノイド
でも可能である。
As described above, the third embodiment differs from the second embodiment and the first embodiment in that the switching drive mechanism of the on-off valve is electronically controlled by a motor. Ideal switching control becomes possible. It should be noted that an electromagnetic solenoid can be used as another switching drive mechanism for the on-off valve.

【0044】[0044]

【発明の効果】この構成において、吸気ダクト内空気流
量が、低流量である低速運転時においては、吸入側と吐
出側双方の開閉弁を閉じることで、インタークーラ内の
吸気流路がS字を描く往復式の流路となり、流路長を長
くすることにより放熱時間を稼ぐことで充分な放熱効果
が得られ、ガソリンエンジンであれば、低速トルクの向
上が図れ、ディーゼルエンジンであれば、NOxやパテ
ィキュレートの排出を抑ることができる。
In this configuration, during low-speed operation in which the air flow rate in the intake duct is low, by closing both the intake and discharge side on-off valves, the intake flow path in the intercooler becomes S-shaped. It is a reciprocating flow path that draws, and a sufficient heat radiation effect is obtained by increasing the heat radiation time by increasing the flow path length, and if it is a gasoline engine, the low speed torque can be improved, if it is a diesel engine, The emission of NOx and particulates can be suppressed.

【0045】一方、吸気ダクト内空気流量が高流量であ
る高速運転時においては、吸入側と吐出側双方の開閉弁
を開き、インタークーラ内の吸気流路が3分割した一定
方向の流路となり、前記往復式の流路に対して流路面積
を広げることで、インタークーラの圧損を減らし、ガソ
リン、ディーゼル双方の内燃機関共に、高速側の出力向
上が図れる。
On the other hand, during high-speed operation in which the air flow rate in the intake duct is high, the on-off valves on both the intake side and the discharge side are opened, and the intake flow path in the intercooler becomes a three-part flow path in a fixed direction. By increasing the flow passage area with respect to the reciprocating flow passage, the pressure loss of the intercooler can be reduced, and the output on the high-speed side can be improved in both the gasoline and diesel internal combustion engines.

【0046】従って、本発明により、過給機付きの内燃
機関において、低速域での排気改善や低速トルク向上と
高速域での出力向上をインタークーラを大型化させるこ
となく両立できる効果を有する。
Therefore, according to the present invention, in an internal combustion engine with a supercharger, there is an effect that it is possible to achieve both improvement of exhaust in a low speed range, improvement of low speed torque, and improvement of output in a high speed range without increasing the size of the intercooler.

【0047】また、吸入側と吐出側双方の開閉弁は略円
弧上の形状をしたことにより、弁閉時には、3分割され
たインタークーラ内流路を滑らかに接続することによ
り、流路による圧損を最小限にし、かつ、弁開時は、前
記弁形状をインタークーラ内部の吸入空気が、全体を均
等に流れるようにする効果を有する。
Further, since the on-off valves on both the suction side and the discharge side have a substantially arc shape, when the valves are closed, the three divided intercooler flow paths are smoothly connected to each other, so that the pressure loss due to the flow paths is reduced. Is minimized, and when the valve is open, the valve shape has the effect of allowing the intake air inside the intercooler to flow evenly throughout.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention.

【図2】同じく第1実施例を示すインタークーラ内部構
成図。
FIG. 2 is an internal configuration diagram of an intercooler showing the first embodiment.

【図3】開閉弁を閉じたときの空気の流れを示す図。FIG. 3 is a diagram showing a flow of air when an on-off valve is closed.

【図4】開閉弁を開いたときの空気の流れを示す図。FIG. 4 is a diagram showing the flow of air when an on-off valve is opened.

【図5】第1実施例の開閉弁の開閉切換えマップを示す
図。
FIG. 5 is a diagram showing an open / close switching map of the on-off valve according to the first embodiment;

【図6】第2実施例を示す全体構成図。FIG. 6 is an overall configuration diagram showing a second embodiment.

【図7】第2実施例の開閉弁の開閉切換えマップを示す
図。
FIG. 7 is a diagram showing an on / off switching map of an on-off valve according to a second embodiment.

【図8】第3実施例を示す全体構成図。FIG. 8 is an overall configuration diagram showing a third embodiment.

【図9】第3実施例の開閉弁の開閉制御のフローチャー
トを示す図。
FIG. 9 is a diagram showing a flowchart of on-off control of an on-off valve according to a third embodiment.

【図10】第3実施例の開閉弁の開閉切換えマップを示
す図。
FIG. 10 is a view showing an open / close switching map of an on-off valve according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 ガソリンエンジン 13 過給管 2 吸気管 18 吸入側流
路仕切り板 3 排気管 24 吸気ダクト
内圧力配管 4 排気ターボ過給機 25 吸気管内圧
力配管 7 エアフロメータ 27 吐出側流路
仕切り板 8 エアクリーナ 33 第1の放熱
部流路 9 吸気導入口 34 第2の放熱
部流路 10 吸気ダクト 35 第3の放熱
部流路 11 インタークーラ 12 スロットルチャンバー
DESCRIPTION OF SYMBOLS 1 Gasoline engine 13 Supercharging pipe 2 Intake pipe 18 Intake side flow path partition plate 3 Exhaust pipe 24 Pressure duct in intake duct 4 Exhaust turbocharger 25 Pressure pipe in intake pipe 7 Air flow meter 27 Discharge side flow path partition plate 8 Air cleaner 33 First heat radiating section flow path 9 Intake inlet 34 Second heat radiating section flow path 10 Intake duct 35 Third heat radiating section flow path 11 Intercooler 12 Throttle chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 過給機から内燃機関までの吸気管中に、
インタークーラを配置して成る過給機付き内燃機関のイ
ンタークーラ装置において、前記インタークーラは、吸
入空気を導入する吸入部と、吸入空気と外気との熱交換
を行う放熱部と、熱交換を行った吸入空気を吐出する吐
出部とで構成され、前記放熱部の長手方向の一端部に前
記吸入部が接続し、前記放熱部の長手方向の他端部に前
記吐出部が接続し、放熱部には、内部を幅方向に3分割
する2枚の流路仕切り板が設けられ、一方の流路仕切り
板は、放熱部の他端部側から長手方向に延び、放熱部の
一端部側で、一度放熱部の幅方向中心側に屈曲し、放熱
部の一端で、再び長手方向に屈曲し、吸入部途中まで長
手方向に延設し、他方の流路仕切り板は、放熱部の一端
部側から長手方向に延び、放熱部の他端部側で、一度放
熱部の幅方向中心側に屈曲し、放熱部の他端で、再び長
手方向に屈曲し、吐出部途中まで長手方向に延設し、放
熱部には、前記2枚の流路仕切り板によって、一方の放
熱部の側壁と一方の流路仕切り板との間に形成される第
1の放熱部流路と、一方の流路仕切り板と他方の流路仕
切り板との間に形成される第2の放熱部流路と、他方の
放熱部の側壁と他方の流路仕切り板との間に形成される
第3の放熱部流路が形成され、前記吸入部は、中空の拡
管された形状をし、前記一方の流路仕切り板により、流
路が吸入部途中から2分割され、前記2分割された流路
の内、第1の放熱部流路へと接続される側を第1の吸入
部流路、他方を第2の吸入部流路とし、該第2の吸入部流
路の一端は、前記放熱部へと接続し、第2の吸入部流路
が拡管開始する位置に、第2の吸入部流路の開閉を自在
にする吸入部開閉弁を配置し、前記吐出部は、中空の拡
管された形状をし、前記他方の流路仕切り板により、流
路が吐出部途中から2分割され、前記2分割された流路
の内、前記第3の放熱部流路へと接続される側を第1の吐
出部流路、他方を第2の吐出部流路とし、該第2の吐出部
流路の一端は、前記放熱部へと接続し、第2の吐出部流
路が拡管開始する位置に、第2の吐出部流路の開閉を自
在にする吐出部開閉弁を配置し、前記吸入部開閉弁と、
吐出部開閉弁とを開閉することにより、吸入空気の流路
を切換えることを特徴とするインタークーラ装置。
In an intake pipe from a supercharger to an internal combustion engine,
In an intercooler device for an internal combustion engine with a supercharger having an intercooler disposed therein, the intercooler includes a suction unit that introduces intake air, a radiator that performs heat exchange between the intake air and outside air, and a heat exchange unit. A discharge unit that discharges the sucked air, the suction unit is connected to one longitudinal end of the heat radiating unit, and the discharge unit is connected to the other longitudinal end of the heat radiating unit. The portion is provided with two flow path partitioning plates that divide the interior into three parts in the width direction, and one flow path partitioning plate extends in the longitudinal direction from the other end side of the heat radiating part, and one end side of the heat radiating part. Then, once bent to the width direction center side of the heat radiating portion, bent again in the longitudinal direction at one end of the heat radiating portion, and extended in the longitudinal direction halfway to the suction portion, and the other flow path partition plate is connected to one end of the heat radiating portion. Extending in the longitudinal direction from the side of the radiator, and once in the widthwise center of the radiator at the other end of the radiator At the other end of the heat radiating portion, again bending in the longitudinal direction, and extending in the longitudinal direction to the middle of the discharge portion. The heat radiating portion is formed by the two flow path partition plates, and the side wall of one of the heat radiating portions is provided. A first heat radiating portion flow path formed between the first heat radiating portion and the one flow channel dividing plate; and a second heat radiating portion flow channel formed between the one flow channel dividing plate and the other flow channel dividing plate. And a third heat radiating portion flow path formed between the side wall of the other heat radiating portion and the other flow path partition plate, and the suction portion has a hollow expanded shape, The flow path is divided by the flow path partition plate into two parts in the middle of the suction part, and the side connected to the first heat radiation part flow path is the first suction part flow path and the other of the two divided flow paths. Is a second suction part flow path, one end of the second suction part flow path is connected to the heat radiating part, and the second suction part flow path is located at a position where the expansion of the second suction part flow path starts. On the road An inlet opening / closing valve for allowing free closing is arranged, the discharge part has a hollow expanded shape, and the other flow path partition plate divides the flow path into two parts from the middle of the discharge part, and Of the flow paths, the side connected to the third heat radiating section flow path is the first discharge section flow path, the other side is the second discharge section flow path, and the second discharge section flow path One end is connected to the heat dissipating part, and a discharge part opening / closing valve for freely opening and closing the second discharge part flow path is arranged at a position where the second discharge part flow path starts expanding, and the suction part opening / closing is arranged. A valve,
An intercooler device characterized in that a flow path of intake air is switched by opening and closing a discharge part opening / closing valve.
【請求項2】 前記吸入空気の流路の切換えとして、吸
入部開閉弁と吐出部開閉弁とが同時に閉じた時には、吸
入部から入る吸入空気は、第1の吸入部流路を通った
後、第1の放熱部流路、第2の放熱部流路、第3の放熱部
流路の順にS字を描く様に通った後、第1の吐出部流路
を通って吐出され、前記吸入部開閉弁と吐出部開閉弁と
が同時に開いた時には、吸入部から入る吸入空気は、一
方の流路仕切り板により、第1の吸入部流路と、第2の吸
入部流路に別れ、放熱部に入った時は、第1の吸入部流
路を通った吸入空気は、第1の放熱部流路を通り、第2
の吸入部流路を通った吸入空気は、第2の放熱部流路と
第3の放熱部流路に別れ、都合3分割されて通った後、
第1の放熱部流路と第2の放熱部流路を通った吸入空気
は、第2の吐出部流路に合流し、第3の放熱部流路を通っ
た吸入空気は、第1の吐出部流路を通り、第1の吐出部流
路と第2の吐出部流路を通った吸入空気は、吐出部端部
で合流し吐出されることを特徴とする請求項1記載のイ
ンタークーラ装置。
2. The method according to claim 1, wherein when the intake air opening / closing valve and the discharge air opening / closing valve are simultaneously closed as the switching of the intake air flow passage, the intake air entering from the suction portion passes through the first intake air flow passage. After passing through the first radiating section flow path, the second radiating section flow path, and the third radiating section flow path in the order of drawing an S-shape, the liquid is discharged through the first discharging section flow path, When the suction opening / closing valve and the discharge opening / closing valve are simultaneously opened, the suction air entering from the suction part is separated into the first suction part flow path and the second suction part flow path by one flow path partition plate. When entering the heat radiating section, the intake air passing through the first suction section flow path passes through the first heat radiating section flow path,
The intake air that has passed through the suction section flow path is divided into a second heat dissipation section flow path and a third heat dissipation section flow path, and after being conveniently divided into three sections,
The intake air that has passed through the first heat radiating section flow path and the second heat radiating section flow path joins the second discharge section flow path, and the intake air that has passed through the third heat radiating section flow path is the first 2. The interface according to claim 1, wherein the intake air passing through the discharge section flow path and passing through the first discharge section flow path and the second discharge section flow path is merged and discharged at an end of the discharge section. Cooler device.
【請求項3】 上記吸入部開閉弁及び吐出部開閉弁は、
略円弧状の形状をし、弁閉時には、各々の開閉弁は、前
記インタークーラの放熱部に向かって凹部を形成し、か
つ弁開時には、吸入部側の開閉弁の前記凹部は、吸入部
の他方の側壁側を向き、吐出部側の開閉弁の前記凹部
は、吐出部の一方の側壁側を向き、且つ、吸入部開閉弁
の放熱部側の一端が、放熱部の他方の側壁側を向き、吐
出部開閉弁の放熱部側の一端が、放熱部の一方の側壁側
を向くようにしたことを特徴とする請求項1または請求
項2記載のインタークーラ装置。
3. The on-off valve according to claim 1, wherein
When the valves are closed, each on-off valve forms a recess toward the heat radiating portion of the intercooler, and when the valve is opened, the recess of the on-off valve on the suction portion side is a suction portion. The recess of the on-off valve on the discharge unit side faces one of the side walls of the discharge unit, and one end of the suction unit on-off valve on the heat dissipation unit side faces the other side wall of the heat dissipation unit. 3. The intercooler device according to claim 1, wherein one end of the discharge unit on-off valve on the heat radiating unit side faces one side wall of the heat radiating unit.
【請求項4】 過給機から内燃機関までの吸気管中に、
上記請求項1或は請求項2或は請求項3記載のインター
クーラ装置を配置して成る内燃機関のインタークーラ装
置の開閉弁の開閉を制御する制御装置において、吸気管
内圧力に基づいて前記開閉弁を開閉制御することを特徴
とする内燃機関の制御装置。
4. In an intake pipe from a supercharger to an internal combustion engine,
A control device for controlling the opening and closing of an open / close valve of an intercooler device of an internal combustion engine, wherein the intercooler device according to claim 1 or 2 or 3 is arranged, wherein the open / close operation is performed based on an intake pipe pressure. A control device for an internal combustion engine, which controls opening and closing of a valve.
【請求項5】 過給機入口の圧力と吸気管内の圧力の差
圧が、ある所定値以上に達した時にのみ、吸入部開閉弁
と吐出部開閉弁を同時に開くように制御することを特徴
とする請求項4記載の内燃機関の制御装置。
5. The control device according to claim 1, wherein only when the pressure difference between the pressure at the inlet of the supercharger and the pressure in the intake pipe reaches a certain predetermined value or more, the suction opening / closing valve and the discharge opening / closing valve are simultaneously opened. The control device for an internal combustion engine according to claim 4, wherein
【請求項6】 吸気管路内流量の値によって決まる吸気
管内の圧力が、ある所定値以上となった時にのみ、吸入
部開閉弁と吐出部開閉弁を同時に開くように制御するこ
とを特徴とする請求項4記載の内燃機関の制御装置。
6. The control device according to claim 1, wherein only when the pressure in the intake pipe determined by the value of the flow rate in the intake pipe becomes equal to or higher than a predetermined value, the intake opening / closing valve and the discharge opening / closing valve are simultaneously opened. The control device for an internal combustion engine according to claim 4, wherein
JP2001116308A 2001-04-16 2001-04-16 Intercooler and control apparatus for internal combustion engine using the same Pending JP2002309944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116308A JP2002309944A (en) 2001-04-16 2001-04-16 Intercooler and control apparatus for internal combustion engine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116308A JP2002309944A (en) 2001-04-16 2001-04-16 Intercooler and control apparatus for internal combustion engine using the same

Publications (1)

Publication Number Publication Date
JP2002309944A true JP2002309944A (en) 2002-10-23

Family

ID=18967059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116308A Pending JP2002309944A (en) 2001-04-16 2001-04-16 Intercooler and control apparatus for internal combustion engine using the same

Country Status (1)

Country Link
JP (1) JP2002309944A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161429A2 (en) * 2008-09-09 2010-03-10 Behr GmbH & Co. KG Suction module for a combustion engine
US8186159B2 (en) * 2005-05-31 2012-05-29 Valeo Systemes Thermiques Intake air cooler for dual-state turbocharging turbocompressed heat engine and corresponding air circuit
JP2013170564A (en) * 2012-02-23 2013-09-02 Denso Corp Air cooling device
JP2014084833A (en) * 2012-10-25 2014-05-12 Yanmar Co Ltd Engine
EP4242438A1 (en) * 2022-03-10 2023-09-13 Yanmar Holdings Co., Ltd. Engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186159B2 (en) * 2005-05-31 2012-05-29 Valeo Systemes Thermiques Intake air cooler for dual-state turbocharging turbocompressed heat engine and corresponding air circuit
EP2161429A2 (en) * 2008-09-09 2010-03-10 Behr GmbH & Co. KG Suction module for a combustion engine
EP2161429A3 (en) * 2008-09-09 2012-10-31 Behr GmbH & Co. KG Suction module for a combustion engine
JP2013170564A (en) * 2012-02-23 2013-09-02 Denso Corp Air cooling device
JP2014084833A (en) * 2012-10-25 2014-05-12 Yanmar Co Ltd Engine
EP4242438A1 (en) * 2022-03-10 2023-09-13 Yanmar Holdings Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
JP2001027157A (en) Strut for egr cooler
JP6026825B2 (en) Intake device for internal combustion engine
KR20070048179A (en) Heat exchanger with tube core, in particular for supercharged internal combustion engine
US7100545B2 (en) Cylinder head for a water-cooled internal combustion piston engine having inner reinforcement
CN101858273B (en) Cylinder head with two turbines arranged in parallel and method to operate an internal combustion engine equipped with such a cylinder head
JP2002309944A (en) Intercooler and control apparatus for internal combustion engine using the same
JP2004257366A (en) Egr cooling device
JP5866798B2 (en) Intercooler
JP2010265767A (en) Exhaust gas cooling device
JP3920077B2 (en) Air cooler for internal combustion engine with supercharger
JP6405983B2 (en) Intercooler control device
JP6399041B2 (en) Turbocharged engine
KR20100064977A (en) Intercooler assembly for a vehicle
JP2000064919A (en) Intake device
JPH09264145A (en) Intercooler for diesel engine with supercharger
JP6372341B2 (en) Intercooler control device
JP2004169574A (en) Intake device for internal combustion engine
JPH06221165A (en) Supercharging engine with intake air cooling device
CN217421344U (en) Intercooler assembly and vehicle
CN216306103U (en) EGR cooler
JP6558390B2 (en) Intake device for turbocharged engine
KR20180124322A (en) Engine system having integrated egr cooler
JP6849093B2 (en) Engine with supercharger
JP2001263964A (en) Heat exchanging device for construction equipment