JP2002298838A - Method of producing nickel positive electrode for alkaline storage battery - Google Patents

Method of producing nickel positive electrode for alkaline storage battery

Info

Publication number
JP2002298838A
JP2002298838A JP2001100895A JP2001100895A JP2002298838A JP 2002298838 A JP2002298838 A JP 2002298838A JP 2001100895 A JP2001100895 A JP 2001100895A JP 2001100895 A JP2001100895 A JP 2001100895A JP 2002298838 A JP2002298838 A JP 2002298838A
Authority
JP
Japan
Prior art keywords
nitrate
concentration
nickel
positive electrode
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001100895A
Other languages
Japanese (ja)
Inventor
Jun Ishida
潤 石田
Tsudoi Imazato
集 今里
Takaaki Ikemachi
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001100895A priority Critical patent/JP2002298838A/en
Publication of JP2002298838A publication Critical patent/JP2002298838A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel positive electrode, having improved collection distance by causing crackings in an active material during filling the active material in a porous substrate, to make the collection distance shorter between the substrate and a cobalt compound and having an improved active material utilization factor, even if the active material is filled therein with high density. SOLUTION: This method of producing the nickel positive electrode for the alkaline storage battery comprises at least one high nitric radical concentration alkaline immersion step of immersing the active material in an alkaline water solution, whose concentration is controlled to satisfy the condition Y>=15-1.5X in an active material filling step; if the alkaline concentration of the alkaline water solution is X (mol/l) and the concentration of nitric radials in the alkaline water solution is Y (mol/l); and a cobalt adding step of impregnated a water solution mainly containing cobalt nitrate therewith, followed by immersion in the alkaline water solution to convert the cobalt nitrate into hydroxide, after the active material filling step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水酸化ニッケルを主
体とする正極活物質を用いたニッケル−水素蓄電池、ニ
ッケル−カドミウム蓄電池、ニッケル−亜鉛蓄電池など
のアルカリ蓄電池用ニッケル正極の製造方法に係り、特
に、ニッケル正極の高容量化に関する。
The present invention relates to a method for producing a nickel positive electrode for an alkaline storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a nickel-zinc storage battery using a positive electrode active material mainly composed of nickel hydroxide. In particular, it relates to increasing the capacity of a nickel positive electrode.

【0002】[0002]

【従来の技術】アルカリ蓄電池に用いられるニッケル正
極は、多孔性基板(ニッケル焼結基板など)に硝酸ニッ
ケルを主体とする水溶液を含浸した後、アルカリ水溶液
に浸漬してアルカリ処理などを行うことにより、多孔性
基板の空孔中に水酸化ニッケルを主成分とする正極活物
質を充填して製造される焼結式ニッケル正極と、水酸化
ニッケルを主成分とする正極活物質ペーストとした後、
この正極活物質ペーストを芯体(発泡ニッケル、パンチ
ングメタルなど)に直接充填して製造される非焼結式ニ
ッケル正極とがある。このうち、焼結式ニッケル正極は
集電性に優れたニッケル焼結基板などの多孔性基板を用
いているために、出力性能に優れた電池が得られること
から高出力用の電池の正極として広く用いられている。
2. Description of the Related Art A nickel positive electrode used in an alkaline storage battery is obtained by impregnating a porous substrate (such as a sintered nickel substrate) with an aqueous solution mainly composed of nickel nitrate and then immersing the substrate in an aqueous alkaline solution to carry out an alkali treatment or the like. A sintered nickel positive electrode manufactured by filling a positive electrode active material containing nickel hydroxide as a main component in pores of a porous substrate, and a positive electrode active material paste containing nickel hydroxide as a main component,
There is a non-sintered nickel positive electrode manufactured by directly filling a core body (foamed nickel, punched metal, etc.) with the positive electrode active material paste. Among these, the sintered nickel positive electrode uses a porous substrate such as a nickel sintered substrate that has excellent current collecting properties, so that a battery with excellent output performance can be obtained. Widely used.

【0003】ところで、近年、各種の電気・電子機器、
通信機器などの電源として二次電池が広く用いられるよ
うになり、二次電池のさらなる高容量化が求められてい
る。このため、ニッケル−カドミウム蓄電池やニッケル
−水素蓄電池などのアルカリ蓄電池においても種々の改
良が進められており、この種のアルカリ蓄電池の高容量
化の要望に応えるために、焼結式ニッケル正極の活物質
利用率を向上させて高容量化を達成するための種々の手
段が提案されている。例えば、活物質の表面に導電性に
優れたコバルト化合物からなる導電ネットワークを形成
することが、特開昭59−163753公報、特開昭6
0−112254号公報、特開平7−272723号公
報、特開平11−73953号公報等にて提案されるよ
うになった。
In recent years, various electric and electronic devices,
Secondary batteries have been widely used as power sources for communication devices and the like, and there is a demand for higher capacity secondary batteries. For this reason, various improvements have been made in alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries. In order to meet the demand for higher capacity of such alkaline storage batteries, the use of sintered nickel positive electrodes has been promoted. Various means have been proposed for achieving a high capacity by improving the substance utilization rate. For example, formation of a conductive network made of a cobalt compound having excellent conductivity on the surface of an active material has been disclosed in JP-A-59-163753 and JP-A-6-163755.
Japanese Patent Application Laid-Open Nos. 0-112254, 7-272723, 11-73553, and the like have come to be proposed.

【0004】これらの各公報等にて提案された方法にお
いては、多孔性基板の空孔中に水酸化ニッケルを主成分
とする正極活物質を充填した後、硝酸コバルトを含浸
し、アルカリ溶液に浸漬して硝酸コバルトを水酸化コバ
ルトに転化して、充填された活物質の表面に導電性に優
れたコバルト化合物からなる導電ネットワークを形成す
るようにしている。ここで、コバルト化合物は2価の状
態では導電性が低いが、充電されると導電性が良好な高
次のコバルト化合物に変化し、この高次のコバルト化合
物は放電し難いため、放電を行っても正極内に残存して
正極内の導電性を高く維持することが可能である。これ
により、多孔性基板と活物質との集電性が向上するよう
になって活物質利用率が向上するようになる。
In the method proposed in each of these publications, the pores of a porous substrate are filled with a positive electrode active material containing nickel hydroxide as a main component, and then impregnated with cobalt nitrate. The immersion converts the cobalt nitrate into cobalt hydroxide to form a conductive network made of a cobalt compound having excellent conductivity on the surface of the filled active material. Here, the cobalt compound has a low conductivity in a divalent state, but changes to a high-order cobalt compound having a good conductivity when charged, and the high-order cobalt compound is difficult to discharge. However, it is possible to remain in the positive electrode and maintain high conductivity in the positive electrode. Thereby, the current collecting property between the porous substrate and the active material is improved, and the utilization rate of the active material is improved.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述の各公
報等にて提案された方法によって、多孔性基板に充填さ
れた活物質の表面に導電性に優れたコバルト化合物から
なる導電ネットワークを形成するようにしても、充分に
高容量なアルカリ蓄電池が得られなかった。このため、
アルカリ蓄電池のさらなる高容量化を達成するためには
正極活物質の充填密度を高めて、ニッケル正極中に充填
される活物質量を増大させる必要が生じた。
However, according to the methods proposed in the above publications, a conductive network made of a cobalt compound having excellent conductivity is formed on the surface of an active material filled in a porous substrate. Even so, a sufficiently high capacity alkaline storage battery could not be obtained. For this reason,
In order to further increase the capacity of the alkaline storage battery, it is necessary to increase the packing density of the positive electrode active material and increase the amount of the active material charged in the nickel positive electrode.

【0006】しかしながら、正極容量を高容量化するた
めにニッケル正極中に充填する正極活物質量を増大させ
て正極活物質の充填密度を高めると、正極活物質の利用
率が低下してそれほどの高容量化が達成できないという
問題を生じた。また、上述のように正極活物質の表面に
導電性に優れたコバルト化合物からなる導電ネットワー
クを形成してもそれほどの効果を上げることもできなか
った。これは、正極活物質の充填密度が高くなると、正
極活物質層の内部までコバルト化合物からなる導電ネッ
トワークが形成されにくくなるとともに、多孔性基板と
正極活物質の表面までの集電距離が正極活物質量が増大
したことで長くなり、正極活物質表面に形成されたコバ
ルト化合物からなる導電ネットワークが充分な集電性を
確保できなくなるためである。
However, when the packing density of the positive electrode active material is increased by increasing the amount of the positive electrode active material filled in the nickel positive electrode in order to increase the capacity of the positive electrode, the utilization rate of the positive electrode active material decreases and There was a problem that high capacity could not be achieved. Further, even if a conductive network made of a cobalt compound having excellent conductivity is formed on the surface of the positive electrode active material as described above, the effect cannot be improved so much. This is because, when the packing density of the positive electrode active material is increased, a conductive network made of a cobalt compound is not easily formed inside the positive electrode active material layer, and the current collection distance between the porous substrate and the surface of the positive electrode active material is increased. This is because the length increases due to the increase in the amount of the substance, and the conductive network formed of the cobalt compound formed on the surface of the positive electrode active material cannot secure sufficient current collection.

【0007】そこで、本発明は上記問題点に鑑みてなさ
れたものであり、多孔性基板に充填された正極活物質層
に亀裂を生じさせることにより、多孔性基板とコバルト
化合物との集電距離を接近させて集電性を向上させて、
高密度に正極活物質を充填しても活物質利用率が向上し
たニッケル正極を提供することを目的とする。
In view of the above, the present invention has been made in view of the above-mentioned problems, and a crack is generated in a positive electrode active material layer filled in a porous substrate, so that a current collecting distance between the porous substrate and a cobalt compound is increased. To improve current collection,
An object of the present invention is to provide a nickel positive electrode in which the active material utilization rate is improved even when the positive electrode active material is filled at a high density.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】上
記課題を解決するために、本発明のアルカリ蓄電池用ニ
ッケル正極は、活物質充填工程において、アルカリ濃度
と硝酸根濃度を同時に濃度調整したアルカリ水溶液に浸
漬する高硝酸根濃度アルカリ浸漬工程を少なくとも1回
備えるとともに、活物質充填工程の後に、硝酸コバルト
を主体とする水溶液に含浸した後、アルカリ水溶液に浸
漬して硝酸コバルトを水酸化物に転化するコバルト添加
工程を備えるようにしている。
Means for Solving the Problems and Action / Effect To solve the above problems, a nickel positive electrode for an alkaline storage battery according to the present invention is characterized in that an alkali concentration and a nitrate concentration are simultaneously adjusted in an active material filling step. A high nitrate concentration alkali immersion step of immersing in an aqueous solution is provided at least once, and after the active material filling step, impregnated with an aqueous solution mainly containing cobalt nitrate, and then immersed in an alkaline aqueous solution to convert cobalt nitrate into hydroxide. A conversion cobalt adding step is provided.

【0009】多孔性基板の細孔内に水酸化ニッケルを充
填したニッケル正極を濃度調整された硝酸塩溶液に浸漬
すると、多孔性基板の細孔内に形成された水酸化ニッケ
ルの表面に硝酸塩(硝酸ニッケル)が含浸される。これ
をアルカリ水溶液に浸漬すると、下記の(1)式に従っ
て水酸化反応が進行する。なお、(1)式のAはアルカ
リ金属元素である。 2AOH+Ni(NO3)2・6H2O →Ni(OH)2+2ANO3+6H2O・・・(1)
When a nickel positive electrode filled with nickel hydroxide in the pores of a porous substrate is immersed in a nitrate solution of which concentration has been adjusted, the surface of the nickel hydroxide formed in the pores of the porous substrate has nitrate (nitrate). Nickel) is impregnated. When this is immersed in an alkaline aqueous solution, a hydroxylation reaction proceeds according to the following equation (1). A in the formula (1) is an alkali metal element. 2AOH + Ni (NO 3 ) 2 .6H 2 O → Ni (OH) 2 + 2ANO 3 + 6H 2 O (1)

【0010】ここで、低硝酸根濃度のアルカリ溶液であ
ると、(1)式の反応により生成されたアルカリ硝酸塩
(ANO3)はアルカリ溶液に溶けるが、高硝酸根濃度
のアルカリ溶液であると、(1)式の水酸化反応過程で
活物質(Ni(OH)2)とともにアルカリ硝酸塩(AN
3)の結晶が析出する。このようにして生成されたア
ルカリ硝酸塩(ANO3)を含有する活物質(Ni(O
H)2)は嵩が高く、水酸化反応に伴って膨張して、既存
の活物質の隙間を押し広げるとともに、生成されたアル
カリ硝酸塩(ANO3)を中心にして微小なひび割れ
(亀裂)が無数に発生する。この微小なひび割れ(亀
裂)は多孔性基板あるいは多孔性基板の近傍まで到達す
る場合がある。
If the alkaline solution has a low nitrate concentration, the alkaline nitrate (ANO 3 ) produced by the reaction of the formula (1) is soluble in the alkaline solution, but the alkaline solution has a high nitrate concentration. In the course of the hydroxylation reaction of the formula (1), an alkali nitrate (AN) is added together with the active material (Ni (OH) 2 ).
O 3 ) crystals precipitate. The active material containing the alkali nitrate (ANO 3 ) thus produced (Ni (O
H) 2 ) is bulky and expands due to the hydroxylation reaction, expanding the gaps between the existing active materials, and has small cracks (cracks) centered on the generated alkali nitrate (ANO 3 ). Countless occurrences. The minute cracks (cracks) may reach the porous substrate or the vicinity of the porous substrate.

【0011】この後、これを水洗し、乾燥させた後、硝
酸コバルトを主体とする水溶液に浸漬して、生成された
水酸化ニッケル(活物質)の表面に硝酸コバルトを含浸
し、これを水酸化ナトリウム水溶液中に浸漬することに
より硝酸コバルトを水酸化コバルトに置換すると、先の
アルカリ処理時に生成された微小なひび割れ(亀裂)内
にも水酸化コバルトが生成されるようになる。これによ
り、水酸化ニッケル(活物質)の表面に導電性が良好な
コバルト化合物層が形成されるとともに、このコバルト
化合物層が多孔性基板あるいは多孔性基板の近傍まで達
する導電ネットワークが形成される。この結果、高密度
に活物質が充填された状態にあっても、集電性に優れた
導電ネットワークが形成され、正極容量の高いニッケル
正極が得られる。
[0011] Thereafter, this is washed with water and dried, and then immersed in an aqueous solution mainly containing cobalt nitrate to impregnate the surface of the produced nickel hydroxide (active material) with cobalt nitrate. When cobalt nitrate is replaced with cobalt hydroxide by immersion in an aqueous solution of sodium oxide, cobalt hydroxide is also generated in the minute cracks (cracks) generated during the previous alkali treatment. As a result, a cobalt compound layer having good conductivity is formed on the surface of nickel hydroxide (active material), and a conductive network is formed in which the cobalt compound layer reaches the porous substrate or the vicinity of the porous substrate. As a result, even when the active material is densely packed, a conductive network having excellent current collecting properties is formed, and a nickel positive electrode having a high positive electrode capacity can be obtained.

【0012】この場合、低硝酸根濃度のアルカリ溶液で
あると生成されたアルカリ硝酸塩(ANO3)はアルカ
リ溶液に溶けるため、アルカリ水溶液のアルカリ濃度を
X(mol/l)とし、このアルカリ水溶液中の硝酸根
濃度をY(mol/l)とした場合に、Y≧15−1.
5Xの条件を満たすように濃度調整されたアルカリ水溶
液に浸漬するようにするのが好ましい。なお、硝酸根が
ニッケル正極に残存すると、この残存した硝酸根はニッ
ケル正極にとっては不純物となるため、高硝酸根濃度ア
ルカリ浸漬工程の後に水洗して硝酸根を除去する水洗工
程を備えるようにするのが望ましい。
In this case, since the alkali nitrate (ANO 3 ) generated as an alkali solution having a low nitrate concentration is dissolved in the alkali solution, the alkali concentration of the alkali aqueous solution is set to X (mol / l), and When the nitrate concentration of Y is defined as Y (mol / l), Y ≧ 15-1.
It is preferable to immerse in an alkaline aqueous solution whose concentration is adjusted to satisfy the condition of 5X. If the nitrate remains on the nickel positive electrode, the remaining nitrate becomes an impurity for the nickel positive electrode. Therefore, a water washing step of removing the nitrate by washing with water after the high nitrate concentration alkali immersion step is provided. It is desirable.

【0013】[0013]

【発明の実施の形態】1.ニッケル焼結基板の作製 ニッケル粉末にカルボキシメチルセルロース等の増粘剤
および水を混練してスラリーを調整し、このスラリーを
厚みが50μmのパンチングメタルからなる導電性芯体
に塗着した。この後、スラリーを塗着した導電性芯体を
乾燥させた後、還元性雰囲気下で1000℃で30分間
焼結して、厚みが0.5mmで多孔度が80%のニッケ
ル焼結基板を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Preparation of Nickel Sintered Substrate A slurry was prepared by kneading a thickener such as carboxymethylcellulose and water with nickel powder, and the slurry was applied to a conductive core made of a punching metal having a thickness of 50 μm. Thereafter, the conductive core coated with the slurry is dried, and then sintered at 1000 ° C. for 30 minutes in a reducing atmosphere to obtain a nickel sintered substrate having a thickness of 0.5 mm and a porosity of 80%. Produced.

【0014】2.半完成ニッケル正極の作製 (1)半完成ニッケル正極a 硝酸根濃度が1.0mol/lとなるように濃度調整さ
れた硝酸ニッケルを主体とする硝酸塩溶液に、上述のよ
うに作製した焼結基板を浸漬して、焼結基板の細孔内に
硝酸塩溶液を含浸した後、アルカリ濃度が6.0mol
/lで硝酸根濃度が1.0mol/lとなるように濃度
調整された水酸化ナトリウム水溶液に浸漬して、焼結基
板の細孔内に含浸した硝酸ニッケルを水酸化ニッケルに
置換した。ついで、焼結基板を硝酸ニッケルを主体とす
る硝酸塩溶液(この場合の硝酸根濃度も上述と同様であ
る)に浸漬する処理に戻り、上記と同様に焼結基板の細
孔内に水酸化ニッケルを充填する処理を9回繰り返し
て、半完成ニッケル正極aとした。なお、水酸化ナトリ
ウム水溶液中での硝酸根の濃度調整は、水酸化ナトリウ
ム水溶液を濃縮、冷却して硝酸塩を沈殿させた後、遠心
分離することで調整し、アルカリ濃度は水酸化ナトリウ
ムと水を投入することで調整している。
2. Preparation of semi-finished nickel positive electrode (1) Semi-finished nickel positive electrode a A sintered substrate prepared as described above in a nitrate solution mainly composed of nickel nitrate adjusted to have a nitrate concentration of 1.0 mol / l. Immersed in the pores of the sintered substrate with a nitrate solution, and then the alkali concentration was 6.0 mol.
The nickel nitrate impregnated in the pores of the sintered substrate was replaced with nickel hydroxide by immersion in an aqueous solution of sodium hydroxide adjusted so that the nitrate concentration was 1.0 mol / l. Then, the process returns to the process of immersing the sintered substrate in a nitrate solution mainly composed of nickel nitrate (the nitrate concentration in this case is also the same as described above). Was repeated 9 times to obtain a semi-finished nickel positive electrode a. The concentration of nitrate in the aqueous sodium hydroxide solution was adjusted by concentrating and cooling the aqueous sodium hydroxide solution to precipitate nitrate, followed by centrifugation. It is adjusted by inputting.

【0015】(2)半完成ニッケル正極b 硝酸根濃度が1.0mol/lとなるように濃度調整さ
れた硝酸ニッケルを主体とする硝酸塩溶液に、上述のよ
うに作製した焼結基板を浸漬して、焼結基板の細孔内に
硝酸塩溶液を含浸した後、アルカリ濃度が7.0mol
/lで硝酸根濃度が1.0mol/lとなるように濃度
調整された水酸化ナトリウム水溶液に浸漬して、焼結基
板の細孔内に含浸した硝酸ニッケルを水酸化ニッケルに
置換した。その後、焼結基板を硝酸ニッケルを主体とす
る硝酸塩溶液(この場合の硝酸根濃度も上述と同様であ
る)に浸漬する処理に戻り、上記と同様に焼結基板の細
孔内に水酸化ニッケルを充填する処理を9回繰り返し
て、半完成ニッケル正極bとした。
(2) Semi-finished nickel positive electrode b The sintered substrate prepared as described above is immersed in a nitrate solution mainly composed of nickel nitrate adjusted to have a nitrate concentration of 1.0 mol / l. Then, after the nitrate solution is impregnated into the pores of the sintered substrate, the alkali concentration is 7.0 mol.
The nickel nitrate impregnated in the pores of the sintered substrate was replaced with nickel hydroxide by immersion in an aqueous solution of sodium hydroxide adjusted so that the nitrate concentration was 1.0 mol / l. After that, the process returns to the process of immersing the sintered substrate in a nitrate solution mainly composed of nickel nitrate (the nitrate concentration in this case is also the same as described above). Was repeated 9 times to obtain a semi-finished nickel positive electrode b.

【0016】(3)半完成ニッケル正極c 硝酸根濃度が1.0mol/lとなるように濃度調整さ
れた硝酸ニッケルを主体とする硝酸塩溶液に、上述のよ
うに作製した焼結基板を浸漬して、焼結基板の細孔内に
硝酸塩溶液を含浸した後、アルカリ濃度が8.0mol
/lで硝酸根濃度が1.0mol/lとなるように濃度
調整された水酸化ナトリウム水溶液に浸漬して、焼結基
板の細孔内に含浸した硝酸ニッケルを水酸化ニッケルに
置換した。その後、焼結基板を硝酸ニッケルを主体とす
る硝酸塩溶液(この場合の硝酸根濃度も上述と同様であ
る)に浸漬する処理に戻り、上記と同様に焼結基板の細
孔内に水酸化ニッケルを充填する処理を9回繰り返し
て、半完成ニッケル正極cとした。
(3) Semi-finished nickel positive electrode c The sintered substrate prepared as described above is immersed in a nitrate solution mainly composed of nickel nitrate adjusted to have a nitrate concentration of 1.0 mol / l. After impregnating the pores of the sintered substrate with the nitrate solution, the alkali concentration was 8.0 mol.
The nickel nitrate impregnated in the pores of the sintered substrate was replaced with nickel hydroxide by immersion in an aqueous solution of sodium hydroxide adjusted so that the nitrate concentration was 1.0 mol / l. After that, the process returns to the process of immersing the sintered substrate in a nitrate solution mainly composed of nickel nitrate (the nitrate concentration in this case is also the same as described above). Was repeated 9 times to obtain a semi-finished nickel positive electrode c.

【0017】(4)半完成ニッケル正極d 硝酸根濃度が1.0mol/lとなるように濃度調整さ
れた硝酸ニッケルを主体とする硝酸塩溶液に、上述のよ
うに作製した焼結基板を浸漬して、焼結基板の細孔内に
硝酸塩溶液を含浸した後、アルカリ濃度が9.0mol
/lで硝酸根濃度が1.0mol/lとなるように濃度
調整された水酸化ナトリウム水溶液に浸漬して、焼結基
板の細孔内に含浸した硝酸ニッケルを水酸化ニッケルに
置換した。その後、焼結基板を硝酸ニッケルを主体とす
る硝酸塩溶液(この場合の硝酸根濃度も上述と同様であ
る)に浸漬する処理に戻り、上記と同様に焼結基板の細
孔内に水酸化ニッケルを充填する処理を9回繰り返し
て、半完成ニッケル正極dとした。
(4) Semi-finished nickel positive electrode d The sintered substrate prepared as described above is immersed in a nitrate solution mainly composed of nickel nitrate adjusted to have a nitrate concentration of 1.0 mol / l. Then, after impregnating the pores of the sintered substrate with the nitrate solution, the alkali concentration was 9.0 mol.
The nickel nitrate impregnated in the pores of the sintered substrate was replaced with nickel hydroxide by immersion in an aqueous solution of sodium hydroxide adjusted so that the nitrate concentration was 1.0 mol / l. After that, the process returns to the process of immersing the sintered substrate in a nitrate solution mainly composed of nickel nitrate (the nitrate concentration in this case is also the same as described above). Was repeated 9 times to obtain a semi-finished nickel positive electrode d.

【0018】3.完成ニッケル正極の作製 (1)ニッケル正極a1〜a6 上述のように焼結基板の細孔内に水酸化ニッケルを充填
した半完成ニッケル正極aを用いて、再度、硝酸根濃度
が1.0mol/lとなるように濃度調整された硝酸ニ
ッケルを主体とする硝酸塩溶液に浸漬して焼結基板の細
孔内に硝酸塩を含浸した後、アルカリ濃度が6.0mo
l/lで硝酸根濃度が1.0mol/lとなるように濃
度調整された水酸化ナトリウム水溶液に浸漬して、硝酸
ニッケルを水酸化ニッケルに置換した。ついで、これを
水洗し、乾燥させた後、硝酸根濃度が2.0mol/l
となるように濃度調整された硝酸コバルトを主体とする
水溶液に浸漬して、水酸化ニッケルの表面に硝酸コバル
トを含浸した。この後、アルカリ濃度が7.0mol/
lで硝酸根濃度が2.0mol/lとなるように濃度調
整された水酸化ナトリウム水溶液中に浸漬して、硝酸コ
バルトを水酸化コバルトに置換してニッケル正極a1を
作製した。
3. Preparation of Completed Nickel Positive Electrode (1) Nickel Positive Electrodes a1 to a6 Using the semi-finished nickel positive electrode a in which nickel hydroxide was filled in the pores of the sintered substrate as described above, the nitrate concentration was again 1.0 mol / mol. After being immersed in a nitrate solution mainly composed of nickel nitrate adjusted to have a concentration of 1 to impregnate the nitrate into the pores of the sintered substrate, the alkali concentration is adjusted to 6.0 mo.
The nickel nitrate was replaced with nickel hydroxide by immersion in an aqueous sodium hydroxide solution whose concentration was adjusted so that the nitrate concentration became 1.0 mol / l at 1 / l. Then, after washing with water and drying, the concentration of nitrate is 2.0 mol / l.
Then, the surface of the nickel hydroxide was impregnated with cobalt nitrate by immersion in an aqueous solution mainly containing cobalt nitrate whose concentration was adjusted to be as follows. After this, the alkali concentration was 7.0 mol /
Then, the sample was immersed in an aqueous sodium hydroxide solution whose concentration was adjusted so that the nitrate concentration became 2.0 mol / l, and cobalt nitrate was replaced with cobalt hydroxide to produce a nickel positive electrode a1.

【0019】同様に、アルカリ濃度が6.0mol/l
で硝酸根濃度が2.0mol/lとなるように濃度調整
された水酸化ナトリウム水溶液を用いて硝酸ニッケルを
水酸化ニッケルに置換したこと以外は上述と同様にして
ニッケル正極a2を作製した。また、同様に、アルカリ
濃度が6.0mol/lで硝酸根濃度が3.0mol/
lとなるように濃度調整された水酸化ナトリウム水溶液
を用いて硝酸ニッケルを水酸化ニッケルに置換したこと
以外は上述と同様にしてニッケル正極a3を作製し、ア
ルカリ濃度が6.0mol/lで硝酸根濃度が4.0m
ol/lとなるように濃度調整された水酸化ナトリウム
水溶液を用いて硝酸ニッケルを水酸化ニッケルに置換し
たこと以外は上述と同様にしてニッケル正極a4を作製
し、アルカリ濃度が6.0mol/lで硝酸根濃度が
5.0mol/lとなるように濃度調整された水酸化ナ
トリウム水溶液を用いて硝酸ニッケルを水酸化ニッケル
に置換したこと以外は上述と同様にしてニッケル正極a
5を作製し、アルカリ濃度が6.0mol/lで硝酸根
濃度が6.0mol/lとなるように濃度調整された水
酸化ナトリウム水溶液を用いて硝酸ニッケルを水酸化ニ
ッケルに置換したこと以外は上述と同様にしてニッケル
正極a6を作製した。
Similarly, when the alkali concentration is 6.0 mol / l
A nickel positive electrode a2 was produced in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l. Similarly, the alkali concentration is 6.0 mol / l and the nitrate concentration is 3.0 mol / l.
The nickel positive electrode a3 was prepared in the same manner as described above except that the nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 1.0 mol / l. Root concentration 4.0m
ol / l, a nickel positive electrode a4 was prepared in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 6.0 mol / l. In the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a nitrate concentration of 5.0 mol / l with
5 except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have an alkali concentration of 6.0 mol / l and a nitrate concentration of 6.0 mol / l. A nickel positive electrode a6 was produced in the same manner as described above.

【0020】(2)ニッケル正極b1〜b5 上述のように焼結基板の細孔内に水酸化ニッケルを充填
した半完成ニッケル正極bを用いて、再度、硝酸根濃度
が1.0mol/lとなるように濃度調整された硝酸ニ
ッケルを主体とする硝酸塩溶液に浸漬して焼結基板の細
孔内に硝酸塩を含浸した後、アルカリ濃度が7.0mo
l/lで硝酸根濃度が1.0mol/lとなるように濃
度調整された水酸化ナトリウム水溶液に浸漬して、硝酸
ニッケルを水酸化ニッケルに置換した。ついで、これを
水洗し、乾燥させた後、硝酸根濃度が2.0mol/l
となるように濃度調整された硝酸コバルトを主体とする
水溶液に浸漬して、水酸化ニッケルの表面に硝酸コバル
トを含浸した。この後、アルカリ濃度が7.0mol/
lで硝酸根濃度が2.0mol/lとなるように濃度調
整された水酸化ナトリウム水溶液中に浸漬して、硝酸コ
バルトを水酸化コバルトに置換してニッケル正極b1を
作製した。
(2) Nickel Positive Electrodes b1 to b5 Using the semi-finished nickel positive electrode b in which nickel hydroxide was filled in the pores of the sintered substrate as described above, the nitrate concentration was again increased to 1.0 mol / l. After being immersed in a nitrate solution mainly containing nickel nitrate whose concentration has been adjusted so as to make the pores of the sintered substrate impregnated with nitrate, the alkali concentration becomes 7.0 mo.
The nickel nitrate was replaced with nickel hydroxide by immersion in an aqueous sodium hydroxide solution whose concentration was adjusted so that the nitrate concentration became 1.0 mol / l at 1 / l. Then, after washing with water and drying, the concentration of nitrate is 2.0 mol / l.
Then, the surface of the nickel hydroxide was impregnated with cobalt nitrate by immersion in an aqueous solution mainly containing cobalt nitrate whose concentration was adjusted to be as follows. After this, the alkali concentration was 7.0 mol /
Then, the sample was immersed in an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l with 1 l to replace nickel nitrate with cobalt hydroxide to produce a nickel positive electrode b1.

【0021】同様に、アルカリ濃度が7.0mol/l
で硝酸根濃度が2.0mol/lとなるように濃度調整
された水酸化ナトリウム水溶液を用いて硝酸ニッケルを
水酸化ニッケルに置換したこと以外は上述と同様にして
ニッケル正極b2を作製した。また、同様に、アルカリ
濃度が7.0mol/lで硝酸根濃度が3.0mol/
lとなるように濃度調整された水酸化ナトリウム水溶液
を用いて硝酸ニッケルを水酸化ニッケルに置換したこと
以外は上述と同様にしてニッケル正極b3を作製し、ア
ルカリ濃度が7.0mol/lで硝酸根濃度が4.0m
ol/lとなるように濃度調整された水酸化ナトリウム
水溶液を用いて硝酸ニッケルを水酸化ニッケルに置換し
たこと以外は上述と同様にしてニッケル正極b4を作製
し、アルカリ濃度が7.0mol/lで硝酸根濃度が
5.0mol/lとなるように濃度調整された水酸化ナ
トリウム水溶液を用いて硝酸ニッケルを水酸化ニッケル
に置換したこと以外は上述と同様にしてニッケル正極b
5を作製した。
Similarly, when the alkali concentration is 7.0 mol / l
A nickel positive electrode b2 was produced in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l. Similarly, the alkali concentration is 7.0 mol / l and the nitrate concentration is 3.0 mol / l.
The nickel positive electrode b3 was prepared in the same manner as described above except that the nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 1.0 mol / l. Root concentration 4.0m
ol / l, a nickel positive electrode b4 was prepared in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution adjusted to have a concentration of 7.0 mol / l. A nickel positive electrode b was prepared in the same manner as above except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to be 5.0 mol / l.
5 was produced.

【0022】(3)ニッケル正極c1〜c5 上述のように焼結基板の細孔内に水酸化ニッケルを充填
した半完成ニッケル正極cを用いて、再度、硝酸根濃度
が1.0mol/lとなるように濃度調整された硝酸ニ
ッケルを主体とする硝酸塩溶液に浸漬して焼結基板の細
孔内に硝酸塩を含浸した後、アルカリ濃度が8.0mo
l/lで硝酸根濃度が1.0mol/lとなるように濃
度調整された水酸化ナトリウム水溶液に浸漬して、硝酸
ニッケルを水酸化ニッケルに置換した。ついで、これを
水洗し、乾燥させた後、硝酸根濃度が2.0mol/l
となるように濃度調整された硝酸コバルトを主体とする
水溶液に浸漬して、水酸化ニッケルの表面に硝酸コバル
トを含浸した。この後、アルカリ濃度が7.0mol/
lで硝酸根濃度が2.0mol/lとなるように濃度調
整された水酸化ナトリウム水溶液に浸漬して、硝酸コバ
ルトを水酸化コバルトに置換してニッケル正極c1を作
製した。
(3) Nickel Positive Electrodes c1 to c5 Using the semi-finished nickel positive electrode c in which the pores of the sintered substrate were filled with nickel hydroxide as described above, the nitrate concentration was again increased to 1.0 mol / l. After being immersed in a nitrate solution mainly containing nickel nitrate whose concentration has been adjusted so as to impregnate the pores of the sintered substrate with the nitrate, the alkali concentration is adjusted to 8.0 mo.
The nickel nitrate was replaced with nickel hydroxide by immersion in an aqueous sodium hydroxide solution whose concentration was adjusted so that the nitrate concentration became 1.0 mol / l at 1 / l. Then, after washing with water and drying, the concentration of nitrate is 2.0 mol / l.
Then, the surface of the nickel hydroxide was impregnated with cobalt nitrate by immersion in an aqueous solution mainly containing cobalt nitrate whose concentration was adjusted to be as follows. After this, the alkali concentration was 7.0 mol /
Then, the sample was immersed in an aqueous solution of sodium hydroxide adjusted to a concentration of 2.0 mol / l with 1 l, and cobalt nitrate was replaced with cobalt hydroxide to produce a nickel positive electrode c1.

【0023】同様に、アルカリ濃度が8.0mol/l
で硝酸根濃度が2.0mol/lとなるように濃度調整
された水酸化ナトリウム水溶液を用いて硝酸ニッケルを
水酸化ニッケルに置換したこと以外は上述と同様にして
ニッケル正極c2を作製した。また、同様に、アルカリ
濃度が8.0mol/lで硝酸根濃度が3.0mol/
lとなるように濃度調整された水酸化ナトリウム水溶液
を用いて硝酸ニッケルを水酸化ニッケルに置換したこと
以外は上述と同様にしてニッケル正極c3を作製し、ア
ルカリ濃度が8.0mol/lで硝酸根濃度が4.0m
ol/lとなるように濃度調整された水酸化ナトリウム
水溶液を用いて硝酸ニッケルを水酸化ニッケルに置換し
たこと以外は上述と同様にしてニッケル正極c4を作製
し、アルカリ濃度が8.0mol/lで硝酸根濃度が
5.0mol/lとなるように濃度調整された水酸化ナ
トリウム水溶液を用いて硝酸ニッケルを水酸化ニッケル
に置換したこと以外は上述と同様にしてニッケル正極c
5を作製した。
Similarly, when the alkali concentration is 8.0 mol / l
A nickel positive electrode c2 was produced in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l. Similarly, when the alkali concentration is 8.0 mol / l and the nitrate concentration is 3.0 mol / l.
The nickel positive electrode c3 was prepared in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 1.0 mol / l. Root concentration 4.0m
ol / l, a nickel positive electrode c4 was prepared in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution adjusted to have a concentration of 8.0 mol / l. A nickel positive electrode c was prepared in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a nitrate concentration of 5.0 mol / l.
5 was produced.

【0024】(4)ニッケル正極d1〜d5 上述のように焼結基板の細孔内に水酸化ニッケルを充填
した半完成ニッケル正極dを用いて、再度、硝酸根濃度
が1.0mol/lとなるように濃度調整された硝酸ニ
ッケルを主体とする硝酸塩溶液に浸漬して焼結基板の細
孔内に硝酸塩を含浸した後、アルカリ濃度が9.0mo
l/lで硝酸根濃度が1.0mol/lとなるように濃
度調整された水酸化ナトリウム水溶液に浸漬して、硝酸
ニッケルを水酸化ニッケルに置換した。ついで、これを
水洗し、乾燥させた後、硝酸根濃度が2.0mol/l
となるように濃度調整された硝酸コバルトを主体とする
水溶液に浸漬して、水酸化ニッケルの表面に硝酸コバル
トを含浸した。この後、アルカリ濃度が7.0mol/
lで硝酸根濃度が2.0mol/lとなるように濃度調
整された水酸化ナトリウム水溶液に浸漬して、硝酸コバ
ルトを水酸化コバルトに置換してニッケル正極d1を作
製した。
(4) Nickel Positive Electrodes d1 to d5 Using the semi-finished nickel positive electrode d filled with nickel hydroxide in the pores of the sintered substrate as described above, the nitrate concentration was again increased to 1.0 mol / l. After being immersed in a nitrate solution mainly composed of nickel nitrate whose concentration has been adjusted so as to make the pores of the sintered substrate impregnated with nitrate, the alkali concentration is adjusted to 9.0 mo.
The nickel nitrate was replaced with nickel hydroxide by immersion in an aqueous sodium hydroxide solution whose concentration was adjusted so that the nitrate concentration became 1.0 mol / l at 1 / l. Then, after washing with water and drying, the concentration of nitrate is 2.0 mol / l.
Then, the surface of the nickel hydroxide was impregnated with cobalt nitrate by immersion in an aqueous solution mainly containing cobalt nitrate whose concentration was adjusted to be as follows. After this, the alkali concentration was 7.0 mol /
Then, the sample was immersed in an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l with 1 l to replace nickel nitrate with cobalt hydroxide to produce a nickel positive electrode d1.

【0025】同様に、アルカリ濃度が9.0mol/l
で硝酸根濃度が2.0mol/lとなるように濃度調整
された水酸化ナトリウム水溶液を用いて硝酸ニッケルを
水酸化ニッケルに置換したこと以外は上述と同様にして
ニッケル正極d2を作製した。また、同様に、アルカリ
濃度が9.0mol/lで硝酸根濃度が3.0mol/
lとなるように濃度調整された水酸化ナトリウム水溶液
を用いて硝酸ニッケルを水酸化ニッケルに置換したこと
以外は上述と同様にしてニッケル正極d3を作製し、ア
ルカリ濃度が9.0mol/lで硝酸根濃度が4.0m
ol/lとなるように濃度調整された水酸化ナトリウム
水溶液を用いて硝酸ニッケルを水酸化ニッケルに置換し
たこと以外は上述と同様にしてニッケル正極d4を作製
し、アルカリ濃度が9.0mol/lで硝酸根濃度が
5.0mol/lとなるように濃度調整された水酸化ナ
トリウム水溶液を用いて硝酸ニッケルを水酸化ニッケル
に置換したこと以外は上述と同様にしてニッケル正極d
5を作製した。
Similarly, when the alkali concentration is 9.0 mol / l
A nickel positive electrode d2 was produced in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to 2.0 mol / l. Similarly, the alkali concentration is 9.0 mol / l and the nitrate concentration is 3.0 mol / l.
The nickel positive electrode d3 was prepared in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 1.0 mol / l. Root concentration 4.0m
ol / l, a nickel positive electrode d4 was prepared in the same manner as described above except that nickel nitrate was replaced with nickel hydroxide using an aqueous solution of sodium hydroxide adjusted to have a concentration of 9.0 mol / l. The nickel positive electrode d was prepared in the same manner as described above, except that nickel nitrate was replaced with nickel hydroxide using an aqueous sodium hydroxide solution whose concentration was adjusted to 5.0 mol / l.
5 was produced.

【0026】4.密閉型ニッケル−カドミウム蓄電池の
作製 ついで、以上のようにして作製した各ニッケル正極a1
〜a6、b1〜b5、c1〜c5、d1〜d5を用いる
とともに、公知のカドミウム負極を用いて、ニッケル正
極とカドミウム負極をポリオレフィン製のセパレータを
介して対向するように卷回してそれぞれ電極体とした。
これらの電極体をそれぞれ外装缶内に挿入した後、これ
らの外装缶内にアルカリ電解液となる30質量の水酸化
カリウム水溶液(KOH)を注液し、外装缶の開口部を
封口体で密閉して、SCサイズのニッケル−カドミウム
蓄電池(理論容量が2000mAhのもの)A1〜A
6、B1〜B5、C1〜C5、D1〜D5をそれぞれ作
製した。なお、ニッケル正極a1〜a6を用いたニッケ
ル−カドミウム蓄電池を電池A〜A6とし、ニッケル正
極b1〜b5を用いたニッケル−カドミウム蓄電池を電
池B1〜B5とし、ニッケル正極c1〜c5を用いたニ
ッケル−カドミウム蓄電池を電池C1〜C5とし、ニッ
ケル正極d1〜d5を用いたニッケル−カドミウム蓄電
池を電池D1〜D5とした。
4. Production of sealed nickel-cadmium storage battery Next, each nickel positive electrode a1 produced as described above
A6, b1 to b5, c1 to c5, and d1 to d5, and using a known cadmium negative electrode, a nickel positive electrode and a cadmium negative electrode are wound so as to face each other with a polyolefin separator interposed therebetween. did.
After each of these electrode bodies was inserted into the outer can, a 30 mass aqueous solution of potassium hydroxide (KOH) serving as an alkaline electrolyte was injected into the outer can, and the opening of the outer can was sealed with a sealing body. A nickel-cadmium storage battery of SC size (with a theoretical capacity of 2000 mAh) A1 to A
6, B1 to B5, C1 to C5, and D1 to D5 were prepared. The nickel-cadmium storage batteries using the nickel positive electrodes a1 to a6 were referred to as batteries A to A6, the nickel-cadmium storage batteries using the nickel positive electrodes b1 to b5 were referred to as batteries B1 to B5, and the nickel-cadmium storage batteries using the nickel positive electrodes c1 to c5 were used. Cadmium storage batteries were referred to as batteries C1 to C5, and nickel-cadmium storage batteries using nickel positive electrodes d1 to d5 were referred to as batteries D1 to D5.

【0027】5.容量密度の測定 上述のようにして作製した各電池A1〜A6、B1〜B
5、C1〜C5、D1〜D5を用いて、これらの各電池
A1〜A6、B1〜B5、C1〜C5、D1〜D5を室
温(約25℃)で200mA(0.1It[なお、It
は定格容量(mAh)/1h(時間)で表される数値で
ある])の充電電流で12時間充電した後、2000m
A(1It)の放電電流で電池電圧が1.0Vになるま
で放電させて、これらの各電池A1〜A6、B1〜B
5、C1〜C5、D1〜D5を活性化した。
5. Measurement of capacity density Each of the batteries A1 to A6, B1 to B produced as described above
5, C1 to C5 and D1 to D5, these batteries A1 to A6, B1 to B5, C1 to C5 and D1 to D5 were charged at room temperature (about 25 ° C.) at 200 mA (0.1 It [it
Is a numerical value represented by rated capacity (mAh) / 1h (hour)], and after charging for 12 hours with a charging current of 2,000 m
A (1 It) was discharged until the battery voltage reached 1.0 V, and these batteries A1 to A6, B1 to B
5, C1-C5, D1-D5 were activated.

【0028】ついで、上述のように活性化した各電池A
1〜A6、B1〜B5、C1〜C5、D1〜D5を用い
て、これらの各電池A1〜A6、B1〜B5、C1〜C
5、D1〜D5を室温(約25℃)で200mA(0.
1It)の充電電流で12時間充電した後、667mA
(1/3It)の放電電流で、電池電圧が1.0Vにな
るまで放電させて、放電時間から放電容量(mAh)を
求めた。ついで、求めた放電容量から各ニッケル正極a
1〜a6、b1〜b5、c1〜c5、d1〜d5の単位
体積当たりの容量を容量密度(mAh/cm3)として
算出すると、下記の表1に示すような結果となった。
Next, each battery A activated as described above
1 to A6, B1 to B5, C1 to C5, D1 to D5, these batteries A1 to A6, B1 to B5, C1 to C5
5, D1 to D5 at room temperature (about 25 ° C.) at 200 mA (0.
667 mA after charging for 12 hours with a charging current of 1 It)
The battery was discharged at a discharge current of (1 / It) until the battery voltage reached 1.0 V, and the discharge capacity (mAh) was determined from the discharge time. Then, from the obtained discharge capacity, each nickel positive electrode a
When the capacities per unit volume of 1 to a6, b1 to b5, c1 to c5, and d1 to d5 were calculated as capacity densities (mAh / cm 3 ), the results shown in Table 1 below were obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】上記表1の結果から明らかなように、正極
a1〜a6、b1〜b5、c1〜c5、d1〜d5にお
いては、10回目(最終回)に行ったアルカリ処理のア
ルカリ水溶液(水酸化ナトリウム水溶液)中の硝酸根の
濃度が1.0mol/lから2.0mol/l、3.0
mol/l、4.0mol/lと大きくなるにしたがっ
て容量密度(mAh/cm3)が高くなっていることが
分かる。また、アルカリ水溶液(水酸化ナトリウム水溶
液)の濃度が6.0mol/l(正極a1〜a6)から
7.0mol/l(正極b1〜b5)、8.0(正極c
1〜c5)mol/l、9.0(正極d1〜d5)mo
l/lと大きくなるにしたがって容量密度(mAh/c
3)が高くなっていることが分かる。
As is clear from the results shown in Table 1 above, in the positive electrodes a1 to a6, b1 to b5, c1 to c5, and d1 to d5, an alkaline aqueous solution (hydroxide) of the 10th (final) alkali treatment was used. Concentration of nitrate in the aqueous solution of sodium is 1.0 mol / l to 2.0 mol / l, 3.0
It can be seen that the capacity density (mAh / cm 3 ) increases as mol / l and 4.0 mol / l increase. The concentration of the aqueous alkali solution (aqueous sodium hydroxide solution) is from 6.0 mol / l (positive electrodes a1 to a6) to 7.0 mol / l (positive electrodes b1 to b5) and 8.0 (positive electrode c).
1 to c5) mol / l, 9.0 (positive electrode d1 to d5) mo
1 / l, the capacity density (mAh / c
m 3 ) is higher.

【0031】そこで、10回目(最終回)に行ったアル
カリ処理液中のアルカリ濃度(mol/l)を横軸(X
軸)とし、硝酸根濃度(mol/l)を縦軸(Y軸)と
し、かつ容量密度が600(mAh/cm3)以上のニ
ッケル正極を○印とし、容量密度が600(mAh/c
3)未満のニッケル正極を×印としてプロットする
と、図1に示すような結果が得られた。ここで、図1に
おいて、○印と×印とを区画する直線を引くと、Y=1
5−1.5Xという直線式が得られた。
Therefore, the alkali concentration (mol / l) in the alkali treatment liquid performed at the tenth (final) time is shown on the horizontal axis (X
Axis), the nitrate concentration (mol / l) as the vertical axis (Y axis), and a nickel positive electrode having a capacity density of 600 (mAh / cm 3 ) or more as a circle, and a capacity density of 600 (mAh / c).
When the nickel positive electrode of less than m 3 ) was plotted as a mark x, the result as shown in FIG. 1 was obtained. Here, in FIG. 1, when a straight line dividing the circle and the cross is drawn, Y = 1
A linear equation of 5-1.5X was obtained.

【0032】これは、10回目(最終回)に行ったアル
カリ処理液中の硝酸根濃度(Y)とアルカリ濃度(X)
との関係が、Y≧15−1.5Xの関係を満たせば、即
ち、10回目の含浸処理で、アルカリ処理液中の硝酸根
濃度(Y)が、図1の直線よりも上側に存在し、かつア
ルカリ処理液中のアルカリ濃度(X)が、図1の直線よ
りも右側に存在するように濃度調整されたアルカリ水溶
液を用いてアルカリ処理を行えば、容量密度が大きいニ
ッケル正極が得られることを意味する。換言すると、ア
ルカリ濃度(X)が高い水酸化ナトリウムを用いる場合
は、アルカリ処理液中の硝酸根濃度(Y)が低くなるよ
うに濃度調整されたアルカリ水溶液を用い、アルカリ濃
度(X)が低い水酸化ナトリウムを用いる場合は、アル
カリ処理液中の硝酸根濃度(Y)が高くなるように濃度
調整されたアルカリ水溶液を用いるのが好ましいという
ことができる。
This is because the concentration of nitrate (Y) and the concentration of alkali (X) in the alkali treatment solution performed at the tenth (final) time are as follows.
Satisfies the relationship of Y ≧ 15−1.5X, that is, in the tenth impregnation, the nitrate concentration (Y) in the alkali treatment liquid is above the straight line in FIG. If the alkali treatment is performed using an alkali aqueous solution whose concentration is adjusted so that the alkali concentration (X) in the alkali treatment liquid is present on the right side of the straight line in FIG. 1, a nickel positive electrode having a large capacity density can be obtained. Means that. In other words, when sodium hydroxide having a high alkali concentration (X) is used, an alkali aqueous solution whose concentration is adjusted so that the nitrate concentration (Y) in the alkali treatment liquid is low is used, and the alkali concentration (X) is low. When sodium hydroxide is used, it can be said that it is preferable to use an aqueous alkali solution whose concentration is adjusted so that the concentration of nitrate (Y) in the alkali treatment liquid is increased.

【0033】具体的には、アルカリ濃度(X)が6mo
l/lの水酸化ナトリウムを用いる場合は、アルカリ処
理液中の硝酸根濃度(Y)が6mol/l以上の濃度に
なるように濃度調整されたアルカリ水溶液を用い、アル
カリ濃度(X)が7mol/lの水酸化ナトリウムを用
いる場合は、アルカリ処理液中の硝酸根濃度(Y)が5
mol/l以上の濃度になるように濃度調整されたアル
カリ水溶液を用い、アルカリ濃度(X)が8mol/l
の水酸化ナトリウムを用いる場合は、アルカリ処理液中
の硝酸根濃度(Y)が3mol/l以上の濃度になるよ
うに濃度調整されたアルカリ水溶液を用い、アルカリ濃
度(X)が9mol/lの水酸化ナトリウムを用いる場
合は、アルカリ処理液中の硝酸根濃度(Y)が1.5m
ol/l以上の濃度になるように濃度調整されたアルカ
リ水溶液を用いるのが好ましいということができる。
Specifically, the alkali concentration (X) is 6 mo
When 1 / l of sodium hydroxide is used, an aqueous alkali solution whose concentration is adjusted so that the concentration of nitrate (Y) in the alkali treatment liquid is 6 mol / l or more is used, and the alkali concentration (X) is 7 mol. / L sodium hydroxide is used, the concentration of nitrate (Y) in the alkali treatment solution is 5
using an aqueous alkali solution whose concentration has been adjusted to be not less than mol / l, and having an alkali concentration (X) of 8 mol / l.
When sodium hydroxide is used, an aqueous alkali solution whose concentration is adjusted so that the concentration of nitrate (Y) in the alkali treatment liquid is 3 mol / l or more is used, and the alkali concentration (X) is 9 mol / l. When sodium hydroxide is used, the concentration of nitrate (Y) in the alkali treatment liquid is 1.5 m
It can be said that it is preferable to use an alkaline aqueous solution whose concentration has been adjusted to at least ol / l.

【0034】この理由を図2、図3、図4を用いて以下
において検討する。なお、図2は水酸化ニッケルが充填
された焼結基板に硝酸ニッケルを含浸させた後、アルカ
リ溶液に浸漬した状態を模式的に示す断面図であり、図
3は図2において含浸された硝酸ニッケルが水酸化され
る過程を模式的に示す断面図である。また、図4は図3
において水酸化された水酸化ニッケルにコバルト導電層
が生成された状態を模式的に示す断面図である。
The reason will be discussed below with reference to FIGS. 2, 3 and 4. FIG. 2 is a cross-sectional view schematically showing a state in which a sintered substrate filled with nickel hydroxide is impregnated with nickel nitrate and then immersed in an alkaline solution. FIG. 3 is a cross-sectional view of FIG. It is sectional drawing which shows typically the process in which nickel is hydroxylated. FIG. 4 shows FIG.
FIG. 3 is a cross-sectional view schematically showing a state in which a cobalt conductive layer is generated on nickel hydroxide that has been hydroxylated in Step 1.

【0035】まず、上述のようにして、硝酸ニッケルの
含浸およびアルカリ処理を9回繰り返して、焼結基板1
0の細孔内に水酸化ニッケル11を充填した半完成ニッ
ケル正極を用いて、これを濃度調整された硝酸ニッケル
を主体とする硝酸塩溶液(この場合は、硝酸根濃度
(Y)とアルカリ濃度(X)との関係が、Y≧15−
1.5Xの関係となるに濃度調整されている)に浸漬す
ると、図2に示すように、焼結基板の細孔内に形成され
た水酸化ニッケル11の表面に硝酸ニッケル12が含浸
される。これを水酸化ナトリウム水溶液20に浸漬する
と、下記の(2)式に従って水酸化反応が進行する。 2NaOH+Ni(NO3)2・6H2O →Ni(OH)2+2NaNO3+6H2O・・・(2)
First, as described above, the impregnation with nickel nitrate and the alkali treatment were repeated 9 times to obtain the sintered substrate 1.
Using a semi-finished nickel positive electrode in which nickel hydroxide 11 is filled in pores 0, a nitrate solution mainly composed of nickel nitrate (in this case, a nitrate concentration (Y) and an alkali concentration ( X), Y ≧ 15−
2, the surface of the nickel hydroxide 11 formed in the pores of the sintered substrate is impregnated with nickel nitrate 12, as shown in FIG. . When this is immersed in an aqueous sodium hydroxide solution 20, a hydroxylation reaction proceeds according to the following equation (2). 2NaOH + Ni (NO 3 ) 2 .6H 2 O → Ni (OH) 2 + 2NaNO 3 + 6H 2 O (2)

【0036】ここで、低硝酸根濃度のアルカリ溶液であ
ると、(2)式の反応により生成された硝酸ナトリウム
(NaNO3)はアルカリ溶液に溶けるが、上記のよう
に濃度調整された高硝酸根濃度のアルカリ溶液である
と、図3に示すように、(2)式の水酸化反応過程で活
物質(Ni(OH)2)13とともに硝酸ナトリウム(N
aNO3)14の結晶が析出する。このようにして生成
された硝酸ナトリウム(NaNO3)14を含有する活
物質(Ni(OH)2)13は嵩が高く、水酸化反応に伴
って膨張して、既存の活物質11の隙間を押し広げると
ともに、生成された硝酸ナトリウム(NaNO3)14
を中心にして微小なひび割れ14aが無数に発生する。
この微小なひび割れ14aは焼結基板10あるいは焼結
基板10の近傍まで到達する場合がある。
Here, if the alkaline solution has a low nitrate concentration, the sodium nitrate (NaNO 3 ) produced by the reaction of the formula (2) is dissolved in the alkaline solution, but the high nitric acid whose concentration is adjusted as described above is used. In the case of an alkaline solution having a root concentration, as shown in FIG. 3, sodium nitrate (N) is added together with the active material (Ni (OH) 2 ) 13 during the hydroxylation reaction of the formula (2).
aNO 3 ) 14 crystals precipitate. The active material (Ni (OH) 2 ) 13 containing sodium nitrate (NaNO 3 ) 14 thus generated is bulky and expands due to the hydroxylation reaction, thereby removing the gap between the existing active material 11. While spreading, the generated sodium nitrate (NaNO 3 ) 14
A number of minute cracks 14a occur around the center.
The minute cracks 14a may reach the sintered substrate 10 or the vicinity of the sintered substrate 10.

【0037】この後、これを水洗し、乾燥させた後、図
4に示すように、硝酸コバルトを主体とする水溶液に浸
漬して、生成された水酸化ニッケル(活物質)13の表
面に硝酸コバルトを含浸し、これを水酸化ナトリウム水
溶液中に浸漬することにより、硝酸コバルトを水酸化コ
バルト15に置換すると、先のアルカリ処理時に生成さ
れた微小なひび割れ14a内にも水酸化コバルト15a
が生成されるようになる。これにより、水酸化ニッケル
(活物質)13の表面に導電性が良好なコバルト化合物
層が形成されるとともに、このコバルト化合物層が焼結
基板10あるいは焼結基板10の近傍まで達して集電性
に優れた導電ネットワークが形成されることにより、容
量密度が向上したと考えられる。
Thereafter, this was washed with water and dried, and then immersed in an aqueous solution mainly composed of cobalt nitrate, as shown in FIG. By impregnating with cobalt and immersing the same in an aqueous sodium hydroxide solution to replace cobalt nitrate with cobalt hydroxide 15, cobalt cracks 15a are also formed in minute cracks 14a generated during the previous alkali treatment.
Will be generated. As a result, a cobalt compound layer having good conductivity is formed on the surface of the nickel hydroxide (active material) 13, and the cobalt compound layer reaches the sintered substrate 10 or the vicinity of the sintered substrate 10 to collect current. It is considered that the formation of the conductive network excellent in the density improved the capacity density.

【0038】6.コバルト含有量の測定 ここで、電池B5(アルカリ濃度が7.0mol/lで
硝酸根濃度が5.0mol/lとなるように濃度調整さ
れた水酸化ナトリウム水溶液を用いて作製したニッケル
正極b5を用いたもの)と、電池B2(アルカリ濃度が
7.0mol/lで硝酸根濃度が2.0mol/lとな
るように濃度調整された水酸化ナトリウム水溶液を用い
て作製したニッケル正極b2を用いたもの)を解体し
て、ニッケル正極b5およびニッケル正極b2に生成さ
れたコバルト量を測定して、正極全体の質量に対するコ
バルトの含有量(%)を求めると、ニッケル正極b5の
コバルト含有量は2.4質量%で、ニッケル正極b2の
コバルト含有量は1.7質量%であることが分かった。
6. Measurement of Cobalt Content Here, a battery B5 (a nickel positive electrode b5 manufactured using an aqueous sodium hydroxide solution whose concentration was adjusted to have an alkali concentration of 7.0 mol / l and a nitrate concentration of 5.0 mol / l) was used. Used and a battery B2 (a nickel positive electrode b2 prepared using an aqueous sodium hydroxide solution whose concentration was adjusted so that the alkali concentration was 7.0 mol / l and the nitrate concentration was 2.0 mol / l). Was disassembled, and the amount of cobalt (%) with respect to the mass of the entire positive electrode was determined by measuring the amount of cobalt generated in the nickel positive electrode b5 and the nickel positive electrode b2. At 0.4% by mass, the cobalt content of the nickel positive electrode b2 was found to be 1.7% by mass.

【0039】そこで、ニッケル正極b5のコバルト含有
量と等しくなるようなニッケル正極e1を以下のように
作製して、コバルト含有量と容量密度の関係について検
討した。まず、上述のように焼結基板の細孔内に水酸化
ニッケルを充填した半完成ニッケル正極bを用いて、再
度、硝酸ニッケルを主体とする硝酸塩溶液に浸漬して焼
結基板の細孔内に硝酸塩を含浸した後、アルカリ濃度が
7.0mol/lで硝酸根濃度が2.0mol/lとな
るように濃度調整された水酸化ナトリウム水溶液に浸漬
して、硝酸ニッケルを水酸化ニッケルに置換した。
Therefore, a nickel positive electrode e1 having the same cobalt content as that of the nickel positive electrode b5 was prepared as follows, and the relationship between the cobalt content and the capacity density was examined. First, using the semi-finished nickel positive electrode b filled with nickel hydroxide in the pores of the sintered substrate as described above, it is immersed again in a nitrate solution mainly composed of nickel nitrate, and then Is impregnated with nitrate, and then immersed in an aqueous solution of sodium hydroxide adjusted to have an alkali concentration of 7.0 mol / l and a nitrate concentration of 2.0 mol / l, thereby replacing nickel nitrate with nickel hydroxide. did.

【0040】ついで、これを水洗し、乾燥させた後、硝
酸根濃度が2.0mol/lとなるように濃度調整され
た硝酸コバルトを主体とする水溶液に浸漬して、水酸化
ニッケルの表面に硝酸コバルトを含浸した。この後、ア
ルカリ濃度が7.0mol/lで硝酸根濃度が2.0m
ol/lとなるように濃度調整された水酸化ナトリウム
水溶液中に浸漬して、硝酸コバルトを水酸化コバルトに
置換し、さらに、同様なコバルト処理を繰り返して行っ
てニッケル正極e1を作製した。ついで、上述と同様に
ニッケル−カドミウム蓄電池を作製して、電池E1とし
た後、上述と同様に容量密度を求めると下記の表2に示
すような結果となった。なお、表2には電池B5および
電池B2の結果も併せて示している。
Next, this was washed with water and dried, and then immersed in an aqueous solution mainly composed of cobalt nitrate whose concentration was adjusted so that the concentration of nitrate was 2.0 mol / l. Impregnated with cobalt nitrate. Thereafter, the alkali concentration is 7.0 mol / l and the nitrate concentration is 2.0 m.
It was immersed in an aqueous solution of sodium hydroxide adjusted to a concentration of ol / l to replace cobalt nitrate with cobalt hydroxide, and the same cobalt treatment was repeated to produce a nickel positive electrode e1. Next, a nickel-cadmium storage battery was fabricated in the same manner as described above, and the battery E1 was obtained. When the capacity density was determined in the same manner as described above, the results shown in Table 2 below were obtained. Table 2 also shows the results for battery B5 and battery B2.

【0041】[0041]

【表2】 [Table 2]

【0042】上記表2の結果から明らかなように、コバ
ルトの含有率を等しくしたニッケル正極b5を用いた電
池B5と、ニッケル正極e1を用いた電池E1とを比較
すると、電池B5の方が容量密度が向上していることが
分かる。これは、10回目(最終回)に行ったアルカリ
処理液中の硝酸根濃度(Y)とアルカリ濃度(X)との
関係が、Y≧15−1.5Xの関係を備えているので、
水酸化ニッケル(活物質)の表面に導電性が良好なコバ
ルト化合物層が形成されるとともに、このコバルト化合
物層が焼結基板あるいは焼結基板の近傍まで達して集電
性に優れた導電ネットワークが形成されたためと考えら
れる。このことから、コバルト処理の回数を減少させて
も効果的に導電性が良好なコバルト化合物層が形成する
ことが可能となる。
As is clear from the results in Table 2 above, comparing the battery B5 using the nickel positive electrode b5 with the same cobalt content with the battery E1 using the nickel positive electrode e1, the battery B5 has a higher capacity. It can be seen that the density has been improved. This is because the relationship between the concentration of nitrate (Y) and the concentration of alkali (X) in the alkali treatment liquid performed at the tenth time (final time) has a relationship of Y ≧ 15−1.5X.
A cobalt compound layer having good conductivity is formed on the surface of nickel hydroxide (active material), and the cobalt compound layer reaches the sintered substrate or the vicinity of the sintered substrate to form a conductive network having excellent current collecting properties. It is thought that it was formed. From this, even if the number of times of the cobalt treatment is reduced, a cobalt compound layer having good conductivity can be effectively formed.

【0043】上述したように、本発明においては、焼結
基板10の細孔内に形成された水酸化ニッケル11の表
面に含浸された硝酸ニッケル12をアルカリ水溶液に浸
漬して水酸化反応を進行させる際に、アルカリ水溶液中
の硝酸根濃度が高くなるように調整されているので、水
酸化反応過程で活物質(Ni(OH)2)が析出するとと
もに、アルカリ硝酸塩がアルカリ水溶液に溶解すること
なく析出する。この析出したアルカリ硝酸塩を含有する
活物質は嵩が高くて、水酸化反応に伴って膨張するた
め、生成されたアルカリ硝酸塩を中心にして微小なひび
割れ(亀裂)が無数に発生する。
As described above, in the present invention, the nickel nitrate 12 impregnated on the surface of the nickel hydroxide 11 formed in the pores of the sintered substrate 10 is immersed in an alkaline aqueous solution to advance the hydroxylation reaction. Since the concentration of nitrate in the aqueous alkali solution is adjusted to be high, the active material (Ni (OH) 2 ) is precipitated during the hydroxylation reaction, and the alkali nitrate is dissolved in the aqueous alkaline solution. Precipitates without. Since the active material containing the precipitated alkali nitrate is bulky and expands due to the hydroxylation reaction, countless minute cracks (cracks) mainly occur in the generated alkali nitrate.

【0044】この後、硝酸コバルトに含浸して、これを
水酸化ナトリウム水溶液中に浸漬することにより水酸化
コバルトに置換されて、先のアルカリ処理時に生成され
た微小なひび割れ(亀裂)内にも水酸化コバルトが生成
されるようになる。これにより、水酸化ニッケル(活物
質)の表面に導電性が良好なコバルト化合物層が形成さ
れるとともに、このコバルト化合物層が焼結基板あるい
は焼結基板の近傍まで達する導電ネットワークが形成さ
れる。この結果、高密度に活物質が充填された状態にあ
っても、集電性に優れた導電ネットワークが形成され、
正極容量の高いニッケル正極が得られるようになる。
Thereafter, the substrate is impregnated with cobalt nitrate, and is immersed in an aqueous solution of sodium hydroxide to be replaced with cobalt hydroxide. Cobalt hydroxide is produced. As a result, a cobalt compound layer having good conductivity is formed on the surface of the nickel hydroxide (active material), and a conductive network is formed in which the cobalt compound layer reaches the sintered substrate or the vicinity of the sintered substrate. As a result, even in a state where the active material is densely packed, a conductive network having excellent current collecting properties is formed,
A nickel positive electrode having a high positive electrode capacity can be obtained.

【0045】なお、上述した実施の形態においては、焼
結基板の細孔内に水酸化ニッケルを充填する処理操作を
9回繰り返して、半完成ニッケル正極とした後、10回
目にアルカリ水溶液処理(高硝酸根濃度アルカリ処理)
する際の硝酸根濃度が高くなるように濃度調整されたア
ルカリ水溶液に浸漬するようにした例について説明した
が、高硝酸根濃度アルカリ処理は10回目に限らず、活
物質充填処理の過程で少なくとも1回行うようにすれば
よく、その実行は好ましくは複数回繰り返す活物質充填
処理操作のうちの後半に行うのがよく、さらに好ましく
は、最終回およびその近接回に行うようにすればよい。
In the above-described embodiment, the operation of filling nickel hydroxide into the pores of the sintered substrate is repeated nine times to obtain a semi-finished nickel positive electrode. High nitrate concentration alkali treatment)
Although the example in which the immersion is performed in an alkali aqueous solution whose concentration is adjusted so that the nitrate concentration at the time of performing the treatment is described, the alkali treatment with a high nitrate concentration is not limited to the tenth time, and at least in the course of the active material filling treatment, It may be performed once, preferably in the latter half of the active material filling treatment operation that is repeated a plurality of times, and more preferably in the last round and its close round.

【0046】また、活物質充填処理は9回あるいは10
回に限らず、必要とする正極容量となるように活物質充
填処理を行うようにすればよい。また、上述した実施の
形態においては、アルカリ処理するアルカリ水溶液とし
て水酸化ナトリウムを用いた例について説明したが、ア
ルカリ水溶液としては水酸化ナトリウムに限らず、水酸
化カリウム、水酸化リチウムなどの他のアルカリ水溶液
を用いるようにしてもよい。
Further, the active material filling treatment is performed 9 times or 10 times.
Not only the number of times, but also the active material filling treatment may be performed so that the required positive electrode capacity is obtained. Further, in the above-described embodiment, an example was described in which sodium hydroxide was used as the alkaline aqueous solution to be subjected to the alkali treatment. However, the alkaline aqueous solution is not limited to sodium hydroxide, and other aqueous solutions such as potassium hydroxide and lithium hydroxide are used. An alkaline aqueous solution may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 アルカリ濃度(X)と硝酸根濃度(Y)との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between an alkali concentration (X) and a nitrate concentration (Y).

【図2】 水酸化ニッケルが充填された焼結基板に硝酸
ニッケルを含浸させた後、アルカリ溶液に浸漬した状態
を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a state in which a sintered substrate filled with nickel hydroxide is impregnated with nickel nitrate and then immersed in an alkaline solution.

【図3】 図2において含浸された硝酸ニッケルが水酸
化される過程を模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a process in which nickel nitrate impregnated in FIG. 2 is hydroxylated.

【図4】 図3において水酸化された水酸化ニッケルに
コバルト導電層が生成された状態を模式的に示す断面図
である。
FIG. 4 is a cross-sectional view schematically showing a state in which a cobalt conductive layer has been formed on the hydroxylated nickel hydroxide in FIG.

【符号の説明】[Explanation of symbols]

10…焼結基板、11…水酸化ニッケル(活物質)、1
2…硝酸ニッケル、13…水酸化ニッケル(活物質)、
14…アルカリ硝酸塩(NaNO3)の結晶硝酸、14
a…微小なひび割れ、15…コバルト化合物層、15a
…微小なひび割れに形成されたコバルト化合物層、20
…アルカリ水溶液
10: sintered substrate, 11: nickel hydroxide (active material), 1
2 ... nickel nitrate, 13 ... nickel hydroxide (active material),
14 ... Crystalline nitric acid of alkali nitrate (NaNO 3 ), 14
a: minute cracks, 15: cobalt compound layer, 15a
... Cobalt compound layer formed in minute cracks, 20
... alkaline aqueous solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池町 隆明 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H050 AA08 BA11 CA03 CB13 CB14 CB16 DA09 EA01 FA17 FA18 GA12 GA13 GA22 GA23 GA26 GA27 HA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takaaki Ikemachi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term (reference) in Sanyo Electric Co., Ltd. 5H050 AA08 BA11 CA03 CB13 CB14 CB16 DA09 EA01 FA17 FA18 GA12 GA13 GA22 GA23 GA26 GA27 HA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔性基板に硝酸塩溶液を含浸した後、
アルカリ水溶液に浸漬して前記硝酸塩を水酸化物に転化
する活物質充填工程を備え、該活物質充填工程を複数回
繰り返すようにしたアルカリ蓄電池用ニッケル正極の製
造方法であって、 前記活物質充填工程において、アルカリ濃度と硝酸根濃
度を同時に濃度調整したアルカリ水溶液に浸漬する高硝
酸根濃度アルカリ浸漬工程を少なくとも1回備えるとと
もに、 前記活物質充填工程の後に、硝酸コバルトを主体とする
水溶液に含浸した後、アルカリ水溶液に浸漬して前記硝
酸コバルトを水酸化物に転化するコバルト添加工程を備
えたことを特徴とするアルカリ蓄電池用ニッケル正極の
製造方法。
After impregnating a porous substrate with a nitrate solution,
A method for producing a nickel positive electrode for an alkaline storage battery, comprising an active material filling step of converting the nitrate to hydroxide by immersion in an alkaline aqueous solution, wherein the active material filling step is repeated a plurality of times. In the process, at least one alkali immersion step of immersing in a high nitrate concentration alkali immersion process in which the alkali concentration and the nitrate concentration are simultaneously adjusted is immersed in an aqueous solution mainly containing cobalt nitrate after the active material filling process. And then immersing it in an aqueous alkali solution to convert the cobalt nitrate to a hydroxide. A method for producing a nickel positive electrode for an alkaline storage battery, comprising:
【請求項2】 前記高硝酸根濃度アルカリ浸漬工程にお
いて、前記アルカリ水溶液のアルカリ濃度をX(mol
/l)とし、該アルカリ水溶液中の硝酸根濃度をY(m
ol/l)とした場合に、Y≧15−1.5Xの条件を
満たすように濃度調整するようにしたことを特徴とする
請求項1に記載のアルカリ蓄電池用ニッケル正極の製造
方法。
2. The method according to claim 2, wherein the alkali concentration of the aqueous alkali solution is X (mol)
/ L) and the concentration of nitrate in the aqueous alkali solution is Y (m
2. The method according to claim 1, wherein the concentration is adjusted so as to satisfy the condition of Y ≧ 15-1.5X when the ratio is set to (ol / l).
【請求項3】 前記高硝酸根濃度アルカリ浸漬工程の後
に水洗して前記硝酸根を除去する水洗工程を備えるよう
にしたことを特徴とする請求項1または請求項2に記載
のアルカリ蓄電池用ニッケル正極の製造方法。
3. The nickel for an alkaline storage battery according to claim 1, further comprising a water washing step of removing the nitrate by washing with water after the alkali immersion step of high nitrate concentration. Manufacturing method of positive electrode.
JP2001100895A 2001-03-30 2001-03-30 Method of producing nickel positive electrode for alkaline storage battery Withdrawn JP2002298838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100895A JP2002298838A (en) 2001-03-30 2001-03-30 Method of producing nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100895A JP2002298838A (en) 2001-03-30 2001-03-30 Method of producing nickel positive electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2002298838A true JP2002298838A (en) 2002-10-11

Family

ID=18954288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100895A Withdrawn JP2002298838A (en) 2001-03-30 2001-03-30 Method of producing nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2002298838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095602A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Method of producing polar plate for alkaline accumulator
JP2007513852A (en) * 2003-10-29 2007-05-31 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Metal oxide thin film and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513852A (en) * 2003-10-29 2007-05-31 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Metal oxide thin film and manufacturing method thereof
JP2007095602A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Method of producing polar plate for alkaline accumulator

Similar Documents

Publication Publication Date Title
JP2002298838A (en) Method of producing nickel positive electrode for alkaline storage battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP2002203543A (en) Cadmium negative electrode for alkaline battery and its manufacturing method
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS645421B2 (en)
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS60143569A (en) Positive plate for alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JP2001351619A (en) Nickel positive electrode plate and alkaline battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JPH0410181B2 (en)
JP2966497B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH01146253A (en) Manufacture of cadmium electrode for battery
JP2003229131A (en) Alkaline storage battery having nickel electrode and its manufacturing method
JPH04160757A (en) Paste type nickel positive electrode
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JP2000277100A (en) Manufacture of sintered nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603