JP2002294415A - Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor - Google Patents

Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor

Info

Publication number
JP2002294415A
JP2002294415A JP2001096769A JP2001096769A JP2002294415A JP 2002294415 A JP2002294415 A JP 2002294415A JP 2001096769 A JP2001096769 A JP 2001096769A JP 2001096769 A JP2001096769 A JP 2001096769A JP 2002294415 A JP2002294415 A JP 2002294415A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
steel sheet
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001096769A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001096769A priority Critical patent/JP2002294415A/en
Publication of JP2002294415A publication Critical patent/JP2002294415A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet with superhigh magnetic flux density, a material therefor, and a manufacturing method therefor. SOLUTION: The non-oriented electromagnetic steel sheet with superhigh magnetic flux density is characterized by including Si<=0.5%, Mn<=0.5%, Al<=0.5%, 0.01<=P<=0.2%, 0.03%<=Sn<=0.4%, by wt.%, and the balance Fe and unavoidable impurities in the steel, and by having magnetic flux density B 25 of 1.70 T or higher in magnetic field strength of 2500 A/m, and magnetic flux density B 50 of 1.80 T or higher. The method for manufacturing the non- oriented electromagnetic steel sheet of the above composition with superhigh magnetic flux density, including carrying out an annealing either of self annealing, box annealing, or continuous annealing for a hot-rolled sheet, is characterized in that a parameter determined by distortion, a distortion speed, and outlet temperature of the pass in at least one pass of a finish hot rolling process, satisfies a certain formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が特に高く、鉄損が低い
のみならず、表面性状にも優れ、優れた磁気特性と占積
率を有する無方向性電磁鋼板およびその製造方法並びに
その無方向性電磁鋼板を製造するための熱延鋼板および
その無方向性電磁鋼板を使用した製品に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron core material for electrical equipment, which has not only a high magnetic flux density and a low iron loss, but also excellent surface properties and excellent magnetic properties and space factor. The present invention relates to a non-oriented electrical steel sheet, a method for producing the same, a hot-rolled steel sheet for producing the non-oriented electrical steel sheet, and a product using the non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。
2. Description of the Related Art In recent years, in the fields of electric machines, especially rotating machines and medium-sized and small-sized transformers in which non-oriented electrical steel sheets are used as iron core materials, worldwide electric power and energy savings, as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading. Therefore, there is an increasing demand for non-oriented electrical steel sheets to have improved properties, that is, high magnetic flux density and low iron loss.

【0003】無方向性電磁鋼板の低鉄損化は主としてS
i,Al添加による電気抵抗率の増加により、使用時に
鉄心を形成する各々の鋼板に流れる渦電流損によるジュ
ール熱損失を低減することにより行われてきた。
[0003] Low iron loss of a non-oriented electrical steel sheet is mainly achieved by S
The increase in electrical resistivity due to the addition of i and Al has been used to reduce Joule heat loss due to eddy current loss flowing through each steel sheet forming the iron core during use.

【0004】一方、回転機、および鉄心を含む機器全体
のエネルギー損失としては、鉄心に巻くコイルを電流が
流れることによる生ずるジュール熱損失である銅損の寄
与も無視できない。この銅損の低減のためには同じ磁界
強度に励磁するのに必要な電流密度を減少してやること
が有効であり、同一の励磁電流でより高い磁束密度を発
現する素材の開発が欠かせない。すなわち、超高磁束密
度無方向性電磁鋼板の開発が必須である。
On the other hand, as the energy loss of the whole machine including the rotating machine and the iron core, the contribution of copper loss, which is Joule heat loss caused by current flowing through a coil wound around the iron core, cannot be ignored. In order to reduce the copper loss, it is effective to reduce the current density required to excite the magnetic field to the same intensity, and it is essential to develop a material that expresses a higher magnetic flux density with the same exciting current. That is, development of an ultra-high magnetic flux density non-oriented electrical steel sheet is essential.

【0005】この超高磁束密度無方向性電磁鋼板が実現
することにより、回転機、鉄心ともに小型化が可能とな
り、これらを積載した自動車、電車のような移動体にお
いては系全体の重量が軽減されることにより稼働時のエ
ネルギー損失を低減できる。また、回転機においてはト
ルクが増大し、より小型で高出力の回転機が実現する。
[0005] The realization of this ultra-high magnetic flux density non-oriented electrical steel sheet makes it possible to reduce the size of both the rotating machine and the iron core, and to reduce the weight of the entire system in moving objects such as automobiles and trains loaded with these. By doing so, energy loss during operation can be reduced. Further, the torque of the rotating machine is increased, and a smaller and higher-output rotating machine is realized.

【0006】このように、超高磁束密度無方向性電磁鋼
板が実現することにより、鉄心及び回転機の動作時のエ
ネルギー損失を低減できるのみならず、それを含めた装
置全体の系への波及効果も計り知れないものがある。
As described above, the realization of the super-high magnetic flux density non-oriented electrical steel sheet not only reduces the energy loss during the operation of the iron core and the rotating machine, but also spreads the entire system including the same. The effects are immeasurable.

【0007】従来の高磁束密度無方向性電磁鋼板製造法
において概観すると、特公昭62−61644号公報に
は、熱延終了温度を1000℃以上とすることにより熱
延結晶組織の粗大化を図り、仕上焼鈍を省略するととも
に冷延前結晶組織を粗大化する方法が開示されている。
しかしながら実際の仕上熱延機においては噛み込み時の
圧延速度と定常圧延状態の圧延速度が異なることから、
コイル長手方向の温度分布を解消することが困難であ
り、コイル長手方向で磁気特性が変動するという不利益
があった。
[0007] An overview of the conventional method of manufacturing a high magnetic flux density non-oriented electrical steel sheet is disclosed in Japanese Patent Publication No. 62-61644. A method of omitting finish annealing and coarsening the crystal structure before cold rolling is disclosed.
However, in the actual finishing hot rolling mill, since the rolling speed during biting and the rolling speed in the steady rolling state are different,
It is difficult to eliminate the temperature distribution in the coil longitudinal direction, and there is a disadvantage that the magnetic characteristics fluctuate in the coil longitudinal direction.

【0008】特公平8−32927号公報には、C<
0.01%、Si:0.5〜3.0%、Mn:0.1〜
1.5%、Al:0.1〜1.0%、P:0.005〜
0.016%、S<0.005%を含有する鋼からなる
熱延板を酸洗後5〜20%の圧下率で冷間圧延し、これ
を850〜1000℃で0.5〜10分あるいは750
〜850℃にて1〜10時間熱延板焼鈍を行い、ついで
最終焼鈍する技術が開示されている。この方法において
は、従来の熱延板焼鈍法に比べて磁束密度の向上が十分
でなく、昨今の需要家の無方向性電磁鋼板磁気特性向上
に対する要請にはこたえうるものではなかった。
Japanese Patent Publication No. 8-32927 discloses that C <
0.01%, Si: 0.5 to 3.0%, Mn: 0.1 to
1.5%, Al: 0.1-1.0%, P: 0.005-
A hot rolled sheet made of steel containing 0.016% and S <0.005% is pickled and then cold-rolled at a rolling reduction of 5 to 20%. Or 750
A technique of performing hot-rolled sheet annealing at 8850 ° C. for 1 to 10 hours, followed by final annealing is disclosed. In this method, the magnetic flux density is not sufficiently improved as compared with the conventional hot-rolled sheet annealing method, and it has not been possible to meet the recent demands of customers for improving the magnetic properties of non-oriented electrical steel sheets.

【0009】Sn添加により一次再結晶集合組織を改善
することで無方向性電磁鋼板の磁気特性を改善する方法
として、特開昭55−158252号公報が公知であ
る。Sn添加による高磁束密度達成に関する従来の技術
においては、各種の方法により熱延板焼鈍を行ったとし
てもその冷間圧延前の結晶粒径はせいぜい100μm程
度であった。これは、熱延結晶組織の粒成長をさらに進
行させて磁束密度を向上させようとすると、焼鈍中に熱
延組織において異常粒成長が生じ、その結果冷間圧延後
の鋼板の表面に凹凸が生じ、表面性状を損なうととも
に、占積率が著しく低下するため、各種熱延板焼鈍によ
る熱延結晶組織の粗大化には限度があったからである。
Japanese Patent Application Laid-Open No. 55-158252 discloses a method for improving the magnetic properties of a non-oriented electrical steel sheet by improving the primary recrystallization texture by adding Sn. In the conventional technology for achieving a high magnetic flux density by adding Sn, even if hot-rolled sheet annealing is performed by various methods, the crystal grain size before cold rolling is at most about 100 μm. This is because, when trying to further increase the magnetic flux density by further promoting the grain growth of the hot-rolled crystal structure, abnormal grain growth occurs in the hot-rolled structure during annealing, and consequently the surface of the steel sheet after cold rolling has irregularities. This is because the surface properties are impaired and the space factor is significantly reduced, so that there is a limit to the coarsening of the hot-rolled crystal structure due to various hot-rolled sheet annealing.

【0010】一方、熱延板焼鈍中の結晶粒成長の制御に
ついては、熱延板焼鈍の条件のみの制御ではコントロー
ルが難しく、この点で従来技術では解決できない問題点
があったのである。
On the other hand, it is difficult to control the growth of crystal grains during hot-rolled sheet annealing by controlling only the conditions of hot-rolled sheet annealing, and there is a problem that cannot be solved by the prior art in this point.

【0011】さらに、超高磁束密度を達成しつつ、冷間
圧延、仕上焼鈍後の鋼板の表面に生じる凹凸を抑制し製
品の形状を向上させる冷間圧延前の結晶組織の条件につ
いても従来技術では明解な解答を得られていなかった。
[0011] Further, regarding the condition of the crystal structure before cold rolling, which achieves an ultra-high magnetic flux density, suppresses the unevenness generated on the surface of the steel sheet after cold rolling and finish annealing and improves the shape of the product, Did not get a clear answer.

【0012】このように、従来技術においては冷間圧延
前の熱延板焼鈍による結晶組織制御が難しく、超高磁束
密度を得ようとすると熱延板の結晶組織が過度の異常粒
成長を起こして冷間圧延後の表面性状を著しく悪化さ
せ、占積率を低下させるとともに、結果として打ち抜き
加工においても支障が生じ、超高磁束密度と加工性、占
積率の両立が不可能であった。
As described above, in the prior art, it is difficult to control the crystal structure by annealing the hot-rolled sheet before cold rolling, and if an ultra-high magnetic flux density is to be obtained, the crystal structure of the hot-rolled sheet causes excessive abnormal grain growth. In addition to significantly deteriorating the surface properties after cold rolling and reducing the space factor, as a result, there was also a problem in punching, and it was impossible to achieve both ultra-high magnetic flux density, workability, and space factor .

【0013】他にもNi添加により高磁束密度を達成す
る技術として特開平6−271996号公報、特開平8
−246108号公報、特開平8−109449号公報
が開示されているが、高価なNiの添加により、製造コ
ストの増加を招くという問題があった。
Other techniques for achieving a high magnetic flux density by adding Ni include JP-A-6-271996 and JP-A-8-271996.
JP-A-246108 and JP-A-8-109449 disclose, however, there is a problem that the addition of expensive Ni causes an increase in manufacturing cost.

【0014】このように、従来技術では、需要家での使
用に耐える形状を有する超高磁束密度無方向性電磁鋼板
を製造できるには至らず、無方向性電磁鋼板に対する前
記の要請に応えることは出来なかった。
[0014] As described above, the conventional technique cannot produce an ultra-high magnetic flux density non-oriented electrical steel sheet having a shape that can be used by consumers, and can meet the above-mentioned demand for a non-oriented electrical steel sheet. Could not.

【0015】[0015]

【発明が解決しようとする課題】本発明では、従来の無
方向性電磁鋼板において電気抵抗率確保の観点から添加
されてきたSi,Al,Mnの添加量を抑制するととも
に、微量のSnを鋼に添加し、熱延条件を適切に制御す
ることにより、各種の熱延板焼鈍後の冷間圧延前の熱延
板の結晶組織を適正に制御し、製品の超高磁束密度と冷
間圧延後の製品性状との両立を達成できる。これによ
り、B50よりも低い磁界強度2500A/mでの磁束密
度B25の値を1.70T以上にすることが初めて可能と
なる。
SUMMARY OF THE INVENTION In the present invention, the amount of Si, Al, and Mn, which have been added to a conventional non-oriented electrical steel sheet from the viewpoint of securing electrical resistivity, is suppressed, and a small amount of Sn is removed from steel. By appropriately controlling the hot rolling conditions, the crystal structure of the hot rolled sheet before cold rolling after annealing of various hot rolled sheets is properly controlled, and the ultra-high magnetic flux density of the product and cold rolling Compatibility with later product properties can be achieved. This makes it possible for the first time to set the value of the magnetic flux density B25 to 1.70 T or more at a magnetic field intensity of 2500 A / m lower than B50.

【0016】すなわち本発明は、従来技術におけるこの
ような問題点を解決し、超高磁束密度、低鉄損かつ表面
性状に優れた無方向性電磁鋼板を提供することを目的と
するものである。
That is, an object of the present invention is to solve such problems in the prior art and to provide a non-oriented electrical steel sheet having an extremely high magnetic flux density, low iron loss and excellent surface properties. .

【0017】[0017]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなり、
磁界強度2500A/mにおける磁束密度B25の値が
1.70T以上でありかつ、磁束密度B50の値が1.8
0T以上であることを特徴とする超高磁束密度無方向性
電磁鋼板。
The gist of the present invention is as follows. (1) By weight% in steel, Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, with the balance being Fe and unavoidable impurities,
The value of the magnetic flux density B25 at a magnetic field strength of 2500 A / m is 1.70 T or more, and the value of the magnetic flux density B50 is 1.8
An ultra-high magnetic flux density non-oriented electrical steel sheet characterized by being at least 0T.

【0018】(2)鋼中に重量%で、 Si≦0.5%、 Mn≦0.5% Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、かつ、 C ≦0.003%、 S ≦0.003% N ≦0.003%、 Ti+S+N≦0.005%、 残部がFeおよび不可避的不純物からなり、磁界強度2
500A/mにおける磁束密度B25の値が1.70T以
上でありかつ、磁束密度B50の値が1.80T以上であ
り、かつ、酸洗、冷延、焼鈍後の鉄損の値W15/50 が6
W/kg以下であることを特徴とする低鉄損超高磁束密度
無方向性電磁鋼板。
(2) By weight% in steel, Si ≦ 0.5%, Mn ≦ 0.5% Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, C ≦ 0.003%, S ≦ 0.003%, N ≦ 0.003%, Ti + S + N ≦ 0.005%, the balance consisting of Fe and unavoidable impurities, Strength 2
The value of the magnetic flux density B25 at 500 A / m is 1.70 T or more, the value of the magnetic flux density B50 is 1.80 T or more, and the value W15 / 50 of the iron loss after pickling, cold rolling and annealing is: 6
A non-oriented electrical steel sheet having a low iron loss and an extremely high magnetic flux density, which is not more than W / kg.

【0019】(3)需要家焼鈍もしくは歪取り焼鈍後の
鉄損の値が5W/kg以下であることを特徴とする前記
(1)または(2)項に記載の超高磁束密度無方向性電
磁鋼板。
(3) The ultra-high magnetic flux density non-directionality as described in the above item (1) or (2), wherein the iron loss value after customer annealing or strain relief annealing is 5 W / kg or less. Electrical steel sheet.

【0020】(4)磁束密度B50の値が1.82T以上
であることを特徴とする前記(1)ないし(3) 項のい
ずれかに記載の超高磁束密度無方向性電磁鋼板。
(4) The ultra-high magnetic flux density non-oriented electrical steel sheet according to any one of the above (1) to (3), wherein the value of the magnetic flux density B50 is 1.82 T or more.

【0021】(5)占積率が95.0%以上であること
を特徴とする前記(1)ないし(4)のいずれかに記載
の超高磁束密度無方向性電磁鋼板。
(5) The ultra-high magnetic flux density non-oriented electrical steel sheet according to any one of (1) to (4), wherein the space factor is 95.0% or more.

【0022】(6)鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、かつ、鋼板の圧延方向縦断面の任意の箇所の
金属組織において、観察される結晶粒の最大粒径が20
0μm以上であるとともに、任意の場所において板面法
線により切断される200μm以上の粒径の結晶粒の数
が3個以上であることを特徴とする、圧延後の板面形状
に優れた超高磁束密度無方向性電磁鋼板用熱延板。
(6) By weight% in steel, Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, and the maximum grain size of the observed crystal grains is 20 in the metal structure at an arbitrary position in the vertical section in the rolling direction of the steel sheet.
An ultra-fine sheet having excellent shape after rolling, characterized in that the number of crystal grains having a grain size of 200 μm or more cut at any position by a normal to the sheet is 3 or more. Hot rolled sheet for high magnetic flux density non-oriented electrical steel sheet.

【0023】(7)前記(1)ないし(5)項のいずれ
かに記載された無方向性電磁鋼板打ち抜いて作製され
た、回転機用の回転子鉄心あるいは固定子鉄心、または
リアクトル、安定器、チョークコイル、EIコア、変圧
機用鉄心。
(7) A rotor core or a stator core, or a reactor or a ballast for a rotating machine, produced by punching out the non-oriented electrical steel sheet described in any one of the above (1) to (5). , Choke coil, EI core, iron core for transformer.

【0024】(8)前記(1)ないし(5)項のいずれ
かに記載された無方向性電磁鋼板を使用して作製された
磁気シールド装置。
(8) A magnetic shield device manufactured using the non-oriented electrical steel sheet according to any one of the above (1) to (5).

【0025】(9)鋼中に重量%で、 Si≦0.5%、 Mn≦0.5% Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなる成
分のスラブを用い、熱間圧延し、これを750℃以上1
050℃以下の温度で巻き取ってコイルとし、保熱カバ
ーをかぶせるか又は保熱カバーを用いず、コイル状の状
態で750℃以上(Ac3 +Ac1 )/2以下の温度で
5分以上2時間以内自己焼鈍を行い熱延板とし、酸洗し
一回の冷間圧延工程を施し次いで仕上げ焼鈍を施す無方
向性電磁鋼板の製造方法において、仕上熱延において少
なくとも1パスにおいて、当該パス条件により定まるパ
ラメータRが下記の式(1),(2)の範囲を満たすこ
とを特徴とする超高磁束密度無方向性電磁鋼板の製造方
法。
(9) By weight% in steel, Si ≦ 0.5%, Mn ≦ 0.5% Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Using a slab containing Sn ≦ 0.4% and the balance consisting of Fe and unavoidable impurities, hot rolling was performed at 750 ° C. or higher.
Wind at a temperature of 050 ° C or less to form a coil, cover it with a heat insulating cover or do not use a heat insulating cover, and in a coiled state at a temperature of 750 ° C or more (Ac3 + Ac1) / 2 or less for 5 minutes to 2 hours In a method for producing a non-oriented electrical steel sheet which is subjected to self-annealing to form a hot-rolled sheet, pickled, subjected to one cold rolling step, and then subjected to finish annealing, at least one pass in finishing hot rolling is determined by the pass conditions. A method for producing an ultra-high magnetic flux density non-oriented electrical steel sheet, wherein the parameter R satisfies the ranges of the following equations (1) and (2).

【0026】[0026]

【数3】 (Equation 3)

【0027】(10)鋼中に重量%で、 Si≦0.5%、 Mn≦0.5% Al≦0.5%、 0.01%≦P≦0.2% 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなる成
分のスラブを用い、熱間圧延し、これを巻き取ってコイ
ルとした後、750℃以上(Ac3 +Ac1 )/2以下
の温度で連続焼鈍炉で30秒以上5分以内の熱延板焼鈍
を行うか、箱焼鈍炉により700℃以上(Ac3 +Ac
1 )/2以下の温度で10分以上30時間以内の熱延板
焼鈍を行い熱延板とし、酸洗し一回の冷間圧延工程を施
し次いで仕上げ焼鈍を施す無方向性電磁鋼板の製造方法
において、仕上熱延において少なくとも1パスにおい
て、当該パスの条件により定まるパラメータRが下記の
式(1),(2)の範囲を満たすことを特徴とする超高
磁束密度無方向性電磁鋼板の製造方法。
(10) By weight% in steel, Si ≦ 0.5%, Mn ≦ 0.5% Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2% 0.03% ≦ Sn Hot rolled using a slab containing ≦ 0.4% and the balance consisting of Fe and unavoidable impurities, wound up into a coil, and then 750 ° C. or more and (Ac 3 + Ac 1) / 2 or less Perform hot-rolled sheet annealing in a continuous annealing furnace at a temperature of 30 seconds or more and 5 minutes or 700 ° C or more (Ac3 + Ac) in a box annealing furnace.
1) Production of non-oriented electrical steel sheet which is subjected to hot-rolled sheet annealing at a temperature of not more than / 2 for 10 minutes to 30 hours to form a hot-rolled sheet, pickling, subjecting to a single cold rolling step, and then finish annealing. The method according to claim 1, wherein a parameter R determined by the conditions of at least one pass in the finish hot rolling satisfies the range of the following formulas (1) and (2). Production method.

【0028】[0028]

【数4】 (Equation 4)

【0029】(11)仕上焼鈍後の製品に2%以上12
%以下のスキンパス圧延を施すことを特徴とする前記
(9)または(10)項に記載された超高磁束密度無方
向性電磁鋼板の製造方法。
(11) 2% to 12% of the product after finish annealing
% Or less, and a method for producing an ultra-high magnetic flux density non-oriented electrical steel sheet as described in the above item (9) or (10), wherein skin pass rolling is performed.

【0030】[0030]

【発明の実施の形態】発明者らは、従来にない超高磁束
密度を達成すべく鋭意検討を重ねた結果、従来無方向性
電磁鋼板の磁気特性を改善するのに添加されてきたS
i,Mn,Al等の元素が超高磁束密度を達成するのに
むしろ有害であることを新規に知見した。これらの元素
は従来磁束密度の評価指標に用いられてきた磁界強度5
000A/mにおける磁束密度B50の値ばかりでなく、
さらに低磁界強度での励磁特性を著しく阻害することを
新規に知見し発明の完成に至ったのである。さらに、鋼
の純度を一定以上に保つことにより、従来到達不可能で
あった超高磁束密度と低鉄損との両立が可能であること
も新規に知見した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted intensive studies to achieve an unprecedented ultra-high magnetic flux density. As a result, S has been conventionally added to improve the magnetic properties of non-oriented electrical steel sheets.
It has been newly discovered that elements such as i, Mn, and Al are rather harmful in achieving an ultra-high magnetic flux density. These elements are used to evaluate the magnetic field strength, which has been conventionally used as an evaluation index of magnetic flux density.
Not only the value of the magnetic flux density B50 at 000 A / m,
Furthermore, they newly discovered that the excitation characteristics at a low magnetic field strength were significantly impaired, and completed the invention. Furthermore, it has been newly found that by maintaining the purity of steel at a certain level or more, it is possible to achieve both ultra-high magnetic flux density and low iron loss, which were previously unattainable.

【0031】また、従来高磁束密度無方向性電磁鋼板の
製造において両立が困難であった冷間圧延後の鋼板の形
状を良好に保つことと、超高磁束密度との両立が、仕上
熱延条件を適正に制御することで可能となることを見い
だした。
In addition, maintaining the good shape of the steel sheet after cold rolling, which has been difficult to achieve in the conventional production of high magnetic flux density non-oriented electrical steel sheets, and achieving compatibility with ultra-high magnetic flux density have been achieved by finishing hot rolling. We found that it becomes possible by controlling the conditions appropriately.

【0032】まず、成分について説明すると、Siは本
発明においては製品の磁束密度を低減させ有害であるか
ら、その含有量を0.5%以下と制限する。
First, the components will be described. Since Si reduces the magnetic flux density of a product in the present invention and is harmful, its content is limited to 0.5% or less.

【0033】Mnは本発明においては製品の磁束密度を
低減させ有害であるから、その含有量を0.5%以下と
制限する。
In the present invention, Mn is harmful because it reduces the magnetic flux density of the product, so its content is limited to 0.5% or less.

【0034】Alは本発明においては製品の磁束密度を
低減させ有害であるため、その含有量を0.5%以下と
制限する。
In the present invention, Al is harmful because it reduces the magnetic flux density of the product, so its content is limited to 0.5% or less.

【0035】Pは本発明のようなSi添加量の少ない鋼
板において、打ち抜き加工性を確保する上で硬度が不足
するため、その値を適正に制御するために添加される。
添加量が0.01%以下であるとその効果が十分でな
く、0.2%以上であると鉄損を悪化させるために、添
加量は0.01%以上0.2%以下と定める。
P is added to a steel sheet containing a small amount of Si, as in the present invention, because its hardness is insufficient for ensuring the punching workability, so that its value is appropriately controlled.
If the addition amount is 0.01% or less, the effect is not sufficient, and if it is 0.2% or more, the iron loss is deteriorated. Therefore, the addition amount is set to 0.01% or more and 0.2% or less.

【0036】C含有量が0.0030%を越えると、磁
気時効が発生し使用中の鉄損が悪化するため0.003
0%以下とする必要がある。
When the C content exceeds 0.0030%, magnetic aging occurs and iron loss during use deteriorates, so that 0.003% or less.
It must be 0% or less.

【0037】本発明ではS,Nの低減により超高磁束密
度と低鉄損との両立が可能となる。S,Nは熱間圧延工
程におけるスラブ加熱中に一部再固溶し、熱間圧延中に
MnS,AlNの微細な析出物を再析出して仕上焼鈍時
の結晶粒成長を抑制し、鉄損が悪化する原因となる。こ
のためその含有量は共に0.0030%以下とする必要
がある。
According to the present invention, it is possible to achieve both high magnetic flux density and low iron loss by reducing S and N. S and N partially re-dissolve during slab heating in the hot rolling process, and re-precipitate fine precipitates of MnS and AlN during hot rolling to suppress crystal grain growth during finish annealing, and This causes the loss to worsen. For this reason, their contents must both be set to 0.0030% or less.

【0038】Tiは、窒化物、硫化物を形成し製品の鉄
損を悪化させるので、仕上焼鈍後の製品の鉄損W15/50
の値を6W/kg以下にするためにはその含有量をS,N
と合わせて0.005%以下にする必要がある。
Since Ti forms nitrides and sulfides and deteriorates the iron loss of the product, the iron loss W15 / 50 of the product after the finish annealing is performed.
In order to reduce the value of S to 6 W / kg or less, the content of S, N
And 0.005% or less.

【0039】本発明におけるSnの無方向性電磁鋼板磁
束密度への影響を調査するため、以下のような実験を行
った。P:0.067%、Si:0.28%、Mn:
0.12%、sol−Al:0.20%、C:11ppm
、N:11ppm 、S:13ppm、Sn含有量が0.01
%〜0.5%の成分の鋼を溶製し仕上げ熱延を実施し
2.7mm板厚に仕上げた。その際、仕上熱延の最終パス
のRパラメータの値を3.32とした。これを酸洗、冷
延し、0.5mm厚として脱脂し、800℃×20秒焼鈍
しエプスタイン試料として磁気特性を測定した。
In order to investigate the effect of Sn on the magnetic flux density of the non-oriented electrical steel sheet in the present invention, the following experiment was conducted. P: 0.067%, Si: 0.28%, Mn:
0.12%, sol-Al: 0.20%, C: 11 ppm
, N: 11 ppm, S: 13 ppm, Sn content 0.01
% -0.5% of steel was melted and hot-rolled to a finish of 2.7 mm. At that time, the value of the R parameter in the final pass of the finish hot rolling was set to 3.32. This was pickled, cold rolled, degreased to a thickness of 0.5 mm, annealed at 800 ° C. for 20 seconds, and measured for magnetic properties as an Epstein sample.

【0040】Sn含有量が0.03%未満ではB50≧
1.80TかつB25≧1.70Tの磁束密度向上の効果
が得られず、0.4%超では冷間圧延時に割れが生じ圧
延不能であった。この結果によりSn添加量は0.03
%以上0.4%以下と定める。また、磁束密度B50が
1.82T以上の超高磁束密度を得るためには、Sn含
有量は0.05%以上であることが好ましい。
When the Sn content is less than 0.03%, B50 ≧
The effect of improving the magnetic flux density of 1.80T and B25 ≧ 1.70T could not be obtained, and if it exceeded 0.4%, cracks occurred during cold rolling and rolling was impossible. According to this result, the amount of Sn added was 0.03.
% And 0.4% or less. In order to obtain an ultra-high magnetic flux density with a magnetic flux density B50 of 1.82 T or more, the Sn content is preferably 0.05% or more.

【0041】次にプロセス条件について説明する。前記
成分からなる鋼スラブは、転炉で溶製され連続鋳造ある
いは造塊−分塊圧延により製造される。鋼スラブは公知
の方法にて加熱される。このスラブに熱間圧延を施し所
定の厚みとする。
Next, the process conditions will be described. The steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. This slab is subjected to hot rolling to a predetermined thickness.

【0042】本発明においては仕上熱延において少なく
とも1パスにおいて、当該パスの条件により定まるパラ
メータRが下記の式(1),(2)の範囲を満たすこと
を必要とする。
In the present invention, in at least one pass in the finish hot rolling, it is necessary that the parameter R determined by the conditions of the pass satisfy the following formulas (1) and (2).

【0043】[0043]

【数5】 (Equation 5)

【0044】ここで、当該パスの真歪は式(3)、平均
歪速度は式(4)により算出する。
Here, the true distortion of the path is calculated by Expression (3), and the average distortion speed is calculated by Expression (4).

【数6】 (Equation 6)

【0045】本発明では仕上熱延の条件の制御により、
熱延板の焼鈍時における金属組織を磁性及び形状の両面
から適正に造り込む点に特徴がある。従来技術では、熱
延板焼鈍中の結晶粒成長の制御については、熱延板焼鈍
の条件のみの制御ではコントロールが難しく、超高磁束
密度と優れた製品の表面性状を得るのに必要な結晶組織
を得る条件が明らかでないという問題点があったのであ
る。このように、従来技術においては冷間圧延前の熱延
板焼鈍による結晶組織制御が難しく、超高磁束密度を得
ようとすると熱延板の結晶組織が過度の異常粒成長を起
こして冷間圧延後の表面性状を著しく悪化させ、占積率
を低下させるとともに、結果として打ち抜き加工におい
ても支障が生じ、超高磁束密度と加工性、占積率の両立
が不可能であった。
In the present invention, by controlling the conditions of the finish hot rolling,
The feature is that the metal structure at the time of annealing of the hot-rolled sheet is appropriately formed from both the magnetic and the shape. In the conventional technology, it is difficult to control the crystal grain growth during hot-rolled sheet annealing by controlling only the conditions of hot-rolled sheet annealing. There was a problem that the conditions for obtaining an organization were not clear. As described above, in the prior art, it is difficult to control the crystal structure by annealing the hot-rolled sheet before cold rolling. The surface properties after rolling were remarkably deteriorated, and the space factor was lowered. As a result, a problem also occurred in punching, and it was impossible to achieve both ultra-high magnetic flux density, workability, and space factor.

【0046】本発明では、新規にRパラメータを導入し
制御することにより、従来高磁束密度無方向性電磁鋼板
の製造において両立が困難であった冷間圧延後の鋼板の
形状を良好に保つことと、超高磁束密度との両立が、可
能となることを見いだしたのである。Rパラメータが
1.34未満であると仕上焼鈍に続く各種熱延板焼鈍に
おける結晶粒成長が不十分であり、5.17超であると
過度に粒成長が進行して冷間圧延後の鋼板の表面性状が
著しく悪化する。従って、Rパラメータは1.34以上
5.17以下とする。また、Rパラメータが本発明で規
定する値の範囲を満足するのは、最終パスか、最終パス
を含む最終パス付近の複数パスであることが好ましい。
In the present invention, by introducing and controlling the R parameter newly, it is possible to maintain a good shape of the steel sheet after cold rolling, which was difficult to achieve in the conventional manufacturing of high magnetic flux density non-oriented electrical steel sheets. And an ultra-high magnetic flux density. When the R parameter is less than 1.34, the crystal grain growth in various hot-rolled sheet annealing subsequent to the finish annealing is insufficient. When the R parameter is more than 5.17, the grain growth proceeds excessively and the steel sheet after cold rolling. The surface properties of the material deteriorate significantly. Therefore, the R parameter is 1.34 or more and 5.17 or less. It is preferable that the R parameter satisfies the value range defined by the present invention in the last path or in a plurality of paths near the last path including the last path.

【0047】次に本発明の特徴である超高磁束密度と冷
間圧延後の表面性状の両立を果たす金属組織の特徴につ
いて述べる。本発明では冷間圧延前の鋼板の圧延方向縦
断面の任意の箇所の金属組織において、観察される結晶
粒の最大粒径が200μm以上であるとともに、任意の
場所において板面法線により切断される200μm以上
の粒径の結晶粒の数が3個以上であることを必要とす
る。冷間圧延前の鋼板に観察される結晶粒の最大粒径が
200μm未満であるとB50≧1.80Tの超高磁束密
度を達成することが出来ないので、冷間圧延前の鋼板の
圧延方向縦断面の任意の箇所の金属組織において、観察
される結晶粒の最大粒径を200μm以上に定める。2
個以下の場合は、最終製品の表面性状不良(凹凸発生)
を招く。本発明では粒径は観察断面における結晶粒の2
次元の円相当粒径を用いる。
Next, a description will be given of the feature of the metal structure which achieves both the ultra-high magnetic flux density and the surface properties after cold rolling, which are the features of the present invention. In the present invention, in the metallographic structure at any point in the rolling direction longitudinal section of the steel sheet before cold rolling, the maximum grain size of the observed crystal grains is 200 μm or more, and cut at any place by the sheet surface normal. It is necessary that the number of crystal grains having a particle size of 200 μm or more is three or more. If the maximum grain size of the crystal grains observed in the steel sheet before cold rolling is less than 200 μm, it is not possible to achieve an ultra-high magnetic flux density of B50 ≧ 1.80T, so the rolling direction of the steel sheet before cold rolling The maximum grain size of crystal grains to be observed is set to 200 μm or more in the metal structure at an arbitrary position in the longitudinal section. 2
If the number is less than one, the surface quality of the final product is poor (irregularities occur)
Invite. In the present invention, the particle size is 2 of the crystal grain in the observed cross section.
Use the dimensional circle equivalent particle size.

【0048】また、冷間圧延前の鋼板の圧延方向縦断面
の任意の箇所の金属組織において、板厚方向の板面法線
により切断される200μm以上の粒径の結晶粒の数が
3個未満であると冷間圧延後の鋼板の表面に凹凸が生じ
て表面性状が著しく悪化し、占積率が悪化するととも
に、B50の値が1.80T以上かつB25の値が1.70
T以上の超高磁束密度が得られらくなるので冷間圧延前
の鋼板の圧延方向縦断面の任意の箇所の金属組織におい
て、板厚方向の板面法線により切断される200μm以
上の粒径の結晶粒の数を3個以上に定める。
Further, in the metal structure at an arbitrary position in the longitudinal section in the rolling direction of the steel sheet before cold rolling, the number of crystal grains having a grain size of 200 μm or more cut by the normal to the sheet surface in the thickness direction is three. If it is less than 1, irregularities are generated on the surface of the steel sheet after cold rolling, the surface properties are remarkably deteriorated, the space factor is deteriorated, and the value of B50 is 1.80 T or more and the value of B25 is 1.70.
Since it becomes difficult to obtain an ultra-high magnetic flux density of T or more, in a metal structure at an arbitrary position in a longitudinal section in the rolling direction of the steel sheet before cold rolling, a grain size of 200 μm or more cut by the sheet surface normal in the sheet thickness direction Is determined to be three or more.

【0049】次に、上記の冷間圧延前の金属組織を得る
ための仕上熱延以外の製造条件について説明する。本発
明で仕上圧延後にコイルの保有熱で自己焼鈍を行う場合
は、750℃以上1050℃以下の温度で巻取り、75
0℃以上(Ac3 +Ac1 )/2以下の温度で5分以上
2時間以下保定する。その際に保熱カバーをかぶせて使
用しても良い。巻取温度が750℃未満、もしくは保定
温度が750℃未満、もしくは焼鈍時間が5分未満では
巻取後の熱延板の結晶粒成長が不十分となり最大の結晶
粒径が200μm以上とならず、B50が1.80T以上
の超高磁束密度が得られない。また、巻取温度が105
0℃以上、もしくは2時間以上となると熱延鋼板の表面
の酸化が過度に進行し、酸洗歩留まりが低下し不経済で
ある。保定温度が(Ac3 +Ac1 )/2を超えると冷
却時の相変態により熱延組織が微細化してしまい、最大
の結晶粒径が200μm以上とならず、同様にB50が
1.80T以上の超高磁束密度が得られない。従って、
仕上熱延後自己焼鈍を行う際の巻取温度は750℃以上
1050℃以下、かつ保定温度は750℃以上(Ac3
+Ac1 )/2以下、かつ保定時間は5分以上2時間以
下と定める。
Next, the manufacturing conditions other than the hot rolled finish for obtaining the metal structure before the cold rolling will be described. In the case of performing self-annealing by the retained heat of the coil after finish rolling in the present invention, winding at a temperature of 750 ° C. or more and 1050 ° C. or less,
Hold at a temperature of 0 ° C. or more and (Ac 3 + Ac 1) / 2 or less for 5 minutes or more and 2 hours or less. In that case, you may cover and use a heat retention cover. If the winding temperature is less than 750 ° C., or the retention temperature is less than 750 ° C., or the annealing time is less than 5 minutes, the crystal grain growth of the hot-rolled sheet after winding is insufficient, and the maximum crystal grain size does not exceed 200 μm. , B50 of 1.80 T or more cannot be obtained. The winding temperature is 105
When the temperature is 0 ° C. or more, or 2 hours or more, the surface of the hot-rolled steel sheet is excessively oxidized, and the pickling yield decreases, which is uneconomical. If the retention temperature exceeds (Ac3 + Ac1) / 2, the hot rolled structure becomes fine due to phase transformation during cooling, the maximum crystal grain size does not become 200 μm or more, and similarly, the B50 becomes 1.80 T or more. Magnetic flux density cannot be obtained. Therefore,
The winding temperature when performing self-annealing after finish hot rolling is 750 ° C or more and 1050 ° C or less, and the retention temperature is 750 ° C or more (Ac3
+ Ac1) / 2 or less, and the retention time is specified as 5 minutes or more and 2 hours or less.

【0050】また、熱延板焼鈍を連続焼鈍炉で行う場合
には750℃以上(Ac3 +Ac1)/2以下の温度で
30秒以上5分以内の熱延板焼鈍を行う。焼鈍温度が7
50℃未満もしくは焼鈍時間が30秒未満では熱延板の
結晶粒成長が不十分であり最大の結晶粒径が200μm
以上とならず、B50が1.80T以上の超高磁束密度が
得られない。
When the hot-rolled sheet annealing is performed in a continuous annealing furnace, the hot-rolled sheet annealing is performed at a temperature of 750 ° C. or more and (Ac3 + Ac1) / 2 or less for 30 seconds or more and 5 minutes or less. Annealing temperature 7
If the temperature is less than 50 ° C. or the annealing time is less than 30 seconds, the crystal grain growth of the hot-rolled sheet is insufficient and the maximum crystal grain size is 200 μm.
As a result, an ultra-high magnetic flux density of B50 of 1.80 T or more cannot be obtained.

【0051】また焼鈍温度が(Ac3 +Ac1 )/2を
超えると冷却時の相変態により熱延組織が微細化してし
まい、最大の結晶粒径が200μm以上とならず、同様
にB50が1.80T以上の超高磁束密度が得られない。
また、焼鈍時間が5分を超えると連続焼鈍炉の生産性が
著しく低下するのでコストアップとなる。従って、連続
焼鈍炉においては750℃以上(Ac3 +Ac1 )/2
以下の温度で焼鈍時間は30秒以上5分以内と定める。
When the annealing temperature exceeds (Ac3 + Ac1) / 2, the hot rolled structure becomes fine due to phase transformation during cooling, the maximum crystal grain size does not become 200 μm or more, and similarly, the B50 becomes 1.80T. The ultra-high magnetic flux density cannot be obtained.
On the other hand, if the annealing time exceeds 5 minutes, the productivity of the continuous annealing furnace is remarkably reduced, so that the cost is increased. Therefore, in a continuous annealing furnace, 750 ° C. or more (Ac3 + Ac1) / 2
At the following temperatures, the annealing time is determined to be 30 seconds or more and 5 minutes or less.

【0052】熱延板焼鈍を箱焼鈍炉により行う場合に
は、700℃以上(Ac3 +Ac1 )/2以下の温度で
保定時間を10分以上30時間以内とする。焼鈍温度が
700℃未満もしくは10分未満では熱延板の結晶粒成
長が不十分であり、最大の結晶粒径が200μm以上と
ならず、B50が1.80T以上の超高磁束密度が得られ
ない。
When the hot-rolled sheet annealing is performed in a box annealing furnace, the holding time is set at a temperature of 700 ° C. or more and (Ac 3 + Ac 1) / 2 or less and 10 minutes or more and 30 hours or less. If the annealing temperature is less than 700 ° C. or less than 10 minutes, the crystal grain growth of the hot-rolled sheet is insufficient, the maximum crystal grain size does not become 200 μm or more, and an ultra-high magnetic flux density of B50 of 1.80 T or more is obtained. Absent.

【0053】また焼鈍温度が(Ac3 +Ac1 )/2を
超えると冷却時の相変態により熱延組織が微細化してし
まい、最大の結晶粒径が200μm以上とならず、同様
にB50が1.80T以上の超高磁束密度が得られない。
また、焼鈍時間が30時間を超えると生産性が著しく低
下するとともにその効果が飽和する。従って、箱焼鈍に
おいては700℃以上(Ac3 +Ac1 )/2以下の温
度で焼鈍時間は10分以上30時間以内と定める。本発
明で定める適正な金属組織を得るためには、箱焼鈍の温
度は700℃以上(Ac3 +Ac1 )/2以下かつ80
0℃以下であることが好ましい。
If the annealing temperature exceeds (Ac3 + Ac1) / 2, the hot rolled structure becomes finer due to phase transformation during cooling, the maximum crystal grain size does not become 200 μm or more, and similarly, the B50 becomes 1.80T. The ultra-high magnetic flux density cannot be obtained.
Further, if the annealing time exceeds 30 hours, the productivity is remarkably reduced and the effect is saturated. Therefore, in the case of box annealing, the annealing time is determined to be not less than 10 minutes and not more than 30 hours at a temperature of 700 ° C. or more and (Ac3 + Ac1) / 2 or less. In order to obtain an appropriate metallographic structure defined in the present invention, the temperature of the box annealing is not less than 700 ° C. and not more than (Ac3 + Ac1) / 2 and not more than 80.
It is preferably 0 ° C. or lower.

【0054】仕上焼鈍後の製品にスキンパスを施して鉄
損の改善を図る場合は、スキンパスの圧下率は2%以上
12%以下に定める。2%未満ではその効果が得られ
ず、12%以上では磁束密度の低下を招く。従ってスキ
ンパスの圧下率は2%以上12%以下と定める。
When skin pass is applied to the product after the finish annealing to improve iron loss, the rolling reduction of the skin pass is set to 2% or more and 12% or less. If it is less than 2%, the effect cannot be obtained, and if it is 12% or more, the magnetic flux density decreases. Therefore, the rolling reduction of the skin pass is determined to be 2% or more and 12% or less.

【0055】本発明で得られる超高磁束密度無方向性電
磁鋼板を使用することにより、回転機の回転子用および
固定子用鉄心、EIコア、変圧機用鉄心、ならびにリア
クトル、安定器、チョークコイルなどの鉄心類および磁
気シールドについても性能向上が見られる。本発明の超
高磁束密度無方向性電磁鋼板では磁界強度5000A/
mでの磁束密度B50だけでなく、より低磁界の2500
A/mでの磁束密度B25も向上する。これは低磁界から
高磁界までの透磁率の向上を意味している。すなわち、
高磁束密度が低磁界で得られることによる効果、具体的
には透磁率の向上による励磁電流の低下により銅損が低
下し、使用時のエネルギー損失の低減が、回転機の回転
子用および固定子用鉄心、EIコア、変圧機用鉄心では
達成される。
By using the ultra-high magnetic flux density non-oriented electrical steel sheet obtained in the present invention, an iron core for a rotor and a stator of a rotating machine, an EI core, an iron core for a transformer, a reactor, a stabilizer, a choke Performance improvements are also seen for cores such as coils and magnetic shields. In the ultra-high magnetic flux density non-oriented electrical steel sheet of the present invention, the magnetic field strength is 5000 A /
not only the magnetic flux density B50 in m, but also the lower magnetic field 2500
The magnetic flux density B25 at A / m is also improved. This means an improvement in magnetic permeability from a low magnetic field to a high magnetic field. That is,
The effect of obtaining a high magnetic flux density at a low magnetic field, specifically, the copper loss is reduced due to the decrease of the excitation current due to the improvement of the magnetic permeability, and the reduction of energy loss during use is reduced for the rotor of the rotating machine and for the fixed. This is achieved with sub-cores, EI cores, and transformer cores.

【0056】磁束密度の向上は回転機のトルクの増大に
もつながるので、回転機の小型化、高出力化をはかるこ
とが出来る。また、透磁率の向上により、リアクトル、
安定器、チョークコイルでは鉄心とコイルとからなる回
路のインピーダンスの向上につながり、交流抵抗として
の性能が向上する。磁気シールド性能の向上も透磁率の
向上により達成される。本発明の超高磁束密度無方向性
電磁鋼板では圧延方向の磁束密度が特に高いので、互い
に鋼板の圧延方向を90度直交させて重ねて磁気シール
ドとして使用するとより効果的である。
Since an increase in the magnetic flux density leads to an increase in the torque of the rotating machine, it is possible to reduce the size and increase the output of the rotating machine. In addition, by improving the magnetic permeability, the reactor,
In a ballast and a choke coil, the impedance of a circuit including an iron core and a coil is improved, and the performance as an AC resistance is improved. The improvement of the magnetic shield performance is also achieved by the improvement of the magnetic permeability. Since the ultra-high magnetic flux density non-oriented electrical steel sheet of the present invention has a particularly high magnetic flux density in the rolling direction, it is more effective to use the steel sheet as a magnetic shield by overlapping the steel sheets with the rolling directions orthogonal to each other by 90 degrees.

【0057】[0057]

【実施例】次に、本発明の実施例について述べる。 (実施例1)表1に示した成分を有する無方向性電磁鋼
用スラブを通常の方法にて加熱し、熱延により2.7mm
に仕上げた。熱延仕上げ圧延の最終パスにおいて真歪
ε:0.223、平均歪速度293/s、仕上出側温度
850℃とした。これにより最終パスのRパラメータは
3.45であった。箱焼鈍炉により750℃で20時間
の焼鈍を施した。続いて酸洗を施し、冷間圧延により
0.50mmに仕上げた。これを連続焼鈍炉にて800℃
で20秒間焼鈍した。その後、エプスタイン試料に切断
し、磁気特性を測定した。表1に本発明と比較例の成分
を、表2に磁気測定結果を示す。なお、成分6の供試材
では冷間圧延時に割れが生じ圧延が不可能であった。
Next, an embodiment of the present invention will be described. (Example 1) A slab for non-oriented electrical steel having the components shown in Table 1 was heated by a usual method, and was heated to 2.7 mm by hot rolling.
Finished. In the final pass of the hot-rolling finish rolling, the true strain ε was 0.223, the average strain rate was 293 / s, and the finish-side temperature was 850 ° C. As a result, the R parameter of the final pass was 3.45. Annealing was performed at 750 ° C. for 20 hours using a box annealing furnace. Subsequently, it was pickled and finished to 0.50 mm by cold rolling. 800 ° C in a continuous annealing furnace
For 20 seconds. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured. Table 1 shows the components of the present invention and Comparative Example, and Table 2 shows the results of magnetic measurement. In addition, in the test material of the component 6, cracks occurred at the time of cold rolling and rolling was impossible.

【0058】このようにSnを適量添加し、適切なプロ
セス条件を処理することにより、磁束密度B50の値が
1.80T以上、またSn含有量を0.05%以上にす
ることにより磁束密度B50の値が1.82T以上の超高
磁束密度無方向性電磁鋼板をえることが可能である。ま
た、Si,Mn,Alの添加量を低減することにより低
磁場特性B25の値が1.70T以上に向上する。
As described above, by adding an appropriate amount of Sn and treating appropriate process conditions, the value of the magnetic flux density B50 is set to 1.80 T or more, and the content of Sn is set to 0.05% or more, whereby the magnetic flux density B50 is increased. It is possible to obtain an ultra-high magnetic flux density non-oriented electrical steel sheet having a value of 1.82 T or more. Also, the value of the low magnetic field characteristic B25 is improved to 1.70 T or more by reducing the amount of addition of Si, Mn, and Al.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】(実施例2)表3に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、熱延に
より2.5mmに仕上げた。その際、真歪、平均歪速度、
仕上出側温度等の圧延条件を変えてRパラメータの値を
変動させた。仕上熱延後の熱延板は箱焼鈍炉にて750
℃10時間の焼鈍を施した。これを酸洗し、冷間圧延に
より0.50mmに仕上げた。これを連続焼鈍炉にて80
0℃で30秒間焼鈍した。その後、エプスタイン試料に
切断し、需要家相当の歪取り焼鈍を750℃2時間施し
て磁気特性を測定した。また、JIS−C2550に定
められた方法に従い、各試料の占積率を調べた。表4に
磁気測定と占積率測定結果を示す。
(Example 2) A slab for non-oriented electromagnetic steel having the components shown in Table 3 was heated by a usual method and finished to 2.5 mm by hot rolling. At that time, true strain, average strain rate,
The value of the R parameter was varied by changing the rolling conditions such as the finishing temperature. The hot rolled sheet after finishing hot rolling is 750 in a box annealing furnace.
Annealing was performed at 10 ° C. for 10 hours. This was pickled and finished to 0.50 mm by cold rolling. This is 80 in a continuous annealing furnace.
Annealed at 0 ° C. for 30 seconds. Thereafter, it was cut into Epstein samples, and subjected to strain relief annealing equivalent to that of a customer at 750 ° C. for 2 hours to measure magnetic properties. Further, the space factor of each sample was examined according to the method defined in JIS-C2550. Table 4 shows the results of the magnetic measurement and the space factor measurement.

【0062】試料名7−1はRパラメータの値が低いた
め磁束密度B50,B25の値が本発明の範囲外であり、試
料名7−5はRパラメータの値が高すぎるため熱延板焼
鈍時に結晶粒が過度に成長した結果、冷間圧延後の鋼板
の形状が悪化し、占積率が低いので本発明の範囲外とす
る。占積率は95.0%以上であることが好ましい。こ
のように、仕上熱延時に最終パスのRパラメータを適切
に制御することにより、超高磁束密度かつ占積率の優れ
た無方向性電磁鋼板を製造することが可能である。
The sample name 7-1 has a low value of the R parameter, so that the values of the magnetic flux densities B50 and B25 are out of the range of the present invention. The sample name 7-5 has a value of the R parameter that is too high, so that the hot rolled sheet is annealed. Since the crystal grains sometimes grow excessively, the shape of the steel sheet after the cold rolling deteriorates and the space factor is low, so that it is out of the scope of the present invention. The space factor is preferably 95.0% or more. As described above, by appropriately controlling the R parameter of the final pass at the time of finishing hot rolling, it is possible to manufacture a non-oriented electrical steel sheet having an extremely high magnetic flux density and an excellent space factor.

【0063】また、図1に試料名7−3の熱延板焼鈍後
で冷間圧延前の鋼板の圧延方向縦断面の金属組織を示
す。本発明の規定に定めるごとく、観察される結晶粒の
最大粒径が200μm以上であるとともに、任意の場所
において板厚方向の板面法線により切断される結晶粒の
数が3個以上である。このため、冷間圧延後においても
鋼板の形状、特に表面での凹凸の発生が抑制され、超高
磁束密度であるとともに占積率の高い無方向性電磁鋼板
を得ることが可能である。
FIG. 1 shows the metal structure of the steel sheet in the rolling direction of the steel sheet of Sample No. 7-3 after annealing of the hot-rolled sheet and before cold rolling. As defined in the present invention, the maximum grain size of the observed crystal grains is 200 μm or more, and the number of crystal grains cut by the sheet surface normal in the thickness direction at any place is 3 or more. . For this reason, even after cold rolling, the occurrence of irregularities on the shape of the steel sheet, particularly on the surface, is suppressed, and it is possible to obtain a non-oriented electrical steel sheet having an extremely high magnetic flux density and a high space factor.

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【発明の効果】以上のように本発明によれば、磁束密度
B25が1.70TかつB50が1.80T以上の超高磁束
密度無方向性電磁鋼板を製造することが可能である。
As described above, according to the present invention, it is possible to manufacture an ultra-high magnetic flux density non-oriented electrical steel sheet having a magnetic flux density B25 of 1.70 T and a B50 of 1.80 T or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例の冷間圧延前の熱延鋼板の圧延方向縦
断面の金属組織写真である。
FIG. 1 is a microstructure photograph of a longitudinal section in a rolling direction of a hot-rolled steel sheet before cold rolling in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K033 AA01 CA02 CA05 FA10 FA11 FA13 FA14 GA00 HA02 5E041 AA02 CA02 CA04 NN01 NN13 NN14 NN17  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4K033 AA01 CA02 CA05 FA10 FA11 FA13 FA14 GA00 HA02 5E041 AA02 CA02 CA04 NN01 NN13 NN14 NN17

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなり、
磁界強度2500A/mにおける磁束密度B25の値が
1.70T以上でありかつ、磁束密度B50の値が1.8
0T以上であることを特徴とする超高磁束密度無方向性
電磁鋼板。
1. In steel, by weight%, Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, the balance being Fe and unavoidable impurities,
The value of the magnetic flux density B25 at a magnetic field strength of 2500 A / m is 1.70 T or more, and the value of the magnetic flux density B50 is 1.8
An ultra-high magnetic flux density non-oriented electrical steel sheet characterized by being at least 0T.
【請求項2】 鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、かつ、 C ≦0.003%、 S ≦0.003%、 N ≦0.003%、 Ti+S+N≦0.005%、 残部がFeおよび不可避的不純物からなり、磁界強度2
500A/mにおける磁束密度B25の値が1.70T以
上でありかつ、磁束密度B50の値が1.80T以上であ
り、かつ、酸洗、冷延、焼鈍後の鉄損の値W15/50 が6
W/kg以下であることを特徴とする低鉄損超高磁束密度
無方向性電磁鋼板。
2. The weight percent in steel: Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, C ≦ 0.003%, S ≦ 0.003%, N ≦ 0.003%, Ti + S + N ≦ 0.005%, the balance being Fe and unavoidable impurities, Magnetic field strength 2
The value of the magnetic flux density B25 at 500 A / m is 1.70 T or more, the value of the magnetic flux density B50 is 1.80 T or more, and the value W15 / 50 of the iron loss after pickling, cold rolling and annealing is: 6
A non-oriented electrical steel sheet having a low iron loss and an extremely high magnetic flux density, which is not more than W / kg.
【請求項3】 需要家焼鈍もしくは歪取り焼鈍後の鉄損
の値が5W/kg以下であることを特徴とする請求項1ま
たは2に記載の超高磁束密度無方向性電磁鋼板。
3. The ultra-high magnetic flux density non-oriented electrical steel sheet according to claim 1, wherein the iron loss value after the customer annealing or the strain relief annealing is 5 W / kg or less.
【請求項4】 磁束密度B50の値が1.82T以上であ
ることを特徴とする請求項1ないし3のいずれかに記載
の超高磁束密度無方向性電磁鋼板。
4. The non-oriented electrical steel sheet according to claim 1, wherein the value of the magnetic flux density B50 is 1.82 T or more.
【請求項5】 占積率が95.0%以上であることを特
徴とする請求項1ないし4のいずれかに記載の超高磁束
密度無方向性電磁鋼板。
5. The non-oriented electrical steel sheet according to claim 1, wherein the space factor is 95.0% or more.
【請求項6】 鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、かつ、鋼板の圧延方向縦断面の任意の箇所の
金属組織において、観察される結晶粒の最大粒径が20
0μm以上であるとともに、任意の場所において板面法
線により切断される200μm以上の粒径の結晶粒の数
が3個以上であることを特徴とする、圧延後の板面形状
に優れた超高磁束密度無方向性電磁鋼板用熱延板。
6. In steel, by weight%, Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Sn ≦ 0.4%, and the maximum grain size of the observed crystal grains is 20 in the metal structure at an arbitrary position in the vertical section in the rolling direction of the steel sheet.
An ultra-fine sheet having excellent shape after rolling, characterized in that the number of crystal grains having a grain size of 200 μm or more cut at any position by a normal to the sheet is 3 or more. Hot rolled sheet for high magnetic flux density non-oriented electrical steel sheet.
【請求項7】 請求項1ないし5のいずれかに記載され
た無方向性電磁鋼板を打ち抜いて作製された、回転機用
の回転子鉄心あるいは固定子鉄心、またはリアクトル、
安定器、チョークコイル、EIコア、変圧機用鉄心。
7. A rotor core or a stator core for a rotating machine, or a reactor, produced by punching out the non-oriented electrical steel sheet according to any one of claims 1 to 5.
Ballast, choke coil, EI core, iron core for transformer.
【請求項8】 請求項1ないし5のいずれかに記載され
た無方向性電磁鋼板を使用して作製された磁気シールド
装置。
8. A magnetic shield device manufactured using the non-oriented electrical steel sheet according to claim 1.
【請求項9】 鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.2%、 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなる成
分のスラブを用い、熱間圧延し、これを750℃以上1
050℃以下の温度で巻き取ってコイルとし、保熱カバ
ーをかぶせるか又は保熱カバーを用いず、コイル状の状
態で750℃以上(Ac3 +Ac1 )/2以下の温度で
5分以上2時間以内自己焼鈍を行い、この熱延板を酸洗
し一回の冷間圧延工程を施し、次いで仕上げ焼鈍を施す
無方向性電磁鋼板の製造方法において、仕上熱延におい
て少なくとも1パスにおいて、当該パス条件により定ま
るパラメータRが下記の式の範囲を満たすことを特徴と
する超高磁束密度無方向性電磁鋼板の製造方法。 【数1】
9. Weight% in steel: Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.2%, 0.03% ≦ Using a slab containing Sn ≦ 0.4% and the balance consisting of Fe and unavoidable impurities, hot rolling was performed at 750 ° C. or higher.
Wind at a temperature of 050 ° C or less to form a coil, cover it with a heat insulating cover or do not use a heat insulating cover, and in a coiled state at a temperature of 750 ° C or more (Ac3 + Ac1) / 2 or less for 5 minutes to 2 hours Self-annealing is performed, the hot-rolled sheet is pickled, subjected to one cold rolling step, and then subjected to finish annealing. Wherein the parameter R determined by the following formula satisfies the range of the following expression. (Equation 1)
【請求項10】 鋼中に重量%で、 Si≦0.5%、 Mn≦0.5%、 Al≦0.5%、 0.01%≦P≦0.20%、 0.03%≦Sn≦0.4% を含有し、残部がFeおよび不可避的不純物からなる成
分のスラブを用い、熱間圧延し、これを巻き取ってコイ
ルとした後、750℃以上(Ac3 +Ac1 )/2以下
の温度で連続焼鈍炉で30秒以上5分以内の熱延板焼鈍
を行うか、箱焼鈍炉により700℃以上(Ac3 +Ac
1 )/2以下の温度で10分以上30時間以内の熱延板
焼鈍を行い、この熱延板を酸洗し一回の冷間圧延工程を
施し、次いで仕上げ焼鈍を施す無方向性電磁鋼板の製造
方法において、仕上熱延において少なくとも1パスにお
いて、当該パスの条件により定まるパラメータRが下記
の式の範囲を満たすことを特徴とする超高磁束密度無方
向性電磁鋼板の製造方法。 【数2】
10. In steel, by weight%, Si ≦ 0.5%, Mn ≦ 0.5%, Al ≦ 0.5%, 0.01% ≦ P ≦ 0.20%, 0.03% ≦ Using a slab containing Sn.ltoreq.0.4% and the balance being Fe and unavoidable impurities, hot-rolling, winding this into a coil, and then 750.degree. C. or more and (Ac3 + Ac1) / 2 or less Hot rolled sheet annealing in a continuous annealing furnace at a temperature of 30 to 5 minutes or a box annealing furnace at 700 ° C or more (Ac3 + Ac
Non-oriented electrical steel sheet which is subjected to hot-rolled sheet annealing at a temperature of 1) / 2 or less for 10 minutes or more and 30 hours or less, pickling this hot-rolled sheet, subjecting it to one cold rolling step, and then subjecting it to finish annealing The method for producing an ultra-high magnetic flux density non-oriented electrical steel sheet according to any one of claims 1 to 3, characterized in that at least one pass in the finish hot rolling satisfies a parameter R determined by the conditions of the pass in the following formula. (Equation 2)
【請求項11】 仕上焼鈍後の製品に2%以上12%以
下のスキンパス圧延を施すことを特徴とする請求項9ま
たは10に記載された超高磁束密度無方向性電磁鋼板の
製造方法。
11. The method for producing an ultra-high magnetic flux density non-oriented electrical steel sheet according to claim 9, wherein the product after finish annealing is subjected to skin pass rolling of 2% or more and 12% or less.
JP2001096769A 2001-03-29 2001-03-29 Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor Withdrawn JP2002294415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096769A JP2002294415A (en) 2001-03-29 2001-03-29 Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096769A JP2002294415A (en) 2001-03-29 2001-03-29 Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002294415A true JP2002294415A (en) 2002-10-09

Family

ID=18950651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096769A Withdrawn JP2002294415A (en) 2001-03-29 2001-03-29 Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002294415A (en)

Similar Documents

Publication Publication Date Title
JP5605518B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2002348644A (en) Non-oriented electromagnetic steel sheet with ultrahigh magnetic flux density, and manufacturing method therefor
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2002294415A (en) Non-oriented electromagnetic steel sheet with superhigh magnetic flux density, material therefor, and manufacturing method therefor
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR20240000242A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08104923A (en) Production of non-oriented silicon steel sheet
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603