JP2002294403A - Steel tube with high strength and high workability and production method therefor - Google Patents

Steel tube with high strength and high workability and production method therefor

Info

Publication number
JP2002294403A
JP2002294403A JP2001094704A JP2001094704A JP2002294403A JP 2002294403 A JP2002294403 A JP 2002294403A JP 2001094704 A JP2001094704 A JP 2001094704A JP 2001094704 A JP2001094704 A JP 2001094704A JP 2002294403 A JP2002294403 A JP 2002294403A
Authority
JP
Japan
Prior art keywords
less
steel pipe
temperature
phase
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001094704A
Other languages
Japanese (ja)
Other versions
JP4529307B2 (en
Inventor
Takaaki Toyooka
高明 豊岡
Yoshikazu Kawabata
良和 河端
Masanori Nishimori
正徳 西森
Akira Yorifuji
章 依藤
Motoaki Itaya
元晶 板谷
Yoshitomo Okabe
能知 岡部
Masatoshi Araya
昌利 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001094704A priority Critical patent/JP4529307B2/en
Publication of JP2002294403A publication Critical patent/JP2002294403A/en
Application granted granted Critical
Publication of JP4529307B2 publication Critical patent/JP4529307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electric resistance welded steel tube with high strength and high workability together with the production method for the same. SOLUTION: An electric resistance welded steel tube is subjected to diameter reduction rolling at the preferable reduction rate of 30% or more and in the temperature zone of 600 deg.C or more that may cause the microstructure to change into a structure mainly consisting of a ferrite, in order to change the cementite in the steel tube into a spheroidized one of 0.1 μm or more in the average diameter. The steel tube so processed is then heated up at the rate of 10 deg.C or more per second to the temperature zone of 800-1100 deg.C, at which it is maintained for 30 seconds or less. After that, it is cooled down at the rate of 3 deg.C or more per second to the temperature of 500 deg.C or less. Alternatively, the steel tube having the microstructure comprising the spheroidized cementite with an average grain diameter of 0.1 μm or more is subjected to the heat treatment described above and is subsequently subjected to the diameter reduction rolling stated above and cooled down under the above condition. Thereby, the steel tube having the high (r) value of 1.2 or more and including a residual γ(gamma) phase is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度鋼管に係
り、とくに高強度鋼管の加工性改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel pipe, and more particularly to improvement of workability of a high-strength steel pipe.

【0002】[0002]

【従来の技術】近年、自動車部品の成形に、ハイドロフ
ォーミングの適用が増加しており、それに伴い、ハイド
ロフォーミング性(以下、液圧成形性、ハイドロフォー
ム加工性ともいう)に優れた鋼管が要望されている。こ
のような要望に対し、例えば、特開2000−219933号公報
には、液圧成形性に優れた高強度鋼管が提案されてい
る。特開2000−219933号公報に記載された高強度鋼管
は、C:0.05〜0.3 %、Si:0.5 〜3.0 %、Mn:0.5 〜
2.5 %含み、2.5 体積%以上の残留オーステナイト
(γ)相を有し、残留オーステナイト相中のC濃度が平
均値の5倍以上であり、引張強度と伸びの積が15000MPa
%以上の特性を有する鋼管であり、TRIP鋼と同様の
製造方法で製造できるとしている。
2. Description of the Related Art In recent years, the application of hydroforming to the molding of automobile parts has been increasing, and accordingly, there has been a demand for a steel pipe having excellent hydroforming properties (hereinafter also referred to as hydraulic forming properties and hydroforming properties). Have been. In response to such a demand, for example, Japanese Patent Application Laid-Open No. 2000-219933 proposes a high-strength steel pipe excellent in hydraulic formability. The high-strength steel pipe described in JP-A-2000-219933 has a C content of 0.05 to 0.3%, a Si content of 0.5 to 3.0%, and a Mn content of 0.5 to 3.0%.
Contains 2.5%, has a retained austenite (γ) phase of 2.5% by volume or more, the C concentration in the retained austenite phase is 5 times or more of the average value, and the product of tensile strength and elongation is 15000 MPa.
%, And can be manufactured by the same manufacturing method as TRIP steel.

【0003】また、特開平6−41689 号公報には、Cr:
7.5 〜25%含有するフェライト系ステンレス鋼の帯鋼か
ら連続的にロール成形によって製造される加工性に優れ
た高Cr含有電縫鋼管が開示されている。この鋼管は、帯
鋼の段階で圧延方向のランクフォード値(r値)が1.2
以上、圧延方向に直交する方向のランクフォード値が1.
5 以上の帯鋼を使用することを特徴としており、曲げ加
工に際し、減肉や破断を起こしにくいとされる。
[0003] Japanese Patent Application Laid-Open No. 6-41689 discloses Cr:
An electric resistance welded steel pipe containing high Cr and excellent in workability, which is manufactured by continuous roll forming from a ferritic stainless steel strip containing 7.5 to 25%, is disclosed. This steel pipe has a Rankford value (r-value) of 1.2 in the rolling direction at the stage of strip steel.
As described above, the Rankford value in the direction orthogonal to the rolling direction is 1.
It is characterized by the use of strip steel of 5 or more, and is less likely to cause wall thinning and breakage during bending.

【0004】また、特開平10−175027号公報には、管軸
方向のr値が管周方向のr値より大であるハイドロフォ
ーム加工用金属管が開示されている。この金属管は、使
用する金属板として、r値が大きい方向を管軸方向とな
るように板取して製造するとしている。
Japanese Patent Application Laid-Open No. 10-175027 discloses a metal pipe for hydroforming in which the r value in the pipe axis direction is larger than the r value in the pipe circumferential direction. The metal pipe is manufactured by cutting a metal plate to be used so that the direction in which the r value is large is the pipe axis direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、最近の
自動車部品の形状は一層複雑化しており、特開2000−21
9933号公報、特開平6−41689 号公報、特開平10−1750
27号公報に記載された鋼管が示す程度の加工性では、必
ずしも十分なハイドロフォーム加工を実施することがで
きないという問題があった。
However, the shape of recent automobile parts is becoming more and more complicated.
No. 9933, JP-A-6-41689, JP-A-10-1750
With the workability of the degree indicated by the steel pipe described in Japanese Patent Publication No. 27, there was a problem that sufficient hydroforming could not always be performed.

【0006】例えば、特開2000−219933号公報に記載さ
れた残留γ相を有する鋼管では、単純なハイドロフォー
ム加工では良好な加工性を示すものの、予成形として曲
げ加工を行うと、必ずしも良好なハイドロフォーミング
性が得られないという問題がある。これは、残留γ相を
有する鋼管のr値が小さいため、曲げ加工時、曲げの外
側と内側の肉厚差が大きくなり、ハイドロフォーム加工
時に、曲げ外側の減肉部分に変形が集中して割れに至る
ためである。
For example, a steel pipe having a residual γ phase described in Japanese Patent Application Laid-Open No. 2000-219933 shows good workability by simple hydroforming, but it is not always good to perform bending as preforming. There is a problem that hydroforming properties cannot be obtained. This is because the r value of the steel pipe having a residual γ phase is small, so that the difference in thickness between the outside and inside of the bend increases during bending, and deformation concentrates on the thinned portion outside the bend during hydroforming. This is due to cracking.

【0007】さらに、残留γ相を有する鋼管の製造方法
としては、残留γ相を有する鋼板を円筒状に成形しシー
ム溶接して電縫鋼管とする単純な方法が考えられるが、
この方法では、加工歪が大きく、造管中に鋼板の残留γ
相が加工誘起変態して残留γ相が減少し十分な加工性が
得られない。また、特開2000−219933号公報に開示され
ているような、造管後さらに熱処理して残留γ相を生成
させる方法では、熱処理時の冷却が、その形状から鋼管
外面からしか実施できないことや、また鋼管上側と鋼管
下側とで冷却水を均一に当てることが難しく、鋼管全体
で均一な冷却となるように制御することが困難であるこ
となど鋼管製造設備上の問題がある。鋼管の製造におい
ては、熱延板や冷延板で行われているような急冷と保持
を組み合わせた冷却方法(例えば、特開昭63−195221号
公報参照)を適用することは実生産設備上問題がある。
Further, as a method of manufacturing a steel pipe having a residual γ phase, a simple method of forming a steel sheet having a residual γ phase into a cylindrical shape and seam welding to obtain an electric resistance welded steel pipe can be considered.
In this method, the processing strain is large, and the residual γ
The phase undergoes work-induced transformation and the residual γ phase decreases, and sufficient workability cannot be obtained. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 2000-219933, in which the residual γ phase is generated by further heat treatment after pipe formation, cooling during heat treatment can be performed only from the outer surface of the steel pipe due to its shape. In addition, it is difficult to uniformly apply cooling water to the upper side and the lower side of the steel pipe, and it is difficult to control the entire steel pipe so as to provide uniform cooling. In the production of steel pipes, applying a cooling method that combines quenching and holding such as that performed in a hot rolled sheet or a cold rolled sheet (see, for example, JP-A-63-195221) is not practical on actual production equipment. There's a problem.

【0008】一方、特開平10−175027号公報等に記載さ
れた、r値が大きい鋼管では、鋼管の軸方向の圧縮を伴
うハイドロフォーム加工では、良好なハイドロフォーム
加工性を有するものの、軸押しがない場合には十分なハ
イドロフォーム加工性を示さない。これは、従来の高r
値鋼管は、r値が高い鋼板を用いて製造されており、使
用する鋼板が極低炭素のIF鋼に限られているために、
マルテンサイト相や残留γ相などの第二相を利用でき
ず、均一伸びが小さいためであると考えられる。
On the other hand, in the case of a steel pipe having a large r value described in Japanese Patent Application Laid-Open No. H10-175027, etc., hydroforming with axial compression of the steel pipe has good hydroforming workability, If not, sufficient hydroform processability is not exhibited. This is the conventional high r
Value steel pipe is manufactured using a steel plate with a high r value, and the steel plate used is limited to extremely low carbon IF steel.
This is probably because the second phase such as the martensite phase and the residual γ phase cannot be used, and the uniform elongation is small.

【0009】本発明は、上記した従来技術の問題を解決
し、引張強さTS:400MPa以上の高強度を有し、長手方
向のr値が1.2 以上と高く、高強度で加工性に優れた高
強度・高加工性鋼管およびその製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned problems of the prior art, has high tensile strength TS: 400 MPa or more, has a high r value in the longitudinal direction of 1.2 or more, and has high strength and excellent workability. An object of the present invention is to provide a high-strength and high-workability steel pipe and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、まず、電縫鋼管のr値を向上さ
せる方法について鋭意検討した。その結果、電縫鋼管
を、600 ℃以上でかつ、該電縫鋼管の組織がフェライト
主体である温度(温間)で、縮径率:30%以上の縮径圧
延(温間縮径圧延)を行うことにより、長手方向のr値
が著しく向上することを見いだした。また、さらにこの
方法によれば、電縫鋼管の素材である帯鋼の組成、r値
に関係なく、高いr値を有する電縫鋼管(以下、単に鋼
管ともいう)が得られることが判明した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have first studied diligently about a method for improving the r-value of an ERW steel pipe. As a result, the ERW pipe was reduced in diameter at a temperature of 600 ° C. or higher and at a temperature (warm) where the structure of the ERW pipe was mainly ferrite, and a reduction ratio of 30% or more (warm reduction rolling). Was found to significantly improve the r value in the longitudinal direction. Further, it has been found that according to this method, an electric resistance welded steel pipe having a high r value (hereinafter, also simply referred to as a steel pipe) can be obtained irrespective of the composition and the r value of the steel strip as the material of the electric resistance welded steel pipe. .

【0011】本発明者らは、上記した温度での温間縮径
圧延が、帯鋼の組成に関係なく、高いr値を有する鋼管
が得られることに着目し、さらにこの方法を、残留γ相
を形成できる程度に比較的多量のCを含有する鋼管に適
用すれば、高r値でかつ適正量の残留γ相を含有し、加
工性が顕著に向上した鋼管とすることができることを思
い至った。
The present inventors have paid attention to the fact that the hot rolling at the above-mentioned temperature can obtain a steel pipe having a high r value irrespective of the composition of the steel strip. When applied to a steel pipe containing a relatively large amount of C to the extent that a phase can be formed, it is thought that a steel pipe containing a high r value and an appropriate amount of residual γ phase and having significantly improved workability can be obtained. Reached.

【0012】そこで、本発明者らは、広い範囲で圧延温
度を変化した温間縮径圧延を施して高r値化した鋼管
に、各種の熱処理を施して、鋼管の加工性を調査し最適
な熱処理条件を検討した。その結果、縮径圧延の温度を
調整して、圧延後のミクロ組織(微細組織)を、セメン
タイトが平均直径で約 0.1〜1μm程度の球状化セメン
タイトである組織としたうえで、10℃/s以上の加熱速
度で850 〜1100℃の範囲の温度まで加熱し、該温度で1
〜30s保持することにより、3℃/s程度の冷却速度で
も残留γ相が生成して加工性がさらに向上することを確
認した。
Therefore, the present inventors conducted various heat treatments on a steel pipe having a high r-value by performing warm diameter reduction rolling at various rolling temperatures in a wide range, and investigated the workability of the steel pipe to obtain an optimum value. Various heat treatment conditions were studied. As a result, the temperature of the diameter reduction rolling was adjusted to make the microstructure (fine structure) after rolling into a structure in which cementite was spheroidized cementite having an average diameter of about 0.1 to 1 μm, and then 10 ° C./s. Heat to a temperature in the range of 850 to 1100 ° C at the above heating rate, and
It was confirmed that by maintaining the temperature for 〜30 seconds, a residual γ phase was generated even at a cooling rate of about 3 ° C./s, and the workability was further improved.

【0013】また、本発明者らは、焼鈍などにより温間
縮径圧延前に、鋼管のミクロ組織を、セメンタイトが平
均直径0.1 〜10μmの球状化セメンタイトである組織と
したうえで、10℃/s以上の加熱速度で850 〜1100℃の
範囲の温度に加熱した後、その温度に1〜30s間保持
し、引き続き600 ℃以上で、かつ組織がフェライト主体
である温度で縮径圧延したのち、3℃/s以上の冷却速
度で冷却することによっても、高r値で残留γ相を有す
る加工性に優れた鋼管を製造できることを見いだした。
[0013] Further, the present inventors have made the microstructure of a steel pipe into a spheroidized cementite having an average diameter of 0.1 to 10 µm before warm reduction rolling by annealing or the like. After heating to a temperature in the range of 850 to 1100 ° C. at a heating rate of s or more, holding at that temperature for 1 to 30 s, and subsequently reducing the diameter at a temperature of 600 ° C. or more and a structure mainly composed of ferrite, It was also found that a steel pipe having a high r value and having a residual γ phase and excellent in workability can be produced by cooling at a cooling rate of 3 ° C./s or more.

【0014】本発明は、上記した知見に基づいて、さら
に検討を加えて完成されたものである。すなわち、第1
の本発明は、フェライト相を主体とし、残留オーステナ
イト相を体積率で2.5 %以上含有する組織を有し、r値
が1.2 以上であることを特徴とする高強度・高加工性鋼
管であり、また、第1の本発明では、前記鋼管が、質量
%で、C:0.05〜0.3 %、Si:0.2 〜2.0 %、Mn:0.5
〜3.0 %を含み、残部Feおよび不可避的不純物からなる
組成を有することが好ましく、また、第1の本発明で
は、前記組成に加えてさらに、質量%で、Cr:2.0 %以
下、Mo:2.0 %以下、W:2.0 %以下、Ni:2.0 %以
下、Cu:2.0 %以下、Ti:1.0 %以下、Nb:1.0 %以
下、V:1.0 %以下のうちから選ばれた1種または2種
以上を含有することが好ましい。
The present invention has been completed based on the above-mentioned findings and further studies. That is, the first
The present invention is a high-strength, high-workability steel pipe having a structure mainly composed of a ferrite phase, having a retained austenite phase in a volume ratio of 2.5% or more, and having an r value of 1.2 or more, Further, in the first aspect of the present invention, the steel pipe has a C content of 0.05 to 0.3%, a Si content of 0.2 to 2.0%, and a Mn content of 0.5% by mass.
It is preferable that the composition of the present invention contains, in addition to the above composition, Cr: 2.0% or less and Mo: 2.0% by mass in addition to the above composition. % Or less, W: 2.0% or less, Ni: 2.0% or less, Cu: 2.0% or less, Ti: 1.0% or less, Nb: 1.0% or less, V: 1.0% or less Is preferable.

【0015】また、第2の本発明は、鋼管を、セメンタ
イトが平均粒径0.1 μm以上の球状化セメンタイトとな
るように、600 ℃以上の、組織がフェライト主体である
温度域で、好ましくは30%以上の縮径率で、縮径圧延し
たのち、10℃/s以上の加熱速度で 800〜1100℃の範囲
の温度に加熱し、該温度に30s以下保持し、ついで3℃
/s以上の冷却速度で 500℃以下まで冷却することを特
徴とする高強度・高加工性鋼管の製造方法である。
Further, the second invention is to provide a steel pipe in a temperature range of 600 ° C. or more, preferably at a temperature of not less than 600 ° C., in which ferrite is mainly composed of ferrite, so that cementite becomes spheroidized cementite having an average particle size of 0.1 μm or more. %, And then heated to a temperature in the range of 800 to 1100 ° C at a heating rate of 10 ° C / s or more, maintained at that temperature for 30 seconds or less, and then 3 ° C.
A method for producing a high-strength, high-workability steel pipe, characterized in that the pipe is cooled to 500 ° C. or lower at a cooling rate of not less than / s.

【0016】また、第3の本発明は、セメンタイトが平
均粒径0.1 μm以上の球状化セメンタイトである組織を
有する鋼管を、10℃/s以上の加熱速度で 800〜1100℃
の範囲の温度に加熱し、該温度に30s以下保持した後、
引き続き 600℃以上の、組織がフェライト主体である温
度域で、好ましくは30%以上の縮径率で、縮径圧延し、
ついで3℃/s以上の冷却速度で 500℃以下まで冷却す
ることを特徴とする高強度・高加工性電縫鋼管の製造方
法である。
Further, the third invention is to provide a steel pipe having a structure in which cementite is spheroidized cementite having an average particle diameter of 0.1 μm or more at a heating rate of 10 ° C./s or more at 800 to 1100 ° C.
After heating to a temperature in the range of and holding at that temperature for 30 seconds or less,
Subsequently, in a temperature range of 600 ° C. or higher, in which the structure is mainly composed of ferrite, and preferably at a diameter reduction ratio of 30% or more, diameter reduction rolling is performed.
Next, a method for producing a high-strength and high-workability ERW steel pipe characterized by cooling to 500 ° C. or less at a cooling rate of 3 ° C./s or more.

【0017】また、第2の本発明および第3の本発明で
は、前記鋼管が、質量%で、C:0.05〜0.3 %、Si:0.
2 〜2.0 %、Mn:0.5 〜3.0 %を含み、残部Feおよび不
可避的不純物からなる組成を有することが好ましく、ま
た、前記組成に加えてさらに、質量%で、Cr:2.0 %以
下、Mo:2.0 %以下、W:2.0 %以下、Ni:2.0 %以
下、Cu:2.0 %以下、Ti:1.0 %以下、Nb:1.0 %以
下、V:1.0 %以下のうちから選ばれた1種または2種
以上を含有することが好ましい。
In the second and third aspects of the present invention, the steel pipe has a C content of 0.05 to 0.3% and a Si content of 0.1% by mass.
It is preferable that the composition contains 2 to 2.0% and Mn: 0.5 to 3.0%, and has a composition consisting of the balance of Fe and unavoidable impurities. In addition to the above composition, Cr: 2.0% or less and Mo: One or two selected from 2.0% or less, W: 2.0% or less, Ni: 2.0% or less, Cu: 2.0% or less, Ti: 1.0% or less, Nb: 1.0% or less, V: 1.0% or less It is preferable to contain the above.

【0018】[0018]

【発明の実施の形態】第1の本発明である鋼管は、フェ
ライト相を主体とし、残留γ相を体積率で2.5 %以上含
有する組織を有し、r値が1.2 以上であることを特徴と
する高強度・高加工性鋼管である。本発明でいう、「フ
ェライト相を主体とする」組織とは、フェライト相を50
%以上含有する組織を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel pipe according to the first aspect of the present invention is characterized in that it has a structure mainly composed of a ferrite phase, contains a residual γ phase in a volume ratio of 2.5% or more, and has an r value of 1.2 or more. High-strength, high-workability steel pipe. In the present invention, a “mainly composed of a ferrite phase” means that the ferrite phase
% Means a tissue containing more than 1%.

【0019】残留γ量が2.5 体積%未満では、均一伸び
が少なく、加工性が低下する。このため、本発明では、
加工性向上のため、組織中に含有される残留γ量は2.5
体積%以上に限定した。なお、20体積%を超えて含有す
ると、高強度が得にくくなるため、残留γ量は20体積%
以下とするのが望ましい。また、本発明の鋼管は、鋼管
長手方向のr値が1.2 以上を有する鋼管である。残留γ
相を含む従来の鋼管におけるr値は、高々1.0 程度であ
る。鋼管長手方向のr値が1.2 以上、好ましくは1.6 以
上になることにより、 従来の鋼管に比して、曲げ加工性
が著しく向上する。
When the residual γ content is less than 2.5% by volume, uniform elongation is small and workability is reduced. Therefore, in the present invention,
In order to improve processability, the amount of residual γ contained in the tissue is 2.5
Limited to volume% or more. If the content exceeds 20% by volume, it becomes difficult to obtain high strength.
It is desirable to do the following. Further, the steel pipe of the present invention is a steel pipe having an r value of 1.2 or more in the longitudinal direction of the steel pipe. Residual γ
The r value of a conventional steel pipe containing a phase is at most about 1.0. When the r value in the longitudinal direction of the steel pipe is 1.2 or more, preferably 1.6 or more, the bending workability is remarkably improved as compared with the conventional steel pipe.

【0020】本発明の鋼管は、上記した組織と、さらに
質量%で、C:0.05〜0.3 %、Si:0.2 〜2.0 %、Mn:
0.5 〜3.0 %を含み、残部Feおよび不可避的不純物から
なる組成を有することが好ましい。また、前記組成に加
えてさらに、質量%で、Cr:2.0 %以下、Mo:2.0 %以
下、W:2.0 %以下、Ni:2.0 %以下、Cu:2.0 %以
下、Ti:1.0 %以下、Nb:1.0 %以下、V:1.0 %以下
のうちから選ばれた1種または2種以上を含有してもよ
い。
The steel pipe of the present invention has the above structure and, further, in mass%, C: 0.05-0.3%, Si: 0.2-2.0%, Mn:
It is preferable to have a composition containing 0.5 to 3.0% and the balance being Fe and unavoidable impurities. Further, in addition to the above composition, Cr: 2.0% or less, Mo: 2.0% or less, W: 2.0% or less, Ni: 2.0% or less, Cu: 2.0% or less, Ti: 1.0% or less, Nb : 1.0% or less, V: 1.0% or less.

【0021】つぎに、本発明の鋼管の組成限定理由につ
いて説明する。なお、以下、質量%は単に、%で記す。 C:0.05〜0.3 % Cは、強度を増加させる元素であり、所望の強度に応じ
て含有されるが、さらにγ相に濃化して、それを残留さ
せるために必要な元素である。残留γ相を生成させるた
めには、少なくとも0.05%以上含有することが好まし
い. 一方、0.3 %を超えて含有しても、生成する残留γ
量が飽和してそれ以上の加工性の向上が認められない。
このため、本発明では、Cは0.05〜0.3 %の範囲に限定
することが好ましい。
Next, the reasons for limiting the composition of the steel pipe of the present invention will be described. Hereinafter, mass% is simply described as%. C: 0.05 to 0.3% C is an element that increases the strength and is contained according to the desired strength, but is an element necessary for further concentrating in the γ phase and leaving it. In order to generate a residual γ phase, it is preferable that the content is at least 0.05% or more.
The amount is saturated and no further improvement in processability is observed.
Therefore, in the present invention, C is preferably limited to the range of 0.05 to 0.3%.

【0022】Si:0.2 〜2.0 % Siは、炭化物の生成を抑制して残留γ相を生じやすくす
るために有効な元素である。このような効果は、0.2 %
以上の含有で認められる。一方、2.0 %を超えて含有し
ても、上記した効果が飽和するうえ、かえって加工性が
低下する。このため、Siは0.2 〜2.0 %の範囲に限定す
ることが好ましい。
Si: 0.2-2.0% Si is an effective element for suppressing the formation of carbides and easily forming a residual γ phase. Such an effect is 0.2%
The above content is recognized. On the other hand, if the content exceeds 2.0%, the above-mentioned effects are saturated and the workability is rather deteriorated. For this reason, Si is preferably limited to the range of 0.2 to 2.0%.

【0023】Mn:0.5 〜3.0 % Mnは、γ相からフェライト(α)相への変態温度を低下
させ残留γ相を生じやすくする有効な元素である。この
ような効果は、0.5 %以上の含有で認められる。一方、
3.0 %を超えて含有しても、上記した効果が飽和するう
え、かえって加工性が低下する。このため、Mnは0.5 〜
3.0 %の範囲に限定することが好ましい。
Mn: 0.5 to 3.0% Mn is an effective element that lowers the transformation temperature from the γ phase to the ferrite (α) phase and easily generates a residual γ phase. Such an effect is observed at a content of 0.5% or more. on the other hand,
If the content exceeds 3.0%, the above-mentioned effects are saturated and the workability is rather deteriorated. Therefore, Mn is 0.5 to
Preferably, it is limited to the range of 3.0%.

【0024】Cr:2.0 %以下、Mo:2.0 %以下、W:2.
0 %以下、Ni:2.0 %以下、Cu:2.0 %以下、Ti:1.0
%以下、Nb:1.0 %以下、V:1.0 %以下のうちから選
ばれた1種または2種以上 Cr、Mo、W、Ni、Cu、Ti、Nb、Vは、いずれも、鋼の強
度を向上させる作用を有する有効な元素であり、必要に
応じて選択して含有することができる。このような効果
は、Cr:0.1 %以上、Mo:0.1 %以上、W:0.1 %以
上、Ni:0.1 %以上、Cu:0.1 %以上、Ti:0.01%以
上、Nb:0.01%以上、V:0.01%以上、それぞれ含有す
ることにより顕著となる。一方、Cr:2.0 %、Mo:2.0
%、W:2.0%、Ni:2.0 %、Cu:2.0 %、Ti:1.0
%、Nb:1.0 %、V:1.0 %を超えてそれぞれ含有して
も効果が飽和し、含有量に見合う効果が期待できなくな
り、 経済的に不利となる。このため、Cr:2.0 %以下、
Mo:2.0 %以下、W:2.0 %以下、Ni:2.0 %以下、C
u:2.0 %以下、Ti:1.0 %以下、Nb:1.0 %以下、
V:1.0 %以下にそれぞれ限定することが好ましい。
Cr: 2.0% or less, Mo: 2.0% or less, W: 2.
0% or less, Ni: 2.0% or less, Cu: 2.0% or less, Ti: 1.0
% Or less, Nb: 1.0% or less, V: 1.0% or less Cr, Mo, W, Ni, Cu, Ti, Nb, and V all increase the strength of steel. It is an effective element having an effect of improving and can be selected and contained as needed. Such effects are as follows: Cr: 0.1% or more, Mo: 0.1% or more, W: 0.1% or more, Ni: 0.1% or more, Cu: 0.1% or more, Ti: 0.01% or more, Nb: 0.01% or more, V: It becomes remarkable by containing 0.01% or more, respectively. On the other hand, Cr: 2.0%, Mo: 2.0
%, W: 2.0%, Ni: 2.0%, Cu: 2.0%, Ti: 1.0
%, Nb: 1.0%, and V: more than 1.0%, respectively, saturates the effect, making it impossible to expect an effect commensurate with the content, which is economically disadvantageous. Therefore, Cr: 2.0% or less,
Mo: 2.0% or less, W: 2.0% or less, Ni: 2.0% or less, C
u: 2.0% or less, Ti: 1.0% or less, Nb: 1.0% or less,
V: It is preferable to limit each to 1.0% or less.

【0025】上記した成分以外の残部は、Feおよび不可
避的不純物からなる。不可避的不純物としては、Al:0.
1 %以下、P:0.1 %以下、S:0.1 %以下、N:0.01
%以下、O:0.01%以下が許容できる。つぎに、第2の
本発明である、高強度・高加工性鋼管の製造方法につい
て説明する。
The balance other than the above components consists of Fe and unavoidable impurities. As inevitable impurities, Al: 0.
1% or less, P: 0.1% or less, S: 0.1% or less, N: 0.01
% Or less, O: 0.01% or less is acceptable. Next, a method for manufacturing a high-strength and high-workability steel pipe according to the second invention will be described.

【0026】第2の本発明では、好ましくは上記した組
成の鋼管を、600 ℃以上で、かつ組織がフェライト主体
である温度域で縮径圧延する。なお、本発明でいう、
「組織がフェライト主体である温度」とは、フェライト
が体積率で50%以上である組織となる温度を意味する。
すなわち、フェライト単独、あるいは体積率で50%以上
のフェライトと第二相とが混在する温度域を意味し、も
ちろん、第二相としてオーステナイトを含んでも良い。
この温度は、鋼管の組成等によって決まる温度であり、
実験的に決定すれば良いが、およそ900 ℃以下である。
In the second aspect of the present invention, preferably, the steel pipe having the above-mentioned composition is subjected to diameter reduction at a temperature of 600 ° C. or more and a temperature range in which the structure is mainly composed of ferrite. In the present invention,
The “temperature at which the structure is mainly composed of ferrite” means a temperature at which the structure of the ferrite is 50% or more by volume.
That is, it means a temperature range in which ferrite alone or a ferrite having a volume ratio of 50% or more and a second phase are mixed, and of course, austenite may be included as the second phase.
This temperature is determined by the composition of the steel pipe, etc.
It may be determined experimentally, but it is about 900 ° C or less.

【0027】鋼管に、600 ℃以上で、かつ組織がフェラ
イト主体である温度で縮径圧延を施すことにより、r値
1.2 以上の高r値鋼管となる。なお、鋼管のr値は、縮
径圧延の圧延温度、あるいはさらに縮径率に影響され
る。鋼管のr値と、縮径圧延の圧延温度(縮径圧延出側
温度)との関係を図1に示す。図1から、少なくとも縮
径圧延の出側温度が600 ℃以上であれば、r値1.2以上
が十分確保できることがわかる。しかし、縮径圧延の温
度が、フェライト主体の組織でなくなる温度(図1では
880 ℃)を超えると、r値が1.2 以下に低下する。
By subjecting a steel pipe to rolling at a temperature of 600 ° C. or more and a temperature at which the structure is mainly composed of ferrite, the r-value is obtained.
High r-value steel pipe of 1.2 or more. Note that the r-value of the steel pipe is affected by the rolling temperature of the diameter reduction rolling, or further, the diameter reduction rate. FIG. 1 shows the relationship between the r value of the steel pipe and the rolling temperature of the diameter reduction rolling (temperature at the side of the diameter reduction rolling). From FIG. 1, it can be seen that if the exit temperature of the diameter reduction rolling is at least 600 ° C., an r value of at least 1.2 can be sufficiently secured. However, the temperature of the diameter reduction rolling is such that the ferrite-based structure disappears (in FIG. 1,
When the temperature exceeds 880 ° C.), the r value decreases to 1.2 or less.

【0028】鋼管のr値と、縮径率との関係を図2に示
す。図2から、縮径率を30%以上とすることにより、r
値1.2 以上が十分確保できることがわかる。このような
ことから、本発明では、600 ℃以上で、かつ組織がフェ
ライト主体である温度で、好ましくは縮径率30%以上
で、縮径圧延を行うことが好ましい。なお、本発明でい
う、縮径率(%)は、{(縮径前の鋼管直径)ー(縮径
後の鋼管直径)/(縮径前の鋼管直径)}×100 (%)
で定義される値をいうものとする。
FIG. 2 shows the relationship between the r value of the steel pipe and the diameter reduction ratio. From FIG. 2, by setting the diameter reduction rate to 30% or more, r
It can be seen that a value of 1.2 or more can be sufficiently secured. For this reason, in the present invention, it is preferable to perform diameter reduction rolling at a temperature of 600 ° C. or more and a structure mainly composed of ferrite, preferably at a diameter reduction rate of 30% or more. In the present invention, the diameter reduction ratio (%) is {(steel pipe diameter before diameter reduction) − (steel pipe diameter after diameter reduction) / (steel pipe diameter before diameter reduction)} × 100 (%)
Means the value defined by

【0029】なお、上記した高r値化の効果は、600 ℃
以上で、かつ組織がフェライト主体である温度で縮径圧
延することで得られるのであって、その前の鋼管の履歴
はとくに限定されるものではない。例えば、縮径圧延前
にオーステナイト相を主体とする組織となる高温で圧延
しても何ら問題はないのである。また、縮径圧延を潤滑
剤を供給する潤滑圧延としてもよい。潤滑圧延とするこ
とにより、疵の発生が抑制できるとともに、鋼管の外面
側表層の剪断ひずみの発生を抑制でき、高r値化にも有
利となる。
It should be noted that the effect of increasing the above-mentioned r value is as follows.
As described above, the steel pipe can be obtained by rolling at a temperature at which the structure is mainly composed of ferrite, and the history of the steel pipe before that is not particularly limited. For example, there is no problem even if rolling is performed at a high temperature that causes a structure mainly composed of an austenite phase before diameter reduction rolling. Further, the diameter reduction rolling may be a lubrication rolling in which a lubricant is supplied. By using lubricating rolling, the generation of flaws can be suppressed, and the occurrence of shear strain on the outer surface side layer of the steel pipe can be suppressed, which is advantageous for increasing the r-value.

【0030】鋼管を、600 ℃以上で、かつ組織がフェラ
イト主体である温度で縮径圧延を行うことにより、r値
1.2 以上の高r値鋼管となる機構について、本発明者ら
は次のように考えている。600 ℃以上で、かつ組織がフ
ェライト主体である温度で、好ましくは縮径率:30%以
上で縮径圧延することにより、鋼管長手方向に<110 >
軸が、半径方向に<111 >〜<110 >軸が平行な、理想
的な圧延集合組織が形成され、さらに、回復、再結晶し
て、この集合組織がさらに発達するためである。
The r-value is obtained by reducing the diameter of a steel tube at a temperature of 600 ° C. or more and a structure mainly composed of ferrite.
The present inventors have considered the mechanism of forming a steel pipe having a high r-value of 1.2 or more as follows. Rolling at a temperature of 600 ° C. or more and a temperature at which the structure is mainly composed of ferrite, and preferably at a diameter reduction ratio of 30% or more, makes it possible to achieve <110> in the longitudinal direction of the steel pipe.
This is because an ideal rolled texture whose axes are parallel to the <111> to <110> axes in the radial direction is formed, and further recovered and recrystallized to further develop the texture.

【0031】この圧延集合組織の発達は、加工歪みによ
って結晶を回転させるため駆動力が大きく、薄鋼板で高
r値を得るために利用している再結晶集合組織の場合と
は異なり、第二相や固溶炭素量の影響を受けにくい。そ
の結果、薄鋼板では困難であった熱延鋼板、デュアルフ
ェーズ鋼等の高張力鋼、および、低炭素鋼、中炭素鋼、
高炭素鋼を素材とした電縫鋼管でも高r値が得られたと
考えられる。
The development of the rolled texture is different from the recrystallized texture used for obtaining a high r value in a thin steel sheet because the driving force is large because the crystal is rotated by the work strain. Hardly affected by phase and solid solution carbon content. As a result, high-strength steel such as hot-rolled steel, dual-phase steel, and low-carbon steel, medium-carbon steel,
It is considered that a high r value was obtained even with an electric resistance welded steel pipe made of high carbon steel.

【0032】また、縮径圧延を600 ℃未満の低温で行う
と、高r値が得られない理由は、低温では加工硬化が大
きくて理想的な結晶回転が起こらず、また温度が低くて
十分な回復、再結晶が生じないためである。また、冷間
で縮径圧延した後、再結晶焼鈍する方法では、高r値が
得られない理由は、冷延、再結晶では第二相や固溶炭素
の影響で集合組織が発達しないためと考えられる。
If the diameter reduction rolling is performed at a low temperature of less than 600 ° C., a high r value cannot be obtained because at a low temperature, work hardening is large and ideal crystal rotation does not occur. This is because no significant recovery or recrystallization occurs. In addition, in the method of performing recrystallization annealing after cold rolling, the reason why a high r value cannot be obtained is that the texture does not develop due to the influence of the second phase and solid solution carbon in cold rolling and recrystallization. it is conceivable that.

【0033】なお、薄鋼板の熱間圧延をフェライト域で
行う、高r値鋼板の製造方法が知られている。しかし、
このフェライト域圧延の方法は、C,N量を低減し、T
i,Nb等のスタビライズ元素を添加した鋼を低温域で熱
間圧延し、さらに再結晶させることが特徴であり、本発
明の縮径圧延とは異なる方法である。実際、薄鋼板の熱
延を本発明のような温度で行うと、高r値化の効果は得
られないばかりか、r値が著しく低下する。これは、縮
径圧延では圧下の方向が円周方向であるのに対し、板圧
延では板厚方向であるために、r値が逆に低下するため
である。
There is known a method for producing a high r-value steel sheet in which hot rolling of a thin steel sheet is performed in a ferrite region. But,
This ferrite zone rolling method reduces the amount of C and N,
The method is characterized by hot rolling a steel to which a stabilizing element such as i, Nb or the like has been added in a low temperature range, and further recrystallizing the steel, which is a method different from the diameter reduction rolling of the present invention. In fact, when hot rolling of a thin steel sheet is performed at a temperature as in the present invention, not only the effect of increasing the r value is not obtained, but also the r value is significantly reduced. This is because in the diameter reduction rolling, the rolling direction is the circumferential direction, whereas in the sheet rolling, the rolling direction is in the sheet thickness direction, so that the r-value is conversely reduced.

【0034】また、第2の本発明では、セメンタイトが
平均粒径0.1 μm以上の球状化セメンタイトとなるよう
に、縮径圧延を行うことが好ましい。セメンタイトの球
状化は、鋼管の組成に応じて、縮径圧延の温度、好まし
くはさらに縮径率を、本発明の縮径圧延条件の範囲内で
調整することにより達成できる。第2の本発明では、上
記したように、鋼管を、600 ℃以上で、かつ組織がフェ
ライト主体である温度域内で、縮径圧延温度を調整して
縮径圧延を行い、鋼管のミクロ組織をセメンタイトが平
均粒径0.1 μm以上、好ましくは10μm以下の球状化セ
メンタイトとなる組織とした後、10℃/s以上の加熱速
度で 800〜1100℃の範囲の温度に加熱し、該温度に30s
以下保持し、ついで3℃/s以上の冷却速度で 500℃以
下まで冷却する熱処理を施す。これにより、残留γ相が
体積率で2.5 %以上形成され、 鋼管の均一伸びが著しく
向上する。
In the second aspect of the present invention, it is preferable to perform diameter reduction rolling so that cementite becomes spheroidized cementite having an average particle size of 0.1 μm or more. The spheroidization of cementite can be achieved by adjusting the temperature of the diameter reduction rolling, preferably the reduction rate, within the range of the diameter reduction rolling of the present invention, according to the composition of the steel pipe. In the second aspect of the present invention, as described above, the steel pipe is reduced in diameter at a temperature of 600 ° C. or higher and the structure is mainly composed of ferrite, and the diameter of the steel pipe is reduced to adjust the microstructure of the steel pipe. After forming a structure in which cementite becomes spheroidized cementite having an average particle size of 0.1 μm or more, preferably 10 μm or less, the mixture is heated at a heating rate of 10 ° C./s or more to a temperature in the range of 800 to 1100 ° C.
Then, heat treatment for cooling to 500 ° C. or less at a cooling rate of 3 ° C./s or more is performed. As a result, the residual γ phase is formed in a volume ratio of 2.5% or more, and the uniform elongation of the steel pipe is remarkably improved.

【0035】熱処理前のセメンタイトを適切な大きさの
球状化セメンタイトとしておくことが残留γ相を適正量
生成させるために重要となる。残留γ量に及ぼす球状化
セメンタイト平均粒径の影響を図3に示す。図3から、
残留γ量を2.5 体積%以上とするためには、球状化セメ
ンタイトの平均粒径を0.1 μm 以上とする必要があるこ
とがわかる。なお、球状化セメンタイトの平均粒径が10
μm を超えると、炭化物の溶解が遅くなりすぎて、 適正
量の残留γ相を生成するために必要とするC量が不足す
る。このため、球状化セメンタイトの平均粒径は10μm
以下とすることが好ましい。
It is important to make the cementite before heat treatment into a spheroidized cementite of an appropriate size in order to generate an appropriate amount of the residual γ phase. FIG. 3 shows the effect of the average particle size of spheroidized cementite on the amount of residual γ. From FIG.
It can be seen that the average particle size of the spheroidized cementite must be 0.1 μm or more in order to make the residual γ content 2.5% by volume or more. The average particle size of the spheroidized cementite was 10%.
If it exceeds μm, the dissolution of carbides will be too slow, and the amount of C required to produce an appropriate amount of residual γ phase will be insufficient. Therefore, the average particle size of spheroidized cementite is 10 μm
It is preferable to set the following.

【0036】上記したような温間縮径圧延により、セメ
ンタイトを上記した粒径の球状化セメンタイトとした組
織を有する鋼管を、ついで10℃/s以上の加熱速度で 8
00〜1100℃の範囲の温度に加熱し、30s以下保持する。
生成する残留γ量と加熱速度との関係を図4に示す。図
4から、残留γ量を2.5 体積%以上生成させるために
は、10℃/s以上の加熱速度とすることが好ましいこと
がわかる。加熱速度が10℃/s未満では、拡散するCが
多くなるため、生成する残留γ量が少なくなる。なお、
加熱速度の上限は特に限定する必要はなく、加熱装置の
能力により決定される。
A steel pipe having a structure in which cementite is formed into spheroidized cementite having the above-mentioned particle size by the above-described warm diameter reduction rolling is then heated at a heating rate of 10 ° C./s or more.
Heat to a temperature in the range of 00 to 1100 ° C and hold for 30 s or less.
FIG. 4 shows the relationship between the generated residual γ amount and the heating rate. From FIG. 4, it can be seen that it is preferable to set the heating rate to 10 ° C./s or more in order to generate the residual γ amount of 2.5 vol% or more. When the heating rate is less than 10 ° C./s, the amount of diffused C increases, and the amount of generated residual γ decreases. In addition,
The upper limit of the heating rate need not be particularly limited, and is determined by the capacity of the heating device.

【0037】生成する残留γ量と熱処理の各加熱温度に
おける保持時間との関係を図5に示す。加熱温度が800
℃未満では生成する残留γ量が少なく、加熱保持時間が
30sを超えると、加熱温度が800 ℃でも生成する残留γ
量が減少する。このため、加熱保持時間を30s以下に限
定することが好ましい。なお、保持時間を零(保持せ
ず)としても何ら問題はない。
FIG. 5 shows the relationship between the amount of residual γ generated and the holding time at each heating temperature in the heat treatment. Heating temperature is 800
Below ℃, the amount of generated residual γ is small,
If it exceeds 30 s, the residual γ generated even when the heating temperature is 800 ℃
The amount is reduced. Therefore, it is preferable to limit the heating holding time to 30 seconds or less. Note that there is no problem even if the holding time is set to zero (not held).

【0038】第2の本発明では、 800〜1100℃の範囲の
温度に加熱し、30s以下保持(あるいは保持せず)した
のち、3℃/s以上の冷却速度で 500℃以下まで冷却す
る。残留γ量は、加熱保持後の冷却速度によっても多少
影響される。残留γ量と冷却速度との関係を図6に示
す。図6から、残留γ相の生成量は、冷却速度が極端に
遅く、3℃/s未満となる場合には、2.5 %以上の残留
γ量を安定して確保することが難しくなる。このため、
加熱保持後の冷却速度は3℃/s以上に限定することが
好ましい。
In the second aspect of the present invention, after heating to a temperature in the range of 800 to 1100 ° C. and holding (or not holding) for 30 seconds or less, it is cooled to 500 ° C. or less at a cooling rate of 3 ° C./s or more. The amount of residual γ is somewhat affected by the cooling rate after heating and holding. FIG. 6 shows the relationship between the residual γ amount and the cooling rate. From FIG. 6, it is difficult to stably secure the residual γ amount of 2.5% or more when the cooling rate is extremely low and less than 3 ° C./s. For this reason,
The cooling rate after heating and holding is preferably limited to 3 ° C./s or more.

【0039】また、冷却停止温度が 500℃を超えると、
その後にγ→α変態が生じ、残留γ量が低減する。この
ため、冷却停止温度を 500℃以下に限定することが好ま
しい。なお、熱処理の加熱温度が1100℃を超えて高すぎ
たり、保持時間が30sを超えて長すぎると、フェライト
を主体とする組織がγ単相に変態し、縮径圧延で得られ
た高r値な集合組織を再びランダムにしてしまう。その
ため、本発明の熱処理は、上記した加熱速度、加熱温
度、保持時間の範囲に限定することが好ましい。なお、
熱処理の加熱温度、保持時間は、上記した本発明の範囲
内で、鋼管の組成と加熱速度によって決まるフェライト
を主体とする組織を維持できる条件に制御する必要があ
る。
When the cooling stop temperature exceeds 500 ° C.,
Thereafter, γ → α transformation occurs, and the amount of residual γ decreases. Therefore, it is preferable to limit the cooling stop temperature to 500 ° C. or less. If the heating temperature of the heat treatment is too high, exceeding 1100 ° C., or if the holding time is too long, exceeding 30 s, the structure mainly composed of ferrite is transformed into a γ single phase, and the high r obtained by diameter reduction rolling is obtained. Make the valuable texture random again. Therefore, the heat treatment of the present invention is preferably limited to the above-described ranges of the heating rate, the heating temperature, and the holding time. In addition,
It is necessary to control the heating temperature and the holding time of the heat treatment within the range of the present invention described above so that the ferrite-based structure determined by the composition and the heating rate of the steel pipe can be maintained.

【0040】また、第2の本発明における熱処理では、
従来の残留γ相を有する鋼材で必要とされていた400 ℃
程度で数min 間保持するという処理を必要とせず、冷却
制御が困難な鋼管でも容易に本発明の熱処理を適用する
ことできる。第2の本発明における熱処理により、残留
γが生成される機構について、本発明者らは、以下のよ
うに考えている。
In the heat treatment according to the second aspect of the present invention,
400 ℃ required for conventional steel with residual γ phase
The heat treatment of the present invention can be easily applied even to a steel pipe in which cooling control is difficult, without requiring the treatment of holding for about several minutes. The present inventors consider the mechanism of the generation of residual γ by the heat treatment according to the second aspect of the present invention as follows.

【0041】残留γ相を生成させるためには、γ相のC
濃度を1%以上にする必要がある。そのために、本発明
では、γ相とセメンタイト相のCの分配を利用する。す
なわち、セメンタイトを含む鋼を加熱すると、セメンタ
イトの周囲にγ相が生成し始める。この時のγ相のC濃
度は、Fe−C二元状態図から予想されるように、例えば
850 ℃で約1%となる。このようにCが濃化したγ相は
熱的に安定であるために、比較的遅い速度で冷却して
も、室温まで残留する。ただし、加熱速度が遅い場合や
加熱時間が長くなると、Cが拡散するため、十分なC濃
度が得られない。そのため、本発明では、急速加熱、短
時間保持としている。
In order to generate the residual γ phase, the C
The concentration needs to be 1% or more. For this purpose, the present invention utilizes the distribution of C in the γ phase and the cementite phase. That is, when the steel containing cementite is heated, a γ phase starts to be formed around the cementite. The C concentration of the γ phase at this time is, for example, as expected from the Fe—C binary phase diagram,
It becomes about 1% at 850 ° C. Since the γ phase in which C is concentrated is thermally stable, it remains at room temperature even when cooled at a relatively slow rate. However, if the heating rate is low or the heating time is long, C diffuses, so that a sufficient C concentration cannot be obtained. Therefore, in the present invention, rapid heating and short-time holding are used.

【0042】また、セメンタイトの形状がベイナイト中
の炭化物のように微細な場合や、パーライトのようにラ
メラ状の場合は、極めて短時間の加熱で溶解するため、
加熱速度や保持時間の制御が難しくなる。そのため、本
発明のようにセメンタイトを、平均粒径0.1 μm以上、
好ましくは10μm 以下の球状化セメンタイトとしておく
ことが重要となる。
When the cementite has a fine shape such as carbide in bainite or a lamellar shape such as pearlite, it is dissolved by heating for a very short time.
It becomes difficult to control the heating rate and the holding time. Therefore, as in the present invention, cementite has an average particle size of 0.1 μm or more,
It is important that the spheroidized cementite is preferably 10 μm or less.

【0043】これに対し、特開昭63−195221号公報に記
載されているような従来の方法では、γ相とα相のCの
分配を利用している。すなわち、(α+γ)二相域に加
熱し、γ相に第一回目のC濃化をさせた後、さらに、40
0 ℃程度の温度まで急冷、保持して、γ相に第二回目の
C濃化をさせる。この方法における第一回目の(α+
γ)二相域でのγ相のC濃度は、例えばFe−C二元状態
図から予想されるように、高々0.8 %程度であり、熱的
に十分安定ではない。そのため、第二回目のC濃化をさ
せる温度まで急冷しなければならず、さらに、第二回目
のC濃化では、γ相のC濃化と炭化物の析出が競合する
ために、保持温度、時間を極めて狭い範囲で制御しなけ
ればならないなど、鋼管では困難な冷却制御が必要とな
る。また、特開昭63−195221号公報に記載された技術で
は、炭化物の析出を抑制するSiを多量に添加しなければ
ならないという問題もあり、加工性を低下させる要因に
もなっている。
On the other hand, the conventional method described in JP-A-63-195221 utilizes the distribution of C in the γ phase and the α phase. That is, after heating to the (α + γ) two-phase region and allowing the γ phase to undergo the first C enrichment,
The glass is rapidly cooled to a temperature of about 0 ° C. and maintained to cause the γ phase to undergo the second C concentration. The first (α +
γ) The C concentration of the γ phase in the two-phase region is at most about 0.8% as expected from, for example, an Fe—C binary phase diagram, and is not sufficiently thermally stable. Therefore, it must be rapidly cooled to a temperature at which the second C concentration is performed. Further, in the second C concentration, the C concentration of the γ phase and the precipitation of carbide compete with each other, so that the holding temperature, For steel pipes, difficult cooling control is required, for example, time must be controlled in a very narrow range. Further, the technique described in Japanese Patent Application Laid-Open No. 63-195221 also has a problem that a large amount of Si, which suppresses the precipitation of carbides, needs to be added, which also causes a reduction in workability.

【0044】第3の本発明では、第2の本発明における
縮径圧延に代えて、焼鈍などを利用して、鋼管の組織
を、セメンタイトが平均粒径0.1 μm以上の球状化セメ
ンタイトである組織とする。このような球状セメンタイ
ト組織を有する鋼管に、第2の本発明と同様に、10℃/
s以上の加熱速度で 800〜1100℃の範囲の温度に加熱
し、該温度に30s以下保持する熱処理を施す。そして、
引き続き 600℃以上の、フェライトを主体とする組織と
なる温度域で、好ましくは30%以上の縮径率で、縮径圧
延し、ついで3℃/s以上の冷却速度で 500℃以下まで
冷却する。このような製造方法でも、第2の本発明と同
様に、残留γ相を有する高r値鋼管を製造できる。
According to the third aspect of the present invention, the structure of the steel pipe is changed to a structure in which cementite is spheroidized cementite having an average grain size of 0.1 μm or more by utilizing annealing or the like instead of the diameter reduction rolling in the second aspect of the present invention. And A steel pipe having such a spherical cementite structure is added to a steel pipe having a temperature of 10 ° C. /
Heat to a temperature in the range of 800 to 1100 ° C. at a heating rate of at least s, and perform a heat treatment to maintain the temperature at that for 30 s or less. And
Subsequently, in a temperature range of 600 ° C. or more where a structure mainly composed of ferrite is formed, preferably, the diameter is reduced at a reduction rate of 30% or more, and then cooled to 500 ° C. or less at a cooling rate of 3 ° C./s or more. . Even with such a manufacturing method, a high r-value steel pipe having a residual γ phase can be manufactured as in the second embodiment of the present invention.

【0045】この第3の本発明における残留γ相の生成
機構についても、本発明者らは温間縮径圧延後に熱処理
した場合と同様であると考えている。すなわち、球状化
セメンタイトを急速加熱した時に、生成するγ相中のC
濃度が十分に高く、縮径圧延しても分解しない程度に安
定化したものになっていると考えられる。以上、説明し
た本発明の製造方法では、出発鋼管の製造方法は特に限
定されない。通常公知の方法である、帯鋼を円筒状に成
形しシーム溶接して電縫鋼管とする電縫管の製造方法が
適用できる。使用する帯鋼は、熱延鋼板、冷延鋼板いず
れも好適である。また、出発鋼管としてシームレス鋼管
を用いても何ら問題はない。
The present inventors also believe that the mechanism of generation of the residual γ phase in the third aspect of the present invention is the same as that in the case where heat treatment is performed after warm diameter reduction rolling. That is, when spheroidized cementite is rapidly heated, C in the γ phase generated
It is conceivable that the concentration was sufficiently high and stabilized such that it did not decompose even when the diameter was reduced. In the manufacturing method of the present invention described above, the manufacturing method of the starting steel pipe is not particularly limited. A generally known method of manufacturing an ERW pipe by forming a steel strip into a cylindrical shape and seam welding it into an ERW steel pipe can be applied. The strip steel used is preferably a hot-rolled steel sheet or a cold-rolled steel sheet. Also, there is no problem if a seamless steel pipe is used as the starting steel pipe.

【0046】[0046]

【実施例】(実施例1)表1に示す化学成分の熱延鋼板
(板厚:2.6 mm)を円筒状に成形しシーム部を電縫溶接
して電縫鋼管とした。これら電縫鋼管に、表2に示す条
件で縮径圧延を施し、ついで表2に示す条件で熱処理を
施した。そして、得られた鋼管について、残留γ量測
定、および鋼管長手方向の引張試験を実施した。
EXAMPLES Example 1 A hot rolled steel sheet (sheet thickness: 2.6 mm) having the chemical composition shown in Table 1 was formed into a cylindrical shape, and the seam portion was subjected to ERW welding to obtain an ERW steel pipe. These ERW pipes were subjected to diameter reduction rolling under the conditions shown in Table 2 and then heat-treated under the conditions shown in Table 2. And about the obtained steel pipe, the measurement of the residual γ amount and the tensile test in the longitudinal direction of the steel pipe were performed.

【0047】残留γ量の測定は、鋼管の円周方向垂直断
面から採取した試験片について、X線回折を利用し、得
られたX線回折強度から検量線を用いて残留γ量に換算
した。また、鋼管長手方向の引張試験は、鋼管からJIS
12号Aの引張試験片を採取し、引張試験を実施し、引張
強さTS,伸びEl,一様伸びU Elを求めた。また、
r値は、JIS 12号Aの引張試験片を採取し、ゲージ長さ
が2mmのひずみゲージを貼り付けた後、公称ひずみで6
〜7%の引張を行った時の長手方向の真歪み:eLに対す
る幅方向の真歪みeWを測定して、その傾きρから、r値
=ρ/(−1−ρ)を計算した。
In the measurement of the residual γ content, a test piece taken from a vertical section in the circumferential direction of the steel pipe was converted into the residual γ content using a calibration curve from the obtained X-ray diffraction intensity using X-ray diffraction. . In addition, the tensile test in the longitudinal direction of the steel
A tensile test piece of No. 12 A was sampled and subjected to a tensile test to determine a tensile strength TS, an elongation El, and a uniform elongation U El. Also,
The r value was determined by taking a tensile test piece of JIS No. 12A, attaching a strain gauge with a gauge length of 2 mm, and
True strain in the longitudinal direction when 引 張 7% tension was applied: True strain eW in the width direction with respect to eL was measured, and from the slope ρ, r value = ρ / (− 1−ρ) was calculated.

【0048】また、熱処理前の電縫鋼管の組織を走査電
子顕微鏡により観察し、セメンタイトの粒径を測定し
た。鋼管の円周方向垂直断面部から採取した試験片を、
ナイタール液でエッチングして検鏡し、走査型電子顕微
鏡で10000 倍で100 個のセメンタイトを撮像したのち、
該写真を画像解析装置を用いて、球換算でセメンタイト
の平均粒径を算出した。
Further, the structure of the ERW steel pipe before the heat treatment was observed with a scanning electron microscope, and the particle size of cementite was measured. A test piece taken from the vertical section in the circumferential direction of the steel pipe is
After etching with nital solution and microscopy, 100 images of cementite are imaged at 10,000 times with a scanning electron microscope,
The average particle size of the cementite was calculated from the photograph in terms of sphere using an image analyzer.

【0049】得られた結果を表2に示す。Table 2 shows the obtained results.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】本発明の鋼管は、いずれも、本発明の範囲
から外れた比較例の鋼管に比べて、高い量の残留γ相を
含み、 TS:590MPa以上の高強度と、1.2 以上の高いr
値を有する、高強度・ 高加工性鋼管となっている。 (実施例2)表1に示す化学成分の熱延鋼板(板厚:2.
6 mm)を円筒状に成形しシーム部を電縫溶接して電縫鋼
管とした。これら電縫鋼管に焼鈍を施し、 表3に示す粒
径の球状セメンタイトを有する組織の鋼管とした。な
お、セメンタイトの平均粒径の測定は実施例1と同様と
した。ついで、 これら鋼管に、表3に示す条件で熱処理
を施し、引き続いて表3に示す縮径圧延を施した。得ら
れた鋼管について、実施例1と同様に、残留γ量測定、
および鋼管長手方向の引張試験を実施した。
Each of the steel pipes of the present invention contains a higher amount of residual γ phase than the steel pipes of the comparative examples outside the scope of the present invention, and has a high strength of TS: 590 MPa or more and a high r of 1.2 or more.
It is a high strength, high workability steel pipe with high value. (Example 2) Hot-rolled steel sheets having the chemical components shown in Table 1 (sheet thickness: 2.
6 mm) was formed into a cylindrical shape, and the seam was welded by ERW to form an ERW steel pipe. These electric resistance welded steel pipes were annealed to obtain steel pipes having a structure having spherical cementite having a particle diameter shown in Table 3. The measurement of the average particle size of cementite was the same as in Example 1. Subsequently, these steel pipes were subjected to a heat treatment under the conditions shown in Table 3 and subsequently subjected to diameter reduction rolling shown in Table 3. About the obtained steel pipe, similarly to Example 1, measurement of residual γ amount,
And the tensile test of the steel pipe longitudinal direction was implemented.

【0054】得られた結果を表3に示す。Table 3 shows the obtained results.

【0055】[0055]

【表4】 [Table 4]

【0056】本発明の鋼管は、実施例1と同様に、いず
れも、本発明の範囲から外れた比較例の鋼管に比べて高
い残留γ量を有し、TS:590MPa以上の高強度と、1.2
以上の高いr値を有する、高強度・高加工性鋼管となっ
ている。
The steel pipe of the present invention has a higher residual γ content than the steel pipe of the comparative example outside the scope of the present invention, and has a high strength of TS: 590 MPa or more, as in Example 1. 1.2
A high-strength, high-workability steel pipe having the above high r value.

【0057】[0057]

【発明の効果】以上、詳述したように、本発明によれ
ば、高強度・ 高加工性鋼管が安価でかつ容易に製造で
き、ハイドロフォーム加工をはじめ、各種の加工に際
し、加工限界が著しく向上し、複雑な部品が簡単に成形
できるようになるという、産業上格段の効果を奏する。
また、本発明によれば、高い加工性を備えた高強度鋼板
となり、部品の軽量化が図れるという効果もある。
As described above in detail, according to the present invention, a high-strength and high-workability steel pipe can be manufactured at low cost and easily, and the processing limit is remarkably large in various processes including hydroforming. It has an industrially remarkable effect that it can be improved and a complicated part can be easily formed.
Further, according to the present invention, a high-strength steel sheet having high workability is obtained, and there is an effect that the weight of parts can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】r値と縮径圧延出側温度との関係を示すグラフ
である。
FIG. 1 is a graph showing a relationship between an r value and a diameter-reducing rolling exit side temperature.

【図2】r値と縮径圧延縮径率との関係を示すグラフで
ある。
FIG. 2 is a graph showing a relationship between an r value and a diameter reduction ratio.

【図3】残留γ量と熱処理前のセメンタイト平均粒径と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of residual γ and the average cementite particle size before heat treatment.

【図4】残留γ量と熱処理における加熱速度との関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of residual γ and the heating rate in heat treatment.

【図5】残留γ量と熱処理における加熱保持時間との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of residual γ and the heat holding time in heat treatment.

【図6】残留γ量と熱処理における冷却速度との関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between the amount of residual γ and the cooling rate in heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西森 正徳 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 岡部 能知 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 荒谷 昌利 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 Fターム(参考) 4K032 AA04 AA05 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA31 AA32 AA35 AA36 AA37 BA03 CB02 CC02 CD02 CD03 CF03 CG02 CH01 CH05 CH06 CJ02 CJ03 CK03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanori Nishimori 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Inside the Chita Works, Kawasaki Steel (72) Inventor Akira Ito 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Kawasaki Chita Works, Steel Works (72) Inventor Motoaki Itani 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Chita Works, Kawasaki Works (72) Inventor Nochika Okabe 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Address Kawasaki Steel Corporation Chita Works (72) Inventor Masatoshi Araya 1-1-1 Kawasaki-cho, Handa-shi, Aichi Prefecture Kawasaki Steel Corporation Chita Works F-term (reference) 4K032 AA04 AA05 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA31 AA32 AA35 AA36 AA37 BA03 CB02 CC02 CD02 CD03 CF03 CG02 CH01 CH05 CH06 CJ02 CJ03 CK03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 フェライト相を主体とし、残留オーステ
ナイト相を体積率で2.5 %以上含有する組織を有し、r
値が1.2 以上であることを特徴とする高強度・高加工性
鋼管。
1. A structure mainly composed of a ferrite phase and containing at least 2.5% by volume of a retained austenite phase.
A high-strength, high-workability steel pipe having a value of 1.2 or more.
【請求項2】 質量%で、C:0.05〜0.3 %、Si:0.2
〜2.0 %、Mn:0.5〜3.0 %を含み、残部Feおよび不可
避的不純物からなる組成を有することを特徴とする請求
項1に記載の高強度・高加工性鋼管。
2. C: 0.05 to 0.3%, Si: 0.2% by mass
2. The high-strength and high-workability steel pipe according to claim 1, wherein the steel pipe contains about 2.0% and Mn: 0.5 to 3.0%, and has a composition consisting of a balance of Fe and unavoidable impurities.
【請求項3】 前記組成に加えてさらに、質量%で、C
r:2.0 %以下、Mo:2.0 %以下、W:2.0 %以下、N
i:2.0 %以下、Cu:2.0 %以下、Ti:1.0 %以下、N
b:1.0 %以下、V:1.0 %以下のうちから選ばれた1
種または2種以上を含有することを特徴とする請求項2
に記載の高強度・高加工性鋼管。
3. The composition according to claim 1, further comprising:
r: 2.0% or less, Mo: 2.0% or less, W: 2.0% or less, N
i: 2.0% or less, Cu: 2.0% or less, Ti: 1.0% or less, N
b: 1.0% or less, V: 1.0% or less
3. The composition according to claim 2, wherein the composition contains at least two species.
High-strength and high-workability steel pipe described in 1.
【請求項4】 鋼管を、セメンタイトが平均粒径0.1 μ
m以上の球状化セメンタイトとなるように、600 ℃以上
の、組織がフェライト主体である温度域で縮径圧延した
のち、10℃/s以上の加熱速度で 800〜1100℃の範囲の
温度に加熱し、該温度に30s以下保持し、ついで3℃/
s以上の冷却速度で 500℃以下まで冷却することを特徴
とする高強度・高加工性鋼管の製造方法。
4. A steel pipe, wherein cementite has an average particle size of 0.1 μm.
After rolling in the temperature range of 600 ° C or higher, where the structure is mainly composed of ferrite, and then heating to a temperature in the range of 800 to 1100 ° C at a heating rate of 10 ° C / s or higher so that the spheroidized cementite of m or more is formed. And kept at that temperature for 30 seconds or less, and then at 3 ° C /
A method for producing a high-strength, high-workability steel pipe, characterized in that the pipe is cooled to 500 ° C or less at a cooling rate of at least s.
【請求項5】 セメンタイトが平均粒径0.1 μm以上の
球状化セメンタイトである組織を有する鋼管を、10℃/
s以上の加熱速度で 800〜1100℃の範囲の温度に加熱
し、該温度に30s以下保持した後、引き続き 600℃以上
の、組織がフェライト主体である温度域で縮径圧延し、
ついで3℃/s以上の冷却速度で 500℃以下まで冷却す
ることを特徴とする高強度・高加工性鋼管の製造方法。
5. A steel pipe having a structure in which cementite is spheroidized cementite having an average particle size of 0.1 μm or more, is heated at 10 ° C. /
After heating at a heating rate of at least s to a temperature in the range of 800 to 1100 ° C. and holding at that temperature for at most 30 s, successively reducing the diameter in a temperature range of 600 ° C. or more where the structure is mainly composed of ferrite,
A method for producing a high-strength, high-workability steel pipe, wherein the pipe is cooled to 500 ° C or lower at a cooling rate of 3 ° C / s or higher.
【請求項6】 前記鋼管が、質量%で、C:0.05〜0.3
%、Si:0.2 〜2.0%、Mn:0.5 〜3.0 %を含み、残部F
eおよび不可避的不純物からなる組成を有することを特
徴とする請求項4または5に記載の高強度・高加工性鋼
管の製造方法。
6. The steel pipe according to claim 1, wherein C is 0.05 to 0.3% by mass.
%, Si: 0.2 to 2.0%, Mn: 0.5 to 3.0%, the balance F
The method for producing a high-strength and high-workability steel pipe according to claim 4 or 5, wherein the method has a composition consisting of e and unavoidable impurities.
【請求項7】 前記組成に加えてさらに、質量%で、C
r:2.0 %以下、Mo:2.0 %以下、W:2.0 %以下、N
i:2.0 %以下、Cu:2.0 %以下、Ti:1.0 %以下、N
b:1.0 %以下、V:1.0 %以下のうちから選ばれた1
種または2種以上を含有することを特徴とする請求項6
に記載の高強度・高加工性鋼管の製造方法。
7. The composition according to claim 1, further comprising:
r: 2.0% or less, Mo: 2.0% or less, W: 2.0% or less, N
i: 2.0% or less, Cu: 2.0% or less, Ti: 1.0% or less, N
b: 1.0% or less, V: 1.0% or less
7. The composition according to claim 6, wherein the composition contains at least one species.
2. A method for producing a high-strength, high-workability steel pipe according to claim 1.
JP2001094704A 2001-03-29 2001-03-29 High-strength and high-workability steel pipe and method for producing the same Expired - Fee Related JP4529307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094704A JP4529307B2 (en) 2001-03-29 2001-03-29 High-strength and high-workability steel pipe and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094704A JP4529307B2 (en) 2001-03-29 2001-03-29 High-strength and high-workability steel pipe and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002294403A true JP2002294403A (en) 2002-10-09
JP4529307B2 JP4529307B2 (en) 2010-08-25

Family

ID=18948860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094704A Expired - Fee Related JP4529307B2 (en) 2001-03-29 2001-03-29 High-strength and high-workability steel pipe and method for producing the same

Country Status (1)

Country Link
JP (1) JP4529307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009141A (en) * 2004-05-21 2006-01-12 Nippon Steel Corp Electric resistance welded tube having excellent cold workability and hardenability and its production method
JP2012177154A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp High-carbon steel pipe excellent in cold workability, machinability and hardenability, and method for producing the same
WO2018011377A1 (en) * 2016-07-14 2018-01-18 Tata Steel Nederland Tubes Bv Method for the in-line manufacturing of steel tube

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247532A (en) * 1992-03-06 1993-09-24 Nippon Steel Corp Manufacture of coil-shaped steel tube excellent in cold workability
JPH10175027A (en) * 1996-12-17 1998-06-30 Nippon Steel Corp Metallic tube for hydro-form
JPH10176220A (en) * 1996-12-18 1998-06-30 Nippon Steel Corp Manufacture of high strength steel tube excellent in hydroform workability
JPH1180899A (en) * 1997-09-05 1999-03-26 Kawasaki Steel Corp High strength steel tube excellent in workability, and its production
JP2000212694A (en) * 1999-01-20 2000-08-02 Nippon Steel Corp Electric resistance welded tube excellent in workability and its production
JP2000219933A (en) * 1999-02-01 2000-08-08 Nippon Steel Corp High strength steel tube excellent in liquid pressure formability
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor
JP2001355047A (en) * 2000-06-14 2001-12-25 Kawasaki Steel Corp High carbon steel tube excellent in cold workability and induction hardenability and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247532A (en) * 1992-03-06 1993-09-24 Nippon Steel Corp Manufacture of coil-shaped steel tube excellent in cold workability
JPH10175027A (en) * 1996-12-17 1998-06-30 Nippon Steel Corp Metallic tube for hydro-form
JPH10176220A (en) * 1996-12-18 1998-06-30 Nippon Steel Corp Manufacture of high strength steel tube excellent in hydroform workability
JPH1180899A (en) * 1997-09-05 1999-03-26 Kawasaki Steel Corp High strength steel tube excellent in workability, and its production
JP2000212694A (en) * 1999-01-20 2000-08-02 Nippon Steel Corp Electric resistance welded tube excellent in workability and its production
JP2000219933A (en) * 1999-02-01 2000-08-08 Nippon Steel Corp High strength steel tube excellent in liquid pressure formability
JP2001214218A (en) * 2000-01-28 2001-08-07 Kawasaki Steel Corp High workability steel tube and producing method therefor
JP2001355047A (en) * 2000-06-14 2001-12-25 Kawasaki Steel Corp High carbon steel tube excellent in cold workability and induction hardenability and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009141A (en) * 2004-05-21 2006-01-12 Nippon Steel Corp Electric resistance welded tube having excellent cold workability and hardenability and its production method
JP4486516B2 (en) * 2004-05-21 2010-06-23 新日本製鐵株式会社 ERW steel pipe excellent in cold workability and hardenability and its manufacturing method
JP2012177154A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp High-carbon steel pipe excellent in cold workability, machinability and hardenability, and method for producing the same
WO2018011377A1 (en) * 2016-07-14 2018-01-18 Tata Steel Nederland Tubes Bv Method for the in-line manufacturing of steel tube
CN109689238A (en) * 2016-07-14 2019-04-26 塔塔钢铁荷兰钢管有限责任公司 The online manufacturing method of steel pipe
CN109689238B (en) * 2016-07-14 2022-05-27 塔塔钢铁荷兰钢管有限责任公司 On-line manufacturing method of steel pipe
US11519048B2 (en) 2016-07-14 2022-12-06 Tata Steel Nederland Tubes Bv Method for the in-line manufacturing of steel tube

Also Published As

Publication number Publication date
JP4529307B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US7887649B2 (en) High-tensile strength welded steel tube for structural parts of automobiles and method of producing the same
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
EP3178955B1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP2258886B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
CN106868398B (en) 1300MPa grades of ultra-fine grained ferrites/low temperature bainite dual-phase steel and preparation method thereof
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP6583587B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
JP2001355046A (en) Steel tube for reinforcing automobile door and its production method
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2004292891A (en) High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP2002285278A (en) High strength and high ductility steel sheet with hyperfine crystal grain structure obtainable by subjecting plain low carbon steel to low strain working and annealing and production method therefor
JP2008106350A (en) High strength cold rolled steel sheet and its production method
EP1905850A1 (en) Process for manufacture of cold-rolled high-carbon steel plate
EP2801635B1 (en) High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JP2008163409A (en) High tensile strength welded steel pipe for automobile structural member, and method for producing the same
JP2000199034A (en) High tensile strength hot rolled steel plate excellent in workability and its production
JP2001214218A (en) High workability steel tube and producing method therefor
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP2000212686A (en) High tensile strength hot dip galvanized steel sheet excellent in workability and its production
JP2002294403A (en) Steel tube with high strength and high workability and production method therefor
JP2000096143A (en) Manufacture of steel tube
JP2004353028A (en) High carbon steel tube having excellent cold forging workability and rolling workability, and its production method
WO2007132436A2 (en) Process for the production of fine-grained carbon steel strips and strips thus obtainable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees