JP2002293696A - METHOD OF MANUFACTURING CaN SINGLE CRYSTAL - Google Patents

METHOD OF MANUFACTURING CaN SINGLE CRYSTAL

Info

Publication number
JP2002293696A
JP2002293696A JP2001097551A JP2001097551A JP2002293696A JP 2002293696 A JP2002293696 A JP 2002293696A JP 2001097551 A JP2001097551 A JP 2001097551A JP 2001097551 A JP2001097551 A JP 2001097551A JP 2002293696 A JP2002293696 A JP 2002293696A
Authority
JP
Japan
Prior art keywords
single crystal
ammonia
gan
crystal
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001097551A
Other languages
Japanese (ja)
Inventor
Takatomo Sasaki
孝友 佐々木
Yusuke Mori
勇介 森
Masashi Yoshimura
政志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001097551A priority Critical patent/JP2002293696A/en
Publication of JP2002293696A publication Critical patent/JP2002293696A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an improved method of manufacturing a novel bulk GaN single crystal which is capable of making a the number of nucleus formation, crystal size and total crystal yield higher by improving a growth rate. SOLUTION: The method of manufacturing the GaN single crystal by reacting gallium raw material substance in the presence of at least either of sodium substance and gallium substance under a pressurized gaseous nitrogen atmosphere, in which the pressure reaction is effected by at least partly replacing the atmosphere gaseous nitrogen with ammonia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、GaN単
結晶の製造方法に関するものである。さらに詳しくは、
この出願の発明は、GaNバルク単結晶の製造におい
て、成長速度を向上させることのできる高効率なGaN
単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a GaN single crystal. For more information,
The invention of this application provides a highly efficient GaN that can improve the growth rate in the production of a GaN bulk single crystal.
The present invention relates to a method for producing a single crystal.

【0002】[0002]

【従来の技術と発明の課題】窒化ガリウム:GaNは、
青色発光素子の材料として注目されている。
BACKGROUND OF THE INVENTION Gallium nitride: GaN is
It is attracting attention as a material for blue light emitting devices.

【0003】そして、窒化ガリウムは、エピタキシャル
成長による薄膜として、例えば、サファイア基板を用い
たヘテロエピタキシャル成長によるものが知られてい
る。
[0003] Gallium nitride is known as a thin film formed by epitaxial growth, for example, formed by heteroepitaxial growth using a sapphire substrate.

【0004】しかしながら、このような薄膜としての窒
化ガリウムには、基板と薄膜との格子定数差(13.8
%)、熱膨張係数差(25.5%)、および、壁開面の
違いがネックとなり、基板との整合性が悪いことから、
充分な結晶性を得ることが難しいという問題がある。
However, gallium nitride as such a thin film has a lattice constant difference (13.8) between the substrate and the thin film.
%), The difference in thermal expansion coefficient (25.5%), and the difference in the wall open surface become a bottleneck, and the consistency with the substrate is poor.
There is a problem that it is difficult to obtain sufficient crystallinity.

【0005】このような問題点を考慮して、窒化ガリウ
ム単結晶基板上にホモエピタキシャル成長によるデバイ
スを作製する方法が検討されており、その基板となるバ
ルク状窒化ガリウム単結晶の実現が重要な課題となって
いる。
In consideration of such problems, a method of manufacturing a device by homoepitaxial growth on a gallium nitride single crystal substrate has been studied, and it is important to realize a bulk gallium nitride single crystal serving as the substrate. It has become.

【0006】従来、GaN、AlNなどの窒化物バルク
結晶は、融点における窒素の平衡蒸気圧が1万気圧以上
であるため、GaNの融液成長では1200℃、800
0気圧、AlNではそれ以上の高温・高圧を必要とする
という問題があった。このような状況において、Naを
フラックスに用いることで、温度750℃・窒素ガス5
0気圧という比較的低温・低圧でGaNを合成できるこ
とが見出された。だが一方で、この方法の場合には、結
晶の成長速度が遅いという問題があった。
Conventionally, bulk nitride crystals such as GaN and AlN have an equilibrium vapor pressure of nitrogen at the melting point of 10,000 atm or more.
In the case of 0 atm and AlN, there is a problem that a higher temperature and a higher pressure are required. In such a situation, by using Na for the flux, the temperature is 750 ° C. and the nitrogen gas 5
It has been found that GaN can be synthesized at a relatively low temperature and low pressure of 0 atm. On the other hand, however, this method has a problem that the crystal growth rate is low.

【0007】そこで、この出願の発明は、成長速度を向
上させて、核発生数、結晶サイズ、そしてトータルの結
晶収量をより増大させることのできる、改良された新し
いバルクGaN単結晶の製造方法を提供することを課題
としている。
Accordingly, the invention of this application is to provide an improved new bulk GaN single crystal manufacturing method capable of increasing the growth rate and further increasing the number of nuclei generated, the crystal size, and the total crystal yield. The task is to provide.

【0008】[0008]

【課題を解決するための手段】この出願の発明は、前記
の課題を解決するものとして、ガリウム原料物質をナト
リウム物質およびカリウム物質の少なくともいずれかの
存在下に窒素ガス加圧雰囲気下に反応させてGaN単結
晶を製造する方法において、雰囲気窒素ガスの少なくと
も一部をアンモニアで置換して加圧反応させることを特
徴とするGaN単結晶の製造方法を提供する。
According to the invention of the present application, a gallium raw material is reacted under a nitrogen gas pressurized atmosphere in the presence of at least one of a sodium substance and a potassium substance. In the method for producing a GaN single crystal, a method of producing a GaN single crystal, characterized in that at least a part of an atmospheric nitrogen gas is replaced with ammonia and a pressure reaction is performed.

【0009】また、この出願の発明は、第2には、ガリ
ウム原料物質は金属ガリウムであって、ナトリウム物質
とカリウム物質は、金属のナトリウムとカリウムである
ことを特徴とするGaN単結晶の製造方法を提供し、第
3にはアンモニアを20体積%以下に混合することを特
徴とするGaN単結晶の製造方法を、第4には、窒素ガ
スとアンモニアの混合ガスの圧力を10〜100atm
とすることを特徴とするGaN単結晶の製造方法を提供
する。
Secondly, the invention of this application is characterized in that the gallium raw material is metallic gallium, and the sodium and potassium substances are metallic sodium and potassium. Third, a method for producing a GaN single crystal characterized by mixing ammonia to 20% by volume or less, and fourth, a pressure of a mixed gas of nitrogen gas and ammonia of 10 to 100 atm.
A method for producing a GaN single crystal is provided.

【0010】[0010]

【発明の実施の形態】この出願の発明は前記のとおりの
特徴をもつものであるが、以下にその実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.

【0011】まず、この出願の発明においては、ガリウ
ム原料物質としては、単体金属、合金、化合物の各種の
ものでよいが、なかでもガリウムの単体金属の使用が取
扱いの上からも好適である。一方、この発明では、フラ
ックスとして、ナトリウム物質とカリウム物質のいずれ
か一方もしくはその両者を用いるが、これらの物質は、
単体金属、あるいは金属化合物の各種のものであってよ
い。なかでも、単体金属としてのナトリウム、カリウム
を用いるのが好適である。
First, in the invention of this application, as the gallium raw material, various kinds of simple metals, alloys and compounds may be used, but the use of a simple metal of gallium is preferable from the viewpoint of handling. On the other hand, in the present invention, one or both of a sodium substance and a potassium substance are used as a flux.
It may be a single metal or various kinds of metal compounds. Among them, it is preferable to use sodium or potassium as a simple metal.

【0012】ガリウム原料物質と、これらのナトリウ
ム、カリウム物質との使用割合は、適宜であってよい
が、一般的には、Ga過剰量を用いることが考慮され
る。もちろん、このことは限定的ではない。
The proportions of the gallium raw material and these sodium and potassium substances may be arbitrary, but generally, the use of an excess of Ga is considered. Of course, this is not limiting.

【0013】反応は、ステンレス容器等の耐熱、耐圧
性、そして非反応性の容器内において行うことができ
る。反応温度は、通常は600℃〜1000℃の範囲で
よく、雰囲気圧力は、500atm程度まで考慮される
が、実際的には、窒素ガスのアンモニアによる置換の度
合い、つまりアンモニアの混合の度合いと、反応温度と
を考慮して決めることができる。この際には、温度が低
い場合にはアンモニアの液化によって圧力の上昇が難し
くなることが当然のこととして考慮される。
The reaction can be carried out in a heat-resistant, pressure-resistant and non-reactive container such as a stainless steel container. The reaction temperature may be usually in the range of 600 ° C. to 1000 ° C., and the atmospheric pressure is considered up to about 500 atm. In practice, however, the degree of substitution of ammonia by nitrogen gas, that is, the degree of mixing of ammonia, It can be determined in consideration of the reaction temperature. At this time, it is naturally considered that when the temperature is low, it is difficult to increase the pressure due to liquefaction of ammonia.

【0014】たとえば、圧力については、限定的ではな
いが目安として、10〜100atmとすることができ
る。そして、この発明の特徴として、加圧雰囲気のガス
については、窒素(N2)ガスの少なくとも一部をアン
モニアにより置換した混合ガスを用いる。
For example, the pressure is not limited, but may be 10 to 100 atm as a guide. As a feature of the present invention, as a gas in a pressurized atmosphere, a mixed gas in which at least a part of a nitrogen (N 2 ) gas is replaced by ammonia is used.

【0015】アンモニアは窒素に比べて自由エネルギー
が大きく、反応性が窒素に比べて大きいことから、アン
モニアの置換混合によって、GaN単結晶の成長速度
は、窒素ガス単体の場合に比べて、顕著に向上し、より
低い温度と、より低い圧力下でも、高品質のGaN単結
晶が効率的に育成されることになる。アンモニアによる
置換については、この発明では、窒素ガスの全てをアン
モニアで置換した状態のアンモニアガスを反応に用いて
もよいし、一部をアンモニアにより置換した混合ガスで
あってもよい。混合ガスにおける混合の割合も、反応温
度と圧力を考慮して適宜に決めることができる。たとえ
ば50体積%以下、さらに実際的には、20体積%以下
程度とすることも考慮される。
Since ammonia has a higher free energy than nitrogen and a higher reactivity than nitrogen, the substitution rate of ammonia causes the growth rate of a GaN single crystal to be significantly higher than that of nitrogen gas alone. Improved, higher quality GaN single crystals will be grown efficiently even at lower temperatures and lower pressures. Regarding the replacement with ammonia, in the present invention, ammonia gas in which all of the nitrogen gas has been replaced with ammonia may be used for the reaction, or a mixed gas in which a part of the nitrogen gas has been replaced with ammonia may be used. The mixing ratio in the mixed gas can also be appropriately determined in consideration of the reaction temperature and pressure. For example, 50% by volume or less, and more practically, about 20% by volume or less are also considered.

【0016】この出願の発明により、結晶の核発生数、
結晶サイズ、トータルな結晶収量ともに窒素ガスのみの
場合よりも優れたものとなり、成長速度は大きく向上す
る。
According to the invention of this application, the number of crystal nuclei generated,
Both the crystal size and the total crystal yield are superior to those using only nitrogen gas, and the growth rate is greatly improved.

【0017】そこで以下に実施例を示し、さらに詳しく
この発明について説明する。
The present invention will be described in more detail with reference to the following examples.

【0018】[0018]

【実施例】金属のGaとNaを装入したるつぼ内におけ
る結晶生成時の圧力を50atm、温度を800℃と一
定にして、N2ガス100%と、アンモニア4%希釈の
2ガスを用いて48時間と96時間、結晶の生成を行
った。
EXAMPLE In a crucible charged with metal Ga and Na, the pressure during crystal formation was kept constant at 50 atm, the temperature was kept at 800 ° C., and N 2 gas 100% and N 2 gas diluted with 4% ammonia were used. For 48 and 96 hours.

【0019】この際の出発条件は、次の表1のとおりと
した。
The starting conditions at this time are as shown in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】結晶育成後、放冷し常温まで下がってから
るつぼを取り出し残留Naをエタノール、蒸留水を用い
て処理し、るつぼを半分に割り光学顕微鏡で観測したと
ころ図1(a)(b)(c)のような光学顕微鏡による
写真観察の結果が得られた。
After the crystal was grown, the crucible was allowed to cool to room temperature, the crucible was taken out, the remaining Na was treated with ethanol and distilled water, and the crucible was cut in half and observed with an optical microscope. The result of the photograph observation by the optical microscope as shown in (c) was obtained.

【0022】これより、生成時間が48時間で窒素ガス
のみで育成したサンプル(a)は光学顕微鏡を用いて評
価してもX線解析測定でもGaNの生成を確認すること
はできなかった。同じく生成時間が48時間で窒素希釈
のアンモニア4%の混合ガスを用いて育成した(b)
は、個々の結晶サイズは約0.1mm程度ではあるがG
aNの生成を光学顕微鏡を用いて確認することができ
た。次に生成時間が96時間で4%アンモニアの窒素ガ
スで育成したサンプル(c)では、肉眼でGaNの生成
が確認でき、最大結晶サイズ1.2mmのGaNの生成
が確認された。
As a result, the sample (a) grown for 48 hours and grown only with nitrogen gas could not confirm the generation of GaN by the evaluation using an optical microscope or the X-ray analysis measurement. Similarly, it was grown using a mixed gas of 4% ammonia diluted with nitrogen for 48 hours (b).
Means that although the individual crystal size is about 0.1 mm,
The generation of aN could be confirmed using an optical microscope. Next, in sample (c) grown for 96 hours with 4% ammonia nitrogen gas for 96 hours, generation of GaN was confirmed by the naked eye, and generation of GaN having a maximum crystal size of 1.2 mm was confirmed.

【0023】結晶の核発生数、結晶サイズ、トータルな
結晶収量ともに窒素ガスのみの場合よりも優れたものと
なり、成長速度は大きく向上する。
The number of crystal nuclei generated, the crystal size, and the total crystal yield are all superior to those obtained using only nitrogen gas, and the growth rate is greatly improved.

【0024】[0024]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、GaN単結晶の成長速度を向上させて、
核発生数、結晶サイズ、そしてトータルの結晶収量をよ
り増大させることができる。
As described in detail above, according to the invention of this application, the growth rate of a GaN single crystal is improved,
The number of nuclei generated, the crystal size, and the total crystal yield can be further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の結果を例示した光学顕微鏡写真であ
る。
FIG. 1 is an optical micrograph illustrating the results of an example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA02 BE15 CC06 EA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA02 BE15 CC06 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガリウム原料物質をナトリウム物質およ
びカリウム物質の少なくともいずれかの存在下に窒素ガ
ス加圧雰囲気下に反応させてGaN単結晶を製造する方
法において、雰囲気窒素ガスの少なくとも一部をアンモ
ニアで置換して加圧反応させることを特徴とするGaN
単結晶の製造方法。
1. A method for producing a GaN single crystal by reacting a gallium raw material under a nitrogen gas pressurized atmosphere in the presence of at least one of a sodium material and a potassium material, wherein at least a part of the atmospheric nitrogen gas is ammonia Characterized by substituting with GaN and reacting under pressure
Single crystal production method.
【請求項2】 ガリウム原料物質は金属ガリウムであっ
て、ナトリウム物質とカリウム物質は、金属のナトリウ
ムとカリウムであることを特徴とする請求項1のGaN
単結晶の製造方法。
2. The GaN material according to claim 1, wherein the gallium source material is metallic gallium, and the sodium and potassium materials are metallic sodium and potassium.
Single crystal production method.
【請求項3】 アンモニアを20体積%以下混合して置
換することを特徴とする請求項1または2のGaN単結
晶の製造方法。
3. The method for producing a GaN single crystal according to claim 1, wherein ammonia is replaced by mixing at 20% by volume or less.
【請求項4】 窒素ガスとアンモニアの混合ガスの圧力
を10〜100atmとすることを特徴とする請求項1
ないし3のいずれかのGaN単結晶の製造方法。
4. The pressure of a mixed gas of nitrogen gas and ammonia is set to 10 to 100 atm.
3. The method for producing a GaN single crystal according to any one of items 1 to 3.
JP2001097551A 2001-03-29 2001-03-29 METHOD OF MANUFACTURING CaN SINGLE CRYSTAL Pending JP2002293696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097551A JP2002293696A (en) 2001-03-29 2001-03-29 METHOD OF MANUFACTURING CaN SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097551A JP2002293696A (en) 2001-03-29 2001-03-29 METHOD OF MANUFACTURING CaN SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2002293696A true JP2002293696A (en) 2002-10-09

Family

ID=18951324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097551A Pending JP2002293696A (en) 2001-03-29 2001-03-29 METHOD OF MANUFACTURING CaN SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2002293696A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083498A1 (en) * 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
KR100502467B1 (en) * 2002-11-18 2005-07-20 주식회사 컴텍스 GaN single crystal and its manufacturing method and its growing apparatus
KR100519035B1 (en) * 2003-04-21 2005-10-06 정세영 manufacturing method for GaN single crystal plate
JP2005298269A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Group iii nitride crystal substrate and its manufacturing method, and group iii nitride semiconductor device
DE102004048453A1 (en) * 2004-10-05 2006-04-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of increasing the conversion of Group III metal to Group III nitride in a Group III-containing molten metal
US7125801B2 (en) 2003-08-06 2006-10-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystal substrate, etchant used in the method, Group III nitride crystal substrate, and semiconductor device including the same
EP1741807A1 (en) * 2004-04-27 2007-01-10 Matsushita Electric Industries Co., Ltd. Apparatus for production of crystal of group iii element nitride and process for producing crystal of group iii element nitride
US7176115B2 (en) 2003-03-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride substrate and semiconductor device
US7221037B2 (en) 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
US7227172B2 (en) 2003-10-20 2007-06-05 Matsushita Electric Industrial Co., Ltd. Group-III-element nitride crystal semiconductor device
EP1806439A1 (en) * 2004-09-16 2007-07-11 Ngk Insulators, Ltd. METHOD FOR PRODUCING AlN SINGLE CRYSTAL AND AlN SINGLE CRYSTAL
WO2007083768A1 (en) 2006-01-20 2007-07-26 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate
US7255742B2 (en) 2003-07-02 2007-08-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
US7288152B2 (en) 2003-08-29 2007-10-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing GaN crystals and GaN crystal substrate, GaN crystals and GaN crystal substrate obtained by the method, and semiconductor device including the same
US7309534B2 (en) 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
WO2008111289A1 (en) 2007-03-14 2008-09-18 Panasonic Corporation Process for producing group iii elment nitride crystal, and group iii element nitride crystal
WO2008117564A1 (en) 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Method for manufacturing nitride single crystal
US7435295B2 (en) 2004-02-19 2008-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
US7507292B2 (en) 2002-07-31 2009-03-24 Osaka Industrial Promotion Organization Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
JP2009073710A (en) * 2007-09-25 2009-04-09 Panasonic Corp Method for producing gallium nitride substrate, gallium nitride substrate, and semiconductor device
US7524691B2 (en) 2003-01-20 2009-04-28 Panasonic Corporation Method of manufacturing group III nitride substrate
US7670430B2 (en) 2006-02-13 2010-03-02 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP2010077022A (en) * 2009-11-30 2010-04-08 Sumitomo Electric Ind Ltd Group iii nitride crystal substrate, method for producing the same, and group iii nitride semiconductor device
US7794539B2 (en) 2004-03-31 2010-09-14 Panasonic Corporation Method for producing III group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
US7833347B2 (en) 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
US8231729B2 (en) 2006-03-23 2012-07-31 Ngk Insulators, Ltd. Apparatus for producing nitride single crystal
US8241422B2 (en) 2004-03-31 2012-08-14 Ngk Insulators, Ltd. Gallium nitride single crystal growing method and gallium nitride single crystal
US8486190B2 (en) 2006-03-23 2013-07-16 Ngk Insulators, Ltd. Process for producing single crystal
US8728233B2 (en) 2004-10-05 2014-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the production of group III nitride bulk crystals or crystal layers from fused metals
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same
US9017479B2 (en) 2006-03-23 2015-04-28 Ngk Insulators, Ltd. Nitride single crystal manufacturing apparatus
US9281438B2 (en) 2007-09-28 2016-03-08 Ricoh Company, Ltd. Process for producing group III element nitride crystal and apparatus for producing group III element nitride crystal
KR20160130396A (en) 2014-03-03 2016-11-11 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Process for producing group iii nitride crystal and apparatus for producing group iii nitride crystal
US10011921B2 (en) 2014-10-29 2018-07-03 Osaka University Method for producing group III element nitride crystal, group III element nitride crystal, semiconductor device, method for producing semiconductor device, and group III element nitride crystal production device
US10266965B2 (en) 2014-03-03 2019-04-23 Osaka University Method for producing group-III nitride crystal, group-III nitride crystal, semiconductor device, and device for producing group-III nitride crystal

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507292B2 (en) 2002-07-31 2009-03-24 Osaka Industrial Promotion Organization Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
KR100502467B1 (en) * 2002-11-18 2005-07-20 주식회사 컴텍스 GaN single crystal and its manufacturing method and its growing apparatus
US7524691B2 (en) 2003-01-20 2009-04-28 Panasonic Corporation Method of manufacturing group III nitride substrate
US7221037B2 (en) 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
WO2004083498A1 (en) * 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
US7959729B2 (en) 2003-03-17 2011-06-14 Osaka University Method for producing group-III-element nitride single crystals and apparatus used therein
CN100368604C (en) * 2003-03-17 2008-02-13 财团法人大阪产业振兴机构 Method for producing group iii nitride single crystal and apparatus used therefor
US7176115B2 (en) 2003-03-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride substrate and semiconductor device
KR100519035B1 (en) * 2003-04-21 2005-10-06 정세영 manufacturing method for GaN single crystal plate
US7309534B2 (en) 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
US7255742B2 (en) 2003-07-02 2007-08-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
US7125801B2 (en) 2003-08-06 2006-10-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystal substrate, etchant used in the method, Group III nitride crystal substrate, and semiconductor device including the same
US7288152B2 (en) 2003-08-29 2007-10-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing GaN crystals and GaN crystal substrate, GaN crystals and GaN crystal substrate obtained by the method, and semiconductor device including the same
US7227172B2 (en) 2003-10-20 2007-06-05 Matsushita Electric Industrial Co., Ltd. Group-III-element nitride crystal semiconductor device
US7435295B2 (en) 2004-02-19 2008-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
US8241422B2 (en) 2004-03-31 2012-08-14 Ngk Insulators, Ltd. Gallium nitride single crystal growing method and gallium nitride single crystal
US7794539B2 (en) 2004-03-31 2010-09-14 Panasonic Corporation Method for producing III group element nitride crystal, production apparatus for use therein, and semiconductor element produced thereby
JP2005298269A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Group iii nitride crystal substrate and its manufacturing method, and group iii nitride semiconductor device
US7381268B2 (en) 2004-04-27 2008-06-03 Matsushita Electric Industrial Co., Ltd. Apparatus for production of crystal of group III element nitride and process for producing crystal of group III element nitride
US7754012B2 (en) 2004-04-27 2010-07-13 Panasonic Corporation Apparatus for production of crystal of group III element nitride and process for producing crystal of group III element nitride
EP1741807A1 (en) * 2004-04-27 2007-01-10 Matsushita Electric Industries Co., Ltd. Apparatus for production of crystal of group iii element nitride and process for producing crystal of group iii element nitride
EP1741807A4 (en) * 2004-04-27 2009-07-08 Panasonic Corp Apparatus for production of crystal of group iii element nitride and process for producing crystal of group iii element nitride
EP1806439A4 (en) * 2004-09-16 2010-03-24 Ngk Insulators Ltd METHOD FOR PRODUCING AlN SINGLE CRYSTAL AND AlN SINGLE CRYSTAL
JP4780720B2 (en) * 2004-09-16 2011-09-28 日本碍子株式会社 Method for producing AlN single crystal and AlN single crystal
EP1806439A1 (en) * 2004-09-16 2007-07-11 Ngk Insulators, Ltd. METHOD FOR PRODUCING AlN SINGLE CRYSTAL AND AlN SINGLE CRYSTAL
DE102004048453A1 (en) * 2004-10-05 2006-04-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of increasing the conversion of Group III metal to Group III nitride in a Group III-containing molten metal
US8728233B2 (en) 2004-10-05 2014-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for the production of group III nitride bulk crystals or crystal layers from fused metals
US7883645B2 (en) 2004-10-05 2011-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for increasing the conversion of group III metals to group III nitrides in a fused metal containing group III elements
US8231726B2 (en) 2006-01-20 2012-07-31 Panasonic Corporation Semiconductor light emitting element, group III nitride semiconductor substrate and method for manufacturing such group III nitride semiconductor substrate
WO2007083768A1 (en) 2006-01-20 2007-07-26 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate
US7670430B2 (en) 2006-02-13 2010-03-02 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
US9017479B2 (en) 2006-03-23 2015-04-28 Ngk Insulators, Ltd. Nitride single crystal manufacturing apparatus
US7833347B2 (en) 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
US8486190B2 (en) 2006-03-23 2013-07-16 Ngk Insulators, Ltd. Process for producing single crystal
US8231729B2 (en) 2006-03-23 2012-07-31 Ngk Insulators, Ltd. Apparatus for producing nitride single crystal
WO2008111289A1 (en) 2007-03-14 2008-09-18 Panasonic Corporation Process for producing group iii elment nitride crystal, and group iii element nitride crystal
JP2008222519A (en) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Production method of group iii element nitride crystal and group iii element nitride crystal
US8574361B2 (en) 2007-03-14 2013-11-05 Ricoh Company, Ltd. Group-III element nitride crystal producing method and group-III element nitride crystal
WO2008117564A1 (en) 2007-03-27 2008-10-02 Ngk Insulators, Ltd. Method for manufacturing nitride single crystal
US8506705B2 (en) 2007-03-27 2013-08-13 Ngk Insulators, Ltd. Method for manufacturing nitride single crystal
JP2009073710A (en) * 2007-09-25 2009-04-09 Panasonic Corp Method for producing gallium nitride substrate, gallium nitride substrate, and semiconductor device
US9281438B2 (en) 2007-09-28 2016-03-08 Ricoh Company, Ltd. Process for producing group III element nitride crystal and apparatus for producing group III element nitride crystal
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same
JP2010077022A (en) * 2009-11-30 2010-04-08 Sumitomo Electric Ind Ltd Group iii nitride crystal substrate, method for producing the same, and group iii nitride semiconductor device
KR20160130396A (en) 2014-03-03 2016-11-11 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Process for producing group iii nitride crystal and apparatus for producing group iii nitride crystal
US10202710B2 (en) 2014-03-03 2019-02-12 Osaka University Process for producing group III nitride crystal and apparatus for producing group III nitride crystal
US10266965B2 (en) 2014-03-03 2019-04-23 Osaka University Method for producing group-III nitride crystal, group-III nitride crystal, semiconductor device, and device for producing group-III nitride crystal
US10011921B2 (en) 2014-10-29 2018-07-03 Osaka University Method for producing group III element nitride crystal, group III element nitride crystal, semiconductor device, method for producing semiconductor device, and group III element nitride crystal production device

Similar Documents

Publication Publication Date Title
JP2002293696A (en) METHOD OF MANUFACTURING CaN SINGLE CRYSTAL
KR101192061B1 (en) GaN CRYSTAL PRODUCING METHOD, GaN CRYSTAL, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICE AND GaN CRYSTAL PRODUCING APPARATUS
Wang et al. Ammonothermal growth of GaN crystals in alkaline solutions
JP4753869B2 (en) Method for growing gallium nitride single crystal
JP5553273B2 (en) Nitride semiconductor manufacturing method, crystal growth rate increasing agent, nitride single crystal, wafer and device
US5530267A (en) Article comprising heteroepitaxial III-V nitride semiconductor material on a substrate
JP5656697B2 (en) Method for producing aluminum nitride crystal
JP2000327495A (en) Method for growing gallium nitride single crystal
JP5396569B1 (en) Method for producing group 13 element nitride crystal and melt composition
CN100582324C (en) Method for producing AIN single crystal and AIN single crystal
JPWO2007122865A1 (en) Method for producing nitride single crystal
JP5187848B2 (en) Single crystal manufacturing method
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
JP4719788B2 (en) Method for producing group 13 element nitrogen compound crystal
JP2005145754A (en) Nitride semiconductor substrate and its manufacturing method
JP2008069028A (en) Growing method of gallium nitride single crystal, and gallium nitride single crystal obtained by it
WO2018042705A1 (en) Iii nitride microcrystal aggregate production method, gallium nitride microcrystal aggregate production method, iii nitride microcrystal aggregate, and sputtering target
JP4398762B2 (en) Method for producing group III element nitride single crystal and reaction vessel used therefor
US8657955B2 (en) Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
Feigelson et al. Growth of GaN crystals from molten solution with Ga free solvent using a temperature gradient
JP4876002B2 (en) Melt composition for growing gallium nitride single crystal and method for growing gallium nitride single crystal
JP2003335600A (en) PROCESS FOR PREPARING AlN SINGLE CRYSTAL
JP4760652B2 (en) Method for producing Ga-containing nitride crystal and method for producing semiconductor device using the same
Kangawa et al. Possibility of AlN solution growth using Al and Li3N
JP4397422B2 (en) Method for producing gallium nitride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522