JP2002292394A - Wastewater disposal equipment - Google Patents

Wastewater disposal equipment

Info

Publication number
JP2002292394A
JP2002292394A JP2001101203A JP2001101203A JP2002292394A JP 2002292394 A JP2002292394 A JP 2002292394A JP 2001101203 A JP2001101203 A JP 2001101203A JP 2001101203 A JP2001101203 A JP 2001101203A JP 2002292394 A JP2002292394 A JP 2002292394A
Authority
JP
Japan
Prior art keywords
steam
sludge
drying
generated
dewatered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001101203A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
公 鈴木
Toshio Izuhara
俊雄 出原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001101203A priority Critical patent/JP2002292394A/en
Publication of JP2002292394A publication Critical patent/JP2002292394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide wastewater disposal equipment capable of reducing a running cost in the treatment of dehydrated sludge. SOLUTION: The wastewater disposal equipment 1 is constituted so as to successively treat wastewater in a methane fermentator 2 and an activated sludge tank 3 and equipped with a stream generation means 7 for generating steam by the combustion of the biogas generated in the methane fermentator 2, a dehydration means 9 for dehydrating the excess sludge in the activated sludge tank 3 and drying means 11 and 12 for drying the dehydrated sludge in the dehydration means 9 by steam generated by the steam generater 7. The biogas generated in the methane fermentation 2 is burnt in the steam generater 7 to generate steam. The excess sludge generated in the activated sludge tank 3 is dehydrated by the dehydration means 9. The dehydrated sludge is dried by the heat of steam in the drying means 11 and 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃水処理設備に係
り、より詳細には被処理廃水をメタン発酵処理装置及び
活性汚泥槽で処理する廃水処理設備に関する。
The present invention relates to a wastewater treatment facility, and more particularly, to a wastewater treatment facility for treating a wastewater to be treated in a methane fermentation treatment apparatus and an activated sludge tank.

【0002】[0002]

【従来技術】廃水処理においては、高負荷及び省スペー
ス化の観点からメタン発酵処理装置がよく用いられてい
る。ところが、メタン発酵処理装置だけでは、処理水を
河川等に放流できる程度まで処理水の水質を高めること
ができない。このため、処理水の水質を高めるべく、メ
タン発酵処理装置の後段に活性汚泥槽を配設するのが一
般的となっている。この場合、活性汚泥槽で発生する余
剰汚泥は脱水機で脱水されるが、脱水された汚泥は、廃
棄物引取り業者等により有償で処分されているのが実情
である。
2. Description of the Related Art In wastewater treatment, a methane fermentation treatment apparatus is often used from the viewpoint of high load and space saving. However, the methane fermentation treatment apparatus alone cannot improve the quality of the treated water to such an extent that the treated water can be discharged into a river or the like. For this reason, it is common to arrange an activated sludge tank at the latter stage of the methane fermentation treatment apparatus in order to improve the quality of the treated water. In this case, excess sludge generated in the activated sludge tank is dewatered by a dehydrator, but the dewatered sludge is actually disposed of by a waste collection company or the like for a fee.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、最近で
は、脱水汚泥の引取り料の高騰により、脱水汚泥の引取
りに多大なコストがかかるという問題が生じてきてい
る。
Recently, however, a problem has arisen that the cost of collecting the dewatered sludge is extremely high due to an increase in the collection fee of the dewatered sludge.

【0004】本発明は、上記事情に鑑みてなされたもの
であり、脱水汚泥の処理にかかるコストを十分に低減す
ることができる廃水処理設備を提供することを目的とす
る。
[0004] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wastewater treatment facility capable of sufficiently reducing the cost of treating dewatered sludge.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、被処理廃水をメタン発酵処理装置及び活
性汚泥槽で順次処理する廃水処理設備において、メタン
発酵処理装置で発生するバイオガスの燃焼により蒸気を
発生させる蒸気発生手段と、活性汚泥槽で発生する余剰
汚泥を脱水する脱水手段と、蒸気発生手段で発生する蒸
気を用いて、前記脱水手段で脱水された脱水汚泥を乾燥
させる乾燥手段とを備えることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a wastewater treatment facility for sequentially treating wastewater to be treated in a methane fermentation treatment apparatus and an activated sludge tank. Steam generating means for generating steam by combustion of water, dewatering means for dehydrating excess sludge generated in the activated sludge tank, and drying the dehydrated sludge dewatered by the dewatering means using steam generated by the steam generating means. Drying means.

【0006】この発明によれば、メタン発酵処理装置で
は被処理廃水の処理によりバイオガスが発生し、このバ
イオガスは、蒸気発生手段で燃焼されて蒸気を発生させ
る。一方、活性汚泥槽では余剰汚泥が発生し、この余剰
汚泥は脱水機で脱水される。そして、この脱水汚泥は、
乾燥手段により、上述の蒸気発生手段で発生する蒸気の
熱を用いて乾燥される。即ち、廃水処理設備における廃
水処理の過程で生じる蒸気の熱が脱水汚泥の乾燥に有効
に利用される。
According to the present invention, in the methane fermentation treatment apparatus, biogas is generated by the treatment of the wastewater to be treated, and the biogas is burned by the steam generating means to generate steam. On the other hand, excess sludge is generated in the activated sludge tank, and the excess sludge is dewatered by a dehydrator. And this dewatered sludge is
Drying is performed by using the heat of the steam generated by the steam generating means. That is, the heat of the steam generated in the wastewater treatment process in the wastewater treatment equipment is effectively used for drying the dewatered sludge.

【0007】上記乾燥手段は、脱水汚泥を投入する汚泥
乾燥釜を有する乾燥機と、蒸気発生手段で発生する蒸気
を汚泥乾燥釜の内部に導入する蒸気導入手段とを備える
ことが好ましい。
[0007] The drying means preferably includes a dryer having a sludge drying kettle into which dehydrated sludge is charged, and a steam introducing means for introducing steam generated by the steam generating means into the sludge drying kettle.

【0008】この場合、脱水汚泥が乾燥機の汚泥乾燥釜
に投入される一方、蒸気発生手段で発生した蒸気が、蒸
気導入手段により汚泥乾燥釜の内部に導入される。この
ため、汚泥乾燥釜に投入された脱水汚泥は蒸気によって
直接加熱される。従って、脱水汚泥が蒸気により間接的
に加熱される場合に比べて脱水汚泥の乾燥効率がより高
くなる。
[0008] In this case, while the dewatered sludge is put into the sludge drying kettle of the dryer, the steam generated by the steam generating means is introduced into the sludge drying kettle by the steam introducing means. For this reason, the dehydrated sludge put into the sludge drying kettle is directly heated by the steam. Therefore, the drying efficiency of the dewatered sludge is higher than when the dewatered sludge is indirectly heated by steam.

【0009】更に上記乾燥手段は、汚泥乾燥釜に導入す
る蒸気の圧力を調節する圧力調節手段を備えることが好
ましい。
Further, the drying means preferably includes pressure adjusting means for adjusting the pressure of steam introduced into the sludge drying kettle.

【0010】汚泥乾燥釜に導入する蒸気の圧力を、圧力
調節手段により0.3〜0.4MPaに調節し、ノズル
で絞って高速の気流を発生させると衝撃波が発生し、こ
の衝撃波と高速気流により脱水汚泥が粉砕されると同時
に汚泥乾燥釜内で高速に回転混合される。このため、脱
水汚泥の乾燥効率がより高くなる。
When the pressure of the steam introduced into the sludge drying kettle is adjusted to 0.3 to 0.4 MPa by a pressure adjusting means, and is narrowed by a nozzle to generate a high-speed airflow, a shock wave is generated. The dewatered sludge is pulverized at the same time, and is simultaneously rotated and mixed in the sludge drying tank at high speed. For this reason, the drying efficiency of the dewatered sludge becomes higher.

【0011】上記乾燥手段が、メタン発酵処理装置で発
生するバイオガス中のメタンガスの燃焼により空気を加
熱し、この加熱空気により汚泥乾燥釜に導入される蒸気
の乾き度を増加させる手段を備えることが好ましい。
[0011] The drying means includes means for heating air by burning methane gas in biogas generated in the methane fermentation treatment apparatus, and increasing the dryness of steam introduced into the sludge drying kettle by the heated air. Is preferred.

【0012】この蒸気の乾き度を増す手段により、汚泥
乾燥釜に導入される蒸気の乾き度が増加すると、汚泥乾
燥釜に導入された脱水汚泥の乾燥効率がより高くなる。
また、蒸気の乾き度を増すために空気を加熱しても、そ
の加熱に要する燃料としてバイオガスを使用するので燃
料費が不要となる。
When the dryness of the steam introduced into the sludge drying kettle is increased by the means for increasing the dryness of the steam, the drying efficiency of the dehydrated sludge introduced into the sludge drying kettle is further increased.
Further, even if the air is heated to increase the dryness of the steam, the fuel cost is unnecessary because biogas is used as the fuel required for the heating.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0014】図1は、本発明の廃水処理設備の一実施形
態を示すフロー図である。図1に示すように、廃水処理
設備1において、被処理廃水は、メタン発酵処理装置2
及び活性汚泥槽3で順次処理された後、河川等に放流さ
れるようになっている。
FIG. 1 is a flowchart showing one embodiment of the wastewater treatment equipment of the present invention. As shown in FIG. 1, in the wastewater treatment equipment 1, the wastewater to be treated is
After being sequentially treated in the activated sludge tank 3, the sludge is discharged to a river or the like.

【0015】メタン発酵処理装置2は、メタン発酵によ
り被処理廃水中の有機物を分解し、バイオガスを発生す
るものであり、通常は酸生成槽とメタン発酵槽とを備え
ている。バイオガスは、ガス排出配管4を経てガスホル
ダ5に導入されて貯留される。ガスホルダ5に貯留され
るバイオガスはガス移送配管6を経てボイラー(蒸気発
生手段)7に導入される。ボイラー7では、バイオガス
の燃焼により蒸気が発生する。発生した蒸気は、蒸気移
送配管12を経て乾燥機11に導入される。なお、発生
した蒸気の一部は乾燥機11の熱源として利用される
が、残りの蒸気は、余剰蒸気として余剰蒸気排出配管2
3を経て他の用途に利用される。
The methane fermentation treatment apparatus 2 decomposes organic matter in the wastewater to be treated by methane fermentation to generate biogas, and usually includes an acid generation tank and a methane fermentation tank. The biogas is introduced into the gas holder 5 via the gas discharge pipe 4 and stored. The biogas stored in the gas holder 5 is introduced into a boiler (steam generating means) 7 via a gas transfer pipe 6. In the boiler 7, steam is generated by combustion of biogas. The generated steam is introduced into the dryer 11 through the steam transfer pipe 12. A part of the generated steam is used as a heat source of the dryer 11, but the remaining steam is used as surplus steam as the surplus steam discharge pipe 2.
After 3 is used for other purposes.

【0016】一方、活性汚泥槽3は、メタン発酵処理装
置2で得られた処理水を活性汚泥により生物処理する。
この生物処理により活性汚泥槽3では余剰汚泥が発生
し、この余剰汚泥は、余剰汚泥排出配管8を経て脱水機
(脱水手段)9に導入される。
On the other hand, the activated sludge tank 3 biologically treats the treated water obtained by the methane fermentation treatment apparatus 2 with activated sludge.
Due to this biological treatment, excess sludge is generated in the activated sludge tank 3, and the excess sludge is introduced into a dehydrator (dehydrating means) 9 via an excess sludge discharge pipe 8.

【0017】脱水機9は、余剰汚泥を脱水し得るもので
あれば特に制限されず、例えばベルトプレス、デカンタ
ー、遠心分離機等からなる。
The dehydrator 9 is not particularly limited as long as it can dehydrate excess sludge, and includes, for example, a belt press, a decanter, a centrifuge, and the like.

【0018】脱水機9で脱水された脱水汚泥は、汚泥移
送配管10を経て乾燥機11に導入される。そして、乾
燥機11において、脱水汚泥は、ボイラー7で発生した
蒸気を用いて乾燥される。
The dewatered sludge dewatered by the dehydrator 9 is introduced into a dryer 11 through a sludge transfer pipe 10. Then, in the dryer 11, the dewatered sludge is dried using steam generated in the boiler 7.

【0019】ここで、乾燥機11について図2、図3を
用いて詳細に説明する。
Here, the dryer 11 will be described in detail with reference to FIGS.

【0020】図2は、乾燥機11の構成を概略的に示す
斜視図、図3は、図2の蒸気移送配管12の内部構造を
示す断面図である。図2に示すように、乾燥機11は、
円筒状の汚泥乾燥釜13を備えており、汚泥乾燥釜13
は、円筒部13aと、その両側に設けられる側壁部13
b、13cとからなる。汚泥乾燥釜13の側壁部13b
の下部には汚泥投入口13dが形成され、汚泥投入口1
3dには、汚泥乾燥釜13に脱水汚泥を投入する汚泥フ
ィーダ14が接続されている。また、汚泥フィーダ14
には汚泥移送配管10が接続され、汚泥フィーダ14
は、モータ15により作動し、汚泥フィーダ14に導入
される脱水汚泥を汚泥乾燥釜13に投入する。なお、汚
泥フィーダ14は、例えば配管と、配管の内部に回転可
能に配置されるスクリュー(図示せず)とを備えてお
り、スクリューにはモータ15が接続されている。
FIG. 2 is a perspective view schematically showing the structure of the dryer 11, and FIG. 3 is a sectional view showing the internal structure of the steam transfer pipe 12 of FIG. As shown in FIG.
A sludge drying tank 13 having a cylindrical shape is provided.
Are cylindrical portions 13a and side wall portions 13 provided on both sides thereof.
b, 13c. Side wall 13b of sludge drying pot 13
A sludge inlet 13d is formed at the lower part of the sludge inlet.
3d is connected to a sludge feeder 14 for supplying dewatered sludge to the sludge drying kettle 13. In addition, sludge feeder 14
Is connected to a sludge transfer pipe 10 and a sludge feeder 14.
Is operated by the motor 15 and throws the dewatered sludge introduced into the sludge feeder 14 into the sludge drying tank 13. The sludge feeder 14 includes, for example, a pipe and a screw (not shown) rotatably disposed inside the pipe, and a motor 15 is connected to the screw.

【0021】また、汚泥乾燥釜13の円筒部13aに
は、汚泥投入口13dの近傍に蒸気導入口13eが形成
され、蒸気導入口13eとボイラー7とは蒸気移送配管
12により接続されている。蒸気移送配管12には、蒸
気の圧力を調節する圧力調節弁(圧力調節手段)16が
設置されている(図1参照)。従って、ボイラー7で発
生した蒸気は、圧力調整した状態で汚泥乾燥釜13に導
入することが可能である。
A steam inlet 13e is formed in the cylindrical portion 13a of the sludge dryer 13 near the sludge inlet 13d, and the steam inlet 13e and the boiler 7 are connected by a steam transfer pipe 12. The steam transfer pipe 12 is provided with a pressure adjusting valve (pressure adjusting means) 16 for adjusting the pressure of the steam (see FIG. 1). Therefore, the steam generated in the boiler 7 can be introduced into the sludge drying kettle 13 with the pressure adjusted.

【0022】ここで、蒸気移送配管12は、図3に示す
ように、その内部であって蒸気導入口13eの近傍に噴
射ノズル17を備えており、噴射ノズル17により蒸気
が汚泥乾燥釜13内の脱水汚泥に噴射されるようになっ
ている。
Here, as shown in FIG. 3, the steam transfer pipe 12 is provided with an injection nozzle 17 inside the vicinity of the steam inlet 13e, and the steam is supplied into the sludge drying tank 13 by the injection nozzle 17. It is designed to be sprayed on dewatered sludge.

【0023】また、図3に示すように、蒸気移送配管1
2には、噴射ノズル17の近傍に高温空気吸引口18が
形成され、この高温空気吸引口18にはガス移送配管6
から分岐する分岐配管19が接続され、分岐配管19の
内部には、補助熱源用バーナー20が設けられている。
この場合、ガスホルダ5に貯留されているバイオガス中
のメタンガスがガス移送配管6及び分岐配管19を経て
分岐配管19の内部にある補助熱源用バーナー20に導
入され、補助熱源用バーナー20の燃料として使用され
る。この場合、バイオガス中のメタンガスが空気と混合
されて燃焼され、そのとき発生する熱により空気が高温
状態(例えば350〜400℃)となる。ここで、メタ
ンガスを燃焼させて空気を加熱して高温にするのは、常
温の空気だと蒸気が冷やされて凝縮してしまうので、空
気を蒸気の温度程度に加熱するためである。この高温空
気は、噴射ノズル17から蒸気が噴射されるときのエジ
ェクタ効果により分岐配管19から高温空気吸引口18
を経て蒸気移送配管12の内部に吸引され、この高温空
気により蒸気が希釈され、蒸気の乾き度が増加される。
従って、蒸気をより高温で且つ高い乾き度にすることが
可能となる。なお、分岐配管19及び補助熱源用バーナ
ー20により、蒸気の乾き度を増加させる手段が構成さ
れている。
Also, as shown in FIG.
2 has a high-temperature air suction port 18 formed in the vicinity of the injection nozzle 17.
A branch pipe 19 branching from is connected, and an auxiliary heat source burner 20 is provided inside the branch pipe 19.
In this case, the methane gas in the biogas stored in the gas holder 5 is introduced into the auxiliary heat source burner 20 inside the branch pipe 19 via the gas transfer pipe 6 and the branch pipe 19, and is used as fuel for the auxiliary heat source burner 20. used. In this case, the methane gas in the biogas is mixed with air and burned, and the heat generated at that time brings the air to a high temperature state (for example, 350 to 400 ° C.). Here, the reason why the methane gas is burned to heat the air to a high temperature is to heat the air to about the temperature of the steam, because if the air is at room temperature, the steam is cooled and condensed. This high-temperature air is supplied from the branch pipe 19 to the high-temperature air suction port 18 by an ejector effect when steam is injected from the injection nozzle 17.
Then, the steam is sucked into the steam transfer pipe 12, and the high-temperature air dilutes the steam, thereby increasing the dryness of the steam.
Therefore, it is possible to make the steam higher in temperature and higher in dryness. The branch pipe 19 and the auxiliary heat source burner 20 constitute a means for increasing the dryness of steam.

【0024】更に図2に示すように、汚泥乾燥釜13に
は、その側壁13cのほぼ中央から延びる配管21を経
てサイクロン22が接続されている。サイクロン22
は、ガスと乾燥汚泥との混合物から乾燥汚泥を分離、捕
集するものである。なお、図2では、サイクロン22が
用いられているが、乾燥汚泥を分離、捕集することが可
能であればサイクロン22に代えて他の装置が用いられ
ても良い。このような装置としては、例えば重力沈降
器、バグフィルタ等が挙げられる。
Further, as shown in FIG. 2, a cyclone 22 is connected to the sludge dryer 13 via a pipe 21 extending from substantially the center of the side wall 13c. Cyclone 22
Is to separate and collect dry sludge from a mixture of gas and dry sludge. Although the cyclone 22 is used in FIG. 2, another device may be used instead of the cyclone 22 as long as it can separate and collect the dried sludge. Examples of such a device include a gravity settler, a bag filter, and the like.

【0025】なお、上記汚泥乾燥釜13、汚泥フィーダ
14、モータ15、配管21、サイクロン22により乾
燥機11が構成され、この乾燥機11、蒸気移送配管1
2、圧力調節弁16、補助熱源用バーナー20、分岐配
管19により乾燥手段が構成されている。
The dryer 11 is constituted by the sludge drying pot 13, the sludge feeder 14, the motor 15, the pipe 21, and the cyclone 22, and the dryer 11, the steam transfer pipe 1
2. The drying means is constituted by the pressure control valve 16, the auxiliary heat source burner 20, and the branch pipe 19.

【0026】次に、前述した廃水処理設備1の運転方法
について説明する。
Next, an operation method of the above-described wastewater treatment equipment 1 will be described.

【0027】先ず図1に示すように、被処理廃水をメタ
ン発酵処理装置2及び活性汚泥槽3で順次処理し、処理
水を河川等に放流する。
First, as shown in FIG. 1, the wastewater to be treated is sequentially treated in a methane fermentation treatment apparatus 2 and an activated sludge tank 3, and the treated water is discharged to a river or the like.

【0028】活性汚泥槽3では、活性汚泥によりメタン
発酵処理水が生物処理されると共に、余剰汚泥が発生す
る。この余剰汚泥は、余剰汚泥排出配管8を経て脱水機
9に導入され、脱水機9で含水率が例えば70〜90%
になるまで脱水された後、汚泥移送配管10を経て乾燥
機11の汚泥フィーダ14に導入される。このとき、モ
ータ15を作動することで、導入された脱水汚泥を汚泥
フィーダ14により汚泥乾燥釜13に投入する。
In the activated sludge tank 3, the methane fermentation treated water is biologically treated by the activated sludge, and excess sludge is generated. The surplus sludge is introduced into a dehydrator 9 through a surplus sludge discharge pipe 8, and the dewaterer 9 has a water content of, for example, 70 to 90%.
After being dehydrated until it becomes, it is introduced into the sludge feeder 14 of the dryer 11 through the sludge transfer pipe 10. At this time, by operating the motor 15, the introduced dewatered sludge is put into the sludge drying kettle 13 by the sludge feeder 14.

【0029】一方、メタン発酵処理装置2では、被処理
廃水中の有機物がメタン発酵により分解されると共に、
バイオガスが発生する。バイオガスはガス排出配管4を
経てガスホルダ5に貯留され、ガスホルダ5に貯留され
たバイオガスは、ガス移送配管6を経てボイラー7に導
入され、燃焼により蒸気を発生させる。発生した蒸気
は、蒸気移送配管12を経て乾燥機11の汚泥乾燥釜1
3に導入される。
On the other hand, in the methane fermentation treatment apparatus 2, while the organic matter in the wastewater to be treated is decomposed by methane fermentation,
Biogas is generated. The biogas is stored in a gas holder 5 via a gas discharge pipe 4, and the biogas stored in the gas holder 5 is introduced into a boiler 7 via a gas transfer pipe 6 and generates steam by combustion. The generated steam passes through a steam transfer pipe 12 and is supplied to the sludge drying tank 1 of the dryer 11.
3 is introduced.

【0030】このとき、蒸気は高温状態にあり、この高
温の蒸気が、図3に示すように噴射ノズル17から脱水
汚泥Aに向かって直接的に噴射され、これにより脱水汚
泥Aが乾燥される。即ち廃水処理設備1における廃水処
理の過程で生じた蒸気の熱が脱水汚泥の乾燥に有効に利
用される。このため、廃水処理設備1の外部から熱を供
給する必要が無くなり、脱水汚泥の乾燥にかかるランニ
ングコストを十分に低減することができる。しかも、脱
水汚泥は、高温の蒸気により直接的に加熱される。この
ため、間接的に脱水汚泥を加熱する場合に比べて乾燥効
率がより高くなる。
At this time, the steam is in a high temperature state, and the high temperature steam is directly injected from the injection nozzle 17 toward the dewatered sludge A as shown in FIG. 3, whereby the dewatered sludge A is dried. . That is, the heat of the steam generated in the wastewater treatment process in the wastewater treatment equipment 1 is effectively used for drying the dewatered sludge. For this reason, there is no need to supply heat from the outside of the wastewater treatment equipment 1, and the running cost for drying the dewatered sludge can be sufficiently reduced. Moreover, the dewatered sludge is directly heated by the high-temperature steam. Therefore, the drying efficiency is higher than in the case where the dewatered sludge is heated indirectly.

【0031】脱水汚泥に蒸気を噴射する場合、ガスホル
ダ5に貯留されたバイオガス中のメタンガスを、ガス移
送配管6を経て分岐配管19内の補助熱源用バーナー2
0に燃料として供給することが好ましい。この場合、バ
イオガス中のメタンガスが燃焼され、分岐配管19の内
部の空気が高温状態となる。そして、この高温空気は、
噴射ノズル17から蒸気が噴射されるときのエジェクタ
効果により分岐配管19から高温空気吸引口18を経て
蒸気移送配管12内に吸引され、この高温空気により、
蒸気が希釈され、噴射ノズル17から噴射された蒸気の
乾き度が増加される。これにより、蒸気はより高温状態
になり且つ乾き度が増加し、この高温の蒸気により脱水
汚泥が乾燥されるため、脱水汚泥の乾燥効率がより向上
する。しかも、このとき補助熱源用バーナー20で使用
する燃料として、廃水処理設備1における廃水処理の過
程で生じるバイオガス中のメタンガスが用いられるた
め、蒸気の乾き度を増すために空気を加熱しても、その
加熱に要する燃料費が不要となる。
When injecting steam into the dewatered sludge, the methane gas in the biogas stored in the gas holder 5 is transferred to the auxiliary heat source burner 2 in the branch pipe 19 via the gas transfer pipe 6.
It is preferable to supply 0 as fuel. In this case, the methane gas in the biogas is burned, and the air inside the branch pipe 19 becomes high temperature. And this hot air is
By the ejector effect when steam is injected from the injection nozzle 17, the steam is sucked from the branch pipe 19 into the steam transfer pipe 12 through the high-temperature air suction port 18, and this high-temperature air causes
The steam is diluted, and the dryness of the steam injected from the injection nozzle 17 is increased. As a result, the steam becomes hotter and the dryness increases, and the high-temperature steam dries the dewatered sludge, so that the drying efficiency of the dewatered sludge further improves. Moreover, at this time, methane gas in biogas generated in the process of wastewater treatment in the wastewater treatment facility 1 is used as fuel used in the auxiliary heat source burner 20, so that even if air is heated to increase the dryness of steam, In addition, the fuel cost required for the heating is eliminated.

【0032】噴射ノズル17から噴射される蒸気の圧力
は、圧力調節弁16により0.3〜0.4MPaに調節
することが好ましい。この場合、噴射ノズル17から噴
射される蒸気により高速気流が生じ、これにより汚泥乾
燥釜13内で衝撃波が生じる。そして、この衝撃波と高
速気流により脱水汚泥が粉砕されると同時に汚泥乾燥釜
13内で高速に回転混合される。このため、脱水汚泥の
単位体積あたりの表面積が大きくなり、脱水汚泥の乾燥
効率がより高くなる。
The pressure of the steam injected from the injection nozzle 17 is preferably adjusted to 0.3 to 0.4 MPa by the pressure control valve 16. In this case, a high-speed airflow is generated by the steam injected from the injection nozzle 17, thereby generating a shock wave in the sludge drying tank 13. Then, the dewatered sludge is pulverized by the shock wave and the high-speed airflow, and is simultaneously rotated and mixed in the sludge drying tank 13 at a high speed. For this reason, the surface area per unit volume of the dewatered sludge increases, and the drying efficiency of the dewatered sludge increases.

【0033】こうして蒸気を噴射された脱水汚泥は、汚
泥乾燥釜13の円周面13aに沿って回転する。そし
て、脱水汚泥の含水率の低下に伴い、脱水汚泥は軽量化
され、遠心力が小さくなる。すると、脱水汚泥は、汚泥
乾燥釜13のほぼ中央に集まり、ガスとともに配管21
を経てサイクロン22へと導かれる。そして、サイクロ
ン22で乾燥汚泥が分離、捕集され、固形燃料やコンポ
ストとして使用される。こうして活性汚泥槽3で発生し
た余剰汚泥が減容化される。
The dewatered sludge thus sprayed with steam rotates along the circumferential surface 13 a of the sludge drying tank 13. Then, as the moisture content of the dewatered sludge decreases, the dewatered sludge is reduced in weight and the centrifugal force is reduced. Then, the dewatered sludge collects almost at the center of the sludge drying tank 13 and together with the gas, the pipe 21
And is led to the cyclone 22. Then, the dried sludge is separated and collected by the cyclone 22, and used as solid fuel or compost. Thus, excess sludge generated in the activated sludge tank 3 is reduced in volume.

【0034】本発明は、前述した実施形態に限定される
ものではない。例えば上記実施形態においては乾燥機1
1として、蒸気により直接脱水汚泥を乾燥する装置が用
いられているが、蒸気により間接的に脱水汚泥を乾燥す
る装置であってもよい。
The present invention is not limited to the embodiment described above. For example, in the above embodiment, the dryer 1
As 1, an apparatus for directly drying dewatered sludge by steam is used, but an apparatus for indirectly drying dewatered sludge by steam may be used.

【0035】[0035]

【発明の効果】以上説明したように本発明の廃水処理設
備によれば、乾燥手段より、脱水汚泥が、上記蒸気発生
手段で発生した蒸気を用いて乾燥される。即ち乾燥機に
おける脱水汚泥を乾燥させるために、廃水処理設備にお
ける廃水処理の過程で発生する蒸気が有効に利用され
る。このため、廃水処理設備の外部から熱を供給する必
要が無くなり、脱水汚泥の処理にかかるランニングコス
トを十分に低減することができる。
As described above, according to the wastewater treatment equipment of the present invention, the dewatered sludge is dried by the drying means using the steam generated by the steam generating means. That is, in order to dry the dewatered sludge in the dryer, the steam generated in the wastewater treatment process in the wastewater treatment facility is effectively used. Therefore, there is no need to supply heat from the outside of the wastewater treatment equipment, and the running cost for treating the dewatered sludge can be sufficiently reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃水処理設備の一実施形態を示すフロ
ー図である。
FIG. 1 is a flowchart showing one embodiment of a wastewater treatment facility of the present invention.

【図2】図1の乾燥機の好適な形態を概略的に示す斜視
図である。
FIG. 2 is a perspective view schematically showing a preferred embodiment of the dryer of FIG. 1;

【図3】図2の蒸気移送配管の内部構造を示す断面図で
ある。
FIG. 3 is a sectional view showing the internal structure of the steam transfer pipe of FIG.

【符号の説明】[Explanation of symbols]

1…廃水処理設備、2…メタン発酵処理装置、3…活性
汚泥槽、7…ボイラー(蒸気発生手段)、9…脱水機
(脱水手段)、11…乾燥機(乾燥手段)、12…蒸気
移送配管(蒸気導入手段)、13…汚泥乾燥釜、16…
圧力調節弁(圧力調節手段)、17…噴射ノズル(蒸気
導入手段)、19…分岐配管、20…補助熱源用バーナ
ー。
DESCRIPTION OF SYMBOLS 1 ... Waste water treatment equipment, 2 ... Methane fermentation treatment apparatus, 3 ... Activated sludge tank, 7 ... Boiler (steam generating means), 9 ... Dehydrator (dehydrating means), 11 ... Dryer (drying means), 12 ... Steam transfer Piping (steam introduction means), 13 ... sludge drying pot, 16 ...
Pressure regulating valve (pressure regulating means), 17: injection nozzle (steam introducing means), 19: branch pipe, 20: burner for auxiliary heat source.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D028 BC01 BC17 4D040 AA32 AA42 AA46 BB51 4D059 AA05 BD05 BD07 BE08 BE19 BJ17 CA28 CB01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D028 BC01 BC17 4D040 AA32 AA42 AA46 BB51 4D059 AA05 BD05 BD07 BE08 BE19 BJ17 CA28 CB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理廃水をメタン発酵処理装置及び活
性汚泥槽で順次処理する廃水処理設備において、 前記メタン発酵処理装置で発生するバイオガスの燃焼に
より蒸気を発生させる蒸気発生手段と、 前記活性汚泥槽で発生する余剰汚泥を脱水する脱水手段
と、 前記蒸気発生手段で発生する蒸気を用いて、前記脱水手
段で脱水された脱水汚泥を乾燥させる乾燥手段と、を備
えることを特徴とする廃水処理設備。
1. A wastewater treatment facility for sequentially treating wastewater to be treated in a methane fermentation treatment device and an activated sludge tank, comprising: steam generation means for generating steam by burning biogas generated in the methane fermentation treatment device; Wastewater comprising: a dewatering unit for dewatering excess sludge generated in a sludge tank; and a drying unit for drying dewatered sludge dewatered by the dewatering unit using steam generated by the steam generating unit. Processing equipment.
【請求項2】 前記乾燥手段が、前記脱水汚泥を投入す
る汚泥乾燥釜を有する乾燥機と、前記蒸気発生手段で発
生する蒸気を前記汚泥乾燥釜の内部に導入する蒸気導入
手段とを備えることを特徴とする請求項1に記載の廃水
処理設備。
2. The method according to claim 1, wherein the drying unit includes a dryer having a sludge drying kettle for introducing the dewatered sludge, and a steam introducing unit for introducing steam generated by the steam generating unit into the sludge drying kettle. The wastewater treatment equipment according to claim 1, wherein:
【請求項3】 前記乾燥手段が、前記汚泥乾燥釜に導入
する蒸気の圧力を調節する圧力調節手段を備えることを
特徴とする請求項2に記載の廃水処理設備。
3. The wastewater treatment equipment according to claim 2, wherein said drying means includes pressure adjusting means for adjusting the pressure of steam introduced into said sludge drying kettle.
【請求項4】 前記乾燥手段が、前記メタン発酵処理装
置で発生するバイオガス中のメタンガスの燃焼により空
気を加熱し、この加熱空気により前記汚泥乾燥釜に導入
される蒸気の乾き度を増加させる手段を備えることを特
徴とする請求項2又は3に記載の廃水処理設備。
4. The drying means heats air by burning methane gas in biogas generated in the methane fermentation treatment apparatus, and increases the dryness of steam introduced into the sludge drying kettle by the heated air. The wastewater treatment equipment according to claim 2 or 3, further comprising means.
JP2001101203A 2001-03-30 2001-03-30 Wastewater disposal equipment Pending JP2002292394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101203A JP2002292394A (en) 2001-03-30 2001-03-30 Wastewater disposal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101203A JP2002292394A (en) 2001-03-30 2001-03-30 Wastewater disposal equipment

Publications (1)

Publication Number Publication Date
JP2002292394A true JP2002292394A (en) 2002-10-08

Family

ID=18954559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101203A Pending JP2002292394A (en) 2001-03-30 2001-03-30 Wastewater disposal equipment

Country Status (1)

Country Link
JP (1) JP2002292394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218334A (en) * 2010-04-14 2011-11-04 Sumitomo Heavy Ind Ltd System for treating food-industry wastewater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041593A (en) * 1983-08-12 1985-03-05 Nippon Kaihatsu Consultant:Kk Treatment of waste liquid of shochu(low-class distilled spirits)
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
JPS6397299A (en) * 1986-10-13 1988-04-27 Ebara Infilco Co Ltd Anaerobic digestion method for organic sludge
JPS63112000A (en) * 1986-10-31 1988-05-17 Ebara Infilco Co Ltd Anaerobic digestion method for organic sludge
JPH03224700A (en) * 1990-01-31 1991-10-03 Jgc Corp Steam direct contact type drying method
JPH10192889A (en) * 1997-01-08 1998-07-28 Kurita Water Ind Ltd Method for treating organic drainage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041593A (en) * 1983-08-12 1985-03-05 Nippon Kaihatsu Consultant:Kk Treatment of waste liquid of shochu(low-class distilled spirits)
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
JPS6397299A (en) * 1986-10-13 1988-04-27 Ebara Infilco Co Ltd Anaerobic digestion method for organic sludge
JPS63112000A (en) * 1986-10-31 1988-05-17 Ebara Infilco Co Ltd Anaerobic digestion method for organic sludge
JPH03224700A (en) * 1990-01-31 1991-10-03 Jgc Corp Steam direct contact type drying method
JPH10192889A (en) * 1997-01-08 1998-07-28 Kurita Water Ind Ltd Method for treating organic drainage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218334A (en) * 2010-04-14 2011-11-04 Sumitomo Heavy Ind Ltd System for treating food-industry wastewater

Similar Documents

Publication Publication Date Title
RU2061184C1 (en) Method of generating thermal energy from water-containing fuel at gas turbine power station and gas turbine power station working on water-containing fuel
CN1280216C (en) Superheated steam drying method for sludge and drying equipment
CN104628237B (en) Sludge drying incineration system based on thermal power plant
CN111288463A (en) Sludge drying and incinerating system and drying and incinerating method
CN215886751U (en) Sludge two-stage drying pyrolysis disposal system
JP2009120746A (en) High water content waste disposal apparatus and high water content waste disposal method
KR910006272B1 (en) Refuse incineration system
CN109824238A (en) A kind of coal-fired coupling sludge heating system and method
CA2562860C (en) Method and apparatus for reducing the amount of sludge produced in a pulp and/or paper mill
KR101051093B1 (en) High Function Organic Sludge Dryer Using Water-In-oil Evaporation Technology at Normal Pressure
KR101565315B1 (en) Apparatus for Drying Sludge Using Reheater Steam
RU98109787A (en) WET FUEL TREATMENT
JP2002292394A (en) Wastewater disposal equipment
CN100592014C (en) Waste drying method and its system device
CN109650695A (en) Sludge drying mechanism and drying method for sludge
CN216918989U (en) Parallel high low temperature sludge drying device
CN216347662U (en) Material drying device with high circulating heat efficiency
CN209383651U (en) Sludge drying mechanism
JP2004123992A (en) Carbonization treatment method and carbonization treatment system
CN209940804U (en) Coal-fired coupling sludge heating system
CN209292196U (en) Sludge joint disposal system
RU2192136C1 (en) Beet pulp drying method
CN108800164B (en) Sludge drying incineration heat balance treatment system and method
KR101977211B1 (en) Apparatus for removing fine dust of organic waste dry system
JPH01259768A (en) Power generation system burning on fowl droppings

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011