JP2002291867A - 組織の修復または再生のための多孔質組織骨格形成材料 - Google Patents

組織の修復または再生のための多孔質組織骨格形成材料

Info

Publication number
JP2002291867A
JP2002291867A JP2001081413A JP2001081413A JP2002291867A JP 2002291867 A JP2002291867 A JP 2002291867A JP 2001081413 A JP2001081413 A JP 2001081413A JP 2001081413 A JP2001081413 A JP 2001081413A JP 2002291867 A JP2002291867 A JP 2002291867A
Authority
JP
Japan
Prior art keywords
foam
biocompatible
tissue
cells
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001081413A
Other languages
English (en)
Other versions
JP4879404B2 (ja
Inventor
Murty N Vyakarnam
マーティ・エヌ・バカルナム
Mark C Zimmerman
マーク・シー・ジマーマン
Angelo George Scopelianos
アンジェロ・ジョージ・スコープライアノス
Mora C Melican
モーラ・シー・メリカン
Clairene A Bazillo
クライレン・エイ・バジリオ
Mark B Roller
マーク・ビー・ローラー
David V Gorky
デビッド・ブイ・ゴーキー
Iksoo Chun
イクソー・チュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Inc filed Critical Ethicon Inc
Priority to JP2001081413A priority Critical patent/JP4879404B2/ja
Publication of JP2002291867A publication Critical patent/JP2002291867A/ja
Application granted granted Critical
Publication of JP4879404B2 publication Critical patent/JP4879404B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】 【課題】 第1の繊維層とこれに取り付けられた、1個
以上の方向に組成および/または微小構造における勾配
を有する内部連通する連続気泡型の3次元多孔質発泡体
とにより形成される生体許容性の複合体を提供する。 【解決手段】 上記の発泡体は生体吸収性で生体許容性
のポリマーの混合物により形成することができ、これら
のポリマー生体許容性の複合体は組織の人為的処理の用
途に特に適しており、組織における遷移領域または境界
領域を模倣するように構成できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は一般に組織の修復お
よび再生の分野に関する。特に、本発明は組成において
一定の勾配(形態および機能における段階的な変化)を
有する多孔質の生体許容性で生体吸収性の発泡体および
/または組織の再生、修復または増強移植のためのテン
プレートとして作用する微小構造体に関する。
【0002】
【従来の技術】連続気泡の多孔質発泡体は組織の修復お
よび再生における使用において明らかに有効であること
が認識されている。組織修復において、骨の気孔部に充
填するための多孔質プラグ(栓)材として非晶質で生体
許容性の発泡体を使用することが初期において集中的に
研究されていた。Brekke他(米国特許第4,186,4
48号)は骨の気孔部を治癒するためのポリラクチドの
ようなポリヒドロキシ酸ポリマーにより構成されている
多孔質メッシュプラグ材の使用を記載している。近年に
おいて、例えば、溶出化材を用いる米国特許第5,52
2,895号(Mikos)および同第5,514,378号
(Mikos他)、真空発泡技術を用いる米国特許第5,75
5,792号(Brekke)および同第5,133,755
号(Brekke),沈殿ポリマーゲル素材を用いる米国特許
第5,716,413号(Walter他)および同第5,6
07,474号(Athanasiou他)、室温より高い温度で
昇華する不安定化合物を伴うポリマー溶融材を用いる米
国特許第5,686,091号(Leong他)および同第
5,677,355号(Shalaby他)、基布式繊維骨格形
成材料を用いる米国特許5,770,193号(Vacanti
他)、同第5,769,899号(Schwartz他)、同第
5,711,960号(Shikinami)等の異なる方法によ
りTE骨格形成材料を作成することが試みられている。
また、Hinsch他(EPA274,898号)は血管およ
び細胞の内部増殖のための約10μm乃至約200μm
の大きさの気孔を有するポリヒドロキシ酸の多孔質連続
気泡発泡体を記載している。この文献Hincshにより記載
される発泡体はファイバー、糸、ブレード、編繊維、ス
クリム等により補強できる。また、文献Hincshは種々の
ポリヒドロキシ酸およびポリ−L−ラクチド、ポリ−D
L−ラクチド、ポリグリコリド、およびポリジオキサノ
ンのようなコポリマーの使用を記載している。このHinc
shの発泡体はプロセス条件、選択された溶媒、および添
加剤により調節できる規則的な気孔の大きさおよび形状
を有しているという利点がある。
【0003】しかしながら、上記の技法は一定の勾配構
造を有する骨格形成材料を製造する点で制限がある。た
いていの骨格形成材料はその形態および機能において等
方性であって天然組織における異方性の特徴に欠ける。
さらに、種々の気孔の形状の空間的分布を制御できる三
次元の骨格形成材料を作成することは従来技術において
困難であった。微小構造制御した発泡体を製造するため
の報告されている方法は低温法であって、他の従来的な
技法に優る多くの利点を有している。例えば、この方法
はタンパク、薬物、および熱的および加水分解的に不安
定な吸収性ポリマーを含む他の添加剤等の熱的に敏感な
化合物を組み込むことができる。
【0004】さらに、最近になって、Athanasiou他(米
国特許第5,607,474号)が2種類の非類似の組
織が存在している場所における骨軟骨欠陥部を修復する
ための2層発泡体装置の使用を提案している。このAtha
nasiouの装置は、部分的に分離して作成されて後段にお
いて一体に接合される第1の層および第2の層により構
成されている。各骨格形成層はそれぞれ軟骨および骨の
組織に対応する剛性および圧縮性を有するように構成さ
れている。軟骨および骨は体内において隣接する層を形
成している場合が多いので、この方法は人体構造により
明瞭に似せることを目的としている。しかしながら、人
体における軟骨と骨との間の境界面は解剖学的特長およ
び/または機械的特性において急激な変化を伴う2種類
の非類似な材料の不連続な接合部ではない。すなわち、
軟骨細胞は下層の骨の構造に対する軟骨細胞の場所によ
り明瞭に異なる細胞の形態および配向を有しており、こ
の軟骨細胞の形態および配向における違いにより、軟骨
の外表面から下層の骨の軟骨境界面までの連続的な遷移
構造が形成される。それゆえ、Athanasiouの2層システ
ムは改善性を増してはいるが、人体において存在する組
織界面に類似するものとは言えない。
【0005】また、3次元のラミネート状の発泡体を作
成するための別の手法がMikos 他(米国特許第5,51
4,378号)により提案されている。この手間のかか
る技法において、多孔質膜がまず溶出性の塩結晶を含有
するポリマー溶液を乾燥することにより作成される。そ
の後、3次元構造が幾つかの膜を一体にラミネートする
ことにより得られ、これらは所望の形状の輪郭に切り出
される。
【0006】この軟骨のような生体組織の再生のために
用いられる3次元多孔質骨格形成材料に関する従来技術
の主たる欠点の一つは当該材料の微小構造が不規則であ
ることである。このような骨格形成材料は、天然の組織
と異なって、形態または構造において変化していない。
さらに、このような骨格形成材料は多くの用途に適した
栄養物および流体の移送を行わない。加えて、このラミ
ネート状の構造は完全に一体化しておらず、インビボの
条件下に剥がれが生じやすい。
【0007】
【発明が解決しようとする課題】それゆえ、本発明の目
的は形態、構造および/または材料の連続的な勾配(gr
adient)を有する生体許容性で生体吸収性の発泡体を提
供することである。さらに、組織の人為的処理すなわち
修復または再生において使用される発泡体が微小構造レ
ベルでの組織化を行い、機能的組織の再生において生じ
る細胞の浸潤、増殖、および分化を容易にするテンプレ
ートを構成する一定の構造を有していることが好まし
い。
【0008】
【課題を解決するための手段】本発明は生体許容性のフ
ィラメント状層である第1の層と生体許容性発泡体の第
2の層とを含む複合体を提供する。この複合体構造は独
特の機械的特性を有する構造を創生することを可能にす
る。この繊維層により複合体はデザインに応じて変化し
得る機械的強度、異なる生体吸収プロフィルおよび細胞
の浸潤および接種のための異なる局所環境を持つことが
でき、これらは広範な医学的用途において有利である。
繊維層は種々の生体許容性ポリマーおよび生体許容性ポ
リマーの混合物から作成してもよく、それらは生体吸収
性であるのが好ましい。この生体許容性発泡体は異なる
勾配構造を備える発泡体または流路を備える発泡体のい
ずれであってもよい。この勾配構造を備える発泡体は組
成、剛性、柔軟性、生体吸収速度、多孔質構造、および
/または微小構造から成る群から選択される少なくとも
1個の特性において概ね連続的な遷移を有している。こ
の勾配構造を有する発泡体は一つのポリマー材料から別
のポリマー材料への組成的な遷移勾配を形成する吸収性
ポリマーの混合物により作成できる。また、単一の化学
組成で用途に十分適応できる場合は、本発明は組織(例
えば、軟骨、皮膚、骨等)の解剖構造学的特長に類似し
得る1方向またはそれ以上の方向に沿って構造に微小構
造的な変化を有する生体許容性の発泡体を提供する。流
路を備える発泡体はこの発泡体を貫いて延びる流路を備
えており、流路を備える発泡体のいたるところに細胞が
移動しかつ栄養物が流動することを容易にしている。
【0009】また、本発明は組織の修復または再生のた
めの方法を提供し、当該方法は組織の増殖を助長するた
めの適当な特性を有する複合体の一定の場所において第
1の組織を上記複合体に接触させる工程から成る。この
複合体構造は2種類以上の異なる組織の間の組織の再生
に特に有用である。最も単純な場合における多細胞系の
場合には、一つの細胞種が骨格形成材料の一方の側に存
在して、別の細胞種が当該骨格形成材料の別の側に存在
することもあり得る。このような再生の例として、
(a)血管組織の場合に、外側に平滑筋および内側に内
皮細胞を存在させて、血管構造を再生し、(b)半月板
組織の場合に、軟骨細胞が当該複合体の発泡体の内側に
なるように移植し、繊維性表面を外側になるように配向
することによる。
【0010】
【発明の実施の形態】本発明は新規な微小構造を有する
生体吸収性の多孔質ポリマー発泡体を開示する。この発
泡体の特性は凍結乾燥中に発泡体を形成する適当な条件
を選択することにより所望の用途に適合するように調整
できる。この吸収性ポリマーにおける諸特性は骨格形成
材料が一般的に等方性または不規則な構造である従来技
術に比して明らかに優る利点を有している。しかしなが
ら、組織の人為的処理(すなわち、修復または再生)に
おいて使用される発泡体が微小構造レベルで組織化を行
い、正常な組織における解剖構造学的、生物力学的な特
性および生物化学的な特性を有する細胞の組織化および
組織の再生を容易にするテンプレートを構成する一定の
構造を有していることが好ましい。このような発泡体は
家畜動物、霊長類および人間のような動物における組織
(器官を含む)の修復または再生に使用できる。
【0011】本発明の発泡体の特性は凍結乾燥に対して
適当な条件を選択することにより所望の用途に適合する
ように調節して以下の特性の1個以上を有するようにで
きる。すなわち、(1)細胞の内部増殖およびおよび栄
養物の拡散のための通路を形成する約10μm乃至約2
00μm(またはこれ以上)の範囲の大きさの内部連通
した気孔、(2)約20%乃至約98%、好ましくは約
80%乃至約95%の範囲の種々の多孔質性、(3)選
択的な細胞培養に対応する一定の方向に沿う気孔の大き
さにおける勾配、(4)発泡体内に延在して細胞浸潤、
血管形成および栄養物拡散を改善するための流路、
(5)細胞組織化のための表面における気孔の微小パタ
ーン化、(6)気孔の形状および/または配向(例え
ば、概ね球形、楕円形、円柱形)の選択性、(7)機械
的特性の異方性、(8)異なる材料に対する異なる細胞
応答の利点を示すまたは有するポリマー組成の勾配を伴
う複合的発泡体、(9)異なる速度で破壊する部分を有
する構造を形成するための異なるポリマー組成物の混合
物、(10)RGD、増殖因子(PDGF、TGF−
β、VEGF、BMP、FGF等)のような生物学的因
子を含むがこれらに限らない薬剤的に活性な化合物と共
に凍結乾燥または当該化合物を塗布した発泡体、(1
1)好ましい微小構造を有する3次元形状および装置を
作成する能力、および(12)複合構造を形成するため
の別の部品または医療装置を伴う凍結乾燥である。これ
らの吸収性ポリマーにおける調節された特性は、骨格形
成材料が気孔レベルにおいて好ましい形態を有さない一
般的に等方性または不規則な構造である従来技術に比し
て、明らかに優れた利点を有している。しかしながら、
組織の骨格形成材料において使用される発泡体が微小構
造レベルで組織化を行い、天然の組織に類似し得る細胞
の組織化を容易にするテンプレートを構成する一定の構
造を有していることが好ましい。細胞はこの構造の形状
に沿ってまたはこの形状を通して付着、増殖および分化
する。このことにより、かなりの程度で実際の組織の解
剖構造学的特性に類似し得る組織を培養することができ
る。
【0012】例えば、図3に示すように、気孔の主軸の
方向は発泡体と同一の面内から発泡体の面に対して垂直
の方向まで変えることができる。また、図3により分か
るように、気孔の大きさは多孔質の勾配構造を有する発
泡体内において一般に約30μm乃至約50μmの小孔
から約100μm乃至約200μmの大孔にわたって変
化し得る。望ましくは、この発泡体構造が関節内に存在
する骨接合部に対する軟骨のような人間の組織接合部の
修復または再生を容易にするように形成できることであ
る。この発泡体は小さな(すなわち、約30μm乃至約
150μmの直径)丸い気孔から比較的大きな円柱状の
(すなわち、約30μm乃至約400μm、好ましくは
約100μm乃至約400μmの直径でたいていの場合
において長さ対直径の比率が少なくとも2である)気孔
まで有している。図2および図3に流路を備えている発
泡体を示している図である。本発明の方法により形成さ
れたこれらの流路は発泡体の一端側の表面から当該発泡
体の厚さ方向に横切って延在している。この流路の長さ
は一般に気孔の平均直径の少なくとも2倍であり、好ま
しくは少なくとも4倍で、最も好ましくは少なくとも8
倍である。なお、たいていの用途に対応する流路は少な
くとも200ミクロンの長さで、発泡体の厚さを貫通し
て延在し得る。また、この流路の直径は気孔の平均直径
の少なくとも1倍であり、好ましくは少なくとも2倍乃
至3倍である。もちろん、この流路の大きさおよび直径
は細胞浸潤、栄養物拡散、または血管形成用の通路のよ
うな流路の所望の機能により選択できる。
【0013】勾配を有する構造を示す生物学的組織が数
多くある。すなわち、勾配構造を有する骨格形成材料が
使用できる組織の例として、骨、脊椎円板、関節軟骨、
半月板、線維性軟骨、腱、靭帯、硬膜、皮膚、脈管移植
片、神経、肝臓、および膵臓等が含まれるがこれらに限
らない。以下の幾つかの例が勾配構造を有する骨格形成
材料の使用できる幾つかの組織を示している。この器官
の構造の増殖を容易にするために組織を人為的に処理す
る骨格形成材料の構成は、当該骨格形成材料における勾
配を有する構造を形成する能力により多大の利点を得
る。
【0014】軟骨 関節軟骨は人間および動物における関節接合部を形成す
る全ての骨の端部を被覆している。この軟骨は力を分配
する機構および異なる骨の間の支持面として関節内にお
いて作用する。この関節軟骨がなければ、応力集中およ
び摩擦が生じて関節が容易に動かなくなる。また、関節
軟骨が損失すると、一般的に、痛みを伴う関節炎や関節
の動きの減少が生じる。図10に健康な軟骨の形態学的
な特徴を概略的に示している。
【0015】関節軟骨は天然の勾配を有する構造の好例
と言える。すなわち、関節軟骨は4種類の異なる領域に
より構成されており、これらの領域には、構造体の最初
の10%乃至20%以内の表層または周縁領域(この領
域は関節の表面を含む)、中間構造の40%乃至60%
を閉める中間部領域、基準線に近い深部領域、および石
灰化軟骨により構成される骨と軟骨との間の遷移領域が
含まれる。さらに、肋軟骨下骨が基準線の近くに存在し
ていて、網状骨に遷移している。表層または周縁領域に
おいては、コラーゲン原線維が表面に平行である。これ
らの線維は正常な関節接合中に生じるせん断力に抵抗す
るように配向されている。中間部領域では、かなり直径
の大きなコラーゲン線維が不規則に配列した組織が存在
している。さらに、深部領域においては、さらに太いコ
ラーゲン線維の束が存在していて、これらの線維の束は
表面に対して垂直であり、石灰化軟骨内に進入してい
る。これらの細胞はスフェロイド状の形態で円柱状に集
合配列する傾向がある。さらに、石灰化軟骨領域は比較
的小さい細胞質を有する小さな細胞が存在している。
【0016】本発明の好ましい実施形態は多数個の異な
る領域に対応するテンプレートとして作用できる勾配を
有する発泡体構造を形成することが目的としている。こ
れらの発泡体構造は種々の形状に形成して骨軟骨欠陥お
よび軟骨を再生または修復できる。有効な発泡体構造の
一例は10mmの直径で10mmの長さの大まかな寸法
を有する円筒形の形状にすることができる。さらに、上
面部は約1mmの厚さで、流体の通過性を制御するため
に低い多孔質性の層にすることができる。適当な処理方
法を採用することにより、発泡体の表面の多孔質性を調
整できる。すなわち、この皮膚に類似した表面の多孔質
性は完全に不浸透性から完全に多孔質まで変化できる。
流体通過性は表面の多孔質性により調節できる。このよ
うな皮膜の下において、構造体は3種類の領域により構
成できる。上部の多孔質領域は軟骨組織に近接してお
り、下部の多孔質領域は骨組織に近接していて、これら
上部領域および下部領域の間に遷移領域が存在してい
る。関節軟骨の場合、上部および下部の多孔質層の剛性
(弾性率)が移植時において対応する隣接組織に比して
少なくとも同等の剛性を有していることが現在において
好ましいと考えられている。すなわち、このような場
合、これらの多孔質層が環境負荷を支持して、浸潤する
細胞をこれらが分化し合併して負荷を支持できる組織に
増殖するまで保護することができる。例えば、表層の周
縁領域に対して使用される多孔質構造は細長い気孔を有
していて、その構造の配向をホストの軟骨の表面に対し
て平行にできる。しかしながら、深部領域は100μm
(約80μm乃至約120μm)程度の気孔による約8
0%乃至約95%の多孔質性を有している。すなわち、
この領域には軟骨細胞が浸潤すると予想できる。さらに
この領域の下は、比較的大きな気孔(約100μm乃至
約200μm)および約50%乃至約80%の範囲の多
孔質性を有する領域とすることができる。このような1
00μm乃至約200μmの多孔質発泡体は、天然の構
造で負荷を支持できる構造と同様に、気孔の支柱または
壁部が負荷に対して比較的大きくて垂直になるような構
造を有することができる。加えて、この構造の底部にお
いて、さらに網状骨に対して構造的に匹敵する高い剛性
を有する大きな気孔(約150μm乃至約300μm)
が必要である。それゆえ、この部分における発泡体はセ
ラミック粒子やカルシウムホスフェート等により形成し
た線維により強化できる。
【0017】本発明者の研究により得た最近のデータに
より、細胞の浸潤が気孔の大きさにより調節可能である
という仮定が支持されるようになった。これらの研究に
おいて、約80μmの大きさの気孔を有する95/5モ
ル%のポリ((L)ラクチド−コ−ε−カプロラクト
ン)により作成した骨格形成材料は当該骨格形成材料に
対して(静的条件下で)約30個細胞/mm2 の軟骨細
胞浸潤を示した。また、約100μmの大きさの気孔を
有する40/60モル%のポリ(ε−カプロラクトン−
コ−(L)ラクチド)により作成した骨格形成材料は
(静的条件下で)統計的に有意差を持って大きい50個
細胞/mm2 の細胞浸潤を示した。これらの両方の場合
において細胞はウシ軟骨細胞であった。さらに、約80
μm乃至約150μmの気孔の大きさの変化を有する極
めて単純な勾配構造は比較的大きな気孔を有する領域ほ
ど軟骨細胞が容易に浸潤する構造を提供した。一方、比
較的小さい気孔を有する領域には軟骨細胞が存在してお
らず、あるいは、第2の細胞種(例えば、線維芽細胞)
により満たされていた。
【0018】組成的に勾配のある発泡体において、2種
類以上のエラストマーコポリマーまたは高弾性半結晶性
ポリマーと増殖因子または粒状物のような添加剤とを組
み合わせた混合物が当該添加剤の好ましい空間的組織化
によりまず所望の気孔勾配が展開するように選択でき
る。その後、勾配構造を有する発泡体を作成する好まし
い方法において参照される種々の手法を用いて、組成的
な勾配を主に各システムのポリマー−溶媒相分離におけ
る差異により構成する。このような勾配を有する発泡体
構造は空間的な配置により軟骨細胞または骨芽細胞に対
して効果的な応答を示す。
【0019】さらに、機能的な勾配の目的は機械的およ
び/または物理的な特性が変化している領域における応
力をより均一に分配して急変する境界面の応力集中作用
を軽減することである。この状態は、軟骨および骨のよ
うな異なる組織の間の構造的な遷移が段階的になってい
る実際の生物組織および構造にさらに類似している。そ
れゆえ、本発明の目的は材料相の間に機能的な勾配が存
在する移植片を提供することである。すなわち、本発明
は骨軟骨欠陥または変形性関節症の外科的修復において
使用するための取付け手段を備える多相の機能的に段階
を有する生体吸収性の移植片を提供する。幾つかの特許
において、本発明の多孔質骨格形成材料と共に使用でき
る軟骨を修復するためのシステムが提案されている。例
えば、米国特許第5,769,899号は軟骨欠陥部を
修復するための装置を記載しており、同第5,713,
374号は骨アンカーによる軟骨修復装置の固定方法を
記載している(これらの文献は両方とも本明細書に参考
文献として含まれる)。
【0020】 勾配構造は骨/軟骨の境界領域において天然に存在す
る。本発明者の研究において、材料の違いが細胞機能に
顕著に影響することが分かった。すなわち、一次骨芽細
胞のポリマーフィルム(95/5(L)−ラクチド−コ
−グリコリドコポリマー、90/10グリコリド−コ−
(L)ラクチドコポリマー、95/5(L)−ラクチド
−コ−ε−カプロラクトンコポリマー、75/25グリ
コリド−コ−(L)ラクチドコポリマーおよび40/6
0ε−カプロラクトン−コ−(L)ラクチドコポリマ
ー)および編みメッシュ(95/5(L)ラクチド−コ
−グリコリドおよび90/10グリコリド−コ−(L)
ラクチドのコポリマー)に対する初期的および長期的応
答をインビトロで評価した。この結果から、6日の培養
後に骨芽細胞は全ての生体崩壊性のポリマーフィルムお
よびメッシュ上に良好に付着して増殖することが分かっ
た。40/60ε−カプロラクトン−コ−(L)ラクチ
ドコポリマーフィルムを除いて、試験したいずれのポリ
マーフィルムも組織培養ポリスチレン(対照)に比して
一次ラット骨芽細胞の分化に著しい助長作用を示さなか
った。一方、40/60ε−カプロラクトン−コ−
(L)ラクチドコポリマーにより作成したフィルムは他
のフィルムおよびTCPSに比して増加したアルカリホ
スファターゼ活性およびオステオカルシンのmRNA発
現により示される培養した骨芽細胞の助長された分化を
示した。それゆえ、異なる吸収性材料により細胞機能お
よび分化が著しく変化することが明らかである。従っ
て、細胞増殖および分化に最適な材料を選定することに
より、組成の勾配構造を有する複合材料を利用して同一
の骨格形成材料内において異なる細胞種による組織再生
を最適化することができる。
【0021】それゆえ、骨修復または再生用の装置また
は骨格形成材料において、ε−カプロラクトンを含有す
る線形、分岐状または星形構造のホモポリマーまたはコ
ポリマー(ランダム、ブロック、セグメント化ブロッ
ク、テーパ−化ブロック、グラフト、トリブロック等)
により作成した装置が特に好ましい。なお、約30重量
%乃至約99重量%の範囲でε−カプロラクトンを含有
する脂肪族ポリエステルコポリマーが現在において好ま
しいと考えられている。ε−カプロラクトンと共重合化
できる適当な反復単位は当業界において周知である。例
えば、ε−カプロラクトンと共重合化できる適当なコモ
ノマーとして、乳酸、ラクチド(L−、D−、メソおよ
びD,L混合物を含む)、グリコール酸、グリコリド、
p−ジオキサノン(1,4−ジオキサン−2−オン)、
トリメチレンカーボネート(1,3−ジオキサン−2−
オン)、δ−バレロラクトン、β−ブチロラクトン、ε
−デカラクトン、2,5−ジケトモルホリン、ピバロラ
クトン、α,α−ジエチルプロピオラクトン、エチレン
カーボネート、エチレンオキサレート、3−メチル−
1,4−ジオキサン−2,5−ジオン、3,3−ジエチ
ル−1,4−ジオキサン−2,5−ジオン、γ−ブチロ
ラクトン、1,4−ジオキセパン−2−オン、1,5−
ジオキセパン−2−オン、6,6−ジメチル−ジオキセ
パン−2−オン、6,8−ジオキサビシクロオクタン−
7−オン、およびこれらの組合せが含まれるがこれらに
限らない。
【0022】また、ε−カプロラクトンにより作成され
る生体吸収性ポリマーを含有する骨組織修復および/ま
たは再生のための好ましい医療装置または組織骨格形成
材料としては、多孔質発泡体骨格形成材料(本出願にお
いて記載するもの等)、線維性3次元の延伸フィラメン
ト、不織布、織物、編物、または編み込みの組織骨格形
成材料、強化線維を含有する複合材、基材およびこれら
の混合物が含まれるがこれらに限らない。
【0023】皮膚 さらに、勾配構造を有する組織の別の例として皮膚があ
る。皮膚の基本的な構造は2種類の別ではあるが強固に
一体となっている層を有しており、各層の厚さは身体の
異なる場所で異なる。例えば、外側の層すなわち表皮は
無血管で、少数の免疫細胞(ランゲルハンス細胞)およ
び色素細胞(メラノサイト)を伴うケラチノサイトによ
り主に構成されている。このケラチノサイトはケラチン
線維およびコルネオサイトエンベロープを生成し、これ
らは表皮に耐久性と保護機能性を与える。これらの構造
の開発は表皮の分化状態に完全に依存している。すなわ
ち、表皮は細胞が基底膜からさらに移動する際に異なる
発現パターンで層化した上皮を形成する。この分化的に
発現する細胞の層化層は表皮の機能を維持するために形
成する必要がある。この表皮の下に真皮があり、この真
皮は血管の多い高密度の不規則な接合組織である。この
層はコラーゲン性および弾性線維で高度に密集してい
て、これらの線維はこの層に例外的な弾性および強度を
賦与する。線維芽細胞はこの層における主な細胞種であ
る。さらに、これらの二つの層の間に基底膜があり、こ
の膜は表皮細胞の付着部位として作用し、これらの細胞
の機能および分化を調整するように作用する。基底膜に
直接付着しているケラチノサイトの層は立方体の形状を
していて高度に整列している。この付着状態および構造
は表皮において高度にうろこ状の構造を生成するのに重
要な条件になる。すなわち、この基底層は表皮の修復お
よび置換のための前駆体細胞の供給源を提供する。ま
た、うろこ状の層は傷害や感染に対する強度および抵抗
性を賦与する。
【0024】皮膚の置換のために使用されるあらゆる材
料は治癒した組織において皮膚の構成要素を生成するの
に必要な線維芽細胞等の細胞の浸潤を誘発できると考え
るべきである。さらに、この材料は別の表皮の基底層が
形成されるような様式において再上皮形成の速度を阻害
するのではなく向上するのが好ましいと考えるべきであ
る。ケラチノサイトを移動することにより骨格形成材料
の中への浸潤を可能にする材料は部分的に分化した細胞
を生成できる。
【0025】このため、特定細胞種の接近の調節および
天然組織の再生を容易にする多孔質な構成により機能的
な利点を有することができる。図11(A),図11
(B)および図12は本発明の発泡体骨格形成材料の微小
構造をそれぞれ示している図である。さらに、図13
(倍率100倍)および図14(40倍の複合写真)は
線維芽細胞、マクロファージ、マクロファージ巨細胞お
よび内皮類似細胞の0.5mm発泡体内への浸潤の写真
による証拠を示している。これらの両方の写真に示した
発泡体組織骨格形成材料101はε−カプロラクトン−
コ−グリコリドコポリマーおよびε−カプロラクトン−
コ−ラクチドコポリマー(実施例7に記載するように作
成した)の50:50混合物であった。なお、これらの
写真はヨークシャー豚モデルにおける1.5cm×1.
5cm×0.2cmの切除傷モデル内に移植後8日目に
撮影した。両方の写真において肉芽組織床内への基質の
完全な取り込みが明瞭に分かる。また、発泡体組織骨格
形成材料の上方の高密度の線維性組織が表皮の過度の増
殖に対して適当な基質を提供しているように見える。図
14において示す発泡体組織骨格形成材料内にはPDG
Fがさらに取り込まれている。すなわち、傷を形成した
傷治癒モデルにおいて、PDGFのような増殖因子が必
要であることが明らかに分かる。
【0026】本発明者の初期的な研究により、約150
μm乃至約3mm、好ましくは約300μm乃至約15
00μm、最も好ましくは約500μm乃至約1000
μmの厚さを有する発泡体組織骨格形成材料を皮膚骨格
形成材料として使用することが望ましいと思われた。明
瞭に異なる皮膚の傷害(すなわち、糖尿病性潰瘍、静脈
うっ血性潰瘍、褥瘡性潰瘍、やけど等)は異なる発泡体
の厚さを必要とする。加えて、患者の状態により傷の治
癒を容易にするために増殖因子、抗生物質および抗菌剤
の組み込みが必要になる。
【0027】脈管移植片 勾配を有する管状構造の形成もまた本発明に関係する。
外径部分に比較的大きな気孔を有してその大きさが内径
部分に至るにつれて小さく遷移している、あるいは、こ
の逆の状態のチューブを有する脈管移植片が脈管の組織
培養のための内皮細胞および平滑筋細胞の培養において
有用である。
【0028】多層の管状構造は血管の機械的および/ま
たは生物学的特性に類似する組織の再生を可能にし、脈
管移植片として利用できる。すなわち、異なる処理条件
下で異なる組成により形成した同心円状の複数の層によ
り所望の機械的特性、生体吸収性、および組織内部増殖
速度を得ることができる。最も内側の管腔層はその表面
の多孔質性および表面処理における可能な添加の調節に
より内皮化のために最適化される。一方、脈管移植片の
最も外側の外膜層はその多孔質性(多孔質率、気孔の大
きさ、気孔の形状および気孔の大きさの分布)を最適化
して生物活性因子、薬剤、または細胞を組み込むことに
より組織の内部増殖を誘導するように調整される。この
場合に、強度を高めて漏れを減少するためにこれら2種
類の多孔質層の間に多孔質性の低いバリヤ層を備えても
よく、また、備えていなくてもよい。
【0029】発泡体の組成 種々の吸収性ポリマーが発泡体の作成に使用できる。使
用に適する生体許容性で生体吸収性のポリマーの例とし
て、脂肪族ポリエステル、ポリ(アミノ酸)、コポリ
(エーテル−エステル)、ポリアルキレンオキサレー
ト、ポリアミド、ポリ(イミノカルボネート)、ポリオ
ルトエステル、ポリオキサエステル、ポリアミドエステ
ル、アミン基を含有するポリオキサエステル、ポリ(酸
無水物)、ポリホスファゼン、生体分子、およびこれら
の混合物から成る群から選択されるポリマーが含まれ
る。さらに、本発明の目的に沿う脂肪族ポリエステルと
して、ラクチド(乳酸、D−、L−、およびメソラクチ
ドを含む)、グリコリド(グリコール酸を含む)、ε−
カプロラクトン、p−ジオキサノン(1,4−ジオキサ
ン−2−オン)、トリメチレンカーボネート(1,3−
ジオキサン−2−オン)、トリメチレンカーボネートの
アルキル誘導体、δ−バレロラクトン、β−ブチロラク
トン、γ−ブチロラクトン、ε−デカラクトン、ヒドロ
キシブチレート(反復単位)、ヒドロキシバレレート
(反復単位)、1,4−ジオキセパン−2−オン(その
二量体の1,5,8,12−テトラオキサシクロテトラ
デカン−7,14−ジオン)、1,5−ジオキセパン−
2−オン、6,6−ジメチル−1,4−ジオキサン−2
−オン、2,5−ジケトモルホリン、ピバロラクトン、
α,α−ジエチルプロピオラクトン、エチレンカーボネ
ート、エチレンオキサレート、3−メチル−1,4−ジ
オキサン−2,5−ジオン、3,3−ジエチル−1,4
−ジオキサン−2,5−ジオン、6,8−ジオキサビシ
クロオクタン−7−オン、およびこれらのポリマー混合
物のホモポリマーおよびコポリマーが含まれるがこれら
に限らない。また、本発明の目的に沿うポリ(イミノカ
ルボネート)としては、文献Handbook of Biodegradabl
e Polymers(edited by Domb, Kost and Wisemen, Hard
wood Academic Press,1997年,第251頁乃至第2
72頁)におけるKemnitzer およびKohnに記載されるも
のが含まれる。本発明の目的に沿うコポリ(エーテル−
エステル)としては、CohnおよびYounesによる文献
(“Journal of Biomaterials Research”, Vol. 22,第
993頁乃至第1009頁,1988年)およびCohnの
文献(Polymer Preprints (ACS Division of Polymer C
hemistry) Vol. 30(1),第498頁,1989年)に記
載されるコポリエステル−エーテル(例えば、PEO/
PLA)が含まれる。本発明の目的に沿うポリアルキレ
ンオキサレートとしては、本明細書に参考文献として含
まれる米国特許第4,208,511号、同第4,14
1,087号、同第4,130,639号、同第4,1
40,678号、同第4,105,034号および同第
4,205,399号に記載されるものが含まれる。さ
らに、ポリホスファゼン、およびL−ラクチド、D,L
−ラクチド、乳酸、グリコリド、グリコール酸、パラ−
ジオキサノン、トリメチレンカーボネートおよびε−カ
プロラクトン等により作成されるコポリマー、ターポリ
マーおよびさらに高次の混合モノマーを基剤とするポリ
マーが本明細書に参考文献として含まれる文献Allcock
The Encyclopedia of Polymer Science, Vol. 13,第
31頁乃至第41頁, Wiley Intersciences, John Wile
y & Sons,1988年)、およびVandorpe、Schacht、De
jardinおよび Lemmouchi(Handbook of Biodegradable
Polymers, edited by Domb, Kost and Wisemen, Hardwo
ok Academic Press,1977年,第161頁乃至第1
82頁)に記載されている。また、ポリ(酸無水物)と
しては、mを2乃至8の範囲の整数とする化学式HOOC-C
6 H4 -O-(CH2 )m -O-C6 H4 -COOHの二酸およびこの化合
物と12個までの炭素原子の脂肪族アルファ−オメガ二
酸とのコポリマーにより作成されるものが含まれる。さ
らに、ポリオキサエステル、ポリオキサアミドおよびア
ミン基および/またはアミド基を含有するポリオキサエ
ステルが本明細書に参考文献として含まれる米国特許第
5,464,929号、同第5,595,751号、同
第5,597,579号、同第5,607,687号、
同第5,618,552号、同第5,620,698
号、同第5,645,850号、同第5,648,08
8号、同第5,698,213号、同第5,700,5
83号および同第5,859,150号の1個以上に記
載されている。ポリオルトエステルは本明細書に参考文
献として含まれる文献Heller(Handbook of Biodegrada
ble Polymers, edited by Domb, Kost and Wisemen, Ha
rdwook Academic Press,1977年,第99頁乃至第1
18頁)に記載されているようなものである。
【0030】一般に、脂肪族ポリエステルは吸収性のポ
リマーであって勾配構造を有する発泡体の作成に適して
いる。この脂肪族ポリエステルは線形、分岐状または星
形構造を有するホモポリマーまたはコポリマー(ランダ
ム、ブロック、セグメント化ブロック、テーパ−化ブロ
ック、グラフト、トリブロック等)とすることができる
が、線形のコポリマーが好ましい。このような脂肪族ホ
モポリマーおよびコポリマーを作成するのに適するモノ
マーは乳酸、ラクチド(D−、L−、メソ、D,L混合
物を含む)、グリコール酸、グリコリド、ε−カプロラ
クトン、p−ジオキサノン(1,4−ジオキサン−2−
オン)、トリメチレンカーボネート(1,3−ジオキサ
ン−2−オン)、δ−バレロラクトン、β−ブチロラク
トン、ε−デカラクトン、2,5−ジケトモルホリン、
ピバロラクトン、α,α−ジエチルプロピオラクトン、
エチレンカーボネート、エチレンオキサレート、3−メ
チル−1,4−ジオキサン−2,5−ジオン、3,3−
ジエチル−1,4−ジオキサン−2,5−ジオン、γ−
ブチロラクトン、1,4−ジオキセパン−2−オン、
1,5−ジオキセパン−2−オン、6,6−ジメチル−
ジオキセパン−2−オン、6,8−ジオキサビシクロオ
クタン−7−オン、およびこれらの組合せから成る群か
ら選択できるがこれらに限らない。
【0031】エラストマーコポリマーもまた本発明にお
いて特に有用である。適当な生体吸収性で生体許容性の
エラストマーとしては、ε−カプロラクトンおよびグリ
コリドのエラストマーコポリマー(好ましくは、約3
5:65乃至約65:35、さらに好ましくは45:5
5乃至35:65のε−カプロラクトン対グリコリドの
モル比を有している)、ε−カプロラクトンおよびL−
ラクチド、L−ラクチドのD−ラクチド混合物または乳
酸コポリマーを含むラクチドのエラストマーコポリマー
(好ましくは、約35:65乃至約65:35、さらに
好ましくは45:55乃至30:70または約95:5
乃至約85:15のε−カプロラクトン対ラクチドのモ
ル比を有している)、p−ジオキサノン(1,4−ジオ
キサン−2−オン)およびL−ラクチド、D−ラクチド
および乳酸を含むラクチドのエラストマーコポリマー
(好ましくは、約40:60乃至約60:40のp−ジ
オキサノン対ラクチドのモル比を有している)、ε−カ
プロラクトンおよびp−ジオキサノンのエラストマーコ
ポリマー(好ましくは、約30:70乃至約70:30
のε−カプロラクトン対p−ジオキサノンのモル比を有
している)、p−ジオキサノンおよびトリメチレンカー
ボネートのエラストマーコポリマー(好ましくは、約3
0:70乃至約70:30のp−ジオキサノン対トリメ
チレンカーボネートのモル比を有している)、トリメチ
レンカーボネートおよびグリコリドのエラストマーコポ
リマー(好ましくは、約30:70乃至約70:30の
トリメチレンカーボネート対グリコリドのモル比を有し
ている)、トリメチレンカーボネートおよびL−ラクチ
ド、D−ラクチド、これらの混合物および乳酸コポリマ
ーを含むラクチドのエラストマーコポリマー(好ましく
は、約30:70乃至約70:30のトリメチレンカー
ボネート対ラクチドのモル比を有している)、およびこ
れらの混合物から成る群から選択されるものが含まれる
がこれらに限らない。
【0032】また、適当な生体吸収性エラストマーの例
が本明細書に参考文献として含まれる米国特許第4,0
45,418号、同第4,057,537号および同第
5,468,253号に記載されている。これらのエラ
ストマーポリマーは、ヘキサフルオロイソプロパノール
(HFIP)における0.1グラム/デシリットル(g
/dL)溶液において25℃で計測した場合に、約1.
2dL/g乃至約4dL/g、好ましくは約1.2dL
/g乃至約2dL/g、最も好ましくは約1.4dL/
g乃至約2dL/gの固有粘度を有している。
【0033】好ましくは、これらのエラストマーは高延
伸率および低弾性率を示すと共に良好な引張り強度およ
び良好な回復特性を有している。本発明の好ましい実施
形態において、発泡体を形成するエラストマーは約20
0%以上、好ましくは約500%以上の延伸率を示す。
これらの特性は、上記の生体吸収性エラストマーの弾性
の程度を示し、約500psi(35.1kg重/cm
2 )以上、好ましくは約1000psi(70.3kg
重/cm2 )以上の引張り強度、および約50lbs/
インチ(8.9kg重/cm)以上、好ましくは約80
lbs/インチ(14kg重/cm)以上の引裂き強度
を維持しながら達成される。
【0034】組織再生用の勾配構造を有する発泡体を形
成するのに適するポリマーまたはコポリマーは幾つかの
ファクターに依存している。すなわち、化学的組成、構
成要素の空間的分布、ポリマーの分子量、および結晶化
の程度の全てによって、このポリマーのインビトロおよ
びインビボでの挙動がある程度決定される。しかしなが
ら、組織再生用の勾配構造を有する発泡体を作成するた
めのポリマーの選択は以下のファクター(これらに限ら
ないが)に大きく依存する。すなわち、(a)生体吸収
(または生体崩壊)速度、(b)インビボでの機械特
性、(c)細胞付着、増殖、移動および分化に関する材
料に対する細胞応答性、および(d)生体許容性であ
る。
【0035】体内環境に時宜的に吸収される材料基質の
特性は重要ある。しかしながら、インビボ条件下での吸
収時間における分化もまた2種類の異なるコポリマーを
混合する場合の基準になる。例えば、35:65のε−
カプロラクトンおよびグリコリドのコポリマー(比較的
速い吸収性ポリマー)を40:60のε−カプロラクト
ンおよび(L)ラクチドコポリマー(比較的遅い吸収性
ポリマー)と混合して発泡体を形成することができる。
このような発泡体は使用する処理技法により幾つかの異
なる物理的構造を有し得る。すなわち、これら2種類の
構成要素は不規則に内部接続した2個の連続層となる
か、厚さ方向に一定の勾配構造を有するか、これら2種
類の構成要素の層の間に一体の境界部分を有するラミネ
ートタイプの複合体を構成することができる。さらに、
これらの発泡体の微小構造は人為的処理を行なう組織の
所望の解剖学的構造を再生または修復するように最適化
できる。
【0036】本発明の好ましい実施形態はポリマー混合
物を用いて勾配状の態様で一つの組成から別の組成に遷
移する構造を形成することを目的としている。このよう
な勾配状の構造を有する発泡体は軟骨(関節、半月板、
中隔、気管等)、食道、皮膚、骨および脈管組織のよう
な天然の組織の構造を修復または再生するための組織の
人為的処理において特に有利である。例えば、ε−カプ
ロラクトン−コ−グリコリドのエラストマーをε−カプ
ロラクトン−コ−ラクチドを混合(約5:95のモル比
で)混合することにより、軟骨から骨の遷移に類似する
柔らかいスポンジ状の発泡体から硬い発泡体への遷移を
有するように発泡体を形成することができる。もちろ
ん、同様の勾配効果または異なる吸収性プロファイル、
応力応答プロファイル、または異なる弾性度のような異
なる勾配構造を構成するために別のポリマー混合物を使
用することができる。さらに、これらの発泡体は脊椎円
板、硬膜、神経組織、肝臓、膵臓、腎臓、膀胱、腱、靭
帯および胸部組織を含むがこれらに限らない本発明の特
異的な骨格形成材料が使用できる器官の置換または再生
のために使用できる。
【0037】上記のエラストマーポリマーは凍結乾燥、
超臨界溶媒発泡(すなわち、EP464,163B1に
記載されるような方法)、ガス射出押出、ガス射出成形
または抽出可能な材料(すなわち、塩、糖等の当該技術
分野における熟練者により既知の任意の手段)を伴う注
型処理により発泡することができる。現在においては、
凍結乾燥により生体吸収性で生体許容性のエラストマー
発泡体を作成するのが好ましいと考えられる。エラスト
マーポリマーを凍結乾燥して発泡体を形成するのに適す
る方法が以下の実施例および本明細書に参考文献として
含まれる1999年6月30日に出願されたEthicon 社
に譲渡された代理人整理番号ETH−1352の「生物
医療用発泡体を製造するための方法(Process for Manu
facturing Bopmedical Foams)」と題する同時係属特許
出願に記載されている。
【0038】本発明において作成した発泡体は、発泡体
構造中に予想外に勾配構造を形成した従来技術に変更を
加えたポリマー−溶媒相分離技法により作成できる。一
般に、ポリマー溶液は(a)熱誘導型ゲル化/結晶化、
(b)溶媒およびポリマーの相の無溶媒誘導型分離、
(c)化学誘導型相分離、および(d)熱誘導型尖点分
解(spinodal decomposition)の4種類の技法の任意の
方法により2相に分離できる。このポリマー溶液は調製
された様式で分離されて2種類の別の相または2種類の
連続的な相に分かれる。その後、溶媒相を除去すること
により、元のポリマーよりも密度の小さいマイクロメー
トルの範囲の気孔を有する多孔質構造が得られる(A.
T. Youngの「相分離による微小気泡発泡体(Microcellu
lar foams via phase separation)」(J. Vac. Sci. T
echnol. A4(3),5月/6月 1986年)を参照され
たい)。これらの発泡体の作成に関係する工程には、凍
結乾燥することが必要なポリマーに対して適正な溶媒を
選択する工程と、均一な溶液を作成する工程が含まれ
る。次に、このポリマー溶液は凍結処理されて真空乾燥
工程にかけられる。この凍結工程によりポリマー溶液の
相分離が行なわれ、真空乾燥工程において溶媒が昇華し
て除去されると共に残った多孔質ポリマー構造体、すな
わち、内部連通気泡の多孔質発泡体が乾燥される。
【0039】好ましい吸収性の脂肪族ポリエステル用の
溶媒を選択する開始点として一般に適する溶媒は、ギ
酸、ギ酸エチル、酢酸、ヘキサフルオロイソプロパノー
ル(HFIP)、環状エーテル(すなわち、THF、D
MF、およびPDO)、アセトン、C2乃至C5のアル
コールのアセテート(エチルアセテートおよびt−ブチ
ルアセテート等)、グライム(glyme)(すなわち、モノ
グライム、エチルグライム、ジグライム、エチルジグラ
イム、トリグライム、ブチルジグライムおよびテトラグ
ライム)、メチルエチルケトン、ジプロピレングリコー
ルメチルエーテル、ラクトン(γ−バレロラクトン、δ
−バレロラクトン、β−ブチロラクトン、γ−ブチロラ
クトン等)、1,4−ジオキサン、1,3−ジオキソラ
ン、1,3−ジオキソラン−2−オン(エチレンカーボ
ネート)、ジメチルカーボネート、ベンゼン、トルエ
ン、ベンジルアルコール、p−キシレン、ナフタレン、
テトラヒドロフラン、N−メチルピロリドン、ジメチル
ホルムアミド、クロロホルム、1,2−ジクロロメタ
ン、モルホリン、ジメチルスルホキシド、ヘキサフルオ
ロアセトン・セスキヒドレート(HFAS)、アニソー
ル、およびこれらの混合物から成る群から選択される溶
媒が含まれるがこれらに限らない。これらの溶媒の中で
は、1,4−ジオキサンが好ましい溶媒である。なお、
この溶液におけるポリマーの均一な溶液は標準的な技法
により作成できる。
【0040】従って、適用可能なポリマー濃度または使
用可能な溶媒の量は各システムにより変化することが理
解できると考える。幾つかのシステムについての適当な
相図曲線が既に知られている。しかしながら、適当な曲
線が使用できない場合は、この曲線を既知の技法により
作成することが可能である。例えば、このような適当な
技法の一例が文献Smolders, Van AartsenおよびSteenbe
rgen(Kolloid-Z, u.Z. Polymere, 243, 14 (1971
年))に記載されている。一般的な用法として、溶液中
のポリマーの量は約0.5重量%乃至約90重量%、好
ましくは0.5重量%乃至約30重量%の間で変化可能
であり、任意の溶媒におけるポリマーの溶解性および所
望の発泡体の最終的な特性に大きく依存する。
【0041】加えて、固体材料をこのポリマー−溶媒シ
ステムに添加することができる。このポリマー−溶媒シ
ステムに加える固体材料はポリマーまたは溶媒に反応し
ないのが好ましい。適当な固体材料としては、組織再生
または再増殖を促す材料、バッファー、補強材または多
孔質性改質材等が含まれる。好ましい固体材料として
は、脱鉱物質化した骨の粒子、カルシウムホスフェート
粒子、または骨修復用のカルシウムカーボネート粒子、
気孔形成用の溶出性固体材、補強材として溶媒システム
中に溶解しない生体吸収性のポリマー粒子または吸収さ
れた時に気孔を形成するポリマー粒子等が含まれるがこ
れらに限らない。
【0042】適当な溶出性固体材としては、塩(すなわ
ち、塩化ナトリウム、塩化カリウム、塩化カルシウム、
酒石酸ナトリウム、クエン酸ナトリウム等)、生体許容
性の単糖および二糖(すなわち、グルコース、フルクト
ース、デキストロース、マルトース、ラクトースおよび
スクロース)、多糖(すなわち、スターチ、アルギネー
ト)、水溶性タンパク(すなわち、ゼラチンおよびアガ
ロース)から成る群から選択される無毒性の溶出可能な
材料が含まれるがこれらの限らない。一般に、これらの
材料は全て約1mm以下、好ましくは約50μm乃至5
00μmの平均直径を有している。また、これらの粒子
は当該粒子およびポリマー−溶媒混合物の全容量(この
全容量%は100容量%に等しい)の約1容量%乃至約
50容量%を構成する。この溶出性の材料は、発泡体を
当該溶出性材料と共に、その粒子のほとんど全部を溶出
するが発泡体を溶解したり不利益に変化しない程度の時
間量で粒子を溶解する溶媒内に浸漬することにより除去
できる。好ましい抽出溶媒は水であり、蒸留した脱イオ
ン水が最も好ましい。なお、この処理は本明細書に参考
文献として含まれる米国特許第5,514,378号に
記載されている。好ましくは、発泡体の加速した吸収性
が望まれていない限り、発泡体は溶出処理の完了後に低
温および/または真空で乾燥処理されてその加水分解が
最小に抑えられている。
【0043】ポリマー−溶媒混合物を形成した後に、こ
の混合物を凝固する。特定のポリマー−溶媒システムの
場合に、このポリマー−溶媒システムの凝固点、溶融温
度、および見かけのガラス転移点は標準的な示差熱量測
定(DSC)技法により決定できる。理論的に、本発明
の範囲を制限する意味ではないが、ポリマー−溶媒シス
テムが冷却すると、初期的な凝固が溶媒の凝固点に近い
かそれ以下の温度で生じると考えられる。このことはシ
ステム中の溶媒のほとんどの部分の凝固に対応してい
る。この初期的な凝固は第1の発熱ピークとして現れ
る。その後、ポリマーに付随して残留していた溶媒が凝
固する時に第2の凝固点が生じる。この第2の凝固点は
第2の発熱ピークとして示される。さらに、完全に凍結
したシステムが再加熱時に第1の発熱シフトを示す温度
で明らかなTgが示される。
【0044】調節すべき重要なパラメータはポリマー−
溶媒システムの凍結速度である。すなわち、凍結工程中
に固定されている気孔の形態の種類は溶液の熱力学、凍
結速度、冷却される温度、溶液の濃度、均一系または不
均一系の核形成の関数である。このような相分離現象の
詳細な説明が本明細書に参考文献として含まれる文献
(A. T. Youngの「相分離による微小気泡発泡体」(J.
Vac. Sci. Technol. A4(3),5月/6月 1986年)
およびS. Matsudaの「溶液からの多孔質ポリマー膜の形
成の熱力学(Thermodynamics of Formation of Porous
Polymeric Membrane from Solutions)」(Polymer J.
Vol. 23, No.5, 第435頁乃至第444頁,1991
年)に記載されている。
【0045】このような既に報告されているポリマー溶
液は溶液を成形型の中に入れるまたは注入してこの成形
型を適当な槽の中または冷凍棚の上で冷却する等の種々
の様式で凝固できる。あるいは、このポリマー溶液は噴
霧器により噴霧して冷却した表面に吹きかけることによ
りスプレー膜を一層ずつ凝固させることができる。な
お、この冷却した表面は医療装置またはその部品または
フィルムとすることができる。また、この凝固したスプ
レー膜の形状はスプレー処理した表面の形状に類似する
ことになる。あるいは、凝固後の混合物を切断または凍
結中に一定の形状に形成することができる。これらの方
法およびその他の方法を用いて発泡体を種々の形状およ
び寸法(すなわち、管状形、分岐した管状形、球形、半
球形、3次元的多角形状、楕円形(すなわち、腎臓の形
状)、トロイド形状、円錐形、円錐台形、ピラミッド形
状、これらの中実および中空のもの、およびこれらの組
合せ)で形成または成形することができる。
【0046】あるいは、発泡した部品を作成するための
別の方法として低温フィンガー(表面が製造しようとす
る部品の内側を示す金属部品)の使用がある。この低温
フィンガーは適当な溶媒中のポリマーの中に浸漬された
後に除去される。この処理はアイスクリームクリームの
棒を暖かいチョコレートの中に浸漬して凝固させて硬く
したり、成形体をゴムのラテックスの中に浸漬して手袋
やコンドームを形成する処理に良く似ている。この時、
製造される発泡体の厚さおよび形態は温度、滞留時間お
よび混合物内の低温フィンガーの引き抜き速度の関数で
ある。すなわち、滞留時間が長くて引き抜き速度が遅い
ほど厚いコーティングになる。引き抜き後、低温フィン
ガーを凍結乾燥の冷凍トレイに接触している熱容量の大
きな器具の上に置く。この時点から、上記のような一次
および二次の乾燥処理が始まる。この方法は装置または
動物の解剖学的構造の一部分に適合する形状に形成する
ことのできるチューブ、分岐した管状構造またはスリー
ブを作成するのに適している。
【0047】加えて、上記のポリマー溶液はフィルム、
スクリム、織物、不織布、編物または編み込みの繊維構
造のような溶液と共に組み込まれた種々の挿入物により
凝固することができる。さらに、この溶液は成形外科用
の移植片(例えば、ネジ、ピン、爪材およびプレート)
または管状または分岐した管状構造(脈管を有するまた
は管状の器官のための骨格形成材料)のような別の構造
体に付随して作成できる。これらの挿入部品は少なくと
も1種類の生体許容性の材料により形成でき、非吸収
性、吸収性またはこれらの組合せであってもよい。
【0048】成形型の中の上記のポリマー溶液は冷凍乾
燥棚に接触している成形型の壁を介して一定の方向に冷
却され、一定の熱サイクルで処理される。この成形型お
よびその表面はポリマー−溶媒システムに影響を及ぼさ
ない任意の材料により形成できるが、熱伝導性の高い材
料により形成されているのが好ましい。すなわち、熱の
転移が凍結乾燥器の棚から成形型の壁部を介してポリマ
ー溶液の中に移動する。その後、混合物の温度がそのゲ
ル化点および/または凝固点以下になると、混合物は相
分離する。
【0049】この相分離したシステムの形態は凍結乾燥
処理の凝固工程中は固定されていて、連続気孔の形成は
真空乾燥処理の開始により始まって溶媒が昇華する。し
かしながら、冷却用放熱器により冷却されたコンテナま
たは成形型の中の混合物は完全凍結する前に凝固する。
すなわち、混合物が固体の状態に見えても、初めは、結
晶化していないポリマーに付随する幾分かの残留溶媒が
存在している。理論的には、本発明を制限する意味では
ないが、冷却用放熱器により混合物内を凝固点が移動し
て当該混合物が見かけ上において凝固した後にこの凝固
反応が完了する。それゆえ、任意時間においてこの凝固
点の前線よりも前方にある材料はこの前線よりも後方に
ある材料ほど低温になっておらず、完全な凍結状態にな
っていない。
【0050】本発明者は、凝固状態に見えた直後にこの
見かけ上において固体のポリマー溶媒混合物に真空を供
給すると、種々の気孔の大きさおよび構造ならびに流路
を有する勾配構造を備えた発泡体が形成できることを発
見した。それゆえ、昇華処理(減圧処理、すなわち真空
乾燥による)の開始時間が構造に遷移状態を形成するた
めの方法において重要な段階である。この昇華処理の開
始時間は作成する発泡体の厚さ、溶液の濃度、熱転移速
度、および熱転移の方向により影響を受ける。なお、当
該技術分野における熟練者であれば、熱電対を使用して
発泡させる装置内の種々の深さおよび場所における発泡
体の熱転移速度をモニターすることにより、特定のポリ
マー−溶媒システムに対応してこの処理方法をモニター
しかつ特徴付けできることが分かる。つまり、この昇華
処理を制御することにより、気孔形態における勾配およ
び異方性を有する構造が形成できる。さらに、この方法
により、軟骨、骨および皮膚のような組織に類似する微
小構造を形成することが可能になる。例えば、一般に、
溶液が見かけ上において凝固した直後に真空を供給する
と流路が形成できる。しかしながら、同じ溶液をさらに
凝固化すると、発泡体は真空が供給される側(冷却用放
熱器と反対側)の表面の近くに比較的大きな気孔を有し
て、冷却用放熱器に近い側の領域において比較的小さい
気孔を有する。
【0051】この処理方法は、溶液を完全に凍結して均
一な微小構造(不規則に内部連通する気孔)を有する発
泡体を形成することを目的とした従来技術の処理方法と
は対照的である。このような従来技術では、真空乾燥処
理は所望の相分離を完成するために相当時間の経過後に
のみ行なわれていた(米国特許第5,755,792号
(Brekke)、同第5,133,755号(Brekke)、同
第5,716,413号(Walter他)、同第5,60
7,474号(Athanasiou他)、同第5,686,09
1号(Leong他)、同第5,677,355号(Shalaby
他)、および欧州特許公開E0274898号(Hinsc
h)およびEPA594148号(Totakura))。
【0052】図2,図3および図4に種々の構造を有す
る発泡体を示す。例えば、図3に示すように、気孔の主
軸の配向は発泡体と同一の面から当該発泡体の平面に対
して垂直になるまで変化できる。理論的に、本発明の範
囲を制限する意味ではないが、従来の発泡処理におい
て、溶媒が結晶化する時に凍結の前線が溶液内で移動し
て溶液を当該凍結前線に対して平行に結晶層内で凝固す
ると考えられる。しかしながら、溶液が完全に凍結する
前に真空が供給されると、発泡体の形態は、図3に示す
ように、気孔が真空供給源に対して概ね平行に配列され
るように形成される。
【0053】図3から分かるように、気孔の大きさは約
10μm乃至約60μmの小さい気孔から約60μm乃
至約200μmの比較的大きな気孔まで多孔質の勾配の
発泡体に変化できる。この場合も、溶液が完全に凝固す
る前の見かけ上において凝固した状態の溶液に真空を供
給することによりこの状態が得られる。気泡の大きさを
調節する場合に、溶液におけるポリマー濃度および冷却
速度もまた重要なパラメータである。好ましくは、この
発泡体構造が関節内に存在する骨接合部に対する軟骨の
ような人間の組織接合部を回復するためのテンプレート
として作用できるように形成されることである。この発
泡は小さい球状の気孔から比較的大きな円柱状の(すな
わち、少なくとも2:1の直径対長さの比を有する)の
気孔まで進行する。さらに、発泡体の剛性は発泡体の構
造または異なるヤング弾性率を有する2種類の異なるポ
リマーを混合することにより調節できる。
【0054】また、発泡体は図2に示すように流路を有
することができる。この方法により形成された流路は発
泡体の厚さを横切ることができ、一般に約30乃至約2
00μmの直径である。一般に、流路は当該流路の平均
直径の少なくとも2倍、好ましくは少なくとも4倍、最
も好ましくは少なくとも8倍の長さを有している。もち
ろん、この流路の大きさおよび直径は細胞浸潤、栄養物
拡散または脈管形成用の通路のような当該流路の所望の
機能性に基づいて選択できる。
【0055】当該技術分野の熟練者であれば、適当な成
形型の構成および必要に応じて当該成形型の壁部を異な
る温度にすることにより任意の3次元の状態に上記の方
向性を設定できることが容易に視覚的に分かる。以下の
種類の勾配構造が均一の組成を有する厚さを通した気孔
の大きさおよび/または形状における変化により形成で
きる。すなわち、特定の厚さに対して一つの種類および
大きさの気孔があり、これに続いて別の種類および大き
さの気孔がある構造、一方の側に主に一つの種類の組成
による組成勾配があり、他方の側に別の種類の組成によ
る組成勾配があり、一方の側から他方の側に組成が遷移
している構造、小さな大きさの気孔層の低多孔質性の厚
い膜があり、これに続いて大きな気孔の領域がある構
造、さらに、空間的組織を有する垂直方向の気孔を備え
る発泡体で、これらの垂直方向の気孔が栄養物拡散用の
流路として作用することができ、これらの気孔が3次元
の成形型内で作成されて組成的および構造的な勾配の所
望の微小構造の組合せを有する3次元の発泡体を形成す
る構造である。一般に、コンテナまたは成形型の中で形
成される発泡体は約0.25mm乃至約100mm、好
ましくは約0.5mm乃至約50mmの範囲の厚さを有
する。これよりも厚い発泡体を形成することができる
が、凍結乾燥工程の時間が極めて長くなり、最終的な発
泡体の構造の制御が困難になり、残留する溶媒の含有量
が増加する。
【0056】既に説明したように、生体許容性の発泡体
を製造するための本発明の処理工程は見かけのガラス転
移温度以上で混合物の凝固温度以下(好ましくは、凝固
温度のすぐ下)の温度条件下で昇華工程を行うことによ
り著しく減少できる。すなわち、組み合わされた処理工
程(凍結処理+一次乾燥処理+二次乾燥処理)の時間が
従来技術において記載される時間よりもはるかに短くな
っている。例えば、揮発性溶媒を有する脂肪族ポリエス
テルのための組み合わされた処理工程時間は一般に72
時間以下、好ましくは48時間以下、さらに好ましくは
24時間以下、最も好ましくは10時間以下である。実
際において、この組み合わされた処理工程時間は特定の
脂肪族ポリエステルにより1mm以下の厚さの発泡体で
3時間以下、約2mmの厚さの発泡体で6時間以下、約
3mmの厚さの発泡体で9時間以下である。一方、従来
技術ではこの処理時間は一般に72時間以上である。ま
た、本発明の方法により作成した発泡体において残留す
る溶媒濃度も極めて低い。溶媒として1,4−ジオキサ
ンを使用して作成した脂肪族ポリエステル発泡体につい
て説明するように、残留する1,4−ジオキサンの濃度
は10ppm(パーツパーミリオン)以下、好ましくは
1ppm以下、最も好ましくは100ppb(パーツパ
ービリオン)以下であった。
【0057】なお、当該技術分野の熟練者であれば、適
当な成形型の構成および必要に応じて当該成形型の壁部
を異なる温度にすることにより任意の3次元の状態に上
記の方向性を設定できることが容易に視覚的に分かる。
本発明により以下の種類の勾配構造が作成できる。すな
わち、 1.均一な組成による一定の厚さを通して気孔の大きさ
および/または形状が変化する構造、 2.特定の厚さに対して一つの種類および大きさの気孔
があり、これに続いて別の種類および大きさの気孔があ
る構造、 3.一方の側に主に一つの種類の組成による勾配があ
り、他方の側に別の種類の組成による勾配があり、一方
の側から他方の側に組成が遷移している構造、 4.小さな大きさの気孔層の低多孔質性の厚い膜があ
り、これに続いて大きな気孔の領域がある構造、 5.空間的組織を有する垂直方向の気孔を備える発泡体
で、これらの垂直方向の気孔が栄養物拡散用の流路とし
て作用し得る構造、 6.3次元の成形型内においてこれらの発泡体を作成し
て所望の微小構造を有する3次元の発泡体を形成する構
造、および、 7.組成および構造的な勾配の組合せ構造である。
【0058】さらに、種々のタンパク(短鎖ペプチドを
含む)、増殖剤、走化性剤および治療剤(抗生物質、鎮
痛薬、抗炎症剤、抗拒絶剤(例えば、免疫抑制剤)およ
び抗癌剤)、またはセラミック粒子を作成処理中に発泡
体に加えたり発泡体の作成後に発泡体の表面または背部
に吸収させたり発泡体の中に充填することができる。例
えば、発泡体の気孔を生体許容性で吸収可能な合成ポリ
マーまたは生体ポリマー(コラーゲンやエラスチン等)
または生体許容性のセラミック材(ヒドロキシアパタイ
ト等)、およびこれらの組合せ(装置の中に組織増殖を
促す材料を含有していてもいなくてもよい)で部分的ま
たは完全に充填することができる。適当な材料として
は、自己移植片、同種移植片または異種移植片の骨、骨
髄、形態発生タンパク(BMP)、表皮増殖因子(EG
F)、線維芽細胞増殖因子(FGF)、血小板由来増殖
因子(PDGF)、インシュリン由来増殖因子(IGF
−IおよびIGF−II)、トランスホーミング増殖因
子(TGF−β)、脈管内皮増殖因子(VEGF)また
は当業界において既知の他の骨誘導性(osteoinductiv
e)または骨伝導性(osteoconductive)の材料が含まれ
るがこれらに限らない。生体ポリマーは伝導性または走
化性の材料または増殖因子の供給ビヒクルとしても使用
できる。例としては、組換型または動物由来コラーゲン
またはエラスチンまたはヒアルロン酸等が挙げられる。
生物活性コーティングまたは表面処理もまた材料の表面
に加えることができる。例えば、生物活性ペプチド配列
(RDG)を付着してタンパクの吸収とこれに続く細胞
組織の付着を助長できる。さらに、治療剤をこれらの発
泡体により供給することもできる。
【0059】本発明の別の実施形態において、上記の発
泡体を形成するために使用するポリマーおよび混合物は
治療剤を含有できる。このような発泡体を形成するため
に、発泡体を形成する前に上記のポリマーに治療剤を混
合するか治療剤を発泡体の形成後に装填することができ
る。本発明の発泡体において使用できる異なる治療剤の
種類は極めて多い。一般に、本発明の薬剤組成物を介し
て投与できる治療剤としては、抗生物質および抗ウイル
ス剤のような抗感染剤、化学療法剤(すなわち、抗癌
剤)、抗拒絶薬、鎮痛剤および鎮痛性組合せ薬、抗炎症
剤、ステロイドのようなホルモン、増殖因子(骨形態発
生タンパク(すなわち、BMP1−7)、骨形態発生類
似タンパク(すなわち、GFD−5,GFD−7および
GFD−8)、表皮増殖因子(EGF)、線維芽細胞増
殖因子(すなわち、FGF1−9)、血小板由来増殖因
子(PDGF)、インシュリン類似増殖因子(IGF−
IおよびIGF−II)、トランスホーミング増殖因子
(すなわち、TGF−βI−III)、脈管内皮増殖因
子(VEGF))、およびその他の天然または遺伝子工
学的タンパク、多糖、糖タンパクまたはリポタンパク等
が含まれるがこれらに限らない。これらの増殖因子は本
明細書に参考文献として含まれるVicki RosenおよびR.
Scott Thiesの文献(The Cellular and Molecular Basi
s of Bone Formation and Repair, published by R. G.
Landes Company)に記載されている。
【0060】生物活性材料を含有している発泡体は1種
類以上の治療剤を当該発泡体を作成するためのポリマー
または溶媒またはポリマー−溶媒混合物と混合すること
により配合して発泡することができる。あるいは、治療
剤を好ましくは薬剤的に許容可能なキャリヤと共に発泡
体上にコーティングすることができる。発泡体を溶解し
ないあらゆる薬剤キャリヤが使用できる。治療剤は液
体、細分した固体、または他の適当な物理的形態として
存在し得る。一般的に、または選択的に、基材は希釈
剤、キャリヤ、賦形剤、安定化剤等の1種類以上の添加
物を含む。
【0061】治療剤の量は使用する特定の薬剤および治
療する医療状態により決まる。一般的に、薬物の量は基
材の約0.001重量%乃至約70重量%、好ましくは
約0.001重量%乃至約50重量%、最も好ましくは
約0.001重量%乃至約20重量%である。さらに、
この薬物供給基材に組み込まれるポリマーの量および種
類は所望の放出プロファイルおよび使用する薬物の量に
より変化する。
【0062】体液に接触すると、薬物は放出される。薬
物が発泡体に組み込まれていると、発泡体が徐々に崩壊
する(主に加水分解による)につれて薬物が放出する。
このようにすることにより、有効量(例えば、0.00
01mg/kg/時乃至10mg/kg/時)の薬物の
長時間(例えば、1時間乃至5000時間、好ましくは
2時間乃至800時間)の供給が行える。このような投
薬形態は治療する対象の状態、苦痛の程度、処方する医
者の判断等の必要性に応じて決めることができる。上記
の方法またはこれに類似の方法に従って、当該技術分野
の熟練者であれば、種々の配合物を作成することが可能
である。
【0063】上記の発泡体は組織の人為的処理のための
骨格形成材量としても作用し得る。すなわち、多孔質の
勾配構造が細胞の成長を誘導する。既に存在する特許
(Vacanti の米国特許第5,770,417号)におい
て記載されるように、細胞を患者から(組織を修復する
手術の前または途中において)採取し、これらの細胞を
滅菌処理条件下に処理して特定の細胞種(すなわち、米
国特許第5,486,359号に記載される間葉幹細胞
のような多能性細胞、幹細胞および前駆体細胞)を得る
ことができる。本発明の発泡体骨格形成材料に接触また
は接種できる適当な細胞としては、筋細胞、脂肪細胞、
線維筋芽細胞、外胚葉細胞、筋肉細胞、骨芽細胞(すな
わち、骨細胞)、軟骨細胞(すなわち、骨軟骨細胞)、
内皮細胞、線維芽細胞、膵細胞、肝細胞、胆管細胞、骨
髄細胞、神経細胞、尿生殖器細胞(腎炎細胞を含む)、
およびこれらの組合せが含まれるがこれらに限らない。
本発明の骨格形成材料により種々の細胞(すなわち、自
原性、同種異系および異種細胞等)についての処理が行
える。また、これらの細胞は組織の付着、増殖または分
化を刺激することのできるタンパクをコード化する挿入
DNAを含有し得る。発泡体は細胞培養環境内に置かれ
て、細胞がこの構造体上またはその内部に接種される。
この発泡体を滅菌環境の中に維持してから、当該装置の
微小構造に細胞を浸潤したドナー患者の中に移植する。
この細胞のインビトロ接種により、組織のさらに速い発
育および分化が行える。この細胞の分化および組織の特
定な細胞外基材の形成能力が機能的移植片による組織の
人為的処理において重要である。
【0064】使用者にとって、異なる細胞種を異なる多
孔質構造に接種することが選択可能である。Schaufer他
は異なる細胞種(すなわち、基質細胞および軟骨細胞)
が異なる構造上で培養できることを報告している。これ
らの構造はその後すぐに組み合わされて、全体の構造を
細胞培養環境内に戻すことにより二相の組織構造が移植
用に発生できる。勾配構造もまた共培養組織骨格形成材
料用に発生できる(Schaefer,D他)。さらに、放射線不
透過性のマーカーを発泡体に加えて移植後に画像処理を
行うことができる。所定のインビトロ発育期間(例えば
3週間)の後に、組織処理移植片を取り出して患者に移
植する。無細胞処理を行う場合には、滅菌処理した無細
胞の骨格形成材料を用いて損傷または傷ついた組織を置
換できる。
【0065】本発明の発泡体骨格形成材料は放射線に基
づく滅菌処理(すなわち、ガンマ線処理)、化学処理に
基づく滅菌処理(エチレンオキシド処理)または他の適
当な処理を含む従来の技法により滅菌処理することがで
きる。なお、この滅菌処理は52℃乃至55℃で8時間
以内のエチレンオキシドによる処理が好ましい。この滅
菌処理後に、発泡体骨格形成材料を出荷用および病院等
の健康管理施設で使用できる適当な滅菌耐湿パッケージ
内に包装する。
【0066】本発明の別の実施形態において、発砲対は
上面または底面に融合した繊維性織物を有していてもよ
い。このようにすると、この構造体の多孔質性、透過
性、崩壊速度および機械的性質のような表面の性質を調
節することができる。この繊維性織物は静電紡糸方法に
より製造することができ、この方法では繊維層を凍結乾
燥した発泡体表面上に形成することができる。静電紡糸
方法は繊維を作成するのに用いられてきた方法である。
多くのポリマー材料の静電紡糸は以下の特許および文献
に記載されている:米国特許第4,522,709号、
同第5,024,789号、同第5,311,884
号、同第5,522,879号、「静電紡糸により製造
したポリマー繊維のナノメートル径(Nanometre diamet
er fibers ofpolymer, produced by electrospinnin
g)」(Nanotechnology、1(1996年)第216頁
乃至第233頁)、「小径静電紡糸アラミド繊維の構造
と形態(Structure and morphology of small diameter
electrospun aramid fibres)」(Polymer Inter., 3
6(1995年)第195頁乃至第201頁)、および
引用により本明細書中に導入する「ポリアクリロニトリ
ルおよび中間層ピッチによるカーボンナノファイバー
(Carbon nanofiber from polyacrylonitrile and meso
phase pitch)」(Journal of Advanced Materials, Vo
l.3, No. 1(1999年)第36頁乃至第41頁)であ
る。
【0067】この方法において、ポリマー溶液にその溶
液の表面張力にうち勝つ電力を適用し、帯電したジェッ
トを形成する。この溶液のジェットを接地された基体上
に噴出し、乾燥し、固化する。紡糸条件を調節すること
により、得られる繊維は約0.1μm乃至約20μmの
範囲になるようにでき、好ましくは約0.3μm乃至約
5.0μmの範囲内である。この場合、凍結乾燥した発
泡体である。そのような構造の2つの例を図15および
図16に示す。これらの層構造は少なくとも1種の生体
許容性材料で作成することができ、かつ非吸収性、吸収
性のいずれでもよく、またはそれらを組み合わせたもの
であってもよい。
【0068】この繊維層の組成、厚さおよび多孔質性は
所望の機械的および生物学的特性を備えるように調節す
ることができる。例えば、この繊維層の生体吸収速度
を、下に存在する発泡体層に比べて長いまたは短い生体
吸収構造を備えるように選択することができる。加え
て、繊維層は当該複合体に対してより大きい一体性を備
え、この構造の繊維側に機械的力が適用されるようにし
てもよい。例えば、繊維層のおかげで縫合線、ステープ
ルその他の固定装置を使用して複合体をしかるべき位置
に保持することができる。一般的な指針としては、本発
明の範囲を何ら限定するものではないが、繊維層は厚さ
が約1ミクロン乃至1000ミクロンの層で構成するの
が一般に好ましい。
【0069】繊維性表面層を有する発泡体構造の一つの
有効な応用例は脈管移植片としての使用である。そのよ
うな構造における層は同心円状の複数の円筒を形成し、
繊維層は透過性を低下させるであろう。凍結乾燥した発
泡体構造は外膜面では平滑筋細胞または繊維芽細胞によ
り、管腔面では内皮細胞により細胞の浸潤に対して最適
化することができる。繊維性織物層は血液漏出に対する
障壁として働き、この構造の機械的性質を向上させる。
さらに、繊維層は平滑筋細胞の増殖に対する障壁として
働き、内膜の過形成を防止する。
【0070】そのような発泡体/織物のハイブリッド構
造の他の有効な応用例は***再生のための骨格形成材料
としての使用である。繊維層は機械的一体性を増強し、
骨格形成材料の当初の形状を維持する。生検を行うと
き、または腫瘍を除去するときは空洞をそのような繊維
を被覆した発泡体の骨格形成材料で充填することがで
き、この骨格形成材料には細胞または生物活性剤を注し
てもしなくてもよい。
【0071】そのような発泡体/繊維構造の他の有効な
応用例は半月板組織の人為的処理のための骨格形成材料
としての使用である。この場合、楔形状の移植片を凍結
乾燥した発泡体中心部を包む繊維性被覆物により作成す
ることができる。この繊維層を介して移植片の中心部に
細胞を注入することができる。この織物性表面層により
栄養物および老廃物の拡散が可能となるが、骨格形成材
料から細胞が移動することは制限される。
【0072】以下の実施例は本発明の原理および実施を
説明するためのものであるが、これらに限られない。す
なわち、当該技術分野の熟練者においては、本発明の趣
旨および範囲における多くの付加的な実施形態が容易に
考えられる。
【0073】実施例 以下の実施例において、各ポリマーおよびモノマーはそ
の化学組成および純度(NMR、FT−IR)、熱分析
(DSC)、分子量(固有粘度)、および基準線および
インビトロでの機械的特性(インストロン応力/歪)に
ついて特徴付けられている。
【0074】1H−NMR測定を300MHzNMRに
おいてCDCl3 またはHFAD(ヘキサフルオロアセ
トンセスクア(sesqua)ジュウテリウムオキシド)を溶
媒として行った。また、分断したポリマーおよびモノマ
ーの熱分析をDupont 912示差熱量測定(DSC)装置に
よって行った。さらに、各ポリマーおよびコポリマーの
固有粘度(I.V.dL/g)を0.1g/dLの濃度
でクロロホルムまたはヘキサフルオロイソプロパノール
(HFIP)を溶媒として25℃で恒温水槽の中に浸漬
した50ボアCannon-Ubbelhode希釈粘度計により測定し
た。
【0075】また、以下の実施例において、ε−カプロ
ラクトン重合体をPCL、グリコリド重合体をPGA、
(L)ラクチド重合体をPLAとして示しているように
特定の略語を使用している。さらに、各コポリマーの前
に記載した%値はそれぞれ各構成要素のモル%値を示し
ている。
【0076】実施例1 不規則な微小構造(好ましくない構造)を有する発泡体
の作成 工程A.1,4−ジオキサンにおける35/65PCL
/PGAの5%重量/重量の均一な溶液の作成 1重量部の35/65PCL/PGAを19重量部の溶
媒である1,4−ジオキサンに溶解して5%重量/重量
のポリマー容積を作成した。この35/65PCL/P
GAコポリマーは概ね実施例8に記載するように形成し
た。この溶液は磁気攪拌棒によりフラスコ内で作成し
た。コポリマーを完全に溶解するために、混合物を60
±5℃に穏やかに加熱して最低で4時間で8時間を超え
ないように連続的に攪拌することが好ましい。その後、
超粗目の多孔質フィルタ(フリットディスクを伴うPyre
x 製抽出円筒濾紙)を通してこの粘性溶液の濾過中に乾
燥窒素を使用しながら濾過することにより透明で均一な
溶液を得た。
【0077】工程B.凍結乾燥 実験室規模の凍結乾燥機であるVIRTISのFreezemobile 6
をこの実験に使用した。この凍結乾燥機を起動して棚チ
ャンバーを約30分間乾燥窒素下において20℃に維持
した。棚の温度をモニターするための熱電対を取り付け
てモニターした。処理工程を実際に開始する前に、工程
Aにおいて作成した均一なポリマー溶液を注意して成形
型の中に満たした。この実験ではガラス製の成形型を用
いたが、1,4−ジオキサンに対して不活性であって、
良好な熱転移特性を有していて、発泡体を容易に除去で
きる表面を有するものであれば任意の材料により形成し
た成形型が使用できる。この実施例において使用したガ
ラス成形型または皿は重量が620グラムであり、5.
5mm厚の光学ガラスで、外径が21cmおよび内径が
19.5cmの円筒形であった。また、この皿の口の高
さは2.5cmであった。次に、以下の工程を行って2
mm厚の発泡体を形成した。すなわち、 (i)この溶液を入れたガラス皿を20℃に維持した凍
結乾燥機の棚の上に注意して(傾けないように)置い
た。処理工程を開始して棚の温度を20℃で30分間維
持して熱的な状態調節を行った。 (ii)その後、棚を−5℃に冷却することにより溶液
を−5℃に冷却した。 (iii)−5℃で凍結処理してから60分後に、真空
を供給して昇華によるジオキサンの一次乾燥を開始し
た。溶媒の大部分を除去するのに−5℃で真空減圧下に
1時間の一次乾燥処理が必要である。この乾燥段階の終
了時において、一般に、減圧レベルが約50ミリトール
(6.7Pa)以下になる。 (iv)次に、50ミリトール(6.7Pa)以下の減
圧下において二次乾燥処理を2段階で行って吸収された
ジオキサンを除去した。第1の段階において、棚の温度
を5℃に上げてこの温度で1時間維持した。この第1の
段階の終了時から第2の乾燥処理の段階が開始する。こ
の第2の乾燥処理の段階において、棚の温度を20℃に
上げてこの温度で約1時間維持した。 (v)上記の第2の段階の終了時に、凍結乾燥機の温度
を室温に戻して、窒素を供給して減圧を解除した。その
後、チャンバー内を約30分間乾燥窒素で満たしてから
ドアを開けた。
【0078】上記の工程は約2mm以下の厚さの発泡体
を作成するのに適している。なお、当該技術分野の熟練
者であれば、本明細書において記載する諸条件が特定的
なものであって、各動作条件は、例えば、溶液濃度、ポ
リマーの分子量および組成、溶液の容積、成形型のパラ
メータ、冷却速度および加熱速度のような機械的変数等
の幾つかのファクターにより一定の範囲で変化すること
が分かると考える。図1はこの実施例において記載した
方法に従って形成した発泡体の断面のSEMを示してい
る図である。この発泡体における不規則な微小構造(好
ましい構造ではない)を注意されたい。
【0079】実施例2 垂直方向の流路を有する発泡体の作成 この実施例においては、栄養物の移送および方向付けさ
れた組織の再生のための経路を構成し得る垂直方向の流
路を有する35/65PCL/PGAの作成について説
明する。
【0080】本発明者はコンピュータ制御およびデータ
モニターシステムを備えたFTS Dura凍結乾燥機を用いて
この発泡体を作成した。この発泡体の作成における第1
の工程は均一な溶液の作成である。すなわち、実施例1
の工程Aに記載した方法と同様の方法で10%重量/重
量の35/65PCL/PGAの均一な溶液を作成し
た。次に、処理工程を実際に開始する直前にこのポリマ
ー溶液を注意して皿の中に満たした。この皿は重量が6
20グラムであり、5.5mm厚の光学ガラスで、外径
が21cmおよび内径が19.5cmの円筒形であっ
た。また、この皿の口の高さは2.5cmであった。次
に、以下の工程を行って2mm厚の所望の構造を有する
発泡体を形成した。すなわち、 (i)この溶液を入れた皿を−17℃に予備冷却した凍
結乾燥機の棚の上に置いた。処理工程を開始して棚の温
度を−17℃で15分間維持してポリマー溶液を急冷し
た。 (ii)この15分間の−17℃への急冷処理の後に、
真空を供給して昇華によるジオキサンの一次乾燥を開始
して、100ミリトール(13.3Pa)で1時間維持
した。 (iii)次に、5℃で1時間および20℃で1時間の
条件で二次乾燥を行った。各温度において、減圧レベル
は20ミリトール(2.7Pa)に維持した。 (iv)上記の第2の段階の終了時に、凍結乾燥機の温
度を室温に戻して、窒素を供給して減圧を解除した。そ
の後、チャンバー内を約30分間乾燥窒素で満たしてか
らドアを開けた。
【0081】図2は垂直方向の流路を有する発泡体の断
面を示すSEM写真である。これらの流路は発泡体の厚
さを通して延在している。
【0082】実施例3 構造的な勾配を有する発泡体 この実施例において、35/65ε−カプロラクトン−
コ−グリコリドの10%溶液により図3に示すような発
泡形態で勾配を有する発泡体の作成を説明する。このよ
うな発泡体を作成するための方法は1個の違いを除いて
実施例2において説明した方法と同様である。すなわ
ち、凍結乾燥処理の工程(ii)において、凍結工程に
溶液を維持する時間を30分としている。
【0083】図3はこの実施例の発泡体の断面の電子顕
微鏡写真である。発泡体の厚さを通した気孔の大きさお
よび気孔の形状に注意されたい。
【0084】実施例4 組成勾配の発泡体 この実施例においては、組成の勾配を有していて必ずし
も形態的勾配を有していない発泡体の作成方法について
説明する。このような発泡体は2種類以上のポリマーの
物理的な混合物により作成したポリマー溶液により作成
できる。この実施例は35/65PCL/PGAおよび
40/60PCL/PLAにより作成した組成勾配を有
する発泡体について説明する。
【0085】工程A.1,4−ジオキサンにおける35
/65PCL/PGAおよび40/60PCL/PLA
の溶液混合物の作成 好ましい方法において、2種類の別の溶液、すなわち、
(a)35/65PCL/PGAの10%重量/重量ポ
リマー溶液および(b)40/60PCL/PLAの1
0%重量/重量ポリマー溶液をまず作成した。これらの
溶液を実施例1に記載したように作成した後に、等量部
の各溶液を混合フラスコの中に注いだ。なお、これらの
溶液を作成するために使用する各ポリマーについては実
施例8および実施例9に記載している。この物理的な混
合物の均一な溶液が60±5℃に穏やかに加熱して約2
時間磁気攪拌棒により連続的に攪拌することにより得ら
れた。
【0086】工程B.凍結乾燥 本発明者はコンピュータ制御およびデータモニターシス
テムを備えたFTS Dura凍結乾燥機を用いてこの発泡体を
作成した。この発泡体の作成における第1の工程は上記
工程Aにおいて記載した均一な溶液の作成である。次
に、処理工程を実際に開始する直前にこの溶液を注意し
て皿の中に満たした。この円筒形のガラス皿は重量が1
17グラムであり、2.5mm厚の光学ガラス製で、外
径が100mmおよび内径が95mmの円筒形であっ
た。また、この皿の口の高さは50mmであった。次
に、以下の工程を行って組成的に勾配を有する25mm
厚の発泡体を形成した。すなわち、 (i)この溶液を入れたガラス皿を20℃に維持した凍
結乾燥機の棚の上に置いて、20℃で30分間かけて溶
液の状態調節を行った。次に、処理工程を開始して、
0.5℃/分の冷却速度のプログラムにより棚の温度を
−5℃に設定した。 (ii)その後、溶液を凍結条件(−5℃)で5時間維
持した。 (iii)次に、真空を供給して昇華によるジオキサン
の一次乾燥を開始し、100ミリトール(13.3P
a)で5時間維持した。 (iv)その後、5℃で5時間および20℃で10時間
の二次乾燥処理を行った。各温度において減圧レベルを
20ミリトール(2.7Pa)に維持した。 (v)上記の第2の段階の終了時に、凍結乾燥機の温度
を室温に戻して、窒素を供給して減圧を解除した。その
後、チャンバー内を約30分間乾燥窒素で満たしてから
ドアを開けた。得られた発泡体は図4,図5および図6
に示すような発泡体壁部の形態を精査することにより明
らかに化学組成において勾配を有している。この化学組
成における勾配は以下に記載するようなNMRデータに
よりさらに確かめられた。
【0087】上記の方法で作成した発泡体サンプルは約
25mmの厚さを有していてモル%組成において特徴づ
けられた。この発泡体サンプルはPCL/PLAおよび
PCL/PGAの混合物により構成されている。まず、
発泡体サンプルのスライスを作成して分析することによ
り、材料が組成的に勾配を有していることを確認した。
すなわち、これらのサンプルスライスを(1)発泡体I
A(上部スライス)、(2)発泡体IB(上部中段のス
ライス)、(3)発泡体IC(底部中段のスライス)、
および(4)発泡体ID(底部スライス)と定めた。そ
の後、5mgの各材料を300μLのヘキサフルオロセ
スクアジュウテリウムオキシド(HFAD)に溶解して
から300μLのC6 6 で希釈することによりNMR
サンプルを作成した。
【0088】上記のNMR結果から、これらの発泡体サ
ンプルが組成において勾配を有していることが分かる。
すなわち、発泡体の上部層はPLA濃度が高く(47モ
ル%)いが、発泡体の底部層はPGA濃度が高い(56
モル%)。これらの結果から、凍結工程中においてPC
L/PGAコポリマーおよびPCL/PLAコポリマー
はそれぞれの相分離特性に差が有るために特異的な組成
勾配を有する発泡体が形成されたと考えられる。
【0089】実施例5 構造的に勾配を有する発泡体 この実施例においては、組成的および構造的な勾配を有
していて必ずしも形態的勾配を有していない発泡体の作
成方法について説明する。このような発泡体は2種類以
上のポリマーの物理的な混合物により作成したポリマー
溶液により作成できる。この実施例は35/65PCL
/PLA(実施例9に記載するようなもの)および95
/5PLA/PCL(本明細書において記載するような
HFIP測定において1.8のIVを有するランダムコ
ポリマー)により作成した組成勾配を有する発泡体につ
いて説明する。なお、35/65PCL/PLAは軟質
のエラストマーコポリマーであり、95/5PLA/P
CLは比較的剛性の高いコポリマーである。これら2種
類のコポリマーの組合せにより組成的および構造的な勾
配が構成できる。この発泡体は実施例4において説明し
た諸工程により作成することができ、まず、1,4−ジ
オキサンにおける35/65PCL/PLAの10%重
量/重量溶液および95/5PLA/PCLの10%重
量/重量溶液の均一な50/50の物理的混合物の作成
から始めた。このような組成的勾配を有する発泡体は骨
−軟骨境界部分のような組織接合部分のための良好なテ
ンプレートを提供することができる。
【0090】実施例6 細胞培養および分化のデータ 95/5PLA/PGA、90/10PGA/PLA、
95/5PLA/PCL、75/25PGA/PCLお
よび40/60PCL/PLAにより作成したフィルム
を試験した。全てのアッセイにおいて陽性対照として組
織培養ポリスチレン(TCPS)を用いた。試験を行う
前に、各ポリマー円板を24−ウェルウルトラロークラ
スターディッシュの底部において20分間予備加湿処理
した。
【0091】この実施例において使用した95/5PL
A/PGAコポリマーは25℃でHFIPにおいて測定
した場合に1.76のIVを有するランダムコポリマー
であり、Panacryl(商標)縫合線(ニュージャージー州サ
マービルのEthicon 社)において使用されている。ま
た、90/10PGA/PLAコポリマーは25℃でH
FIPにおいて測定した場合に1.74のIVを有する
ランダムコポリマーであり、Vicyl(商標)縫合線(ニュ
ージャージー州サマービルのEthicon 社)において使用
されている。95/5PLA/PCLポリマーは実施例
10に記載するように作成され、25℃でHFIPにお
いて測定した場合に2.1のIVを有する。また、75
/25PGA/PCLコポリマーは1.85のIVを有
するセグメントブロックコポリマーであり、米国特許第
5,133,739号に記載されている。このコポリマ
ーはMonocryl(商標)縫合線(ニュージャージー州サマー
ビルのEthicon 社)において使用されている。さらに、
40/60PCL/PLAコポリマーは実施例9に記載
するように作成され、1.44のIVを有する。
【0092】細胞付着および増殖 各ポリマーを収容した24−ウェルウルトラロークラス
ターディッシュ(Corning)の中に40,000個/ウェ
ルで細胞を接種した。このウルトラロークラスターディ
ッシュはヒドロゲルポリマーの層によりコーティングさ
れていて、このコーティングはタンパクおよび細胞のウ
ェルへの付着を遅らせる。そこで、各生体ポリマーへの
細胞の付着性を培養の24時間後に決定した(各ポリマ
ーに対してN=3)。付着した細胞をトリプシン処理に
より遊離させてその細胞の数を血球計により決定した。
さらに、細胞増殖を接種後3日目および6日目に細胞数
を計ることにより評価した。
【0093】増殖アッセイ アルカリホスファターゼ活性 p−ニトロフェノールホスフェート基質(Sigma 104)
および製造者の取扱説明による比色検定によりアルカリ
ホスファターゼ活性を決定した。すなわち、細胞を4
0,000個/ウェルの密度でフィルムまたはメッシュ
上に接種して1日,6日,14日および21日培養し
た。6日目に細胞が密集した段階で、これらに鉱物質化
媒質(10mMのβ−グリセロホスフェート、50μg
/mlのアスコルビン酸を追加した培養媒質)を供給し
た。その後、アルカリホスファターゼ活性を上記の各時
間において細胞のホモゲネート(0.05%、トリトン
X−100)において決定した。Pierce社のマイクロB
CA試薬により細胞抽出物内のタンパクの量を決定し
た。また、組織学的染色キット(Sigma)により膜結合
アルカリホスファターゼに対してフィルムおよびメッシ
ュ上で培養した一次ラット骨芽細胞を染色処理した。全
てのフィルムおよびメッシュに対して、各グループにつ
いて3個のサンプルを試験した。
【0094】オステオカルシンELISA 種々のフィルム上において培養した骨芽細胞により媒地
内に分泌されたオステオカルシンをELISA(オステ
オカルシンELISAキット、ボストンのBiomedical T
echnologies 社)により定量した。ELISAによるこ
のタンパクの測定の前に、各ポリマーフィルムを収容す
るウェルからの媒地のアリコートを凍結乾燥した。各ポ
リマーに対して3個のサンプルを試験して、ELISA
を2回繰り返した。
【0095】フォンコッサ(Von Kossa)染色 各ポリマーに対して3個のサンプルをフォンコッサ硝酸
銀染色により鉱物質化した組織に対して染色処理した。
【0096】アルカリホスファターゼおよびオステオカ
ルシンのmRNAの発現 フィルム上において21日間培養した細胞から抽出した
RNAを用いて細胞内におけるアルカリホスファターゼ
およびオステオカルシンのmRNAの発現を半定量的逆
転写酵素ポリメラーゼ連鎖反応(RT−PCR)により
評価した。接種後7日目に、培養媒地を鉱物質化媒地に
置き換えた(3mMのβ−グリセロホスフェートおよび
50μg/mlのアスコルビン酸を加えた)。細胞をさ
らに2週間培養して、合計で3週間の培養を行なった。
Qiagenにより提供されるRNeasyミニキットを用いてグル
ープ当たり4個のサンプルから全体のRNAを抽出し
た。各ポリマーグループについて全体のRNAの性質お
よび量を測定した。まず、逆転写反応により(Superscr
ipt II, Gibco)全体のRNAを逆転写してcDNAを
得た。次に、オステオカルシン、アルカリホスファター
ゼ、およびグリセロアルデヒド−3−ホスフェート−デ
ヒドロゲナーゼ(GAPDH)に対応するcDNAを既
に説明したPCRプロトコル(GIBCO BRL製造者取扱説
明書)により増幅した。オステオカルシン、アルカリホ
スファターゼ、およびGAPDHに対応するプライマー
の配列(表2)をFASTAプログラム(ウィスコンシ
ン州マディソンのGenetic Computer Group)により得
た。各プライマー(表3)に対するPCRサイクルの数
を最適化してcDNAに対して対比性を示すRNAの範
囲を決定するために予備的な検討も行なった。これらの
PCR生成物を臭化エチジウムを含有する1%(重量)
アガロースゲル上で電気泳動した。その後、これらのゲ
ルをUV光下で写真撮影して、GAPDHに対するオス
テオカルシンおよびアルカリホスファターゼのmRNA
の発現についてデンシトメトリーにより評価した。
【0097】統計学的分析 Tukey前後即因果虚偽(post hoc)比較法による分散分析
(ANOVA)を用いて全ての定量試験について有意差
の程度を評価した。 表2 RT−PCRに使用したプライマー遺伝子 動物種 正プライマー 逆プライマー 大きさ(bp) 遺伝子1 ラット 5' 5' 379 ATCGCCTATCAGCTAAT GCAAGAAGAAGCCTTT GCAC GGG 遺伝子2 ラット/ 5'CAACCCCAATTGTGA 5' 339 ヒト CGAGC TGGTGCGATCCATCAC AGAG 遺伝子3 マウス/ 5'ACCACAGTCCATGCC 5'TCCACCACCCTGTT 452 ヒト/ ATCAC GCTGTA ラット 注)遺伝子1:アルカリホスファターゼ 遺伝子2:オステオカルシン 遺伝子3:GAPDH 表3 PCR最適化サイクル 遺伝子 cDNA(μl) サイクル数 アルカリホスファターゼ 1 25 オステオカルシン 1 35 GAPDH 1 23
【0098】結果 生体吸収性ポリマーにおける細胞付着および増殖 種々のポリマーの間およびTCPSに比較して細胞形態
における顕著な差が見られなかった。24時間の培養後
において種々の生体ポリマーフィルムに対する細胞付着
はTCPSと同等であった。3日目において、細胞は4
0/60PCL/PLAを除いて全てのフィルムにおい
て良好に増殖した。なお、40/60PCL/PLAの
場合はTCPSに比して増殖は60%であった。さら
に、95/5PLA/PGAおよび90/10PGA/
PLAフィルムはTCPSおよび40/60PCL/P
LAに比べて有意差をもって(p<0.05)高い程度
の細胞増殖度を支持した(図7)。
【0099】分化アッセイ アルカリホスファターゼ酵素活性 95/5PLA/PGA、90/10PGA/PLAお
よび95/5PLA/PCLフィルム上で培養した骨芽
細胞により発現したアルカリホスファターゼ活性のプロ
ファイルはTCPSにおいて見られるプロファイルに類
似していた。一方、14日目および21日目における4
0/60PCL/PLAおよび75/25PGA/PC
Lフィルムにおいて培養した骨芽細胞の場合は、それぞ
れ、別のフィルムおよびTCPSに比べてアルカリホス
ファターゼ比活性が有意差をもって(p<0.05)増
加した(図8)。
【0100】アルカリホスファターゼおよびオステオカ
ルシンのmRNAの発現 95/5PLA/PGA、40/60PLA/PCL、
95/5PLA/PCLフィルムおよびTCPSにおい
て培養した骨芽細胞に対するアルカリホスファターゼ、
オステオカルシン、およびGAPDHにおけるmRNA
の発現をデンシトメトリーにより評価した。これらの結
果を図9に示す。なお、図8におけるデータが最良の半
定量分析におけるデータであることに注意されたい。と
ころが、これらのデータは40/60PCL/PLAフ
ィルムがTCPSに比べて有意差をもって(p<0.0
5)高い程度のオステオカルシンの発現を支持したこと
を示している。一方、残りのポリマー表面はオステオカ
ルシンおよびアルカリホスファターゼのmRNA発現の
両方においてTCPSと同等であった。
【0101】結論 6日間の培養に続いて試験した異なる生体吸収性フィル
ムまたはメッシュの間に細胞の付着および増殖に関する
顕著な差は見られなかった。さらに、これらの結果によ
り、それぞれの分化特性に関してそれぞれの材料の間の
差が比較的明瞭であることが分かった。すなわち、40
/60PCL/PLAフィルムにおける細胞培養は14
日および21日の培養後の別のフィルムおよびTCPS
にそれぞれ比較して向上したアルカリホスファターゼ活
性およびオステオカルシンmRNAの発現を示した。
【0102】この技法をさらに完全に理解するために、
M. A. Aronow、L. C. Gerstenfeld、T. A. Owen、M. S.
Tassinari、G. S. SteinおよびJ. B. Lianの「培養し
た胎児ラット頭蓋冠細胞における骨芽細胞表現型の進行
性の発育を助長する因子(Factors that promote progr
essive development of the osteoblast phenotype in
cultured fetal rat calvaria cells)」(Journal of
Cellular Physiology,143:第213頁乃至第221頁
(1990年))、およびStein, G. S.、Lian,J. B.お
よびOwen, T. A.の「骨芽細胞の分化中におけ組織特異
性遺伝子発現の調整に対する細胞成長の関係(Relation
ship of cell growth to the regulation of tissue-sp
ecific gene expression during osteoblast different
iation)」(FASEB, 4,第3111頁乃至第3123頁
(1990年))を引用する。
【0103】実施例7 豚皮膚傷治癒モデルにおける発泡体混合物のインビボで
の検討 この実施例においては、豚全厚切除傷モデルにおける1
mmおよび0.5mm厚の発泡体骨格形成材料を移植し
た結果について説明する。発泡体組織骨格形成材料を実
施例8において説明するように作成した40/60ε−
カプロラクトン−コ−ラクチドおよび実施例9において
説明するように作成した35/65ε−カプロラクトン
−コ−グリコリドの混合物により作成した。すなわち、
これらのポリマーを混合して実施例3に記載したものと
ほぼ同じ(冷却速度が2.5℃/分で−5℃に冷却した
のみであることを除く)1mmおよび0.5mm厚の発
泡体を形成した。0.5mm発泡体の走査電子顕微鏡写
真を図11(A),図11(B)および図12に示す。そ
の後、2種類の厚さ(0.5mmおよび1mm)の発泡
体を傷つけた切除モデルにおいてPDGFの供給有りお
よび供給無しの状態で試験して、これらの異なる4種類
のサンプルを評価した。
【0104】傷を形成してから8日目に移植した4頭の
豚における48個の全厚切除傷(1頭当たり12部位)
について無作為的な組織学的評価を行った。この評価は
H&E染色したスライドについて行った。この組織学的
評価の間に、以下のパラメータを各試料において順位付
けおよび/または評価した。すなわち、基質の細胞浸潤
についての定性的および定量的評価、(2)基質の接触
領域(腹側の表面)内への多形核白血球(PMN)の浸
潤、(3)基質の(腹側から)下方の肉芽組織床におけ
る炎症、(4)基質に対する表皮の反応、および(5)
基質の分断の度合いである。
【0105】動物体の管理 豚をそれぞれ個別にケージ(10平方フィートの最少床
面積を有する)内に収容して認識票を付けた。全ての豚
に個々の動物体番号を割り当てた。すなわち、動物体番
号、種類/血統、手術日、手術技法および実験の継続時
間、および安楽死の期日を記載したタグを各動物体ケー
ジに付けた。また、各動物体は永久マーカーによりその
首の付け根に動物体番号を印付けした。
【0106】各動物体の部屋を40%乃至70%の相対
湿度および15℃乃至24℃(59.0乃至75.2°
F)に維持した。各動物体には1日1回の標準的な豚用
の食事を与えたが、麻酔処理を必要とするあらゆる実験
処理の前は一晩食事を与えなかった。水は自由に摂るこ
とができるようにした。日常的な明るさ:暗さのサイク
ルを12:12時間とした。
【0107】麻酔処理 実験の最初の日、各評価の日および検死の日に、各動物
体を拘束して、Tiletamine HCLプラスZolazepam HCL(T
elazol(登録商標)、アイオワ州フォート・ドッジのFo
rt Dodge Animal Health社、4mg/ml)およびXyla
zine(Rompun(登録商標)、カンザス州シャウニー・ミ
ッションのBayer Corporation のアグリカルチャー部、
Animal Health 社、4mg/ml)または鼻頭を介して
投与するIsoflurane(AErrane(登録商標)、アイオワ州
フォート・ドッジのFort Dodge Animal Health社)吸入
麻酔剤(5%容量)のいずれかにより麻酔処理した。動
物体に外科手術を施す場合には、この動物体に鼻頭を介
してIsoflurane(AErrane(登録商標))吸入麻酔をか
けた状態で維持した。また、各処理から回復した後に食
事を与えた。
【0108】外科手術部位の作成 外科処理の1日前に、体重を測定して4頭の豚の背面領
域を#40外科用シェービングブレードを備える電気ク
リッパーにより刈り込んだ。その後、毛を刈った皮膚を
さらにシェービングクリームと剃刀により綿密に剃っ
て、すすぎ洗いした。この毛を剃った皮膚および動物全
体(頭部を除く)をさらにPCMX洗浄溶液(Pharmase
al(登録商標)Scrub Care(登録商標)、カリホルニア
州バレンシアのBaxter Healthcare社のPharmaseal部)
により外科用スクラブ・ブラシスポンジで擦り洗いして
から、HIBICLENS(登録商標)クロルヘキシジングルコ
ネート(イリノイ州シカゴのCOE Laboratories社から入
手)によりさらに擦り洗いした。この動物体を滅菌処理
したタオルで拭いて乾燥した。その後、各動物体の背面
上に滅菌NU-GAUZEガーゼ(テキサス州アーリントンのJo
hnson & Johnson Medical 社から入手)を置いて、WATE
RPROOFテープ(テキサス州アーリントンのJohnson &
Johnson Medical社から入手)により固定した。この動
物体の胴部全体をSpandage(商標)弾性伸縮包帯(ニュー
ヨーク州ブルックリンのMediTech International社から
入手)で包んで一晩清浄な表面に維持した。
【0109】手術の日に、外科手術部位に動物体を運ぶ
直前に、前日に行ったように、その背面の皮膚をPCM
X洗浄溶液(Pharmaseal(登録商標)、Scrub Care(登
録商標))により外科用スクラブ・ブラシスポンジで再
び擦り洗いし、すすいで滅菌処理したタオルで拭いて乾
燥した。動物体をうつむきに手術台の上に載せて、70
%アルコールで拭いてから滅菌ガーゼで乾かした。滅菌
処理した外科用マーカー(マサチューセッツ州レインハ
ムのJohnson & Johnson Professional社の一部門である
Codmanから入手)およびアセテートテンプレートを用い
て、各全厚傷の所望の位置に応じて背面の皮膚に標識を
作成した。
【0110】外科処理 麻酔をかけてから、滅菌条件下に、メスを用いて左右の
背面領域に脊柱に平行に2列に12個の全厚切除部
(1.5cm×1.5cm)を各動物体に作成した。さ
らに、一対の鋏および/またはメスを皮膚および皮下組
織の除去のために用いた。出血をスポンジタンポンによ
り調整した。傷と傷との間に十分な空間を置いて傷同士
の干渉を避けた。切除した組織の厚さをデジタルキャリ
パーにより測定した。
【0111】治療および包帯の供給 各傷を予め準備したコード化した治療手順(各実験対象
は全ての治療に対して目隠しした状態であった)で処理
した。滅菌した個別の試験物品(1.5cm×1.5c
mの滅菌塩類溶液に24時間浸漬したもの)から成る一
次包帯を所定の計画に従って傷欠損部に配置した。次
に、非付着性で、塩類溶液に浸漬した、方形のRELEASE
包帯(テキサス州アーリントンのJohnson & Johnson
Medical社により製造されている)から成る二次包帯を
上記の試験物品の上部に配置した。さらに、BIOCLUSIVE
包帯の層(テキサス州アーリントンのJohnson & Joh
nson Medical社から入手)により傷を密封して傷の湿り
気を維持すると共に内部の包帯を保持した。また、Rest
on(商標)(ミネソタ州セント・ポールの3M社のメデイ
カル−サージカル部)ポリウレタン自己付着性発泡材の
片状部材を各傷の間に配置して傷の流体漏れによる相互
汚染を防ぐと共に傷の損傷および包帯のずれを防いだ。
加えて、NU-GAUZEの層をBIOCLUSIVE包帯およびRe
ston(商標)発泡材の上部に配置し、WATERPROOFテー
プにより固定して各包帯を保護した。その後、動物体を
Spandage(商標)弾性ネットにより包帯して各包帯を保持
した。
【0112】上記の二次包帯を毎日除去して、塩類溶液
に浸漬したRELEASE二次包帯の新しいものと置き換え
た。また、一次包帯(試験物品)はこのユニットを置換
または傷欠損部から押し出すまで触らなかった。
【0113】術後の医療管理および臨床的観察 麻酔において外科処理を行った後に、動物体を各ケージ
に戻して回復させた。各動物体に術後すぐおよびその次
の日に鎮痛剤(バプレノルフィンヒドロクロライド(Bu
prenex Injectable、0.01mg/kg)英国ハルのRe
ckitt & Colmanにより販売されている)を与えた。麻酔
から回復後に、各豚の深いまたは痛みに対する挙動徴候
を観察した。この結果、痛みに対する徴候は全く見られ
なかった。
【0114】手術日の後に各豚を1日に2回観察して、
一般的な挙動、外観、食物消費量、排尿および排便、お
よび異常な排出物の存在を基準にしてその健康状態を決
めた。
【0115】安楽死 実験の終了時(傷つけ処理後8日)に、耳周縁部の静脈
を介する((オハイオ州コロンバスのButler社により販
売される)Socumb(商標)ペントバルビタールナトリウ
ムおよびフェニトインナトリウム安楽死溶液(1ml/
10ポンド体重))の静脈注射を伴って各動物体を麻酔
により安楽死させた。この安楽死処理の後に、呼吸機能
の停止および触診可能な心臓機能が無いことを確認する
ために動物体を観察した。この際、聴診器が心臓機能の
停止の確認を容易にする。
【0116】組織採取 安楽死の直後に、各傷を下層の脂肪および小部分の周囲
の皮膚と共に切除した。この組織を10%中性バッファ
ー化ホルマリンの中に入れた。
【0117】評価 視覚的傷評価 位置ずれ、傷反応および骨格形成材料の物理特性を含む
一般的観察を1日目乃至3日目に対して記録した。さら
に、詳細な臨床的評価を傷つけ後4日目乃至8日目につ
いて行った。以下のパラメータの有り/無し(有り=1
/無し=0)および/または程度(点数を付ける)につ
いて記録した。
【0118】包帯の状態 空気暴露、試験物品の位置ずれ、流通(channeling)、
連通communication)およびRELEASE二次包帯の水分含
有量(点数付け基準:4=湿っている、3=湿っている
/乾燥している、2=乾燥している/湿っている、1=
乾燥している)。
【0119】傷床状態 試験物品の水分含有量(点数付け基準:4=湿ってい
る、3=湿っている/乾燥している、2=乾燥している
/湿っている、1=乾燥している)、炎症(点数付け基
準:3=重度、2=中程度、1=軽度、0=無し)、再
損傷(点数付け基準:3=重度、2=中程度、1=軽
度、0=無し)、凝血、毛嚢炎、感染、試験物品の高さ
(点数付け基準:4=極めて上昇している、3=上昇し
ている、2=変化無し、1=下降している)、フィブリ
ン(点数付け基準:3=重度、2=中程度、1=軽度、
0=無し)、および紅斑。また、試験物品の色も観察し
た。
【0120】切除した組織サンプルを8日目に採取し
た。全体の傷を採取して10%の中性バッファー化した
ホルマリンに入れた。その後、組織を凍結した部分に調
製した。この組織を切り取って、Tissue-Tek(登録商
標)OCT 化合物(日本国東京のSakura Finetechnical社
により販売されている)を伴う対象物ホルダー上にお
き、速やかに凍結した。これらの試料を低温槽上で10
μmに切断して凍結したH&E染色剤により染色した。
【0121】組織学的評価(傷つけ後8日目) 肉芽組織(面積および長さ)および表皮形成の組織学的
評価を20倍乃至40倍の倍率でH&E染色した試料によ
り評価した。肉芽組織の高さを面積を長さで割ることに
より決定した。
【0122】さらに、組織サンプルの組織病理学的評価
をH&E染色試料により行い、まず、100倍乃至400
倍の倍率でこれらのサンプルを評価した。
【0123】結果 全ての部位の大部分における基質の間隙の中に細胞の浸
潤が見られた。これらの部位の大部分において、この浸
潤は変化する線維芽細胞の集団、マクロファージ、マク
ロファージ巨細胞、および内皮類似細胞により構成され
る真の組織の内部成長であり、毛細管の形成も見られた
ように思える。組織において基質を実質的に埋める基質
に対して背面側の密度の高い線維状の接合組織層の実質
的な形成がPDGFを伴うおよび伴わない0.5mmの
発泡体における幾つかの部位に見られる。また、1mm
の基質は組織の表面にあるか脱落していた。マクロファ
ージ巨細胞の形成は1mmの発泡体骨格形成材に対して
0.5mmのものにおいてより多く見られた。1mmの
発泡体が下層の肉芽組織から脱落しているか部分的に分
離している部位においては、死んだ浸潤細胞が核濃縮の
細胞くずの塊を形成していた。
【0124】0.5mmの発泡体骨格形成材料の場合は
幾つかの部位において肉芽組織床の中への基質の完全な
取り込みが見られた。図13および図14はこれらの基
質の肉芽組織床の中への取り込みを示している図であ
る。図13はトリクローム(trichrome)染色した組織サ
ンプルの40倍の暗視野顕微鏡写真である。また、図1
4はPDGFを含有する発泡体の細胞浸潤を示すトリク
ローム染色したサンプルの100倍の複合顕微鏡写真で
ある。これらの両方の写真において肉芽組織床内への基
質の完全な取り込みが明らかに分かる。また、これら両
方の写真において発泡体骨格形成材料上の高密度の線維
組織の存在も明瞭に分かる。これらの存在により、0.
5mmの発泡体は表皮組織の成長において適当な基質を
構成することが分かった。
【0125】実施例8 ランダムポリ(ε−カプロラクトン−コ−グリコリド)
の合成 35/65のモル組成を有するε−カプロラクトン−グ
リコリドのランダムコポリマーを開環重合反応により合
成した。この合成法は実施例6における米国特許第5,
468,253号(本明細書に参考文献として含まれ
る)において記載される方法とほぼ同じである。添加す
るジエチレングリコール開始剤の量をモノマーの1.1
5ミリモル/モルに調節して以下の特性の乾燥状態のポ
リマーを得た。すなわち、このコポリマーの固有粘度
(I.V.)は25℃でヘキサフルオロイソプロパノー
ルにおいて1.59dL/gであった。PCL/PGA
のモル比はプロトンNMRにより35.5/64.5で
あり、0.5%の残留モノマーを含有していた。さらに
このコポリマーのガラス転移点(Tg)および融点(T
m)はDSCにより−1℃,60℃および126℃であ
ることが分かった。
【0126】実施例9 連続添加による40:60ポリ(ε−カプロラクトン−
コ−L−ラクチド)の合成 グローブボックスにおいて、100μL(33μモル)
の0.33モルのスズ(II)オクトエートのトルエン
溶液、115μL(1.2ミリモル)のジエチレングリ
コール、24.6グラム(170ミリモル)のL−ラク
チド、および45.7グラム(400ミリモル)のε−
カプロラクトンをステンレススチール・メカニカルスタ
ーラーおよび窒素ガスブランケットを備えたシラン処理
し、火炎乾燥したトゥーネックの250mL丸底フラス
コの中に入れた。この反応フラスコを既に190℃に設
定してあるオイルバス中に入れて保持した。また、この
グローブボックス中において、62.0グラム(430
ミリモル)のL−ラクチドを火炎乾燥して等圧化した滴
下ロート中に入れた。このロートをヒートテープで包ん
で反応フラスコの第2ネックに取り付けた。190℃に
おいて6時間後に、溶融したL−ラクチドを5分かけて
反応フラスコ内に添加した。この反応を一晩続けて19
0℃で合計24時間行った後に、反応物を放置して室温
まで冷却した。その後、液体窒素において凍結し、ガラ
スを破壊してこのコポリマーを単離した。残留したガラ
ス破片はベンチグラインダーによりコポリマーから取り
除いた。このコポリマーを液体窒素により再び凍結し
て、メカニカルスターラーのパドルを取り外した。さら
に、Wiley Mill(微粉砕機)によりこのコポリマーを削
って風袋を軽量したガラスの広口ビンの中に入れ、真空
オーブン内において一晩かけて室温まで加温した。その
後、103.13グラムの40:60ポリ(ε−カプロ
ラクトン−コ−L−ラクチド)を風袋を軽量したアルミ
ニウム皿に入れて54時間かけて110℃で真空処理し
て揮発物質を除去した。この結果、98.7グラム(9
5.7重量%)のコポリマーを脱気処理後に回収した。
固有粘度を計測した結果、25℃でCHCl3 中(濃度
=0.1g/dL)において1.1dL/gであった。
FTIR(KBr窓上におけるCHCl3 からのキャス
トフィルム、cm-1):2993,2944,286
8,1759,1456,1383,1362,118
4,1132,1094,870,および756。 1
−NMR(400MHz、HFAD/ベンゼン、pp
m):δ1.25、2本の幅広(broad)線(e);1.
35,2本線(f);1.42、3本線;1.55、2
本線;2.22、3本線;2.35、4本の幅広線;
4.01、3本線;4.05、3本線;4.2、四重
線;5.05、3本の幅広線;5.15、4本線。 1 H−NMRによるポリマー組成:41.8%PCL、
57.5%PLA、0.8%L−ラクチド、<0.1%
ε−カプロラクトン。DSC(20℃/分、第1熱):
m =154.8℃、ΔHm =18.3J/g。GPC
(ポリ(メチルメタクリレート)基準を用いるTHF中
で決定した分子量):Mw =160,000、Mn =1
01,000、PDI=1.6。
【0127】実施例10 95/5PLA/PCLコポリマーの合成 グローブボックスにおいて、170μL(1.8ミリモ
ル)のジエチレングリコール、350μL(115μモ
ル)の0.33モルのスタナスオクトエートのトルエン
溶液、17.1グラム(150ミリモル)のε−カプロ
ラクトン、および410.4グラム(2.85モル)の
L−ラクチドをシラン処理して火炎乾燥した1000m
L丸底フラスコに入れた。このフラスコはステンレスス
テンレススチール・メカニカルスターラーおよび乾燥窒
素ガスブランケットを保持するための減圧解除用コネク
タを備えている。この反応フラスコを既に185℃に加
熱してあるオイルバスに入れて3時間保持した。その
後、フラスコをオイルバスから取り出して室温まで放置
冷却した。フラスコをアルミニウムホイルで包んで、こ
れを液体窒素中で凍結することによりポリマーを単離し
て、ポリマーに付着したガラスを削り取った。その後、
このコポリマーをWiley mill(粉砕機)において削り、
削ったポリマーを80℃で24時間真空乾燥して302
グラムのコポリマーを回収した。この固有粘度はクロロ
ホルム中(25℃、濃度=0.1g/dL)で2.1d
L/gであった。このポリマー組成をプロトンNMR分
光分析により測定して、97.2モル%のPLAおよび
2.8モル%のPCLであることが分かった。残留モノ
マーは全く検出されなかった。
【0128】実施例160/40PLA/PCLハイブリッド発泡体/微小繊
維織物構造の合成 工程A.60/40PLA/PCLの14%重量/重量
均質トリクロロエタン溶液の作成 14部の60/40PLA/PCL(I.V.=1.3
4dl/g)を86部のトリクロロエタン溶媒(TC
E)で溶解することにより14%重量/重量ポリマー溶
液を調製した。この溶液を磁気攪拌棒を備えたフラスコ
内で調製した。小ポリマーを完全に溶解するためには混
合物を60℃で一夜攪拌することが推奨される。
【0129】工程B. 静電紡糸 この実験には静電スピナーを用いた。スペルマン高電圧
直流供給器(SpellmanHigh Voltage DC Supply)(モデ
ル番号:RHR30PN30、スペルマンハイボルテー
ジ エレクトロニクス コーポレーション(Spellman H
igh Voltage Electronics Corporation), 米国、ニュ
ーヨーク州ホッポージ市(Hauppauge, NY, USA))を高
圧電源として用いた。印加電圧およびマンドレル速度を
ラブビューコンピュータソフトにより調節した。紡糸口
金との間の距離を機械的に調節した。
【0130】実施例1に記載のように作成した凍結乾燥
した60/40PLA/PCL発泡体の平坦なシートを
ロール掛けして円筒にした。両端部を紡糸において使用
した溶媒であるトリクロロエタン数滴で固定した。この
発泡体チューブを回転している接地した導電性マンドレ
ルに搭載した。発泡体基体により覆われていないマンド
レルの両端部を絶縁テープでマスクして両端部に微小繊
維が引きつけられるのを防止した。溶液を紡糸口金内に
置き、高電圧をこのポリマー溶液に印加した。この実験
を室温および周囲湿度において行った。
【0131】紡糸時の処理条件は下記の通りであった: マンドレル電圧 16,000V マンドレル速度 100rpm 紡糸口金とマンドレルとの距離 10 cm 温度 室温 湿度 周囲湿度
【0132】厚さがほぼ200μmの層をチューブの他
面上に堆積した。
【0133】実施例12 カプセルに包まれたハイブリッド発泡体/織物構造にお
いて培養した軟骨細胞は細胞移動が制限されることを示
工程A.ハイブリッド60/40PLA/PCL発泡体
/微小戦記織物骨格形成材料の作成 実施例1に記載の60/40PLA/PCLから作成し
た凍結乾燥した発泡体を実施例11に詳細に説明したよ
うに、トリクロロエタン中に60/40PLA/PCL
の静電紡糸の際に、実施例1に記載された60/40P
LA/PCLから作成された凍結乾燥した発泡体を基体
として使用した。
【0134】工程B.ハイブリッド60/40PLA/
PCL発泡体/微小繊維織物骨格形成材料への軟骨細胞
の播種 ウシの肩部から単離した軟骨細胞をDulbeccoの
修正Eagle培地(高グルコース)に10%ウシ胎児
血清、10mM HEPES、0.1mM非必須アミノ
酸、20μg/mlのストレプトマイシンおよび0.2
5μg/mlのアンホテリシンBを補充したものにおい
て培養した。
【0135】3次元移動検定法 この検定法は細胞を移植した収縮されたコラーゲン格子
にコラーゲンゲルの中心部に生分解性ポリマー骨格形成
材料を埋設したものに基づいている。皮膚の均等物(コ
ラーゲン格子)を下記の混合物から作成した:軟骨細胞
培地8ml、中和培地(0.1N NaOH含有DME
M/10%FBS、使用前に調製)2ml、コラボラテ
ィブ バイオメディカル プロダクツ(Collaborative
Biomedical Products)社から入手したラット尾部I型
コラーゲン(3.99mg/ml)4ml、および軟骨
細胞培地に懸濁した軟骨細胞懸濁液2ml。上記細胞/
コラーゲン混合物を24穴ハイドロゲル塗布プレート
(Costar、カタログ#3473)の各穴に分配し
た(2ml)。最終細胞濃度は6×10個/mlであ
り、コラーゲン濃度は1mg/mlであった。コラーゲ
ンゲルを37℃で1時間重合させた。ゲル重合に続い
て、1.5mlの軟骨細胞増殖培地を各穴に適用した。
この培地を1日おきに取り替えた。7日間収縮させた
後、使い捨て生検用ポンチを使用してコラーゲン格子の
厚み全体にわたって直径5mmの傷を作成した。湿った
形で供給されたほぼ直径5mmで厚さ2mmの被検骨格
形成材料を傷を付けたコラーゲン格子の中心部に移植し
た。コラーゲン格子が収縮する間に傷床から骨格形成材
料押し出されることを確実に防止するために、50μl
の非細胞性コラーゲンを各構成体の頂部に置いた。これ
らの構成体を軟骨細胞培地中で培養し、培地は2日間隔
で取り替えた。骨格形成材料を含有する収縮したゲルを
超低クラスタシャーレにおいて静止状態でまたはバイオ
リアクタ内で培養し、3週間後に回収した。
【0136】工程C.骨格形成材料内の細胞の特徴付け 細胞が浸潤した骨格形成材料に組織学を適用した。骨格
形成材料を10%緩衝ホルマリン中で固定し、パラフィ
ンに包埋して切片を作成する(ハイブリッド発泡体/微
小繊維織物骨格形成材料)か、または凍結切片を作成し
た(対照発泡体骨格形成材料)。切片をヘマトキシリン
/エオシン(H/E、細胞数および形態)、サフラニン
O(SO;硫酸化GAGs)およびトリクローム(コラ
ーゲン)で染色した。これらの骨格形成材料への細胞浸
潤の定量を画像分析により決定した。データにTuke
y事後テストの分散分析を行った。
【0137】実験結果 3週間培養した構成物のH/E切片の定量的評価によ
り、軟骨細胞は両骨格形成材料に浸潤したことが明らか
になった。バイオリアクタ内で培養したハイブリッド発
泡体/微小繊維織物骨格形成材料への細胞の浸潤は40
/60PCL/PLA発泡体骨格形成材料への浸潤より
も顕著に高かった(P<0.05)。また、静止状態に
保った培養においては、ハイブリッド発泡体/微小繊維
織物骨格形成材料への細胞の浸潤は40/60PCL/
PLA発泡体骨格形成材料への浸潤よりも顕著に高かっ
た(P<0.05)。
【0138】 細胞浸潤 ハイブリッド 細胞/mm 40/60PCL/PLA 発泡体/微小繊維(3週間) 発泡体骨格形成材料 織物骨格形成材料 静止細胞培養 50 80 バイオリアクタ 140 200 細胞培養
【0139】ハイブリッド発泡体/微小繊維織物骨格形
成材料はもっとも高い細胞密度を示した。本発明者は、
細胞−細胞相互作用がハイブリッド発泡体/微小繊維織
物骨格形成材料の場合は他の骨格形成材料に比べて高い
ことが推定されるが、この細胞−細胞相互作用が選択的
な軟骨細胞増殖およびハイブリッド発泡体/微小繊維織
物骨格形成材料に対する分化された機能に寄与している
ことがあり得ると仮定する。この細胞−細胞相互作用は
軟骨細胞の表現型を維持する重要な役割を果たしている
ことが仮定される。軟骨細胞は細胞の単一層に展開する
と分化することが知られている。単一層で高細胞密度で
培養すると、II型コラーゲンおよびアグリカンの発現
により示されるように軟骨細胞はそれらの表現型を維持
する。
【0140】6週間までに40/60PCL/PLA発
泡体骨格形成材料は主に構成体の周りのカプセル内に局
在する軟骨様形態/性質を示した。これに対して、ハイ
ブリッド発泡体/微小繊維織物骨格形成体においては、
カプセルは非常に薄く、かつ構成体内の細胞の形態は軟
骨様であり、かつより均一な細胞の分布が観察された。
【0141】本発明の実施態様は以下の通りである。 (1)前記生体許容性の複合体が生体吸収性である請求
項1に記載の生体許容性の複合体。 (2)前記生体許容性のフィラメント状層が生体吸収性
である請求項1に記載の生体許容性の複合体。 (3)前記生体許容性の複合体が脂肪族ポリエステル、
ポリ(アミノ酸)、コポリ(エーテル−エステル)、ポ
リアルキレンオキサレート、ポリアミド、ポリ(イミノ
カーボネート)、ポリオルトエステル、ポリオキサエス
テル、ポリアミドエステル、アミン基を含有するポリオ
キサエステル、ポリ(酸無水物)、ポリホスファゼン、
生体ポリマーおよびこれらの混合物から成る群から選択
される生体吸収性のポリマーにより形成されている請求
項1に記載の生体許容性の複合体。 (4)前記生体吸収性ポリマーが脂肪族ポリエステルで
ある実施態様(3)に記載の生体許容性の複合体。 (5)前記脂肪族ポリエステルがラクチド、グリコリ
ド、グリコール酸、ε−カプロラクトン、p−ジオキサ
ノン(1,4−ジオキサン−2−オン)、トリメチレン
カーボネート(1,3−ジオキサン−2−オン)、トリ
メチレンカーボネートのアルキル誘導体、δ−バレロラ
クトン、β−ブチロラクトン、γ−ブチロラクトン、ε
−デカラクトン、ヒドロキシブチレート、ヒドロキシバ
レレート、1,4−ジオキセパン−2−オン、1,5,
8,12−テトラオキアシクロテトラデカン−7,14
−ジオン、1,5−ジオキセパン−2−オン、6,6−
ジメチル−ジオキセパン−2−オン、およびこれらの混
合物のホモポリマーおよびコポリマーからなる群から選
ばれる実施態様(4)に記載の生体許容性の複合体。
【0142】(6)前記脂肪族ポリエステルがエラスト
マーである実施態様(4)に記載の生体許容性の複合
体。 (7)前記エラストマーがε−カプロラクトンとグリコ
リドのコポリマー、ε−カプロラクトンと(L)ラクチ
ドのコポリマー、p−ジオキサノン(1,4−ジオキサ
ン−2−オン)と(L)ラクチドのコポリマー、ε−カ
プロラクトンとp−ジオキサノンのコポリマー、p−ジ
オキサノンとトリメチレンカーボネートのコポリマー、
トリメチレンカーボネートとグリコリドとのコポリマ
ー、トリメチレンカーボネートと(L)ラクチドとのコ
ポリマーおよびこれらの混合物からなる群から選ばれる
実施態様(6)に記載の生体許容性複合体。 (8)さらに第2の脂肪族ポリエステルが前記生体許容
性の発泡体の構成要素として存在している実施態様
(4)に記載の生体許容性の複合体。 (9)さらに第2の脂肪族ポリエステルが前記生体許容
性のフィラメント状層の構成要素として存在している実
施態様(4)に記載の生体許容性の複合体。 (10)前記生体許容性の勾配構造を有する発泡体が前
記第1の部分から前記第2の部分にかけて、組成におい
てほぼ連続的に遷移している実施態様(3)に記載の生
体許容性の複合体。
【0143】(11)前記生体許容性の勾配構造を有す
る発泡体が前記第1の面部から第2の面部にかけて組成
において少なくとも2種の異なる脂肪族ポリエステルの
第1の比から前記少なくとも2種の異なる脂肪族ポリエ
ステルの第2の比までほぼ連続的に遷移している実施態
様(10)に記載の生体許容性複合体。 (12)前記生体許容性の勾配構造を有する発泡体が前
記第1の部分から前記第2の部分にかけて、剛性におい
てほぼ連続的に遷移している実施態様(3)に記載の生
体許容性の複合体。 (13)前記生体許容性の勾配構造を有する発泡体が前
記第1の部分から前記第2の部分にかけて、生体吸収速
度においてほぼ連続的に遷移している実施態様(3)に
記載の生体許容性の複合体。 (14)前記生体許容性の勾配構造を有する発泡体が前
記第1の部分から前記第2の部分にかけて、柔軟性にお
いてほぼ連続的に遷移している実施態様(3)に記載の
生体許容性の複合体。 (15)前記生体許容性の勾配構造を有する発泡体が前
記第1の部分から前記第2の部分にかけて、構造におい
てほぼ連続的に遷移している実施態様(3)に記載の生
体許容性の複合体。
【0144】(16)前記生体許容性の勾配構造を有す
る発泡体が前記第1の部分から前記第2の部分にかけ
て、構造においてほぼ球状の多孔質形状から中将の多孔
質形状までほぼ連続的に遷移している実施態様(15)
に記載の生体許容性の複合体。 (17)前記ほぼ球状の気孔の大きさが約30μm乃至
約150μmである実施態様(15)に記載の生体許容
性の複合体。 (18)前記柱状の気孔の直径が約100μm乃至約4
00μmであり、直径に対する長さの比が少なくとも2
である実施態様(15)に記載の生体許容性の複合体。 (19)さらに、前記生体許容性の勾配構造を有する発
泡体の中に治療剤が存在している請求項1に記載の生体
許容性の複合体。 (20)前記生体許容性の発泡体が抗感染剤、ホルモ
ン、鎮痛剤、抗炎症剤、増殖因子、化学療法剤、抗拒絶
剤、プロスタグランジン、RDGペプチド、およびこれ
らの混合物から成る群から選択される薬剤をさらに含有
している請求項1に記載の性愛許容性の複合体。
【0145】(21)前記増殖因子が骨形態発生様タン
パク、表皮増殖因子、線維芽細胞増殖因子、血小板由来
増殖因子、インシュリン由来増殖因子、トランスホーミ
ング増殖因子、脈管内皮増殖因子およびこれらの混合物
である実施態様(20)に記載の生体許容性複合体。 (22)前記生体許容性発泡体が生体吸収性の合成ポリ
マー、生体許容性で生体吸収性の生体ポリマー、生体許
容性のセラミック材料およびこれらの混合物から成る群
から選択される生体許容性の材料で充填されている請求
項1に記載の生体許容性の複合体。 (23)前記流路を備える発泡体が少なくとも200μ
mの平均長さの流路を有する請求項1に記載の生体許容
性複合体。 (24)前記流路がほぼ前記第1の面部から第2の面部
に延在している実施態様(23)に記載の生体許容性複
合体。 (25)約30重量%乃至約99重量%のε−カプロラ
クトン反復単位を含有する組成により形成されている内
部連通気孔を有する発泡体から成る請求項1に記載の生
体許容性の複合体。
【0146】(26)前記ε−カプロラクトン反復単位
がラクチド、グリコリド、グリコール酸、ε−カプロラ
クトン、p−ジオキサノン(1,4−ジオキサン−2−
オン)、トリメチレンカーボネート(1,3−ジオキサ
ン−2−オン)、トリメチレンカーボネートのアルキル
誘導体、δ−バレロラクトン、β−ブチロラクトン、γ
−ブチロラクトン、ε−デカラクトン、ヒドロキシブチ
レート、ヒドロキシバレレート、1,4−ジオキセパン
−2−オン、1,5,8,12−テトラオキアシクロテ
トラデカン−7,14−ジオン、1,5−ジオキセパン
−2−オン、6,6−ジメチル−ジオキセパン−2−オ
ン、およびこれらの混合物からなる群から選ばれるコモ
ノマーと共重合している実施態様(25)に記載の生体
許容性の複合体。 (27)第1の部分および第2の部分を有し、前記生体
許容性の発泡体は前記生体許容性の発泡体の前記前記第
1の部分から前記第2の部分にかけて、組成、剛性、柔
軟性、生体吸収速度、および多孔質構造から成る群から
選択される少なくとも1個の特性がほぼ連続的に遷移し
ている実施態様(25)に記載の生体許容性の複合体。 (28)前記相互に内部連通している気孔は気孔の大き
さが約10μm乃至約200μmの範囲内である実施態
様(25)に記載の生体許容性の複合体。 (29)前記生体許容性の発泡体の多孔質性が約20%
乃至約98%の範囲内である実施態様(25)に記載の
生体許容性の複合体。 (30)前記生体許容性発泡体が流路を有する実施態様
(25)に記載の生体許容性の複合体。
【0147】(31)前記流路の平均長さが少なくとも
200μmである実施態様(30)に記載の生体許容性
の複合体。 (32)前記ほぼ球状の気孔の大きさが約30μm乃至
約150μmである実施態様(25)に記載の生体許容
性の複合体。 (33)前記ほぼ球状の気孔の大きさが約30μm乃至
約400μmであり、直径に対する長さの比が少なくと
も2である実施態様(25)に記載の生体許容性の複合
体。 (34)さらに、前記生体許容性の勾配構造を有する発
泡体の中に治療剤が存在している実施態様(25)に記
載の生体許容性の複合体。 (35)前記生体許容性の発泡体が前記生体許容性の発
泡体内の挿入物で形成されている請求項1に記載の生体
許容性の複合体。
【0148】(36)前記挿入物がフィルム、スクリ
ム、織布、編繊維、偏組繊維、整形外科用移植片、チュ
ーブおよびこれらの混合物からなる群から選ばれる実施
態様(35)に記載の生体許容性の複合体。 (37)前記生体許容性複合体が3次元形状の構造体に
形成されている請求項1に記載の生体許容性の複合体。 (38)前記3次元形状構造体が管状形、分岐した管状
形、球形、半球形、3次元的多角形状、楕円形、トロイ
ド形状、円錐形、円錐台形、ピラミッド形状、これらの
中実および中空のもの、並びにこれらの組合せからなる
群から選ばれる実施態様(37)に記載の生体許容性の
複合体。 (39)前記生体許容性の複合体が生体吸収性である請
求項2に記載の方法。 (40)前記生体許容性の複合体が脂肪族ポリエステ
ル、ポリ(アミノ酸)、コポリ(エーテル−エステ
ル)、ポリアルキレンオキサレート、ポリアミド、ポリ
(イミノカーボネート)、ポリオルトエステル、ポリオ
キサエステル、ポリアミドエステル、アミン基を含有す
るポリオキサエステル、ポリ(酸無水物)、ポリホスフ
ァゼン、生体ポリマーおよびこれらの混合物から成る群
から選択される生体吸収性のポリマーにより形成されて
いる請求項2に記載の方法。
【0149】(41)前記生体吸収性ポリマーが脂肪族
ポリエステルである実施態様(40)に記載の方法。 (42)前記脂肪族ポリエステルがラクチド、グリコリ
ド、グリコール酸、ε−カプロラクトン、p−ジオキサ
ノン(1,4−ジオキサン−2−オン)、トリメチレン
カーボネート(1,3−ジオキサン−2−オン)、トリ
メチレンカーボネートのアルキル誘導体、δ−バレロラ
クトン、β−ブチロラクトン、γ−ブチロラクトン、ε
−デカラクトン、ヒドロキシブチレート、ヒドロキシバ
レレート、1,4−ジオキセパン−2−オン、1,5,
8,12−テトラオキアシクロテトラデカン−7,14
−ジオン、1,5−ジオキセパン−2−オン、6,6−
ジメチル−ジオキセパン−2−オン、およびこれらの混
合物のホモポリマーおよびコポリマーからなる群から選
ばれる実施形態(41)に記載の方法。 (43)前記脂肪族ポリエステルがエラストマーである
実施態様(42)に記載の方法。 (44)細胞が前記生体許容性の複合体上に播種される
請求項2に記載の方法。 (45)細胞が前記生体許容性の複合体上に播種される
実施態様(42)に記載の方法。
【0150】(46)前記生体許容性の複合体が動物に
移植され細胞と接触される請求項2に記載の方法。 (47)前記生体許容性の複合体が動物に移植され細胞
と接触される実施態様(42)に記載の方法。 (48)前記生体許容性の複合体上に細胞を播種し、前
記生体許容性の複合体と前記細胞とを細胞培養装置内に
置き、前記細胞を前記生体許容性の複合体上で増殖させ
る請求項2に記載の方法。 (49)前記生体許容性の複合体上に細胞を播種し、前
記生体許容性の複合体と前記細胞とを細胞培養装置内に
置き、前記細胞を前記生体許容性の複合体上で増殖させ
る実施態様(42)に記載の方法。 (50)前記細胞が多能性細胞、幹細胞および前駆体細
胞並びにこれらの混合物である請求項2に記載の方法。
【0151】(51)前記細胞が筋細胞、脂肪細胞、線
維筋芽細胞、外胚葉細胞、筋肉細胞、骨芽細胞、軟骨細
胞、内皮細胞、線維芽細胞、膵細胞、肝細胞、胆管細
胞、骨髄細胞、神経細胞、尿生殖器細胞およびこれらの
混合物である請求項2に記載の方法。 (52)前記生体許容性の複合体が抗感染剤、ホルモ
ン、鎮痛剤、抗炎症剤、増殖因子、化学療法剤、抗拒絶
剤、プロスタグランジン、RDGペプチド、およびこれ
らの混合物から成る群から選択される薬剤を含有してい
る請求項2に記載の方法。 (53)前記生体許容性の複合体が約30重量%乃至約
99重量%のε−カプロラクトン反復単位を含有する組
成により形成されている請求項2に記載の方法。 (54)前記ε−カプロラクトン反復単位がラクチド、
グリコリド、グリコール酸、ε−カプロラクトン、p−
ジオキサノン(1,4−ジオキサン−2−オン)、トリ
メチレンカーボネート(1,3−ジオキサン−2−オ
ン)、トリメチレンカーボネートのアルキル誘導体、δ
−バレロラクトン、β−ブチロラクトン、γ−ブチロラ
クトン、ε−デカラクトン、ヒドロキシブチレート、ヒ
ドロキシバレレート、1,4−ジオキセパン−2−オ
ン、1,5,8,12−テトラオキアシクロテトラデカ
ン−7,14−ジオン、1,5−ジオキセパン−2−オ
ン、6,6−ジメチル−ジオキセパン−2−オン、およ
びこれらの混合物からなる群から選ばれるコモノマーと
共重合している実施態様(53)に記載の生体許容性の
複合体。 (55)細胞が前記生体許容性の複合体上に播種される
実施態様(53)に記載の方法。
【0152】(56)前記生体許容性の複合体が動物に
移植され細胞と接触される実施態様(53)に記載の方
法。 (57)前記生体許容性の複合体上に細胞を播種し、前
記生体許容性の複合体と前記細胞とを細胞培養装置内に
置き、前記細胞を前記生体許容性の複合体上で増殖させ
る実施態様(53)に記載の方法。 (58)前記細胞が多能性細胞、幹細胞および前駆体細
胞並びにこれらの混合物である実施態様(57)に記載
の方法。 (59)前記細胞が筋細胞、脂肪細胞、線維筋芽細胞、
外胚葉細胞、筋肉細胞、骨芽細胞、軟骨細胞、内皮細
胞、線維芽細胞、膵細胞、肝細胞、胆管細胞、骨髄細
胞、神経細胞、尿生殖器細胞およびこれらの混合物であ
る実施態様(57)に記載の方法。
【0153】
【発明の効果】従って、本発明によれば、組織の修復ま
たは再生が有効に行える形態、構造および/または材料
組成の連続的な勾配構造を有する生体許容性で生体吸収
性の発泡体が提供できる。
【図面の簡単な説明】
【図1】35/65ε−カプロラクトン−コ−グリコリ
ドコポリマーの5%溶液により作成した不規則微小構造
発泡体の断面の走査電子顕微鏡写真である。
【図2】35/65ε−カプロラクトン−コ−グリコリ
ドコポリマーの10%溶液により作成した垂直方向に開
口する流路を有する発泡体の断面の走査電子顕微鏡写真
である。
【図3】35/65ε−カプロラクトン−コ−グリコリ
ドコポリマーの10%溶液により作成した構造的な勾配
を有する発泡体の断面の走査電子顕微鏡写真である。
【図4】40/60ε−カプロラクトン−コ−(L)ラ
クチドコポリマーおよび35/65ε−カプロラクトン
−コ−グリコリドコポリマーの50/50混合物により
作成した勾配構造を有する発泡体の断面の走査電子顕微
鏡写真である。
【図5】40/60ε−カプロラクトン−コ−(L)ラ
クチドコポリマーおよび35/65ε−カプロラクトン
−コ−グリコリドコポリマーの50/50混合物により
作成した勾配構造を有する発泡体の上部の断面の走査電
子顕微鏡写真である。
【図6】40/60ε−カプロラクトン−コ−(L)ラ
クチドコポリマーおよび35/65ε−カプロラクトン
−コ−グリコリドコポリマーの50/50混合物により
作成した勾配構造を有する発泡体の底部の断面の走査電
子顕微鏡写真である。
【図7】細胞培養における諸データのグラフである。
【図8】細胞培養における諸データのグラフである。
【図9】細胞培養における諸データのグラフである。
【図10】軟骨組織の解剖構造学的な説明図である。
【図11】皮膚骨格形成材料としての使用に適する構造
を有している35/65ε−カプロラクトン−コ−グリ
コリドコポリマーおよび40/60ε−カプロラクトン
−コ−(L)ラクチドコポリマーの50/50混合物に
より作成した0.5mmの発泡体の走査電子顕微鏡写真
である。図11(A)は好ましくは傷床に対向する骨格
形成材料の表面の多孔質性を示している走査電子顕微鏡
写真であり、図11(B)は好ましくは傷床に離れて対
向する骨格形成材料の表面の多孔質性を示している走査
電子顕微鏡写真である。
【図12】皮膚骨格形成材料としての使用に適する構造
を有している35/65ε−カプロラクトン−コ−グリ
コリドコポリマーおよび40/60ε−カプロラクトン
−コ−(L)ラクチドコポリマーの50/50混合物に
より作成した0.5mmの発泡体の走査電子顕微鏡写真
である。発泡体の厚さ方向に延在する流路を有する骨格
形成材料の断面を示している走査電子顕微鏡写真であ
る。
【図13】豚モデル内に移植後8日目の図11(A)乃
至図12に示した発泡体の細胞浸潤を示すトリクローム
染色サンプルの40倍の暗視野顕微鏡写真である。
【図14】豚モデル内に移植後8日目のさらにPDGF
を含有する図11(A)乃至図12に示した発泡体の細
胞浸潤を示すトリクローム染色サンプルの100倍の複
合顕微鏡写真である。
【図15】発泡体基体に融合した静電紡糸繊維層の断面
の顕微鏡写真である(両材料は(L)ラクチドとε−カ
プロラクトンの60/40コポリマーである)。
【図16】図15に示す静電紡糸層の表面多孔質構造の
顕微鏡写真である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 マーティ・エヌ・バカルナム アメリカ合衆国、10025 ニューヨーク州、 ニューヨーク、アパートメント・42、ウェ スト・ワン・ハンドレッド・アンド・イレ ブンス・ストリート 529 (72)発明者 マーク・シー・ジマーマン アメリカ合衆国、08816 ニュージャージ ー州、イースト・ブランズウィック、エイ ゲイト・ロード 21 (72)発明者 アンジェロ・ジョージ・スコープライアノ ス アメリカ合衆国、08889 ニュージャージ ー州、ホワイトハウス・ステーション、ジ ョン・スティーブンス・ロード 7 (72)発明者 モーラ・シー・メリカン アメリカ合衆国、08807 ニュージャージ ー州、ブリッジウォーター、ジョンソン・ サークル 2701 (72)発明者 クライレン・エイ・バジリオ アメリカ合衆国、07062 ニュージャージ ー州、プレインフィールド、デボラ・コー ト 82 (72)発明者 マーク・ビー・ローラー アメリカ合衆国、08902 ニュージャージ ー州、ノース・ブランズウィック、クイン ス・プレイス 9 (72)発明者 デビッド・ブイ・ゴーキー アメリカ合衆国、08822 ニュージャージ ー州、フレミントン、コッパー・ペニー・ ロード 18 (72)発明者 イクソー・チュン アメリカ合衆国、08822 ニュージャージ ー州、フレミントン、スプルス・コート 253 Fターム(参考) 4C081 AB04 AB11 AB19 CA171 CB011 DA01 DA02 DB01 DB04 DC04

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 第1の生体許容性のフィラメント状層と
    これに取り付けられた第2の生体許容性の発泡体層を備
    え、前記生体許容性の発泡体が勾配構造を備える発泡体
    および流路を備える発泡体からなる群から選ばれる生体
    許容性の複合体であって、前記勾配構造を備える発泡体
    は第1の部分および第2の部分を有し、前記第1の部分
    から前記第2の部分にかけて、組成、剛性、柔軟性、生
    体吸収速度、および多孔質構造から成る群から選択され
    る少なくとも1個の特性がほぼ連続的に遷移しており、
    かつ前記流路を備える発泡体は第1の面部と流路を備え
    る第2の面部とを有する生体許容性の複合体。
  2. 【請求項2】 組織の修復または再生の方法であって、
    細胞を生体許容性の複合体に接触させる工程から成り、
    当該生体許容性の複合体が第1の生体許容性のフィラメ
    ント状層とこれに取り付けられた第2の生体許容性の発
    泡体層を備え、前記生体許容性の発泡体が勾配構造を備
    える発泡体および流路を備える発泡体からなる群から選
    ばれる生体許容性の複合体であって、前記勾配構造を備
    える発泡体は第1の部分および第2の部分を有し、前記
    第1の部分から前記第2の部分にかけて、組成、剛性、
    柔軟性、生体吸収速度、および多孔質構造から成る群か
    ら選択される少なくとも1個の特性がほぼ連続的に遷移
    しており、かつ前記流路を備える発泡体は第1の面部と
    流路を備える第2の面部とを有する方法。
  3. 【請求項3】 第1の面部および第2の面部を有する生
    体許容性の発泡体から成り、前記第1の面部および第2
    の面部の間において内部連通する気孔および流路を備え
    ている生体許容性の発泡体。
  4. 【請求項4】 約30重量%乃至約99重量%のε−カ
    プロラクトン反復単位を含有する組成により形成されて
    いる内部連通気孔を有する発泡体から成る生体許容性の
    発泡体。
JP2001081413A 2001-03-21 2001-03-21 組織の修復または再生のための多孔質組織骨格形成材料 Expired - Fee Related JP4879404B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081413A JP4879404B2 (ja) 2001-03-21 2001-03-21 組織の修復または再生のための多孔質組織骨格形成材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081413A JP4879404B2 (ja) 2001-03-21 2001-03-21 組織の修復または再生のための多孔質組織骨格形成材料

Publications (2)

Publication Number Publication Date
JP2002291867A true JP2002291867A (ja) 2002-10-08
JP4879404B2 JP4879404B2 (ja) 2012-02-22

Family

ID=18937522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081413A Expired - Fee Related JP4879404B2 (ja) 2001-03-21 2001-03-21 組織の修復または再生のための多孔質組織骨格形成材料

Country Status (1)

Country Link
JP (1) JP4879404B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445793B2 (en) 2002-09-09 2008-11-04 Kaneka Corporation Support for tissue regeneration and process for producing the same
KR101088656B1 (ko) * 2003-03-31 2011-12-01 데이진 가부시키가이샤 엘라스틴 성형체 및 그 제조법
JP2012122187A (ja) * 2004-10-20 2012-06-28 Ethicon Inc 医療器具用の強化された吸収性複層布およびその製造方法
JP2012522871A (ja) * 2009-03-31 2012-09-27 アドバンスト・テクノロジーズ・アンド・リジェネレイティブ・メディスン・エルエルシー 生物医学的用途のための厚い発泡体及びその製造方法
JP2013529081A (ja) * 2010-05-17 2013-07-18 エール ユニヴァーシティ 三次元スキャフォールド上へ細胞を播種するためのシステム
US9090863B2 (en) 2010-05-17 2015-07-28 Pall Corporation System for seeding cells onto three dimensional scaffolds
JP2017506570A (ja) * 2014-02-14 2017-03-09 アトミック メディカル イノベーションズ,インコーポレイティド 組織治癒のためのシステム及び方法
JP2018517816A (ja) * 2015-06-02 2018-07-05 エシコン・インコーポレイテッドEthicon, Inc. 末端ブロック含有吸収性ポリマーの凍結乾燥発泡体
JP2018524428A (ja) * 2015-06-02 2018-08-30 エシコン・インコーポレイテッドEthicon, Inc. 長期吸収特性を呈する半結晶性のラクチドとε−カプロラクトンとのセグメント化コポリマーから製造された新規な発泡体及びフィルムに基づく吸収性医療用装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049018A (ja) * 1999-06-30 2001-02-20 Ethicon Inc 組織の修復または再生のための多孔質組織骨格形成材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049018A (ja) * 1999-06-30 2001-02-20 Ethicon Inc 組織の修復または再生のための多孔質組織骨格形成材料

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445793B2 (en) 2002-09-09 2008-11-04 Kaneka Corporation Support for tissue regeneration and process for producing the same
KR101088656B1 (ko) * 2003-03-31 2011-12-01 데이진 가부시키가이샤 엘라스틴 성형체 및 그 제조법
JP2012122187A (ja) * 2004-10-20 2012-06-28 Ethicon Inc 医療器具用の強化された吸収性複層布およびその製造方法
JP2012522871A (ja) * 2009-03-31 2012-09-27 アドバンスト・テクノロジーズ・アンド・リジェネレイティブ・メディスン・エルエルシー 生物医学的用途のための厚い発泡体及びその製造方法
JP2013529081A (ja) * 2010-05-17 2013-07-18 エール ユニヴァーシティ 三次元スキャフォールド上へ細胞を播種するためのシステム
US9090863B2 (en) 2010-05-17 2015-07-28 Pall Corporation System for seeding cells onto three dimensional scaffolds
JP2017506570A (ja) * 2014-02-14 2017-03-09 アトミック メディカル イノベーションズ,インコーポレイティド 組織治癒のためのシステム及び方法
US10485707B2 (en) 2014-02-14 2019-11-26 Atomic Medical Innovations, Inc. Systems and methods for tissue healing
JP2020157073A (ja) * 2014-02-14 2020-10-01 アトミック メディカル イノベーションズ,インコーポレイティド 組織治癒のためのシステム及び方法
US11819385B2 (en) 2014-02-14 2023-11-21 Atomic Medical Innovations, Inc. Systems and methods for tissue healing
JP7449160B2 (ja) 2014-02-14 2024-03-13 アトミック メディカル イノベーションズ,インコーポレイティド 組織治癒のためのシステム及び方法
JP2018517816A (ja) * 2015-06-02 2018-07-05 エシコン・インコーポレイテッドEthicon, Inc. 末端ブロック含有吸収性ポリマーの凍結乾燥発泡体
JP2018524428A (ja) * 2015-06-02 2018-08-30 エシコン・インコーポレイテッドEthicon, Inc. 長期吸収特性を呈する半結晶性のラクチドとε−カプロラクトンとのセグメント化コポリマーから製造された新規な発泡体及びフィルムに基づく吸収性医療用装置
US11118025B2 (en) 2015-06-02 2021-09-14 Ethicon, Inc. Lyophilized foams of end block-containing absorbable polymers

Also Published As

Publication number Publication date
JP4879404B2 (ja) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5236132B2 (ja) 組織の修復または再生のための多孔質組織骨格形成材料
AU782297B2 (en) Porous tissue scaffoldings for the repair or regeneration of tissue
US6333029B1 (en) Porous tissue scaffoldings for the repair of regeneration of tissue
EP1234587B1 (en) Biocompatible foam composite
EP1537883B1 (en) Implants comprising viable tissue for repairing a tissue injury or defect
JP4203569B2 (ja) 軟質組織の修復および再生のための向上した構造的完全性を有する強化した発泡体移植片
AU2003252886B2 (en) Biocompatible scaffolds with tissue fragments
JP2003024340A (ja) 支持骨格固定装置およびその製造方法
JP4879404B2 (ja) 組織の修復または再生のための多孔質組織骨格形成材料
AU783073B2 (en) Foam composite for the repair or regeneration of tissue
CA2338440C (en) Foam composite for the repair or regeneration of tissue

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees