JP2002289928A - Thermoelectric conversion module and heat exchanger using the same - Google Patents

Thermoelectric conversion module and heat exchanger using the same

Info

Publication number
JP2002289928A
JP2002289928A JP2001087037A JP2001087037A JP2002289928A JP 2002289928 A JP2002289928 A JP 2002289928A JP 2001087037 A JP2001087037 A JP 2001087037A JP 2001087037 A JP2001087037 A JP 2001087037A JP 2002289928 A JP2002289928 A JP 2002289928A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
electrode member
heat exchanger
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001087037A
Other languages
Japanese (ja)
Other versions
JP3526559B2 (en
Inventor
Naoki Shudo
直樹 首藤
Hiromitsu Takeda
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001087037A priority Critical patent/JP3526559B2/en
Priority to US10/105,341 priority patent/US6759586B2/en
Publication of JP2002289928A publication Critical patent/JP2002289928A/en
Application granted granted Critical
Publication of JP3526559B2 publication Critical patent/JP3526559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module, using a thermoelectric conversion element, that can be used at a temperature exceeding >300 deg.C, and to provide a heat exchanger using the module. SOLUTION: The thermoelectric conversion module is provided with p-type thermoelectric conversion element bodies (11) and n-type thermoelectric conversion element bodies (12), which are mutudly connected in series through electrode members (13 and 14), and at the same time, arranged to face each other so as to constitute a high-temperature side first flat surface and a low-temperature side second flat surface. The bodies (11) are constituted of p-type cobalt- antimony-based semiconductors and the bodies (12) are composed of n-type cobalt-antimony-based semiconductors. The electrode members (13 and 14) are composed of iron-based electrode materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体型熱電変換
素子を用いた熱電変換モジュールおよびそれを用いた熱
交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module using a semiconductor thermoelectric conversion element and a heat exchanger using the same.

【0002】[0002]

【従来の技術】21世紀における資源の枯渇が予想される
今日、如何にエネルギーを有効に利用するかは極めて重
要な課題となっており、種々のシステムが考案されてい
る。その中でも、熱電変換素子は、これまで排熱として
無駄に環境中に捨てられていたエネルギーを回収する手
段として期待されている。そのような熱電変換素子は、
p型半導体とn型半導体を互いに直列に接続したモジュ
ールとして使用されている。
2. Description of the Related Art Today, when resources are expected to be depleted in the 21st century, how to effectively use energy has become a very important issue, and various systems have been devised. Among them, thermoelectric conversion elements are expected as a means for recovering energy that has been wasted in the environment as waste heat. Such a thermoelectric conversion element,
It is used as a module in which a p-type semiconductor and an n-type semiconductor are connected in series with each other.

【0003】従来、高い熱電変換効率を達成すべく、多
くの熱電変換半導体材料について研究がなされ、特に発
電効率の向上に関し多大な注力がなされている。
Hitherto, research has been conducted on many thermoelectric conversion semiconductor materials in order to achieve high thermoelectric conversion efficiency, and a great deal of attention has been paid particularly on improving the power generation efficiency.

【0004】しかしながら、実用の立場から熱電材料を
見ると、現在実用に供されているものはビスマス(Bi)-
テルル(Te)系(第3元素としてSb、セレン(Se)を入れた
ものも含む)であり、その他の材料は、特殊用途で作ら
れた実績はあるものの、工業生産ベースには至っていな
い。即ち、Co-Sb系半導体を使用するフィルドスクッテ
ルダイト系材料は熱電変換素子用の材料としては熱伝変
換効率上極めて魅力的な材料であるが、モジュールとし
て形成するための適当なろう材層が知られておらずモジ
ュール化することはできなかった。
[0004] However, looking at thermoelectric materials from a practical standpoint, the one currently used in practice is bismuth (Bi)-.
It is tellurium (Te) -based (including those containing Sb and selenium (Se) as the third element), and other materials have been produced for special purposes, but have not reached the industrial production base. In other words, a filled skutterudite-based material using a Co-Sb-based semiconductor is extremely attractive as a material for a thermoelectric conversion element in terms of heat transfer efficiency, but a suitable brazing material layer for forming a module. Was not known and could not be modularized.

【0005】ところで、従来、廃熱ボイラーは熱交換器
を通して蒸気あるいは温水を選るのみの目的で設計され
ており、その運転に関わる電力は外部から導入してまか
なわれている。しかし、近年、この廃熱ボイラーに熱電
変換モジュールを組み込んで廃熱から電力を取り出す試
みがなされている。その場合、より高温の熱源を利用し
得るという点から、使用する熱電変換素子は、その可使
温度が高いほど望ましいものとなり、特に、300℃以上
の可使温度を有することが好ましいと言える。
Conventionally, a waste heat boiler is designed only for selecting steam or hot water through a heat exchanger, and electric power for its operation is supplied from outside. However, in recent years, attempts have been made to extract electric power from waste heat by incorporating a thermoelectric conversion module into this waste heat boiler. In that case, from the viewpoint that a higher-temperature heat source can be used, the higher the usable temperature of the thermoelectric conversion element to be used, the more desirable it is, and it can be said that it is particularly preferable to have a usable temperature of 300 ° C. or more.

【0006】しかしながら、従来のBi-Te系熱電変換素
子は、その使用温度がせいぜい200℃であり、この要求
を満足することができない。
[0006] However, the conventional Bi-Te-based thermoelectric conversion element has an operating temperature of at most 200 ° C, and cannot satisfy this requirement.

【0007】[0007]

【発明が解決しようとする課題】従来の熱電変換素子は
Co-Sb系半導体を使用したスクッテルダイト系材料に適
用できるろう材層が存在しなかったためCo-Sb系半導体
を使用した熱電モジュールを提供することはできなかっ
た。
SUMMARY OF THE INVENTION Conventional thermoelectric conversion elements
Since there was no brazing material layer applicable to a skutterudite-based material using a Co-Sb-based semiconductor, a thermoelectric module using a Co-Sb-based semiconductor could not be provided.

【0008】本発明は、上記課題を解決するために成さ
れたもので、Co-Sb系半導体の使用を前提としこれに新
規なろう材層を適用してモジュール化した熱電変換モジ
ュールおよびそれを用いた熱交換器を提供することを課
題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and is based on the premise that a Co-Sb-based semiconductor is used, and a novel brazing material layer is applied thereto to form a thermoelectric conversion module. It is an object to provide a used heat exchanger.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、上
記の課題を解決するために、請求項1の熱電変換モジュ
ールは、高温側の第1の電極部材と、この第1の電極部
材に対向配置された低温側の第2の電極部材と、この第
1の電極部材及び第2の電極部材間に配置され双方に電
気的に接続されるCo-Sb系半導体の熱電変換素子とを有
する熱電変換モジュールにおいて、前記第1及び前記第
2の電極部材は熱膨張係数が8x10 /℃〜16x
10−6/℃の範囲にある鉄系材料であり、前記熱電変
換素子との間はAg、Au、Cuの少なくとも1種とSbとの合
金を主成分とするろう材層が介在することを特徴とす
る。ここで、前記電極部材の表面がAg,Au,Cu、の少なく
とも1種の金属が被覆されていることが接合強度を向上
させることから望ましい。
That is, in order to solve the above-mentioned problems, the present invention provides a thermoelectric conversion module according to a first aspect, wherein a first electrode member on a high temperature side and a first electrode member are provided. A second electrode member on the low-temperature side opposed to the first electrode member; and a thermoelectric conversion element of a Co-Sb-based semiconductor disposed between the first electrode member and the second electrode member and electrically connected to both. in the thermoelectric conversion module, the first and second electrode members has a thermal expansion coefficient of 8x10 - 6 / ℃ ~16x
It is an iron-based material in a range of 10 −6 / ° C., and a brazing material layer mainly containing an alloy of at least one of Ag, Au, and Cu and Sb is interposed between the thermoelectric conversion element and the thermoelectric conversion element. Features. Here, it is desirable that the surface of the electrode member is coated with at least one metal of Ag, Au, and Cu from the viewpoint of improving the bonding strength.

【0010】また、請求項2の熱電変換モジュールは、
請求項1において、前記第1の電極部材或いは前記第2
の電極部材の前記熱電変換素子が配置される面とは反対
の面にセラミックスからなる絶縁性導熱板が配置される
ことを特徴とする。この絶縁性導熱板は、窒化アルミニ
ウム、窒化ケイ素、炭化ケイ素またはアルミナにより構
成されることがエネルギ変換効率を高める観点から望ま
しい。
Further, the thermoelectric conversion module of claim 2 is
2. The first electrode member or the second electrode member according to claim 1,
An insulating heat conductive plate made of ceramics is disposed on a surface of the electrode member opposite to the surface on which the thermoelectric conversion element is disposed. It is desirable that the insulating heat conductive plate is made of aluminum nitride, silicon nitride, silicon carbide, or alumina from the viewpoint of improving energy conversion efficiency.

【0011】請求項3の熱電変換モジュールは、請求項
1或いは請求項2において、前記熱電変換素子がスクッ
テルダイト型結晶構造を有するCoSb3基化合物結晶中の
空隙に元素を充填したフィルドスクッテルダイト構造を
有する化合物であることを特徴とする。
According to a third aspect of the present invention, there is provided the thermoelectric conversion module according to the first or second aspect, wherein the thermoelectric conversion element is a filled skutter in which an element is filled in a void in a CoSb 3- based compound crystal having a skutterudite type crystal structure. It is a compound having a dye structure.

【0012】請求項4の熱電変換モジュールは、請求項
1乃至請求項3のいずれかの熱電変換モジュールが加熱
面と冷却面の間に配置される熱交換器である。
A thermoelectric conversion module according to a fourth aspect is a heat exchanger in which the thermoelectric conversion module according to any one of the first to third aspects is disposed between a heating surface and a cooling surface.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0014】(実施の形態1)図1は、本発明の実施の
形態1に係わる熱電変換モジュールを示す概略断面図で
ある。
(Embodiment 1) FIG. 1 is a schematic sectional view showing a thermoelectric conversion module according to Embodiment 1 of the present invention.

【0015】図1の熱電変換モジュール10は、複数の
p型コバルト−アンチモン系半導体からなるp型コバル
ト−アンチモン系熱電変換素子11と、複数のn型コバ
ルト−アンチモン系半導体からなるn型コバルト−アン
チモン系熱電変換素子12とを交互に同一平面上にマト
リックス上に並置して構成されている。一つのp型熱電
変換素子11には、n型熱電変換素子12が隣接してい
る。p型熱電変換素子11およびn型熱電変換素子12
を構成するコバルト−アンチモン系半導体としては、ス
クッテルダイト構造を有するCoSb3、RhSb3、IrSb3等を
用いることができる。同様の構造を持つものとしてCoAs
3があるが、ヒ素は環境への影響が心配されるため、好
ましくない。p型半導体にはFe、Ru、Os等のp型不純
物、n型半導体にはPd、Pt、Ni等のn型不純物でCoを置
換している。さらに、熱電変換素子は特性向上のため、
熱伝導率が小さいことが好ましい。このため上記スクッ
テルダイト系結晶構造を有する化合物の結晶内空孔に重
元素を充填することが好ましい。こうすることで、充填
された重元素により格子振動が散乱され、熱伝導率が低
下し、熱電変換特性が向上する。
The thermoelectric conversion module 10 shown in FIG. 1 includes a p-type cobalt-antimony-based thermoelectric conversion element 11 composed of a plurality of p-type cobalt-antimony-based semiconductors and an n-type cobalt-type composed of a plurality of n-type cobalt-antimony-based semiconductors. The antimony-based thermoelectric conversion elements 12 are alternately juxtaposed on the same plane in a matrix. An n-type thermoelectric conversion element 12 is adjacent to one p-type thermoelectric conversion element 11. P-type thermoelectric conversion element 11 and n-type thermoelectric conversion element 12
CoSb 3 , RhSb 3 , IrSb 3 or the like having a skutterudite structure can be used as the cobalt-antimony-based semiconductor constituting the above. CoAs with similar structure
There are three, but arsenic is not preferred because of concerns about its impact on the environment. The p-type semiconductor is substituted by p-type impurities such as Fe, Ru and Os, and the n-type semiconductor is substituted by Co by n-type impurities such as Pd, Pt and Ni. Furthermore, thermoelectric conversion elements are
Preferably, the thermal conductivity is small. Therefore, it is preferable to fill the vacancies in the crystal of the compound having the skutterudite crystal structure with a heavy element. By doing so, the lattice vibration is scattered by the filled heavy element, the thermal conductivity is reduced, and the thermoelectric conversion characteristics are improved.

【0016】1つのp型熱電変換素子11とこれに隣接
する1つのn型熱電変換素子12の上部には、それら素
子を接続する第1の電極部材13が設けられ、他方、1
つのp型熱電変換素子11とこれに隣接する1つのn型
熱電変換素子12の下部には、それらを共通に接続する
第2の電極部材14が設けられている。第1の電極部材
13と第2の電極部材14は、素子1個だけずれた形態
で設けられる。こうして、両熱電変換素子11および1
2は、電気的に直列に接続される。本発明において、両
電極部材13および14は、いずれも鉄系電極(金属)材
料で形成されている。鉄系金属材料としては、JISの
SUS410で代表されるマルテンサイト系ステンレス
が好ましいが、熱膨張係数が8x10−6/℃〜16x
10−6/℃の範囲にあるものであれば、炭素鋼、合金
鋼等でも構わない。
Above one p-type thermoelectric conversion element 11 and one n-type thermoelectric conversion element 12 adjacent thereto, a first electrode member 13 for connecting the elements is provided.
Below the two p-type thermoelectric conversion elements 11 and the one n-type thermoelectric conversion element 12 adjacent thereto, a second electrode member 14 for connecting them in common is provided. The first electrode member 13 and the second electrode member 14 are provided in a form shifted by one element. Thus, both thermoelectric conversion elements 11 and 1
2 are electrically connected in series. In the present invention, both of the electrode members 13 and 14 are formed of an iron-based electrode (metal) material. As the iron-based metal material, martensitic stainless steel represented by JIS SUS410 is preferable, but the thermal expansion coefficient is 8 × 10 −6 / ° C. to 16 ×.
Carbon steel, alloy steel, etc. may be used as long as they are in the range of 10 −6 / ° C.

【0017】鉄系電極部材13および14は、蒸着、あ
るいは溶射等の手法により形成することができる。しか
しながら、鉄系材料の板を用いることが最も好ましい。
鉄系材料とCo-Sb系半導体材料を接合するに際して、接
合をより強固にするためにAg-Sb、Au-Sb、Cu-Sbの中か
ら少なくとも1種の合金をろう材層として用いる。ろう
材層を使用することで、鉄系材料とCo-Sb系材料との接
合界面にAg-Sb、Au-Sb、Cu-Sbの少なくとも1種の層が
生成する結果、接合がより一層確実なものとなり、接合
界面での熱的、電気的な損失が小さくなる。
The iron-based electrode members 13 and 14 can be formed by a technique such as vapor deposition or thermal spraying. However, it is most preferred to use a plate of an iron-based material.
When joining an iron-based material and a Co-Sb-based semiconductor material, at least one alloy of Ag-Sb, Au-Sb, and Cu-Sb is used as a brazing material layer to further strengthen the joining. By using the brazing material layer, at least one layer of Ag-Sb, Au-Sb, and Cu-Sb is generated at the bonding interface between the iron-based material and the Co-Sb-based material, so that the bonding is further ensured. And thermal and electrical losses at the joint interface are reduced.

【0018】通常、第1の共通電極部材13の外側に
は、これら電極部材13に共通に接合された上部絶縁性
導熱板15が設けられている。他方、第2の共通電極部
材14の外側には、これら電極部材14に共通に接合さ
れた下部絶縁性導熱板16が設けられている。両導熱板
15および16は、それぞれ、セラミックス、好ましく
は熱伝導性の良い窒化アルミニウム、窒化ケイ素、炭化
ケイ素またはアルミナにより構成することができる。電
極部材13および14を構成する銀系金属材料は、フリ
ットガラスを用いて、これらセラミックス製導熱板1
5、16に対して良好な接合を達成する。
Usually, on the outside of the first common electrode member 13, there is provided an upper insulating heat conductive plate 15 which is jointed to these electrode members 13 in common. On the other hand, on the outside of the second common electrode member 14, a lower insulating heat conductive plate 16 jointed to the electrode members 14 is provided. Each of the heat conducting plates 15 and 16 can be made of ceramics, preferably aluminum nitride, silicon nitride, silicon carbide or alumina having good thermal conductivity. The silver-based metal material constituting the electrode members 13 and 14 is made of frit glass, and these ceramic heat conducting plates 1 are used.
Good bonding to 5 and 16 is achieved.

【0019】図1に示す構成の熱電変換モジュールにお
いて、上部絶縁性導熱板15側を低温度(L)にし、かつ
下部絶縁性導熱板16側を低温度(H)にして上下絶縁性
導熱板15と16との間に温度差を与えると、第1の電
極部材13と第2の電極部材14との間に電位差が生
じ、電極の終端に負荷を接続すると、電力を取り出すこ
とができる。
In the thermoelectric conversion module having the structure shown in FIG. 1, the upper insulating heat conducting plate 15 is set at a low temperature (L), and the lower insulating heat conducting plate 16 is set at a low temperature (H). When a temperature difference is applied between 15 and 16, a potential difference occurs between the first electrode member 13 and the second electrode member 14, and when a load is connected to the terminal of the electrode, power can be taken out.

【0020】本発明の熱電変換モジュールは、熱交換器
に組み込むことができる。基本的に、この熱交換機は、
加熱面と冷却面とを有し、その加熱面と冷却面との間に
本発明の熱電変換モジュールを組み込んだ構成を有す
る。熱交換器の一例を図2に示す。この熱交換器20
は、中央にガス通路21を有し、そのまわりには多数の
熱交換フィン22が立設されている。熱交換フィン22
に接して例えば図1に示す構造の本発明の熱電変換モジ
ュール10が設けられている。熱電変換モジュール10
は熱交換フィン22とともに外囲器23により囲まれ、
外囲器23と熱電変換モジュール10との間には例えば
水の流路24が規定されている。ガス通路21内には、
例えばごみ焼却炉からの高温の排ガスが導入され、他方
水流路24内にはその一端から水導入管25を介して冷
却水が導入される。高温排ガスの熱は、熱交換フィン2
2により奪われて水流路24内を流通する水を加熱し、
その結果水は、水排出管26から温水となって取り出さ
れる。このとき、熱電変換モジュール10の一方の面は
水流路24内を流れる水により低温側となり、他方の面
はガス通路21内を流れる高温排ガスにより高温とな
る。したがって、上に述べたように、熱電変換モジュー
ル10から電力が取り出される。
[0020] The thermoelectric conversion module of the present invention can be incorporated in a heat exchanger. Basically, this heat exchanger
It has a heating surface and a cooling surface, and has a configuration in which the thermoelectric conversion module of the present invention is incorporated between the heating surface and the cooling surface. FIG. 2 shows an example of the heat exchanger. This heat exchanger 20
Has a gas passage 21 in the center, around which a number of heat exchange fins 22 are erected. Heat exchange fins 22
The thermoelectric conversion module 10 of the present invention having a structure shown in FIG. Thermoelectric conversion module 10
Is surrounded by an envelope 23 together with the heat exchange fins 22,
For example, a water channel 24 is defined between the envelope 23 and the thermoelectric conversion module 10. In the gas passage 21,
For example, high-temperature exhaust gas from a refuse incinerator is introduced, while cooling water is introduced into the water flow path 24 from one end thereof through a water introduction pipe 25. The heat of the high-temperature exhaust gas is transferred to the heat exchange fins 2
Heating water flowing through the water flow path 24 deprived by the water flow path 2,
As a result, the water is taken out of the water discharge pipe 26 as warm water. At this time, one surface of the thermoelectric conversion module 10 has a low temperature due to the water flowing in the water flow path 24, and the other surface has a high temperature due to the high temperature exhaust gas flowing in the gas passage 21. Therefore, as described above, electric power is extracted from the thermoelectric conversion module 10.

【0021】(実施の形態2)図3は、本発明の熱交換
器20を設けた発電システムの一例であるごみ焼却設備
を示す。図3に示すゴミ焼却設備30は、ごみ焼却炉3
1、押込送風機32、押込送風機32から焼却炉31へ
供給される燃焼空気を加熱する通常の熱交換器33、お
よび二次押込送風機34を備える。熱交換器33には、
焼却炉31からの高温排ガスがラインL1および分岐ラ
インL2を介して流入し、押込送風機32からラインL
4を介して熱交換器33に導入される空気がその高温ガ
スにより加熱され、ラインL3を介して焼却炉31の底
部に導入される。
(Embodiment 2) FIG. 3 shows a refuse incineration plant which is an example of a power generation system provided with the heat exchanger 20 of the present invention. The garbage incinerator 30 shown in FIG.
1, a push-in blower 32, a normal heat exchanger 33 for heating combustion air supplied from the push-in blower 32 to the incinerator 31, and a secondary push-in blower 34. In the heat exchanger 33,
High-temperature exhaust gas from the incinerator 31 flows in through the line L1 and the branch line L2, and is sent from the forced blower 32 to the line L.
The air introduced into the heat exchanger 33 through 4 is heated by the high-temperature gas, and introduced into the bottom of the incinerator 31 through the line L3.

【0022】焼却炉31からの排ガスラインL1は、本
発明の熱交換器20に接続され、そこでは、上に述べた
ように排ガスにより温水が発生するとともに、熱電変換
モジュール(熱交換器20の内部に形成されている)に
より電力が発生する。熱交換器33を経た排ガスはライ
ンL5を介して電気集塵機35に流入し、そこで塵埃が
除去される。熱交換器20を経た排ガスはラインL6を
介してラインL5に合流し、熱交換器33を経た排ガス
とともに集塵機35に流入する。集塵機35により清浄
化された排ガスは、系外に排出される。なお、焼却炉3
1からの排ガスは、誘引通風機36の作用により系内を
流通する。
The exhaust gas line L1 from the incinerator 31 is connected to the heat exchanger 20 of the present invention, where hot water is generated by the exhaust gas and the thermoelectric conversion module (the heat exchanger 20) as described above. (Formed inside) to generate electric power. The exhaust gas that has passed through the heat exchanger 33 flows into the electric precipitator 35 via the line L5, where the dust is removed. The exhaust gas that has passed through the heat exchanger 20 joins the line L5 via the line L6, and flows into the dust collector 35 together with the exhaust gas that has passed through the heat exchanger 33. The exhaust gas cleaned by the dust collector 35 is discharged out of the system. In addition, incinerator 3
Exhaust gas from 1 flows through the system by the action of the induction ventilator 36.

【0023】さらに、本発明の熱交換器は、汽水火力発
電設備のボイラー内水管もしくは水管フィン表面に設置
し、高温側をボイラー内側、低温側を水管側とすること
で、電力と蒸気タービンに送られる蒸気とが同時に得ら
れ、汽水火力発電設備の効率を改善することができる。
Further, the heat exchanger of the present invention is installed on a water pipe or a water pipe fin surface of a boiler of a brackish water thermal power generation facility, and the high temperature side is on the inside of the boiler and the low temperature side is on the water pipe side, so that the power and the steam turbine can be used. The steam to be sent is obtained at the same time, and the efficiency of the brackish water thermal power plant can be improved.

【0024】[0024]

【実施例】以下、本発明を実施例により説明するが、本
発明はそれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0025】(実施例1)上述した図1の熱電変換モジュ
ール及び図2の熱交換器を以下の要領で製造した。
Example 1 The above-described thermoelectric conversion module of FIG. 1 and the heat exchanger of FIG. 2 were manufactured in the following manner.

【0026】(p型熱電変換素子)純度99.998%のCo、純
度99.999%のSb、純度99.99%のCe、純度99.99%のFe金属
を原料とした。これを組成式Ce(Fe0.75Co0.25)4Sb12
なるように秤量した。ただしSbは、次のアーク溶解行程
での蒸発があるため、所定の割合より重量で3%多くな
るよう秤量した。アーク炉内の水冷されている銅製のハ
−スに上記秤量原料を装填して、2×10-3Paの真空度ま
で真空引きした後、純度99.999%の高純度Arを60kPaまで
導入して減圧Ar雰囲気にして、ア−ク溶解した。溶解
後、水冷されている銅製のハ−スで急冷して得られた金
属塊を、石英管に10-4Pa以下の高真空で真空封入し、97
3Kで30時間熱処理した。得られた金属塊を窒素雰囲気中
で粉砕し、内径20mmの金型を用い圧力100MPaで成形し
た。この成形体を内径20mmのカーボン製モールドに充填
し、Ar雰囲気中、100MPa、680℃で1時間加圧焼結し、直
径20mm円盤状の焼結体(p型熱電変換材料焼結体)を得
た。400℃での抵抗率1.5×10 -3Ωcm、ゼーベック係数21
5μV/K、熱伝導率1.5W/mKであった。実際には、このp
型熱電変換材料焼結体に後述するろう材層及び電極部材
を接合してp型熱電変換素子が完成する。
(P-type thermoelectric conversion element) Co of 99.998% purity, pure
Degree 99.999% Sb, purity 99.99% Ce, purity 99.99% Fe metal
Was used as a raw material. This is represented by the composition formula Ce (Fe0.75Co0.25)FourSb12To
Weighed so that Where Sb is the next arc melting process
3% more by weight than specified
Weighed so that Water-cooled copper casing in the arc furnace
-The above-mentioned weighing material is loaded into a-3Pa vacuum
After vacuum evacuation, high purity Ar of 99.999% purity up to 60 kPa
The mixture was introduced into a reduced-pressure Ar atmosphere and arc-dissolved. Dissolution
Then, the gold obtained by rapid cooling with a water-cooled copper heart
Genus nodules in a quartz tube-FourVacuum sealed with high vacuum of Pa or less, 97
Heat treatment was performed at 3K for 30 hours. Place the obtained metal lump in a nitrogen atmosphere
And molded at a pressure of 100 MPa using a mold with an inner diameter of 20 mm.
Was. Fill this compact into a carbon mold with an inner diameter of 20mm
Pressure sintering at 100MPa, 680 ℃ for 1 hour in Ar atmosphere.
Obtained a disc-shaped sintered body (p-type thermoelectric conversion material sintered body) with a diameter of 20 mm
Was. 1.5 × 10 resistivity at 400 ℃ -3Ωcm, Seebeck coefficient 21
5 μV / K and thermal conductivity 1.5 W / mK. In fact, this p
Brazing material layer and electrode member to be described later on the sintered body of the thermoelectric conversion material
Are joined to complete a p-type thermoelectric conversion element.

【0027】(n型熱電変換素子)純度99.998%のCo、純
度99.999%のSb、純度99.99%のCe、純度99.99%のPd金属
を原料とした。これを組成式Ce0.2(Pd0.03Co0.97)4Sb12
になるように秤量した。ただしSbは、次のアーク溶解行
程での蒸発があるため、所定の割合より重量で3%多く
なるよう秤量した。ア−ク炉内の水冷されている銅製の
ハ−スに上記秤量原料を装填して、2×10-3Paの真空度
まで真空引きした後、純度99.999%の高純度Arを60kPaま
で導入して減圧Ar雰囲気にして、ア−ク溶解した。溶解
後、水冷されている銅製のハ−スで急冷して得られた金
属塊を、石英管に10-4Pa以下の高真空で真空封入し、97
3Kで30時間熱処理した。得られた金属塊を窒素雰囲気中
で粉砕し、内径20mmの金型を用い圧力100MPaで成形し
た。この成形体を内径20mmのカーボン製モールドに充填
し、Ar雰囲気中、100MPa、680℃で1時間加圧焼結し、直
径20mm円盤状の焼結体(n型熱電変換材料焼結体)を得
た。400℃での抵抗率1.1×10-3Ωcm、ゼーベック係数-2
50μV/K、熱伝導率3.6W/mKであった。実際には、このn
型熱電変換材料焼結体に後述するろう材層及び電極部材
を接合してn型熱電変換素子が完成する。
(N-type thermoelectric conversion element) Co of 99.998% purity, Sb of 99.999% purity, Ce of 99.99% purity, and Pd metal of 99.99% purity were used as raw materials. This is represented by the composition formula Ce 0.2 (Pd 0.03 Co 0.97 ) 4 Sb 12
Was weighed so that However, Sb was weighed so as to increase by 3% in weight from a predetermined ratio because of evaporation in the next arc melting process. The above-mentioned weighing material is charged into a water-cooled copper heart in an arc furnace, evacuated to a vacuum of 2 × 10 −3 Pa, and then high-purity Ar having a purity of 99.999% is introduced to 60 kPa. Then, the atmosphere was reduced to an Ar atmosphere to dissolve the arc. After melting, the metal lump obtained by quenching with a water-cooled copper heart is vacuum-sealed in a quartz tube at a high vacuum of 10 −4 Pa or less.
Heat treatment was performed at 3K for 30 hours. The obtained metal lump was pulverized in a nitrogen atmosphere and molded at a pressure of 100 MPa using a mold having an inner diameter of 20 mm. This molded body is filled into a carbon mold having an inner diameter of 20 mm, and is sintered under pressure at 100 MPa and 680 ° C. for 1 hour in an Ar atmosphere. Obtained. 1.1 × 10 -3 Ωcm at 400 ° C, Seebeck coefficient -2
It was 50 μV / K and the thermal conductivity was 3.6 W / mK. In practice, this n
An n-type thermoelectric conversion element is completed by joining a brazing material layer and an electrode member to be described later to the type thermoelectric conversion material sintered body.

【0028】(熱電変換モジュール)上記、p型熱電材料
焼結体、n型熱電材料焼結体から、一辺が2mmの立方体素
子を切り出した。これを、開口部が2mm+0.2mm角、高さ
1.5mmのコーディエライト製のメッシュ中にp型、n型を
交互に置き、縦4組横8列計32組正方形に配列した。32
5メッシュのAgメタル粉末と、325メッシュのSbメタル粉
末を、mol比でAg:Sb=51:49になるように混合し、有機溶
剤を添加してペースト化、これを、該メッシュから現れ
る該素子上下面に塗布した。その上下に4.1mm×2.0mm、
厚さ0.6mmのSUS410製板を配備した。更に24mm角、1mm厚
さのAlN板を、フリットガラス粉末を塗布した該SUS410
製電極板の外側に配し積層体とした。該積層体に3kgの
重しを載せて、電気炉に置き、Ar中で600℃1時間の熱
処理を行った。冷却後、該積層体を炉より取り出したと
ころ、すべての層が十分な強度を有する結合をなしてお
り、熱電変換モジュールが形成されていた。
(Thermoelectric Conversion Module) A cubic element having a side of 2 mm was cut out from the above-described sintered p-type thermoelectric material and sintered n-type thermoelectric material. The opening is 2 mm + 0.2 mm square, height
P-type and n-type were alternately placed in a 1.5 mm cordierite mesh, and were arranged in a total of 32 squares in 4 sets of 8 rows. 32
5 mesh Ag metal powder and 325 mesh Sb metal powder were mixed at a molar ratio of Ag: Sb = 51: 49, and an organic solvent was added to form a paste. It was applied to the upper and lower surfaces of the device. 4.1mm × 2.0mm above and below,
A 0.6mm thick SUS410 plate was deployed. Further, a 24 mm square, 1 mm thick AlN plate, the SUS410 coated with frit glass powder
A laminate was provided outside the electrode plate. A 3 kg weight was placed on the laminate, placed in an electric furnace, and heat-treated at 600 ° C. for 1 hour in Ar. After cooling, the laminate was taken out of the furnace. As a result, all the layers were bonded with sufficient strength, and a thermoelectric conversion module was formed.

【0029】この熱電変換モジュールについて高温側を
500℃、低温側を25℃にし、負荷としてモジュール内
部抵抗と同抵抗値の負荷を繋ぎ、整合負荷条件で熱電特
性を測定したところ、発生した電圧は3.6V、電力は11W
であった。この条件で1000時間連続運転した後、室温に
戻し、再び同条件で運転を行った。この繰り返しを10回
合計運転時間10000時間後も性能は変わらず、また破損
したり形状が変化することもなかった。
The high-temperature side of this thermoelectric conversion module is
The thermoelectric characteristics were measured at 500 ° C and the low temperature side at 25 ° C, and a load with the same resistance value as the module's internal resistance was connected as a load. The measured voltage was 3.6V and the power was 11W.
Met. After continuous operation under these conditions for 1000 hours, the temperature was returned to room temperature, and the operation was performed again under the same conditions. The performance did not change even after a total of 10,000 hours of operation for 10 times, and there was no breakage or change in shape.

【0030】(熱交換器)上述の実施例1の熱電変換モ
ジュールを耐熱鋼平板と耐食鋼平板の間に並べて配置し
両平板で固定した積層板を作製した。この際、各モジュ
ールから出ている出力端子は直列に結合されていた。こ
れにより積層板の耐熱鋼側を高温部、耐食鋼側を冷却部
とした熱電変換モジュール付き熱交換器が得られた。こ
の熱電変換モジュール付き熱交換器は、図2に示すよう
に冷却側に水を流通させる流路24を設けて熱交換器を
完成させた。
(Heat Exchanger) A laminated plate was prepared in which the thermoelectric conversion modules of Example 1 were arranged side by side between a heat-resistant steel plate and a corrosion-resistant steel plate and fixed by both plates. At this time, the output terminals from each module were connected in series. As a result, a heat exchanger with a thermoelectric conversion module was obtained in which the heat-resistant steel side of the laminate was a high-temperature part and the corrosion-resistant steel side was a cooling part. In this heat exchanger with a thermoelectric conversion module, as shown in FIG. 2, a flow path 24 for circulating water was provided on the cooling side to complete the heat exchanger.

【0031】(発電システム)図3に示すようなごみ焼
却炉に設置した発電システムに上述した実施例1の熱交
換器を採用する。蒸気と熱水が得られかつ発電が行える
ボイラーとすることができる。実施例1の熱交換器を汽
水火力発電設備のボイラー内水管もしくは水管フィン表
面に設置し、耐熱鋼平板側をボイラー内側、冷却水を水
管側とすることで、電力と蒸気タービンに送られる蒸気
とが同時に得られ、かつ効率が改善された汽水火力発電
設備を得ることができた。すなわち、蒸気タービンのみ
により発電する汽水火力発電設備の発電効率をηA、熱
交換器の熱電変換効率をηTとすると、ηAT+(1-ηT)
ηPであり、ηPの発電効率の汽水火力発電設備にηT
る熱電変換効率の熱交換器を設置することにより、(1-
ηTPTだけ発電効率を向上することができる。
(Power Generation System) The heat exchanger of the first embodiment described above is employed in a power generation system installed in a refuse incinerator as shown in FIG. A boiler that can generate steam and hot water and can generate power can be provided. By installing the heat exchanger of Example 1 on the surface of the water pipe or water pipe fin in the boiler of the brackish-fired thermal power plant, the heat-resistant steel plate side is on the inside of the boiler, and the cooling water is on the water pipe side. Were obtained at the same time, and a brackish-thermal power plant with improved efficiency was obtained. That is, assuming that the power generation efficiency of the brackish-fired thermal power generation equipment that generates power only from the steam turbine is η A and the thermoelectric conversion efficiency of the heat exchanger is η T , η A = η T + (1-η T )
eta is P, by installing a heat exchanger of the thermoelectric conversion efficiency eta T becomes the power generation efficiency of the brackish water thermal power plants of η P, (1-
The power generation efficiency can be improved by η TP ) η T.

【0032】この実施例1の熱電変換モジュールについ
て、AgとSbの組成を変えた4種類のサンプルA〜サンプ
ルDのろう材を用意し、4種類の異なる熱膨張係数を有
するステンレス製の電極材上に実施例1の熱電変換素子
を形成しその寿命を調べたのが表1である。
With respect to the thermoelectric conversion module of Example 1, four kinds of brazing materials of samples A to D having different compositions of Ag and Sb were prepared, and four kinds of stainless steel electrode materials having different coefficients of thermal expansion were prepared. Table 1 shows that the thermoelectric conversion element of Example 1 was formed above and the life thereof was examined.

【0033】(実施例2)実施例2では、実施例1のろ
う材をAuとSbのろう材層に変え、そのAuとSbの組成を変
えた4種類のサンプルE〜Hを用意し、実施例1と同様
に4種類の異なる熱膨張係数を有する鉄を主成分とする
鉄系材料であるステンレス製の電極材上に実施例1と同
一形状の熱電変換素子を形成しその寿命を表1に示し
た。
Example 2 In Example 2, the brazing material of Example 1 was changed to a brazing material layer of Au and Sb, and four types of samples E to H having different compositions of Au and Sb were prepared. A thermoelectric conversion element having the same shape as that of the first embodiment is formed on a stainless steel electrode material, which is an iron-based material having iron as a main component and has four different thermal expansion coefficients, as in the first embodiment. 1 is shown.

【0034】(実施例3)実施例3では、実施例1のろ
う材をCuとSbのろう材層に変え、そのAuとSbの組成を変
えた4種類のサンプルI〜Lを用意し、実施例1と同様に4
種類の異なる熱膨張係数を有するステンレス製の電極材
上に実施例1と同一形状の熱電変換素子を形成しその寿
命を表1に示した。
Example 3 In Example 3, four types of samples I to L were prepared in which the brazing material of Example 1 was changed to a brazing material layer of Cu and Sb, and the compositions of Au and Sb were changed. 4 as in the first embodiment
A thermoelectric conversion element having the same shape as in Example 1 was formed on stainless steel electrode materials having different types of thermal expansion coefficients, and the life thereof was shown in Table 1.

【0035】[0035]

【表1】 以上の表1では、完成した熱電変換モジュールについて
高温側を500℃、低温側を25℃にし、負荷としてモジ
ュール内部抵抗と同抵抗値の負荷を繋ぎ、整合負荷条件
で1000時間連続運転した後、室温に戻し、この一連の繰
り返しを10回合計運転時間10000時間後も性能は変わら
ない物を評価aとした。また、この10回の繰り返しで性
能が80%以下〜50%以上に低下するものをb評価とし
た。同様に50%を下回る物をc評価とした。
[Table 1] In the above Table 1, in the completed thermoelectric conversion module, the high temperature side is set to 500 ° C., the low temperature side is set to 25 ° C. The temperature was returned to room temperature, and a series of the above operations was repeated 10 times, and the performance did not change even after a total operation time of 10,000 hours was evaluated as evaluation a. In addition, those in which the performance was reduced to 80% or less to 50% or more after 10 repetitions were evaluated as b. In the same manner, a sample having a value of less than 50% was evaluated as c.

【0036】以上の表1から以下のことが判明した。The following is evident from Table 1 above.

【0037】即ち、フィルドスクッテルダイト系材料に
適用できる新規なろう材層例えばAg,Au,Cuの中から少な
くとも1種とSbの合金あるいは混合ろう材層を見出すと
共に、電極材としてその熱膨張係数が所定の適切な値の
鉄系材料を用いることで熱電変換モジュールを構成する
電極材料として、全ての問題を解決してフィルドスクッ
テルダイト系材料を使用した熱電変換モジュールを実現
できることが判明した。Ag,Au,Cuの中から少なくとも1
種とSbの合金あるいは混合ろう材層は、Ag-Sbが共晶温
度485℃、Au-Sbが360℃、Cu-Sbが526℃でフィ
ルドスクッテルダイト系材料が安定に存在しうる618
℃以下の温度で液相を介した接合ができ、素子の熱電特
性に影響を与えることなく高い接合強度を得ることがで
きる。
That is, a new brazing material layer applicable to the filled skutterudite-based material, for example, an alloy of at least one of Ag, Au and Cu and Sb or a mixed brazing material layer, and its thermal expansion as an electrode material It was found that by using an iron-based material having a predetermined appropriate value of the coefficient, it was possible to solve all the problems and realize a thermoelectric conversion module using a filled skutterudite-based material as an electrode material constituting the thermoelectric conversion module. . At least one of Ag, Au, Cu
The alloy of the seed and Sb or the brazing filler metal layer may be composed of eutectic temperature of 485 ° C. for Ag-Sb, 360 ° C. for Au-Sb, and 526 ° C. for Cu-Sb, in which a filled skutterudite-based material can stably exist.
Bonding via a liquid phase can be performed at a temperature of not more than ℃, and high bonding strength can be obtained without affecting the thermoelectric characteristics of the element.

【0038】また、電極材として鉄系材料、特にJIS
のSUS410で代表されるマルテンサイト系ステンレ
スを用いるとその熱膨張係数が500℃までの温度領域
で12x10−6/℃であるため、フィルドスクッテル
ダイト系材料の熱膨張係数にほぼ、熱応力は発生しない
か発生しても問題にならない大きさにできることが判明
した。しかも、この電極材料としての鉄系材料の熱膨張
係数が室温から500℃の範囲で概ね8x10−6/℃
から16x10−6/℃である所定の範囲内であればフ
ィルドスクッテルダイト系材料を使用した熱電変換モジ
ュールの寿命を長くすることに因果関係がありこの範囲
であれば長寿命化を図れることが判明した。
Further, as an electrode material, an iron-based material, particularly JIS
When a martensitic stainless steel represented by SUS410 is used, its thermal expansion coefficient is 12.times.10.sup.- 6 / .degree. C. in a temperature region up to 500.degree. C., so that the thermal stress is almost equal to the thermal expansion coefficient of the filled skutterudite material. It has been found that it can be made to have a size that does not cause any problem. Moreover, the coefficient of thermal expansion of the iron-based material as the electrode material is approximately 8 × 10 −6 / ° C. in the range from room temperature to 500 ° C.
If the temperature is within a predetermined range of 16 × 10 −6 / ° C., there is a causal relationship to extending the life of the thermoelectric conversion module using filled skutterudite-based material. found.

【0039】これは、熱電変換半導体素子と電極とを接
合できても大きな温度差をつけることが必須条件の熱電
変換モジュールでは、素子と電極の熱望著係数に差があ
る場合、大きな熱応力が発生して、素子の破壊あるいは
接合部の破壊が生じる問題が解消されるためと考えられ
る。
This is because, in the thermoelectric conversion module in which it is essential that a large temperature difference is provided even if the thermoelectric conversion semiconductor element and the electrode can be joined, a large thermal stress is generated when there is a difference in the thermal aspiration coefficient between the element and the electrode. It is considered that the problem of the occurrence of the destruction of the element or the junction is solved.

【0040】[0040]

【発明の効果】以上説明したとおり、本発明により従来
モジュール化ができなかったCo-Sb系半導体を使用した
熱電変換モジュールを提供できる。
As described above, according to the present invention, it is possible to provide a thermoelectric conversion module using a Co-Sb-based semiconductor which cannot be conventionally formed into a module.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に関わる熱電変換モジュ
ールを示す概略断面図。
FIG. 1 is a schematic sectional view showing a thermoelectric conversion module according to an embodiment of the present invention.

【図2】 本発明の熱交換器の一例を示す概略断面図。FIG. 2 is a schematic sectional view showing an example of the heat exchanger of the present invention.

【図3】 本発明の熱交換器を設置したごみ焼却炉の概
略構成図。
FIG. 3 is a schematic configuration diagram of a refuse incinerator provided with the heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

11…p型熱電変換素子本体 12…n型熱電変換素子本体 13…第1の電極部材 14…第2の電極部材 15,16…絶縁性導熱板 11 ... p-type thermoelectric conversion element main body 12 ... n-type thermoelectric conversion element main body 13 ... first electrode member 14 ... second electrode member 15, 16 ... insulating heat conductive plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高温側の第1の電極部材と、この第1の電
極部材に対向配置された低温側の第2の電極部材と、こ
の第1の電極部材及び第2の電極部材間に配置され双方
に電気的に接続されるCo-Sb系半導体の熱電変換素子と
を有する熱電変換モジュールにおいて、前記第1及び前
記第2の電極部材は熱膨張係数が8x10−6/℃〜1
6x10−6/℃の範囲にある鉄系材料であり、前記熱
電変換素子との間はAg、Au、Cuの少なくとも1種とSbと
の合金を主成分とするろう材層が介在することを特徴と
する熱電変換モジュール。
A first electrode member on a high-temperature side, a second electrode member on a low-temperature side disposed opposite to the first electrode member, and a first electrode member between the first electrode member and the second electrode member; In the thermoelectric conversion module having a Co-Sb-based semiconductor thermoelectric conversion element arranged and electrically connected to both, the first and second electrode members have a thermal expansion coefficient of 8 × 10 −6 / ° C. to 1
It is an iron-based material in the range of 6 × 10 −6 / ° C., and a brazing material layer mainly containing an alloy of at least one of Ag, Au, and Cu and Sb is interposed between the thermoelectric conversion element and the thermoelectric conversion element. Characteristic thermoelectric conversion module.
【請求項2】前記第1の電極部材或いは前記第2の電極
部材の前記熱電変換素子が配置される面とは反対の面に
セラミックスからなる絶縁性導熱板が配置されることを
特徴とする請求項1に記載の熱電変換モジュール。
2. An insulating heat conductive plate made of ceramics is disposed on a surface of the first electrode member or the second electrode member opposite to a surface on which the thermoelectric conversion element is disposed. The thermoelectric conversion module according to claim 1.
【請求項3】前記熱電変換素子がスクッテルダイト型結
晶構造を有するCoSb3基化合物結晶中の空隙に元素を充
填したフィルドスクッテルダイト構造を有する化合物で
あることを特徴とする請求項1乃至請求項2のいずれか
1項に記載の熱電変換モジュール。
3. The compound according to claim 1, wherein said thermoelectric conversion element is a compound having a filled skutterudite structure in which voids in a CoSb 3- based compound crystal having a skutterudite crystal structure are filled with elements. The thermoelectric conversion module according to claim 2.
【請求項4】加熱面と冷却面を有する熱交換器におい
て、この加熱面と冷却面との間に請求項1乃至請求項3
のいずれか1項に記載の熱電変換モジュールを備えるこ
とを特徴とする熱交換器。
4. A heat exchanger having a heating surface and a cooling surface, wherein the heat exchanger has a heating surface and a cooling surface.
A heat exchanger comprising the thermoelectric conversion module according to any one of the above.
JP2001087037A 2001-03-26 2001-03-26 Thermoelectric conversion module and heat exchanger using the same Expired - Fee Related JP3526559B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001087037A JP3526559B2 (en) 2001-03-26 2001-03-26 Thermoelectric conversion module and heat exchanger using the same
US10/105,341 US6759586B2 (en) 2001-03-26 2002-03-26 Thermoelectric module and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087037A JP3526559B2 (en) 2001-03-26 2001-03-26 Thermoelectric conversion module and heat exchanger using the same

Publications (2)

Publication Number Publication Date
JP2002289928A true JP2002289928A (en) 2002-10-04
JP3526559B2 JP3526559B2 (en) 2004-05-17

Family

ID=18942332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087037A Expired - Fee Related JP3526559B2 (en) 2001-03-26 2001-03-26 Thermoelectric conversion module and heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP3526559B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853749B1 (en) 2006-11-29 2008-08-22 요업기술원 Unit module for thermoelectric generation and Thermoelectric set including the same and Method of making the same
JP2019220546A (en) * 2018-06-19 2019-12-26 三菱マテリアル株式会社 Thermoelectric conversion module, and manufacturing method of thermoelectric conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853749B1 (en) 2006-11-29 2008-08-22 요업기술원 Unit module for thermoelectric generation and Thermoelectric set including the same and Method of making the same
JP2019220546A (en) * 2018-06-19 2019-12-26 三菱マテリアル株式会社 Thermoelectric conversion module, and manufacturing method of thermoelectric conversion module

Also Published As

Publication number Publication date
JP3526559B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US6759586B2 (en) Thermoelectric module and heat exchanger
JP5422383B2 (en) Thermoelectric conversion module, heat exchanger using the same, thermoelectric temperature control device, and thermoelectric power generator
CN101313421B (en) Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
CN100595940C (en) Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system
Matsubara Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles
US20080023057A1 (en) Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith
CN100583478C (en) Pi type CoSb3 based thermoelectric converting device and method for producing the same
JP2009081287A (en) Thermoelectric conversion module and heat exchanger using the same, thermoelectric temperature controller, and thermoelectric generator
CN107681044A (en) A kind of wide temperature range Thermoelectric Generator of multi-segment structure and preparation method
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP2003304006A (en) Thermoelectric conversion module and heat exchanger using the same
JP3526559B2 (en) Thermoelectric conversion module and heat exchanger using the same
JP3526558B2 (en) Thermoelectric conversion module and heat exchanger using the same
JP3954291B2 (en) Thermoelectric conversion module and heat exchanger using the same
JP2003234516A (en) Thermoelectric module
JP4883846B2 (en) Thermoelectric conversion module for high temperature
JP2003332637A (en) Thermoelectric material and thermoelectric module using the same
JP4182208B2 (en) Manufacturing method of heat exchanger with power generation function
JP2001230458A (en) Thermoelectric conversion module and its manufacturing method
JP2002203993A (en) Substrate for thermoelectric modules and thermoelectric module using the substrate
WO2002021608A1 (en) Thermoelement
CN109449277A (en) A kind of bilayer/multilayer thermo-electric device and preparation method thereof
JPH11112037A (en) Thermionic element and method for forming electrode of the same
JPH07162040A (en) Thermoelectric conversion device and thermoelectronic cooling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees