JP2002289853A - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor

Info

Publication number
JP2002289853A
JP2002289853A JP2001092163A JP2001092163A JP2002289853A JP 2002289853 A JP2002289853 A JP 2002289853A JP 2001092163 A JP2001092163 A JP 2001092163A JP 2001092163 A JP2001092163 A JP 2001092163A JP 2002289853 A JP2002289853 A JP 2002289853A
Authority
JP
Japan
Prior art keywords
region
source
forming
semiconductor layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001092163A
Other languages
Japanese (ja)
Other versions
JP4909465B2 (en
Inventor
Akira Takaishi
昌 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2001092163A priority Critical patent/JP4909465B2/en
Priority to US10/106,690 priority patent/US6649973B2/en
Publication of JP2002289853A publication Critical patent/JP2002289853A/en
Application granted granted Critical
Publication of JP4909465B2 publication Critical patent/JP4909465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device provided with an insulation gate drive element in the structure of increasing a gate width, reducing the ON- resistance and increasing current using the chip area of the same size, and to provide a manufacturing method of the device. SOLUTION: A semiconductor layer 1 is provided with a channel diffusion area 2 forming a channel region 2a, a source region 3 is formed on it and a source electrode 7 is formed of a metal film on the surface of the source region 3. Then, the metal of the source electrode 7 is spiked inside the source region 3 and the channel diffusion region 2 and an alloy layer 7a with the semiconductor layer is formed. Via the alloy layer 7a, the source electrode 7 is brought into ohmic contact with both of the source region 3 and the channel diffusion region 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、縦型MOSFET
や絶縁ゲート型バイポーラトランジスタ(IGBT)な
どのゲート駆動型素子を有するパワー半導体装置および
その製法に関する。さらに詳しくは、オン抵抗が小さ
く、大電流が得られるパワー用のゲート駆動型半導体装
置およびその製法に関する。
The present invention relates to a vertical MOSFET
Semiconductor device having a gate drive type element such as a semiconductor device and an insulated gate bipolar transistor (IGBT) and a method for manufacturing the same. More particularly, the present invention relates to a power gate drive type semiconductor device having a low on-resistance and a large current, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、ハイパワー用ゲート駆動型パワー
MOSトランジスタは、大電流化のため、トランジスタ
セルを多数個マトリクス状に並列に形成する構造が採ら
れている。たとえばプレーナ構造のトランジスタは、図
4に示されるように、たとえばn+形の半導体基板21
a上に、ドレイン領域とするn形の半導体層(エピタキ
シャル成長層)21がエピタキシャル成長され、その表
面側にp形不純物を拡散することによりp形のボディ領
域22が形成され、そのボディ領域22の外周部にn+
形のソース領域23が形成されている。ボディ領域22
の端部およびその外側に位置する半導体層21の表面側
にゲート酸化膜24を介してゲート電極25が設けら
れ、ボディ領域の外周部にチャネル領域22aが形成さ
れている。そして、ソース領域23と接続するように層
間絶縁膜26に設けられるコンタクト孔を介してAlな
どによりソース電極(ソース配線)27が形成され、半
導体基板21aの裏面にドレイン電極28が形成される
ことにより形成されている。
2. Description of the Related Art Hitherto, a high-power gate drive type power MOS transistor has a structure in which a large number of transistor cells are formed in parallel in a matrix to increase the current. For example, as shown in FIG. 4, a transistor having a planar structure is, for example, an n + type semiconductor substrate 21.
An n-type semiconductor layer (epitaxial growth layer) 21 serving as a drain region is epitaxially grown on a, and a p-type body region 22 is formed by diffusing a p-type impurity on the surface side thereof. N +
A source region 23 is formed. Body region 22
A gate electrode 25 is provided via a gate oxide film 24 on an end portion of the semiconductor layer 21 and a surface side of the semiconductor layer 21 located outside the end portion, and a channel region 22a is formed on an outer peripheral portion of the body region. Then, a source electrode (source wiring) 27 of Al or the like is formed through a contact hole provided in the interlayer insulating film 26 so as to be connected to the source region 23, and a drain electrode 28 is formed on the back surface of the semiconductor substrate 21a. Is formed.

【0003】一方、ゲート電極を半導体層に形成した溝
内に埋め込むトレンチ構造のパワー用MOSFETは、
図5にその一例が示されるように、半導体層21に凹溝
が格子状に形成され、その内部にゲート電極25とする
ポリシリコンが埋め込まれ、酸化によりその周囲にゲー
ト酸化膜24が形成され、その周囲にp形のチャネル拡
散領域22とn+形ソース領域23が形成され、縦方向
にチャネル領域22aが形成されている。そのソース領
域23およびチャネル拡散領域22とオーミックコンタ
クトするようにソース電極27が形成され、半導体基板
21aの裏面にドレイン電極28が形成されることは図
4と同様である。
On the other hand, a power MOSFET having a trench structure in which a gate electrode is buried in a groove formed in a semiconductor layer,
As shown in an example in FIG. 5, concave grooves are formed in the semiconductor layer 21 in a lattice shape, polysilicon as the gate electrode 25 is buried therein, and a gate oxide film 24 is formed therearound by oxidation. A p-type channel diffusion region 22 and an n + -type source region 23 are formed therearound, and a channel region 22a is formed in the vertical direction. A source electrode 27 is formed so as to make ohmic contact with the source region 23 and the channel diffusion region 22, and a drain electrode 28 is formed on the back surface of the semiconductor substrate 21a as in FIG.

【0004】なお、これらのトランジスタにおけるゲー
ト電極の平面的構造は、正方形や5角形、6角形などの
任意の形状に形成される。また、これらのトランジスタ
では、モータのような誘導性負荷に接続されることが多
く、その場合、動作をオフにするとき、逆方向の起電力
が印加されることがあり、トランジスタが破壊するのを
防止するため、前述のように、ソース電極27をチャネ
ル拡散領域22とも接続させることにより、ソース・ド
レイン間に逆方向の保護用ダイオードを形成する方法が
採られている。
The planar structure of the gate electrode in these transistors is formed in an arbitrary shape such as a square, a pentagon or a hexagon. In addition, these transistors are often connected to an inductive load such as a motor. In that case, when the operation is turned off, an electromotive force in the opposite direction may be applied, and the transistor may be destroyed. In order to prevent this, as described above, a method is adopted in which the source electrode 27 is also connected to the channel diffusion region 22 to form a protection diode in the reverse direction between the source and the drain.

【0005】[0005]

【発明が解決しようとする課題】前述のような大電流用
のトランジスタでは、定められた大きさのチップ内にで
きるだけ多くのトランジスタセルを作り、オン抵抗を下
げることが重要である。オン抵抗を小さくするために
は、チャネル幅をできるだけ大きくすることが効果的で
あり、前述の構造のトランジスタでは、ゲート電極周囲
に形成されるチャネル領域22aの幅(ゲート電極周囲
の長さ)の合計をできるだけ多くすることが好ましい。
しかし、従来のこの種のトランジスタでは、半導体層の
表面で、チャネル拡散領域にソース電極をオーミックコ
ンタクトさせるため、ソース領域とチャネル拡散領域の
両方を半導体層の表面に露出させる必要があると共に、
ソース領域を拡散するときのマスク重ね合せのマージ
ン、コンタクト孔とソース領域とのマスク重ね合せマー
ジンが必要なことから、たとえば図5に示される構造
で、コンタクト孔の大きさCが2〜2.5μm程度とな
り、セル間隔(ゲート電極間のピッチ)Aは、4.5〜
5μm程度が限界である。この場合、ソース領域の幅B
は0.8〜1μm程度である。そのため、セルの小形化
を充分に行うことができず、オン抵抗の低減化を充分に
図れないという問題がある。
In a transistor for a large current as described above, it is important to make as many transistor cells as possible in a chip of a predetermined size to reduce the on-resistance. In order to reduce the on-resistance, it is effective to increase the channel width as much as possible. In the transistor having the above-described structure, the width (length around the gate electrode) of the channel region 22a formed around the gate electrode is reduced. It is preferred that the sum be as large as possible.
However, in this type of conventional transistor, since the source electrode is in ohmic contact with the channel diffusion region on the surface of the semiconductor layer, it is necessary to expose both the source region and the channel diffusion region to the surface of the semiconductor layer.
Since a margin for overlapping the mask when diffusing the source region and a margin for overlapping the mask between the contact hole and the source region are required, for example, in the structure shown in FIG. The cell spacing (pitch between gate electrodes) A is 4.5 to 5 μm.
The limit is about 5 μm. In this case, the width B of the source region
Is about 0.8 to 1 μm. Therefore, there is a problem that the size of the cell cannot be sufficiently reduced, and the on-resistance cannot be sufficiently reduced.

【0006】本発明は、このような問題を解決するため
になされたもので、同じ大きさのチップ面積で、ゲート
幅を大きくしてオン抵抗を小さくし、大電流化を図るこ
とができる構造の絶縁ゲート駆動型素子を有する半導体
装置を提供することを目的とする。
The present invention has been made to solve such a problem, and has a structure in which a gate width can be increased, an on-resistance can be reduced, and a large current can be achieved with the same chip area. It is an object of the present invention to provide a semiconductor device having the insulated gate driving type element.

【0007】本発明の他の目的は、チャネル拡散領域と
ソース領域の両方にソース電極をコンタクトさせる素子
を有する場合に、非常に小さい面積で、しかも簡単な工
程でコンタクトさせ得る半導体装置の製法を提供するこ
とにある。
Another object of the present invention is to provide a method of manufacturing a semiconductor device which has a very small area and can be contacted by a simple process when an element for contacting a source electrode with both a channel diffusion region and a source region is provided. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、絶縁ゲート
型半導体装置のオン抵抗を小さくして、小さなチップサ
イズで大きな電流を得ることができる半導体装置を得る
ため鋭意検討を重ねた結果、通常、半導体層の表面にA
lなどの金属膜を直接電極として設けると、半導体層の
中にスパイクしてショートなどの問題を引き起こすた
め、バリアメタル層を介在させることが常識になってい
るが、このスパイクにより半導体層中に入り込む量が成
膜する金属膜の厚さおよび熱処理などの条件を制御する
ことにより、コントロールすることができ、そのスパイ
クした合金層が半導体層と充分にオーミックコンタクト
が得られることを見出した。そして、ソース領域とチャ
ネル拡散領域の両方にソース電極をコンタクトさせる場
合でも、ソース領域とチャネル拡散領域を縦方向に形成
し、ソース電極を下層のチャネル拡散領域までスパイク
させることにより、両層共に良好なオーミックコンタク
トが得られることを見出した。
The inventor of the present invention has made intensive studies to reduce the on-resistance of an insulated gate semiconductor device and obtain a semiconductor device capable of obtaining a large current with a small chip size. Usually, A is applied to the surface of the semiconductor layer.
When a metal film such as 1 is directly provided as an electrode, spikes in the semiconductor layer cause problems such as short-circuiting. Therefore, it is common knowledge that a barrier metal layer is interposed. By controlling the conditions such as the thickness of the metal film to be formed and the heat treatment, the amount of penetration can be controlled, and it has been found that the spiked alloy layer can obtain sufficient ohmic contact with the semiconductor layer. Even when the source electrode is in contact with both the source region and the channel diffusion region, the source region and the channel diffusion region are formed in the vertical direction, and the source electrode is spiked to the lower channel diffusion region. We found that a good ohmic contact could be obtained.

【0009】本発明による半導体装置は、ソース領域と
ドレイン領域とで挟まれるチャネル領域を絶縁ゲート電
極により制御する絶縁ゲート駆動型素子を有する半導体
装置であって、前記チャネル領域を形成するチャネル拡
散領域上にソース領域が形成される部分を少なくとも有
し、該ソース領域表面にソース電極が金属膜により形成
され、該ソース電極の金属が前記ソース領域および前記
チャネル拡散領域内にスパイクして半導体層との合金層
が形成され、該合金層を介して前記ソース電極が前記ソ
ース領域および前記チャネル拡散領域との両方にオーミ
ックコンタクトされている。
A semiconductor device according to the present invention is a semiconductor device having an insulated gate driving element for controlling a channel region sandwiched between a source region and a drain region by an insulated gate electrode, wherein the channel diffusion region forms the channel region. A source region is formed on the surface of the source region by a metal film, and a metal of the source electrode spikes into the source region and the channel diffusion region to form a semiconductor layer; Is formed, and the source electrode is in ohmic contact with both the source region and the channel diffusion region via the alloy layer.

【0010】この構造にすることにより、ソース領域拡
散のためのマスキングは必要がなく、アライメントマー
ジンもコンタクト孔形成の際だけでよく、それほど必要
としないと共に、半導体層の表面にソース領域とチャネ
ル拡散領域の両方にコンタクトするための領域を設ける
必要もなく、表面にソース領域のみが露出しておればよ
いため、コンタクト孔を非常に小さくすることができ
る。その結果、ゲート電極間隔を非常に狭くすることが
でき、セルの数を増やすことができるため、ゲート幅が
大きくなり、オン抵抗を小さくすることができ、大電流
が得られるハイパワーの半導体装置とすることができ
る。
With this structure, masking for diffusion of the source region is not required, and an alignment margin is only required when forming the contact hole. Not so much is required, and the source region and the channel diffusion are formed on the surface of the semiconductor layer. There is no need to provide a region for contacting both regions, and only the source region needs to be exposed on the surface, so that the contact hole can be made very small. As a result, the interval between gate electrodes can be extremely narrowed, and the number of cells can be increased. Therefore, the gate width can be increased, the on-resistance can be reduced, and a high-power semiconductor device capable of obtaining a large current can be obtained. It can be.

【0011】具体的には、前記絶縁ゲート駆動型素子
が、半導体層の凹溝内に前記ゲート電極が形成され、該
凹溝の横に前記チャネル拡散領域とソース領域が縦方向
に形成されるトレンチ構造の素子であったり、半導体層
の表面にゲート酸化膜を介して前記ゲート電極が形成さ
れるプレーナ型素子であってもよい。
Specifically, in the insulated gate drive element, the gate electrode is formed in a concave groove of a semiconductor layer, and the channel diffusion region and the source region are formed in a vertical direction beside the concave groove. The device may be a device having a trench structure or a planar device in which the gate electrode is formed on the surface of a semiconductor layer via a gate oxide film.

【0012】また、前記半導体層は、シリコンの他、炭
化シリコンなどを用いることもでき、前記ソース電極が
アルミニウムであれば、シリコンまたは炭化シリコンと
合金化しやすく、スパイクによる合金層を形成しやす
い。
The semiconductor layer may be made of silicon carbide or the like in addition to silicon. If the source electrode is aluminum, it is easy to alloy with silicon or silicon carbide, and it is easy to form an alloy layer by spikes.

【0013】本発明による半導体装置の製法は、(a)
ドレイン領域とする第1導電形の半導体層に凹溝を形成
し、該凹溝内にゲート酸化膜を介してゲート電極を形成
する工程と、(b)前記ゲート電極周囲の前記半導体層
に第2導電形不純物および第1導電形不純物を順次拡散
することによりチャネル拡散領域およびソース領域を縦
方向に形成する工程と、(c)前記ソース領域表面に金
属膜からなるソース電極を形成する工程と、(d)熱処
理を施し、前記ソース電極の金属膜を前記ソース領域お
よびチャネル拡散領域にスパイクさせることにより、前
記ソース電極が該ソース領域およびチャネル拡散領域と
それぞれオーミックコンタクトする合金層を形成する工
程と、(e)前記第1導電形半導体層と電気的に接続し
てドレイン電極を形成する工程とを有することを特徴と
する。ここに各工程の順序は限定されず、たとえば
(a)と(b)とが逆に行われてもよい。
The method of manufacturing a semiconductor device according to the present invention comprises the steps of (a)
Forming a groove in a semiconductor layer of the first conductivity type serving as a drain region, and forming a gate electrode in the groove via a gate oxide film; and (b) forming a gate electrode in the semiconductor layer around the gate electrode. Forming a channel diffusion region and a source region in the vertical direction by sequentially diffusing a two-conductivity-type impurity and a first-conductivity-type impurity; and (c) forming a source electrode made of a metal film on the surface of the source region. (D) forming an alloy layer in which the source electrode makes ohmic contact with the source region and the channel diffusion region, respectively, by performing a heat treatment and spiking the metal film of the source electrode with the source region and the channel diffusion region. And (e) forming a drain electrode by electrically connecting to the first conductivity type semiconductor layer. Here, the order of each step is not limited, and for example, (a) and (b) may be performed in reverse.

【0014】この方法で行うことにより、チャネル拡散
領域とソース領域とを完全に縦方向に形成することがで
き、トレンチ構造のゲート駆動型半導体装置を非常に小
さな面積で形成することができる。
According to this method, the channel diffusion region and the source region can be completely formed in the vertical direction, and a gate-driven semiconductor device having a trench structure can be formed with a very small area.

【0015】前記ソース電極の形成を、前記半導体層表
面に形成した絶縁膜に前記ゲート酸化膜から離間するよ
うにコンタクト孔を形成してから行うことにより、チャ
ネル領域が合金層により侵食される虞がなく好ましい。
By forming the source electrode after forming a contact hole in the insulating film formed on the surface of the semiconductor layer so as to be separated from the gate oxide film, the channel region may be eroded by the alloy layer. Is preferred because there is no

【0016】本発明による半導体装置の製法における他
の形態は、プレーナタイプのゲート駆動型半導体装置の
製法で、(a')ドレイン領域とする第1導電形の半導
体層の表面にゲート酸化膜を介してゲート電極を形成す
る工程と、(b')前記ゲート電極周囲の前記半導体層
に第2導電形不純物および第1導電形不純物を順次拡散
することにより、前記ゲート電極の下側にチャネル領域
が形成されるようにチャネル拡散領域およびソース領域
を形成する工程と、(c)前記ソース領域表面に金属膜
からなるソース電極を形成する工程と、(d)熱処理を
し、前記ソース電極の金属膜を前記ソース領域およびチ
ャネル拡散領域にスパイクさせることにより、該ソース
領域およびチャネル拡散領域とそれぞれオーミックコン
タクトさせる合金層を形成する工程と、(e)前記第1
導電形半導体層と電気的に接続してドレイン電極を形成
する工程とを有することを特徴とする。
Another embodiment of the method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a planar-type gate-driven semiconductor device, in which (a ') a gate oxide film is formed on the surface of a first conductivity type semiconductor layer serving as a drain region. Forming a gate electrode through the gate electrode; and (b ′) sequentially diffusing a second conductivity type impurity and a first conductivity type impurity into the semiconductor layer around the gate electrode, thereby forming a channel region below the gate electrode. Forming a channel diffusion region and a source region so as to form a source electrode; (c) forming a source electrode made of a metal film on the surface of the source region; and (d) performing heat treatment to form a metal of the source electrode. An alloy layer that makes the source region and the channel diffusion region come into ohmic contact with the source region and the channel diffusion region by spiking the film with the source region and the channel diffusion region. Forming, (e) said first
Forming a drain electrode by being electrically connected to the conductive semiconductor layer.

【0017】この方法によっても、チャネル拡散領域を
ソース電極とコンタクトさせるために半導体層の表面に
露出させる必要がなく、非常にセルの間隔を小さくする
ことができ、セルの数を増やしてゲート幅を大きくし、
大電流化が可能となる。
According to this method, it is not necessary to expose the channel diffusion region to the surface of the semiconductor layer in order to make contact with the source electrode. Therefore, the interval between cells can be extremely reduced, the number of cells can be increased, and the gate width can be increased. And increase
It is possible to increase the current.

【0018】[0018]

【発明の実施の形態】つぎに、図面を参照しながら本発
明の半導体装置およびその製法について説明をする。本
発明による半導体装置は、図1にその一実施形態である
ゲート電極がトレンチ構造であるMOSFETの一部の
断面説明図が示されるように、半導体層1にチャネル領
域2aを形成するチャネル拡散領域2が設けられ、その
上にソース領域3が形成されており、ソース領域3表面
にソース電極7が金属膜により形成されている。そし
て、ソース電極7の金属がソース領域3およびチャネル
拡散領域2内にスパイクして半導体層との合金層7aが
形成され、その合金層7aを介してソース電極7がソー
ス領域3およびチャネル拡散領域2との両方にオーミッ
クコンタクトされている。
Next, a semiconductor device of the present invention and a method of manufacturing the same will be described with reference to the drawings. A semiconductor device according to the present invention has a channel diffusion region in which a channel region 2a is formed in a semiconductor layer 1 as shown in FIG. 2, a source region 3 is formed thereon, and a source electrode 7 is formed of a metal film on the surface of the source region 3. Then, the metal of the source electrode 7 spikes into the source region 3 and the channel diffusion region 2 to form an alloy layer 7a with the semiconductor layer. The source electrode 7 is connected to the source region 3 and the channel diffusion region via the alloy layer 7a. Ohmic contact with both of them.

【0019】半導体層1は、たとえばシリコンからなり
不純物濃度の大きいn+形半導体基板1aに5μm程度
の厚さにエピタキシャル成長されたシリコンからなるn
形半導体層で、その表面にボロンなどからなるp形不純
物が拡散され、さらにリンなどからなるn形不純物が拡
散されることにより、p形のチャネル拡散領域2が1μ
m程度の厚さで、n+形のソース領域3が0.3μm程度
の厚さにそれぞれ形成されている。
The semiconductor layer 1 is made of, for example, silicon and epitaxially grown to a thickness of about 5 μm on an n + type semiconductor substrate 1a having a high impurity concentration.
In the p-type semiconductor layer, a p-type impurity made of boron or the like is diffused on the surface thereof, and an n-type impurity made of phosphorus or the like is further diffused.
Each of the n + -type source regions 3 is formed to a thickness of about 0.3 μm with a thickness of about m.

【0020】そして、図1(b)に平面説明図が示され
るように、ピッチが2μm程度の間隔(A)で格子状に
0.5μm幅(E)程度で、1.5μm程度の深さに凹溝
が形成され、その凹溝内にゲート酸化膜4を介してポリ
シリコンなどからなるゲート電極5が形成されている。
半導体層の表面全面にSiO2などからなる絶縁膜6が
形成され、ソース領域3が露出するようにコンタクト孔
6aが形成され、その表面にソース電極7とするための
Alなどからなる金属膜を3μm程度の厚さ成膜されて
いる。
As shown in the plan view of FIG. 1B, the pitch is about 0.5 μm, the pitch is about 2 μm, the width is about 0.5 μm, and the depth is about 1.5 μm. A gate electrode 5 made of polysilicon or the like is formed in the groove with a gate oxide film 4 interposed therebetween.
An insulating film 6 made of SiO 2 or the like is formed on the entire surface of the semiconductor layer, a contact hole 6a is formed so that the source region 3 is exposed, and a metal film made of Al or the like for forming a source electrode 7 is formed on the surface. The film is formed to a thickness of about 3 μm.

【0021】この状態で、400℃程度、30分程度の
熱処理を行うことにより、ソース電極7とソース領域3
との界面における相互作用と相俟って、SiがAl中に
拡散されることにより、AlとSiとの合金層が半導体
層の内部に進み、図1(a)に示されるように先端が尖
った合金層7aが形成される。この合金層7aは、熱処
理の温度および時間により、その内部へのスパイク深さ
が変化し、チャネル拡散領域2内に入り込み、かつ、チ
ャネル拡散領域2を突き抜けないように形成されてい
る。
In this state, a heat treatment is performed at about 400 ° C. for about 30 minutes, so that the source electrode 7 and the source region 3 are formed.
In combination with the interaction at the interface with Al, Si is diffused into Al, whereby the alloy layer of Al and Si advances into the inside of the semiconductor layer, and the tip ends as shown in FIG. A sharp alloy layer 7a is formed. The alloy layer 7a is formed such that the spike depth into the alloy layer 7a changes depending on the temperature and time of the heat treatment, so that the alloy layer 7a enters the channel diffusion region 2 and does not penetrate the channel diffusion region 2.

【0022】すなわち、前述のように、本発明者は、絶
縁ゲート型半導体装置のオン抵抗を小さくして、小さな
チップサイズで大きな電流を得ることができる半導体装
置を得るため鋭意検討を重ねた結果、半導体層表面に設
けられる金属膜がスパイクにより半導体層中に入り込む
量は、成膜する金属膜の厚さおよび熱処理などの条件を
制御することにより、コントロールすることができ、そ
の制御により図1(a)に示されるように、ソース領域
3およびチャネル拡散領域2のみにオーミックコンタク
トをさせることができ、しかもチャネル拡散領域2を突
き抜けないようにすることができることを見出した。
That is, as described above, the present inventor has conducted intensive studies to reduce the on-resistance of the insulated gate semiconductor device and obtain a semiconductor device capable of obtaining a large current with a small chip size. The amount of the metal film provided on the surface of the semiconductor layer penetrating into the semiconductor layer by spikes can be controlled by controlling conditions such as the thickness of the metal film to be formed and heat treatment. As shown in (a), it has been found that an ohmic contact can be made only to the source region 3 and the channel diffusion region 2 and that the channel region can be prevented from penetrating.

【0023】この合金層の深さ、すなわち、いわゆるス
パイクの深さは、熱処理の温度を高く、または熱処理の
時間を長くすることにより深くなり、非常に精度よく制
御できた。たとえばSiに対してAl膜を設ける場合、
300℃程度からスパイクは始まるが、400℃程度で
行うのが最も効率的で、しかも精度よくスパイクの深さ
を制御することができた。たとえば400℃程度で30
分程度の熱処理を行うことにより、0.6〜0.8μm程
度の深さだけスパイクし、前述の0.3μm程度のソー
ス領域3と、1μm程度のチャネル拡散領域2の拡散深
さであれば、この条件で合金化処理を行うことにより、
両層にオーミックコンタクトを採りながら、チャネル拡
散領域2を突き抜ける虞は全然生じない。その結果、前
述のように、チャネル拡散領域2とソース領域3とが縦
方向に重なる部分を形成しておくことにより、その表面
からAlなどの金属をスパイクさせれば、両層と直接オ
ーミックコンタクトをさせることができた。
The depth of the alloy layer, that is, the depth of the so-called spike, was increased by increasing the temperature of the heat treatment or lengthening the time of the heat treatment, and could be controlled very precisely. For example, when providing an Al film on Si,
The spike starts at about 300 ° C., but it is most efficient to perform the spike at about 400 ° C., and the spike depth can be controlled with high accuracy. For example, 30
By performing a heat treatment for about a minute, spikes are made to a depth of about 0.6 to 0.8 μm, and if the diffusion depth of the source region 3 of about 0.3 μm and the channel diffusion region 2 of about 1 μm is obtained. By performing the alloying process under these conditions,
There is no danger of penetrating through the channel diffusion region 2 while using ohmic contacts in both layers. As a result, as described above, by forming a portion where the channel diffusion region 2 and the source region 3 vertically overlap with each other, and by spiking a metal such as Al from the surface, direct ohmic contact with both layers is achieved. Was able to be.

【0024】また、コンタクト孔の大きさが、1辺1μ
m程度以下であれば、殆ど全体的に1本のスパイクで入
り込み、それより大きい10μm程度のコンタクト孔で
は、全体で均一にスパイクしないで、何本にも分れてス
パイクすることも判明した。
The size of the contact hole is 1 μm per side.
It is also found that if the length is about m or less, the spike enters almost entirely with one spike, and the contact hole of about 10 μm larger than that does not spike uniformly as a whole, but splits into several spikes.

【0025】図1に示される構造にすることにより、コ
ンタクト孔6a形成用のマスクと凹溝形成用のマスクと
の重ね合せのマージンだけを考慮すればよいため、ま
た、半導体層表面のコンタクト孔はソース領域だけにコ
ンタクトさせれば良いため、非常にセル間隔を小さく形
成することができる。たとえば、コンタクト孔の大きさ
Cを1μm程度にすることができ、セル間隔Aは、1.
5〜2μmに形成することができる。図1に示される例
では、ソース電極7とゲート電極5とのショートを避け
るため、また、チャネル領域2aが合金層で侵食されな
いようにするため、ゲート電極5上も含めた半導体層の
表面にSiO2などの絶縁膜6を形成し、ゲート酸化膜
4と離間してコンタクト孔を形成し、ソース電極7が形
成されているが、ゲート電極5の上部を充分に酸化して
酸化膜を形成しておくことにより、絶縁膜6を設けない
で、すなわちコンタクト孔を形成しないで、ソース電極
7を形成することができ、マスク精度ギリギリの大き
さ、たとえばD=0.4μm、E=0.3μm程度、セル
間隔Aを0.7μm程度に小さくすることも可能であ
る。
By adopting the structure shown in FIG. 1, only the margin for overlapping the mask for forming the contact hole 6a and the mask for forming the concave groove needs to be considered, and the contact hole on the surface of the semiconductor layer can be considered. Need only be contacted with the source region, the cell spacing can be made very small. For example, the size C of the contact hole can be about 1 μm, and the cell interval A is 1.
It can be formed to have a thickness of 5 to 2 μm. In the example shown in FIG. 1, in order to avoid a short circuit between the source electrode 7 and the gate electrode 5, and to prevent the channel region 2a from being eroded by the alloy layer, the surface of the semiconductor layer including the gate electrode 5 is formed. An insulating film 6 such as SiO 2 is formed, a contact hole is formed apart from the gate oxide film 4, and a source electrode 7 is formed. An oxide film is formed by sufficiently oxidizing an upper portion of the gate electrode 5. By doing so, the source electrode 7 can be formed without providing the insulating film 6, that is, without forming the contact hole, and the size of the mask accuracy is barely reached, for example, D = 0.4 μm, E = 0. It is also possible to reduce the cell interval A to about 3 μm and the cell interval A to about 0.7 μm.

【0026】たとえば従来構造でゲート電極5周囲のゲ
ート酸化膜4の幅E(図1(b)参照)が0.5μm、
隣接するゲート酸化膜4の間隔Dが4.5μm(セル間
隔Aが5μm)であったのを、本発明によりEは同じ
で、Dを2μmに狭くすると、トランジスタセルの間隔
Aは、5μmから2.5μmと半分になり、単位面積当
り、セルの数を4倍にすることができる。一方、オン抵
抗に影響するゲート幅となるゲート酸化膜周囲の長さ
は、2/4.5×4(単位面積当りのセルの数)=1.7
8となり、抵抗が1.78分の1、すなわち電流を1.7
8倍にすることができる。同様に、Dを1.5μm、1
μm、0.5μmにすると、それぞれ電流を2.08倍、
2.47倍、2.78倍と増やすことができる。現在のた
とえばi線による微細加工における露光技術の精度で
は、0.35μm程度にすることができ、この技術を適
用すれば、Dを0.35μmにできるのみならず、ゲー
ト電極の幅Eも0.35μm程度にすることができるた
め、より一層単位面積当りのセルの数を増やすことがで
き、大電流化することができる。
For example, in the conventional structure, the width E of the gate oxide film 4 around the gate electrode 5 (see FIG. 1B) is 0.5 μm,
Although the distance D between adjacent gate oxide films 4 is 4.5 μm (cell distance A is 5 μm), E is the same according to the present invention. When D is narrowed to 2 μm, the distance A between transistor cells becomes 5 μm. This is a half of 2.5 μm, and the number of cells per unit area can be quadrupled. On the other hand, the length around the gate oxide film, which is the gate width affecting the on-resistance, is 2 / 4.5 × 4 (the number of cells per unit area) = 1.7.
8 and the resistance is 1/78, that is, the current is 1.7.
It can be eight times. Similarly, D is 1.5 μm, 1
μm and 0.5 μm, the current is increased by 2.08 times,
It can be increased to 2.47 times and 2.78 times. At present, the accuracy of the exposure technique in the fine processing by i-line, for example, can be about 0.35 μm, and if this technique is applied, not only can D be 0.35 μm, but also the width E of the gate electrode can be 0 μm. Since the thickness can be reduced to about 0.35 μm, the number of cells per unit area can be further increased, and the current can be increased.

【0027】つぎに、このトレンチ構造のMOSFET
の製造方法について、図2を参照しながら説明をする。
まず図2(a)に示されるように、n+形半導体基板1
a上にn形半導体層1を5μm程度エピタキシャル成長
する。そして、その表面からボロンなどのp形不純物を
拡散しp形のチャネル拡散領域2を形成し、ついで、リ
ンなどのn形不純物を拡散してn+形のソース領域3を
形成する。
Next, the MOSFET having the trench structure
Will be described with reference to FIG.
First, as shown in FIG. 2 (a), n + -type semiconductor substrate 1
An n-type semiconductor layer 1 is epitaxially grown on a by about 5 μm. Then, a p-type impurity such as boron is diffused from the surface thereof to form a p-type channel diffusion region 2, and then an n-type impurity such as phosphorus is diffused to form an n + -type source region 3.

【0028】その後、図1(b)にゲート電極のパター
ンが示されるような格子状の開口部を有するレジスト膜
を半導体層表面全面に形成し、RIEなどのドライエッ
チングにより1.5μm程度の深さの凹溝を形成する。
その後、レジスト膜を除去し、全面にポリシリコンを堆
積して凹溝内にポリシリコンを埋め込み、エッチバック
などにより表面のポリシリコン膜を除去する。その後、
900℃程度で、30分程度の熱処理を行うことによ
り、図2(b)に示されるように、凹溝内にゲート電極
5および0.05μm程度の厚さのゲート酸化膜4を形
成する。
Thereafter, a resist film having a lattice-shaped opening as shown in FIG. 1B with a gate electrode pattern is formed on the entire surface of the semiconductor layer, and is subjected to dry etching such as RIE to a depth of about 1.5 μm. A concave groove is formed.
Thereafter, the resist film is removed, polysilicon is deposited on the entire surface, polysilicon is buried in the concave groove, and the surface polysilicon film is removed by etch back or the like. afterwards,
By performing a heat treatment at about 900 ° C. for about 30 minutes, as shown in FIG. 2B, a gate electrode 5 and a gate oxide film 4 having a thickness of about 0.05 μm are formed in the concave groove.

【0029】ついで、図2(c)に示されるように、半
導体層の表面にSiO2などの絶縁膜6をCVD法など
により、0.5μm程度成膜し、ゲート電極5上を被覆
し、その周囲にソース領域3が露出するように開口部6
aを形成する。そして、全面にAlなどの金属膜をスパ
ッタリング法などにより3μm程度の厚さ成膜し、ソー
ス電極7を形成する。
Then, as shown in FIG. 2C, an insulating film 6 such as SiO 2 is formed on the surface of the semiconductor layer to a thickness of about 0.5 μm by a CVD method or the like to cover the gate electrode 5. The opening 6 is formed so that the source region 3 is exposed therearound.
a is formed. Then, a metal film such as Al is formed on the entire surface to a thickness of about 3 μm by a sputtering method or the like, and the source electrode 7 is formed.

【0030】ついで、チッ素(N2)の雰囲気で、40
0℃程度、30分程度の熱処理を行うことにより、ソー
ス電極7の金属材料が、図2(d)に示されるように、
半導体層のSiと合金化し、ソース領域3およびチャネ
ル拡散領域2内にスパイクして、合金層7aを形成す
る。この場合、前述のように、この熱処理の温度および
時間により、スパイクの深さが変るため、チャネル拡散
領域2内に入り込んでオーミックコンタクトが得られる
と共に、チャネル拡散領域2を突き抜けて半導体層1に
達しないように熱処理の条件を制御する必要がある。そ
の後、半導体基板1aの裏面に、Tiなどの金属をスパ
ッタリングなどにより成膜して、ドレイン電極8を形成
することにより、図1(a)に示されるトレンチ構造の
MOSFETが得られる。
Next, in an atmosphere of nitrogen (N 2 ), 40
By performing the heat treatment at about 0 ° C. for about 30 minutes, the metal material of the source electrode 7 becomes as shown in FIG.
Alloying with Si of the semiconductor layer and spiking into the source region 3 and the channel diffusion region 2 to form an alloy layer 7a. In this case, as described above, the depth of the spike changes depending on the temperature and time of the heat treatment, so that the semiconductor layer 1 penetrates through the channel diffusion region 2 and penetrates the channel diffusion region 2 to obtain an ohmic contact. It is necessary to control the conditions of the heat treatment so as not to reach. Thereafter, a metal such as Ti is formed on the back surface of the semiconductor substrate 1a by sputtering or the like, and the drain electrode 8 is formed, whereby the MOSFET having the trench structure shown in FIG. 1A is obtained.

【0031】なお、図2に示される例では、チャネル拡
散領域2およびソース領域3用の拡散をしてから、凹溝
を形成してゲート電極5を形成したが、半導体層1をエ
ピタキシャル成長した後に、ゲート電極5形成してから
チャネル拡散領域2およびソース領域3用の拡散を行っ
てもよい。
In the example shown in FIG. 2, after the diffusion for the channel diffusion region 2 and the source region 3 is performed, a concave groove is formed to form the gate electrode 5, but after the semiconductor layer 1 is epitaxially grown, The diffusion for the channel diffusion region 2 and the source region 3 may be performed after the gate electrode 5 is formed.

【0032】前述の例は、トレンチ構造のMOSFET
であったが、プレーナ型のMOSFETの例が図3に示
されている。このプレーナ型のMOSFETを得るに
は、前述の例と同様に、n+形の半導体基板1aにn形
の半導体層1をエピタキシャル成長し、その表面にゲー
ト酸化膜4を介してゲート電極5を形成する。そして、
そのゲート電極5をマスクとしてp形不純物を拡散し、
ついでn形不純物を拡散することにより、等方的に、し
かも最初に拡散した不純物は後の拡散でも再度拡散する
ため、チャネル拡散領域2は図3に示されるようにゲー
ト電極5の下まで拡散し、ソース領域3との間に間隙部
を有してゲート電極5の下にチャネル領域2aが形成さ
れる。
The above example is a MOSFET having a trench structure.
However, an example of a planar type MOSFET is shown in FIG. In order to obtain this planar MOSFET, an n-type semiconductor layer 1 is epitaxially grown on an n + -type semiconductor substrate 1a, and a gate electrode 5 is formed on the surface thereof via a gate oxide film 4, as in the above-described example. I do. And
Using the gate electrode 5 as a mask, a p-type impurity is diffused,
Then, by diffusing the n-type impurity, the impurity diffused isotropically and initially diffused again in the subsequent diffusion, so that the channel diffusion region 2 is diffused below the gate electrode 5 as shown in FIG. Then, channel region 2a is formed below gate electrode 5 with a gap between source region 3 and source electrode 3.

【0033】そして、前述の例と同様に、全面に絶縁膜
6を成膜し、ソース領域3を露出させる開口部6aを形
成してソース電極7を形成する。さらに、前述と同様の
熱処理を行うことにより、スパイクさせ、チャネル拡散
領域2およびソース領域3とオーミックコンタクトが得
られる合金層7aを形成し、半導体基板1aの裏面にド
レイン電極8を形成することにより、図3に示されるプ
レーナ型のMOSFETが得られる。
Then, similarly to the above-described example, an insulating film 6 is formed on the entire surface, an opening 6a for exposing the source region 3 is formed, and a source electrode 7 is formed. Further, by performing the same heat treatment as described above, spikes are formed to form an alloy layer 7a capable of obtaining an ohmic contact with the channel diffusion region 2 and the source region 3, and a drain electrode 8 is formed on the back surface of the semiconductor substrate 1a. 3 is obtained.

【0034】前述の例は、縦型MOSFETの例であっ
たが、この縦型MOSFETにさらにバイポーラトラン
ジスタが作り込まれる絶縁ゲート型バイポーラトランジ
スタ(IGBT)でも同様である。
Although the above-described example is an example of a vertical MOSFET, the same applies to an insulated gate bipolar transistor (IGBT) in which a bipolar transistor is further formed in this vertical MOSFET.

【0035】[0035]

【発明の効果】本発明によれば、MOSFETのチャネ
ル拡散領域とソース領域との両方にオーミックコンタク
トを得るのに、チャネル拡散領域とソース領域とが縦方
向に重なるように形成した部分の表面にソース電極を設
け、その金属材料を下層のチャネル拡散領域までスパイ
クさせてオーミックコンタクトを得ているため、非常に
小さな面積で両層にコンタクトさせることができる。そ
の結果、単位面積当りのトランジスタセルの数を非常に
増やすことができ、オン抵抗を1/2以下にすることが
でき、同じ動作電圧で電流を2倍以上に増やすことがで
きる。
According to the present invention, in order to obtain ohmic contact with both the channel diffusion region and the source region of the MOSFET, the surface of the portion where the channel diffusion region and the source region are formed so as to vertically overlap each other is formed. Since an ohmic contact is obtained by providing the source electrode and spiking the metal material to the channel diffusion region in the lower layer, it is possible to contact both layers with a very small area. As a result, the number of transistor cells per unit area can be greatly increased, the on-resistance can be reduced to 以下 or less, and the current can be increased to twice or more at the same operating voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の一実施形態であるトレン
チ型MOSFETの断面および平面の説明図である。
FIG. 1 is an explanatory view of a cross section and a plane of a trench MOSFET which is one embodiment of a semiconductor device of the present invention.

【図2】図1に示されるMOSFETの製造工程を示す
断面説明図である。
FIG. 2 is an explanatory sectional view showing a manufacturing process of the MOSFET shown in FIG. 1;

【図3】本発明による半導体装置のプレーナ型の例を示
す断面説明図である。
FIG. 3 is an explanatory sectional view showing a planar type semiconductor device according to the present invention;

【図4】従来のプレーナ型MOSFETの構造を示す断
面説明図である。
FIG. 4 is an explanatory sectional view showing the structure of a conventional planar MOSFET.

【図5】従来のトレンチ構造によるMOSFETの構造
を示す断面説明図である。
FIG. 5 is an explanatory sectional view showing a structure of a MOSFET having a conventional trench structure.

【符号の説明】[Explanation of symbols]

1 半導体層 2 チャネル拡散領域 3 ソース領域 4 ゲート酸化膜 5 ゲート電極 7 ソース電極 7a 合金層 Reference Signs List 1 semiconductor layer 2 channel diffusion region 3 source region 4 gate oxide film 5 gate electrode 7 source electrode 7a alloy layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ソース領域とドレイン領域とで挟まれる
チャネル領域を絶縁ゲート電極により制御する絶縁ゲー
ト駆動型素子を有する半導体装置であって、前記チャネ
ル領域を形成するチャネル拡散領域上にソース領域が形
成される部分を少なくとも有し、該ソース領域表面にソ
ース電極が金属膜により形成され、該ソース電極の金属
が前記ソース領域および前記チャネル拡散領域内にスパ
イクして半導体層との合金層が形成され、該合金層を介
して前記ソース電極が前記ソース領域および前記チャネ
ル拡散領域との両方にオーミックコンタクトされてなる
半導体装置。
1. A semiconductor device having an insulated gate driving element for controlling a channel region sandwiched between a source region and a drain region by an insulated gate electrode, wherein a source region is formed on a channel diffusion region forming the channel region. A source electrode is formed of a metal film on the surface of the source region, and a metal of the source electrode spikes into the source region and the channel diffusion region to form an alloy layer with a semiconductor layer. A semiconductor device in which the source electrode is in ohmic contact with both the source region and the channel diffusion region via the alloy layer.
【請求項2】 前記絶縁ゲート駆動型素子が、半導体層
の凹溝内にゲート酸化膜を介して前記ゲート電極が形成
され、該凹溝の横に前記チャネル拡散領域とソース領域
が縦方向に形成されるトレンチ構造の素子である請求項
1記載の半導体装置。
2. The insulated gate drive type device according to claim 1, wherein the gate electrode is formed in a concave groove of the semiconductor layer via a gate oxide film, and the channel diffusion region and the source region are arranged vertically in the lateral direction of the concave groove. 2. The semiconductor device according to claim 1, wherein the semiconductor device is an element having a trench structure to be formed.
【請求項3】 前記絶縁ゲート駆動型素子が、半導体層
の表面にゲート酸化膜を介して前記ゲート電極が形成さ
れるプレーナ型素子である請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the insulated gate drive element is a planar element in which the gate electrode is formed on a surface of a semiconductor layer via a gate oxide film.
【請求項4】 前記半導体層がシリコンまたは炭化シリ
コンであり、前記ソース電極がアルミニウムからなる請
求項1、2または3記載の半導体装置。
4. The semiconductor device according to claim 1, wherein said semiconductor layer is made of silicon or silicon carbide, and said source electrode is made of aluminum.
【請求項5】 (a)ドレイン領域とする第1導電形の
半導体層にトレンチを形成し、該トレンチ内にゲート酸
化膜を介してゲート電極を形成する工程と、(b)前記
ゲート電極周囲の前記半導体層に第2導電形不純物およ
び第1導電形不純物を順次拡散することによりチャネル
拡散領域およびソース領域を縦方向に形成する工程と、
(c)前記ソース領域表面に金属膜からなるソース電極
を形成する工程と、(d)熱処理を施し、前記ソース電
極の金属膜を前記ソース領域およびチャネル拡散領域に
スパイクさせることにより、前記ソース電極が該ソース
領域およびチャネル拡散領域とそれぞれオーミックコン
タクトする合金層を形成する工程と、(e)前記第1導
電形半導体層と電気的に接続してドレイン電極を形成す
る工程とを有する半導体装置の製法。
5. A step of (a) forming a trench in a semiconductor layer of a first conductivity type serving as a drain region, and forming a gate electrode in the trench via a gate oxide film; and (b) surrounding the gate electrode. Forming a channel diffusion region and a source region in the vertical direction by sequentially diffusing a second conductivity type impurity and a first conductivity type impurity into the semiconductor layer;
(C) forming a source electrode made of a metal film on the surface of the source region; and (d) performing a heat treatment to spike the metal film of the source electrode into the source region and the channel diffusion region. Forming an alloy layer in ohmic contact with the source region and the channel diffusion region, respectively, and (e) forming a drain electrode by electrically connecting to the first conductivity type semiconductor layer. Manufacturing method.
【請求項6】 前記ソース電極の形成を、前記半導体層
表面に形成した絶縁膜に前記ゲート酸化膜から離間する
ようにコンタクト孔を形成してから行う請求項5記載の
半導体装置の製法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein the formation of the source electrode is performed after forming a contact hole in the insulating film formed on the surface of the semiconductor layer so as to be separated from the gate oxide film.
【請求項7】 (a')ドレイン領域とする第1導電形
の半導体層の表面にゲート酸化膜を介してゲート電極を
形成する工程と、(b')前記ゲート電極周囲の前記半
導体層に第2導電形不純物および第1導電形不純物を順
次拡散することにより、前記ゲート電極の下側にチャネ
ル領域が形成されるようにチャネル拡散領域およびソー
ス領域を形成する工程と、(c)前記ソース領域表面に
金属膜からなるソース電極を形成する工程と、(d)熱
処理を施し、前記ソース電極の金属膜を前記ソース領域
およびチャネル拡散領域にスパイクさせることにより、
前記ソース電極が該ソース領域およびチャネル拡散領域
とそれぞれオーミックコンタクトする合金層を形成する
工程と、(e)前記第1導電形半導体層と電気的に接続
してドレイン電極を形成する工程とを有する半導体装置
の製法。
7. A step (a ′) of forming a gate electrode on a surface of a semiconductor layer of the first conductivity type serving as a drain region via a gate oxide film; and (b ′) forming a gate electrode around the gate electrode. Forming a channel diffusion region and a source region such that a channel region is formed below the gate electrode by sequentially diffusing a second conductivity type impurity and a first conductivity type impurity; Forming a source electrode made of a metal film on the surface of the region, and (d) performing a heat treatment to spike the metal film of the source electrode into the source region and the channel diffusion region.
Forming an alloy layer in which the source electrode makes ohmic contact with the source region and the channel diffusion region, respectively; and (e) forming a drain electrode electrically connected to the first conductivity type semiconductor layer. Manufacturing method of semiconductor device.
JP2001092163A 2001-03-28 2001-03-28 Semiconductor device and manufacturing method thereof Expired - Lifetime JP4909465B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001092163A JP4909465B2 (en) 2001-03-28 2001-03-28 Semiconductor device and manufacturing method thereof
US10/106,690 US6649973B2 (en) 2001-03-28 2002-03-27 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092163A JP4909465B2 (en) 2001-03-28 2001-03-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002289853A true JP2002289853A (en) 2002-10-04
JP4909465B2 JP4909465B2 (en) 2012-04-04

Family

ID=18946675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092163A Expired - Lifetime JP4909465B2 (en) 2001-03-28 2001-03-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4909465B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091555B2 (en) 2003-04-02 2006-08-15 Rohm Co., Ltd. Semiconductor device for switching
JP2014187192A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device
JP2019091912A (en) * 2019-01-28 2019-06-13 富士電機株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138076A (en) * 1982-01-04 1983-08-16 ゼネラル・エレクトリツク・カンパニイ Power mos-fet with shortcircuit between source and base and method of producing same
JPS644074A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Semiconductor device
JPH01235277A (en) * 1988-03-15 1989-09-20 Nec Corp Vertical field-effect transistor
JPH03109775A (en) * 1989-09-25 1991-05-09 Hitachi Ltd Insulation-gate-type semiconductor device
JPH07161983A (en) * 1993-12-03 1995-06-23 Fuji Electric Co Ltd Siliconcarbite vertical mosfet
JPH09219519A (en) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd Manufacture of mos type semiconductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138076A (en) * 1982-01-04 1983-08-16 ゼネラル・エレクトリツク・カンパニイ Power mos-fet with shortcircuit between source and base and method of producing same
JPS644074A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Semiconductor device
JPH01235277A (en) * 1988-03-15 1989-09-20 Nec Corp Vertical field-effect transistor
JPH03109775A (en) * 1989-09-25 1991-05-09 Hitachi Ltd Insulation-gate-type semiconductor device
JPH07161983A (en) * 1993-12-03 1995-06-23 Fuji Electric Co Ltd Siliconcarbite vertical mosfet
JPH09219519A (en) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd Manufacture of mos type semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091555B2 (en) 2003-04-02 2006-08-15 Rohm Co., Ltd. Semiconductor device for switching
JP2014187192A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device
JP2019091912A (en) * 2019-01-28 2019-06-13 富士電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP4909465B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4854868B2 (en) Semiconductor device
US9006819B2 (en) Power semiconductor device and method for manufacturing same
US6649973B2 (en) Semiconductor device and method for manufacturing the same
JP4860102B2 (en) Semiconductor device
KR101230680B1 (en) Semiconductor device and method for manufacturing the same
JP2001244462A (en) Transistor and method of manufacturing the same
JPH10189969A (en) Manufacture of mos-gate type device with self-aligned cell
JP2000012846A (en) Silicon carbide semiconductor device and manufacture thereof
JP7054403B2 (en) Manufacturing method of semiconductor device
JP4538870B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JPH05251709A (en) Mos-fet for power having source-base short-circuitting part and producing method therefor
KR19980042422A (en) P-channel MOOS gate device manufacturing process with base injection through contact window
JP5181545B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2000277734A (en) Insulated-gate semiconductor device and its manufacture
US20050082608A1 (en) Semiconductor device and method for fabricating the same
JP2007073818A (en) Semiconductor device and its manufacturing method
JP3540691B2 (en) Semiconductor device and manufacturing method thereof
JP5134746B2 (en) Method for manufacturing field effect transistor
JP2000277531A (en) Semiconductor device and its manufacture
JP4970660B2 (en) Semiconductor device and manufacturing method thereof
JP5314104B2 (en) Semiconductor device and manufacturing method thereof
JP4909465B2 (en) Semiconductor device and manufacturing method thereof
JP3197054B2 (en) Insulated gate field effect transistor and method of manufacturing the same
JP3646343B2 (en) Manufacturing method of semiconductor device
JPH05283687A (en) Production of semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term