JP2002289203A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell

Info

Publication number
JP2002289203A
JP2002289203A JP2001084767A JP2001084767A JP2002289203A JP 2002289203 A JP2002289203 A JP 2002289203A JP 2001084767 A JP2001084767 A JP 2001084767A JP 2001084767 A JP2001084767 A JP 2001084767A JP 2002289203 A JP2002289203 A JP 2002289203A
Authority
JP
Japan
Prior art keywords
gas
catalyst
polymer electrolyte
catalyst layer
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001084767A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hori
堀  喜博
Takeshi Yonamine
毅 与那嶺
Hiroaki Matsuoka
広彰 松岡
Junji Niikura
順二 新倉
Masato Hosaka
正人 保坂
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001084767A priority Critical patent/JP2002289203A/en
Priority to US10/296,895 priority patent/US6916575B2/en
Priority to PCT/JP2002/002089 priority patent/WO2002073723A1/en
Priority to CN02800587A priority patent/CN1459133A/en
Priority to EP02702771A priority patent/EP1357618A1/en
Priority to KR10-2002-7014941A priority patent/KR100515741B1/en
Publication of JP2002289203A publication Critical patent/JP2002289203A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve a problem that when hydrogen fed from methane or the like through a reformer is used on the fuel gas feeding side of a polymer electro lyte fuel cell, carbon monoxide or the like is produced together with hydrogen to poison the catalyst in an electrode of the fuel cell, and the degree of the catalyst poisoning is remarkably different between upstream and downstream a fed gas passage. SOLUTION: On the fuel gas side, that is, the anode side of a catalyst layer in the electrode, the catalyst making amount downstream the passage is set higher than that upstream thereof and the constituent ratio of the catalyst to the high polymer electrolyte is made more than 50% so as to cope with the poisoning of the catalyst by the carbon monoxide. On the oxidizing agent side, that is, the cathode side, the catalyst making amount downstream the passage is made higher than that upstream thereof and the constituent ratio of the catalyst to the high polymer electrolyte is made more than 50%, so that the above purpose can be accomplished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明の高分子電解質型燃料
電池に関し、特にその構成要素である電極の触媒層に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell according to the present invention, and more particularly to a catalyst layer of an electrode which is a constituent element thereof.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池の電極では、反
応ガスの供給路となる細孔と、水素イオン伝導性高分子
電解質と、触媒材料とが形成する、いわゆる三相界面の
面積の大小が、電池の放電性能を左右する。従来、この
三相界面を増大させ、触媒材料である貴金属の使用量を
低減するために、触媒材料に水素イオン伝導性高分子電
解質を混合分散させる試みがなされてきた。
2. Description of the Related Art In an electrode of a polymer electrolyte fuel cell, the size of a so-called three-phase interface formed by a pore serving as a supply path of a reaction gas, a hydrogen ion conductive polymer electrolyte, and a catalyst material is formed. Affects the discharge performance of the battery. Conventionally, attempts have been made to mix and disperse a hydrogen ion conductive polymer electrolyte in the catalyst material in order to increase the three-phase interface and reduce the amount of the noble metal used as the catalyst material.

【0003】例えば、特公昭62−61118号公報、
特公昭62−61119号公報に記載の技術では、高分
子電解質を分散した溶液と、触媒材料との混合物を高分
子電解質膜上に塗着し、これを電極材料と合わせてホッ
トプレスした後、触媒材料を還元する方法が提案されて
いる。また、特公平2−48632号公報では、多孔質
電極を成型後、電極上にイオン交換膜樹脂を分散した溶
液を散布し、この電極とイオン交換膜とをホットプレス
する方法が提案されている。さらに、特開平3−184
266号公報では、高分子樹脂表面に高分子電解質を被
覆した粉末、特開平3−295172号公報では高分子
電解質の粉末を電極中に混合する方法が提案されてい
る。また、特開平5−36418号公報では、高分子電
解質と触媒と炭素粉末とフッ素樹脂を混合し、成膜して
電極とする方法が提案されている。
[0003] For example, Japanese Patent Publication No. Sho 62-61118,
In the technique described in Japanese Patent Publication No. 62-61119, a mixture of a solution in which a polymer electrolyte is dispersed and a catalyst material is applied on a polymer electrolyte membrane, and the mixture is hot-pressed together with an electrode material. Methods for reducing catalyst materials have been proposed. Japanese Patent Publication No. 2-48632 proposes a method in which a porous electrode is molded, a solution in which an ion exchange membrane resin is dispersed is sprayed on the electrode, and the electrode and the ion exchange membrane are hot-pressed. . Further, Japanese Patent Application Laid-Open No. 3-184
Japanese Patent Publication No. 266 proposes a method in which a polymer resin surface is coated with a polymer electrolyte powder, and Japanese Patent Application Laid-Open No. 3-295172 discloses a method of mixing a polymer electrolyte powder in an electrode. Further, Japanese Patent Application Laid-Open No. 5-36418 proposes a method in which a polymer electrolyte, a catalyst, carbon powder, and a fluororesin are mixed and formed into a film to form an electrode.

【0004】また、米国特許第5211984号に記載
の技術では、グリセリンもしくはテトラブチルアンモニ
ウム塩を溶媒として、これに高分子電解質と触媒と炭素
粉末とをインク状に分散した溶液を作製し、これをポリ
テトラフルオロエチレン(以下、PTFEという)製フ
ィルム上に成型した後、固体高分子電解質膜表面に転写
する方法や、固体高分子電解質膜の交換基をNa型に置
換し、その膜の表面に前記のインク状分散液を塗布して
125℃以上で加熱乾燥し、交換基を再度H型に置換す
る方法などが報告されている。
In the technique described in US Pat. No. 5,221,1984, a solution is prepared by dispersing a polymer electrolyte, a catalyst and carbon powder in an ink form using glycerin or tetrabutylammonium salt as a solvent, and forming the solution. After molding on a polytetrafluoroethylene (hereinafter referred to as PTFE) film, a method of transferring it to the surface of the solid polymer electrolyte membrane, or replacing the exchange group of the solid polymer electrolyte membrane with Na type, A method has been reported in which the above-mentioned ink dispersion is applied, heated and dried at 125 ° C. or higher, and the exchange group is replaced with H-type again.

【0005】一方、これら触媒層の形成方法は、貴金属
を担持した炭素粉末と水素イオン伝導性高分子の溶液を
混合してインク化し、このインクをスクリ−ン印刷法や
スプレ−法を用いて基材となるカ−ボンペ−パ−上に形
成するのが一般的である。これ以外にも、不活性な高分
子フィルム上に触媒層を形成した後に、これら触媒層を
固体高分子電解質膜に転写する方法も提案されている。
On the other hand, these catalyst layers are formed by mixing a carbon powder carrying a noble metal and a solution of a hydrogen ion conductive polymer to form an ink, and applying the ink by a screen printing method or a spray method. It is generally formed on carbon paper serving as a base material. In addition, there has been proposed a method of forming a catalyst layer on an inert polymer film and then transferring the catalyst layer to a solid polymer electrolyte membrane.

【0006】[0006]

【発明が解決しようとする課題】高分子電解質型燃料電
池の燃料ガス供給側、即ちアノード側では、燃料ガスに
メタンや天然ガスなどから改質器を経て供給された水素
を用いる場合がある。このとき、水素と一緒に一酸化炭
素などが生成し、電極中の触媒を被毒する。供給ガス流
路のガス注入口側とガス排出口側とでは、消費した燃料
ガス量に応じて一酸化炭素の濃度が変化するため、上述
の触媒被毒の程度も、異なる。
On the fuel gas supply side of the polymer electrolyte fuel cell, that is, on the anode side, hydrogen supplied from methane, natural gas, or the like via a reformer may be used as the fuel gas in some cases. At this time, carbon monoxide and the like are generated together with the hydrogen, and poison the catalyst in the electrode. Since the concentration of carbon monoxide changes depending on the amount of consumed fuel gas between the gas inlet side and the gas outlet side of the supply gas flow path, the degree of the above-mentioned catalyst poisoning also differs.

【0007】一方、供給ガスは、水素イオン伝導性高分
子膜と触媒層中に分散された水素イオン伝導性高分子
の、水素イオン導電性を確保するために加湿を行ってい
る。ところが、供給ガス流路のガス注入口側とガス排出
口側とでは、消費したガス量に応じてガスの加湿程度が
異なってくる。つまり、流路上流部では、加湿量が少な
く、流路下流部では高加湿になる。これらの原因によ
り、本来得られる電池電圧が十分に出力できない。
On the other hand, the supply gas humidifies the hydrogen ion conductive polymer membrane and the hydrogen ion conductive polymer dispersed in the catalyst layer in order to secure the hydrogen ion conductivity. However, the degree of humidification of the gas differs between the gas inlet side and the gas outlet side of the supply gas flow path according to the consumed gas amount. That is, the humidification amount is small in the upstream part of the flow path, and high in the downstream part of the flow path. Due to these causes, the originally obtained battery voltage cannot be sufficiently output.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
めに本発明の高分子電解質型燃料電池は、水素イオン伝
導性高分子電解質膜と、前記水素イオン伝導性高分子電
解質膜の裏表の両面に配置したカソード及びアノードと
で単電池を構成し、前記アノードに水素を含む燃料ガス
を供給排出し、前記カソードに酸化剤ガスを供給排出す
るためのガス供給溝を形成した一対の導電性セパレータ
で、前記単電池を挟持し、前記カソード及びアノード
は、前記水素イオン伝導性高分子電解質膜と接触した触
媒層と、前記触媒層及び前記導電性セパレータに接触し
たガス拡散層とを有し、前記触媒層は、触媒粒子と水素
イオン伝導性高分子電解質とを有し、前記導電性セパレ
ータは、前記ガス供給溝に燃料ガスもしくは酸化剤ガス
を導入及び排出するためのガス注入口とガス排出口とを
有する高分子電解質型燃料電池において、前記触媒層中
の触媒粒子の配置量を、前記触媒層の面方向において、
前記導電性セパレータのガス注入口側よりもガス排出口
側に対抗する部分を多くしたことを特徴とする。
In order to solve the above-mentioned problems, a polymer electrolyte fuel cell according to the present invention comprises a hydrogen ion conductive polymer electrolyte membrane and a hydrogen ion conductive polymer electrolyte membrane. A unit cell is constituted by a cathode and an anode arranged on both sides, a fuel gas containing hydrogen is supplied to and discharged from the anode, and a pair of conductive members are formed in the cathode to form a gas supply groove for supplying and discharging an oxidizing gas. The separator sandwiches the unit cell, and the cathode and the anode have a catalyst layer in contact with the proton conductive polymer electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator. Wherein the catalyst layer has catalyst particles and a hydrogen ion conductive polymer electrolyte, and the conductive separator introduces and discharges a fuel gas or an oxidizing gas into the gas supply groove. In the polymer electrolyte fuel cell having a fit of the gas inlet and gas outlet, the arrangement of the catalyst particles in the catalyst layer, in the planar direction of the catalyst layer,
A portion of the conductive separator that opposes a gas outlet port side than a gas inlet port side is increased.

【0009】また、水素イオン伝導性高分子電解質膜
と、前記水素イオン伝導性高分子電解質膜の裏表の両面
に配置したカソード及びアノードとで単電池を構成し、
前記アノードに水素を含む燃料ガスを供給排出し、前記
カソードに酸化剤ガスを供給排出するためのガス供給溝
を形成した一対の導電性セパレータで、前記単電池を挟
持し、前記カソード及びアノードは、前記水素イオン伝
導性高分子電解質膜と接触した触媒層と、前記触媒層及
び前記導電性セパレータに接触したガス拡散層とを有
し、前記触媒層は、触媒粒子と水素イオン伝導性高分子
電解質とを有し、前記導電性セパレータは、前記ガス供
給溝に燃料ガスもしくは酸化剤ガスを導入及び排出する
ためのガス注入口とガス排出口とを有する高分子電解質
型燃料電池において、前記触媒層中の触媒粒子の混合比
は、前記触媒層の面方向において、前記導電性セパレー
タのガス注入口側よりもガス排出口側に対抗する部分が
高いことを特徴とする。
Further, a unit cell is constituted by a hydrogen ion conductive polymer electrolyte membrane, and a cathode and an anode arranged on both sides of the hydrogen ion conductive polymer electrolyte membrane,
A fuel gas containing hydrogen is supplied to and discharged from the anode, and the unit cell is sandwiched between a pair of conductive separators each having a gas supply groove for supplying and discharging an oxidizing gas to and from the cathode. A catalyst layer in contact with the hydrogen ion conductive polymer electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator, wherein the catalyst layer comprises catalyst particles and a hydrogen ion conductive polymer. An electrolyte, and wherein the conductive separator has a gas inlet and a gas outlet for introducing and discharging a fuel gas or an oxidizing gas into and from the gas supply groove. The mixing ratio of the catalyst particles in the layer is characterized in that, in the surface direction of the catalyst layer, a portion facing the gas outlet side of the conductive separator is higher than the gas inlet side. .

【0010】[0010]

【発明の実施の形態】詳しくは実施例において具体的に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to embodiments.

【0011】[0011]

【実施例】(実施例1)30nmの平均一次粒子径を持
つ導電性カ−ボン粒子であるケッチェンブラックEC
(オランダ国、AKZO Chemie社)に、平均粒
径約30Åの白金粒子を50重量%担持したものをカソ
ード用触媒とした。これを水素イオン伝導性の高分子電
解質溶液(旭硝子製:フレミオン、固形分9重量%のエ
タノール溶液)に混合することで、カソード用触媒イン
クを作成した。混合比率は、前記の導電性カ−ボン粒子
と高分子電解質溶液中の固形分との重量が等しくなるよ
うにした。この触媒インクを、ポリテトラフルオロエチ
レン(PTFE)のフィルム上にスクリ−ン印刷法を用
いて塗布した。これを乾燥後、水素イオン導伝性高分子
膜(米国デュポン社製、ナフィオン112)の片面に熱
転写した。
EXAMPLES Example 1 Ketjen Black EC, a conductive carbon particle having an average primary particle size of 30 nm
(AKZO Chemie, The Netherlands) supported 50% by weight of platinum particles having an average particle size of about 30 ° was used as a cathode catalyst. This was mixed with a hydrogen ion-conductive polymer electrolyte solution (Flemion, manufactured by Asahi Glass Co., ethanol solution having a solid content of 9% by weight) to prepare a cathode catalyst ink. The mixing ratio was such that the weight of the conductive carbon particles and the solid content in the polymer electrolyte solution were equal. This catalyst ink was applied on a polytetrafluoroethylene (PTFE) film using a screen printing method. After drying, this was thermally transferred to one side of a hydrogen ion conductive polymer membrane (Nafion 112, manufactured by DuPont, USA).

【0012】次に、前述のケッチェンブラックECに、
Pt−Ru合金粒子(重量比1:1)を60重量%担持
したものをアノード用の触媒とした。これを水素イオン
伝導性の高分子電解質溶液(旭硝子製:フレミオン、固
形分9重量%のエタノール溶液)に混合することで、ア
ノード用の触媒インクを作成した。混合比率は、前記の
導電性カ−ボン粒子と高分子電解質溶液中の固形分との
重量比を、1:1.2とした。この触媒インクを、カソ
ード側と同様に、PTFEフィルム上にスクリ−ン印刷
法を用いて塗布した。乾燥後、これを前述のアノード触
媒層を形成した高分子膜の逆側の面に、転写した。さら
に、この触媒インクを用いて、導電性セパレータのガス
流通溝の下流部半分の面積を覆うようなパタ−ンをPT
FEフィルムの一層上に形成した。
Next, in the above-mentioned Ketchen Black EC,
A catalyst supporting 60% by weight of Pt-Ru alloy particles (weight ratio of 1: 1) was used as a catalyst for an anode. This was mixed with a hydrogen ion conductive polymer electrolyte solution (Flemion, manufactured by Asahi Glass Co., ethanol solution having a solid content of 9% by weight) to prepare a catalyst ink for an anode. The mixing ratio was such that the weight ratio of the conductive carbon particles to the solid content in the polymer electrolyte solution was 1: 1.2. This catalyst ink was applied on a PTFE film by a screen printing method in the same manner as on the cathode side. After drying, this was transferred to the opposite side of the polymer membrane on which the above-mentioned anode catalyst layer was formed. Further, using this catalyst ink, a pattern covering a half of the downstream portion of the gas flow groove of the conductive separator is formed by PT.
Formed on one layer of FE film.

【0013】一方、カーボンペーパー(東レ製TGP−
H−120 膜厚360mm)に、導電性炭素粒子(電気
化学社製、アセチレンブラック)10gと、ポリテトラ
フルオロエチレンのディスパージョン2g(ダイキン工
業製D-1)と、水60gとを混合した溶液を塗布して、
300℃で2時間加熱したものを作成し、これを電極基
材とした。焼成後のカ−ボンペ−パ−を外側にして、前
述の電解質と触媒層とをホットプレスにて接合した。最
後に、前記の圧着物の高分子電解質膜の外周部にブチル
ゴム製のガスケット板を接合し、冷却水と燃料ガス及び
酸化剤ガス流通用のマニホールド穴を形成して、MEA
とした。
On the other hand, carbon paper (TGP- manufactured by Toray)
A solution obtained by mixing 10 g of conductive carbon particles (Acetylene Black, manufactured by Denki Kagaku), 2 g of a dispersion of polytetrafluoroethylene (D-1 manufactured by Daikin Industries), and 60 g of water on H-120 (360 mm thick). And apply
A product heated at 300 ° C. for 2 hours was prepared and used as an electrode substrate. The above-described electrolyte and the catalyst layer were joined by hot pressing with the fired carbon paper facing outside. Finally, a gasket plate made of butyl rubber was joined to the outer periphery of the polymer electrolyte membrane of the above-mentioned crimped product, and manifold holes for flowing cooling water, fuel gas and oxidizing gas were formed.
And

【0014】次に、外寸が20cm×32cm、厚みが
1.3mm、ガス流路および冷却媒体流路の深さが0.
5mmの樹脂含浸黒鉛板から構成したセパレーターを準
備し、セパレータ2枚を用い、MEAシートの一方の面
に酸化剤ガス流路が形成されたセパレーターを、裏面に
燃料ガス流路が形成されたセパレーターを重ね合わせ、
これを単電池とした。
Next, the outer dimensions are 20 cm × 32 cm, the thickness is 1.3 mm, and the depth of the gas channel and the cooling medium channel is 0.3 mm.
A separator composed of a 5 mm resin-impregnated graphite plate was prepared. Using two separators, a separator having an oxidizing gas channel formed on one surface of the MEA sheet and a separator having a fuel gas channel formed on the back surface were used. Superimpose,
This was used as a unit cell.

【0015】この電池を用いて、アノード側に一酸化炭
素を50ppm含んだ水素ガスを注入し、カソード側に
空気を注入し、電池温度を75℃、燃料ガス利用率(U
f)を70%、空気利用率(Uo)を40%として、特
性の評価を行った。ガス加湿は燃料ガスを75℃、空気
を50℃のバブラーをそれぞれ通して加湿した。図1
に、このとき得られた電流密度と電池電圧の関係を示
す。
Using this battery, a hydrogen gas containing 50 ppm of carbon monoxide was injected into the anode side, air was injected into the cathode side, the battery temperature was 75 ° C., and the fuel gas utilization rate (U
The characteristics were evaluated by setting f) to 70% and the air utilization rate (Uo) to 40%. The gas was humidified by passing a fuel gas through a bubbler at 75 ° C. and air through a bubbler at 50 ° C. Figure 1
The relationship between the current density and the battery voltage obtained at this time is shown below.

【0016】(実施例2)カソードの触媒層は、実施例
1と同じ方法を用いてPTFE基材に形成した後、前記
形成物を水素イオン導電性高分子膜に熱転写した。次
に、アノード側の触媒層は、比表面積が800m2/g
のライオン社製ケッチェンブラックに、Pt−Ru触媒
を60重量%担持した触媒を用い、水素イオン導伝性高
分子膜と同じイオン交換容量の水素イオン導電性高分子
を、触媒に用いたケッチェンブラックの重量の1.4倍
になるよう混合した。
Example 2 The catalyst layer of the cathode was formed on a PTFE substrate using the same method as in Example 1, and the formed product was thermally transferred to a hydrogen ion conductive polymer membrane. Next, the catalyst layer on the anode side has a specific surface area of 800 m 2 / g.
A Ketjen black manufactured by Lion Co., Ltd. using a catalyst carrying 60% by weight of a Pt-Ru catalyst, and using a hydrogen ion conductive polymer having the same ion exchange capacity as the hydrogen ion conductive polymer membrane as a catalyst. The mixture was mixed so as to be 1.4 times the weight of the chain black.

【0017】この触媒インクを、カソード側と同様に、
PTFE基材上にスクリ−ン印刷法を用いて、触媒層全
面積の半分に相当する、導電性セパレータのガス流通溝
の上流部に対抗する対抗する部分にパタ−ン形成した。
一方、ガス流路の下流部については、水素イオン導電性
高分子を、触媒に用いたケッチェンブラックの重量の
1.0倍になるよう混合したインクを用いて、触媒層の
流路下流部にあたる残りの部分に対して形成した。これ
ら基材を乾燥後、カソード側の触媒層を形成した水素イ
オン導伝性高分子膜に前記形成物を熱転写した。以下
は、実施例1と同じ方法を用いて、膜電極接合体と単電
池を作成し、単電池の放電試験を行った。図2に、この
ときの電流密度と電池電圧の関係を示す。
This catalyst ink is used similarly to the cathode side,
Using a screen printing method, a pattern was formed on the PTFE substrate at a portion corresponding to half of the entire area of the catalyst layer and opposed to the upstream portion of the gas flow groove of the conductive separator.
On the other hand, with respect to the downstream portion of the gas flow channel, the ink mixed with the hydrogen ion conductive polymer so as to be 1.0 times the weight of Ketjen black used for the catalyst is used, and the downstream portion of the flow channel of the catalyst layer is used. Formed on the remaining portion corresponding to. After drying these substrates, the formed product was thermally transferred to a hydrogen ion conductive polymer membrane on which a catalyst layer on the cathode side was formed. Hereinafter, a membrane electrode assembly and a unit cell were prepared using the same method as in Example 1, and a discharge test of the unit cell was performed. FIG. 2 shows the relationship between the current density and the battery voltage at this time.

【0018】(実施例3)アノード側の触媒層は、比表
面積が800m2/gのライオン社製ケッチェンブラッ
クにPt−Ru触媒を60重量%担持した触媒を用い、
水素イオン導伝性高分子膜と同じイオン交換用量の水素
イオン導電性高分子を結着剤として、触媒に用いたケッ
チェンブラックの重量の1.2倍になるように混合し
た。この触媒インクを、PTFE基材上にスクリ−ン印
刷法を用いて形成した。乾燥後、水素イオン導伝性高分
子膜の燃料極側に前記形成物を熱転写した。
Example 3 The catalyst layer on the anode side was prepared by using a catalyst in which 60% by weight of a Pt-Ru catalyst was supported on Ketjen black manufactured by Lion Corporation having a specific surface area of 800 m 2 / g.
A hydrogen ion conductive polymer having the same ion exchange dose as the hydrogen ion conductive polymer membrane was used as a binder and mixed so as to be 1.2 times the weight of Ketjen black used as a catalyst. This catalyst ink was formed on a PTFE substrate using a screen printing method. After drying, the formed product was thermally transferred to the fuel electrode side of the proton conductive polymer membrane.

【0019】次に、カソード側の触媒層は、比表面積が
800m2/gのライオン社製ケッチェンブラックに白
金触媒を50重量%担持した触媒を用い、水素イオン導
伝性高分子膜と同じイオン交換容量の水素イオン導電性
高分子を、触媒に用いたケッチェンブラックの重量と同
量になるように混合した。このインクを用いて、酸化極
側と同様に、PTFE基材上にスクリ−ン印刷法を用い
て形成した。乾燥後、燃料極側の触媒層を予め形成した
高分子膜を用い、高分子膜の酸化極側に一層目の触媒層
を転写した。
Next, the catalyst layer on the cathode side uses a catalyst in which 50% by weight of a platinum catalyst is supported on Ketjen black manufactured by Lion Corporation having a specific surface area of 800 m 2 / g, and is the same as the hydrogen ion conductive polymer membrane. A hydrogen ion conductive polymer having an ion exchange capacity was mixed so as to have the same amount as the weight of Ketjen black used for the catalyst. Using this ink, a screen printing method was formed on a PTFE substrate in the same manner as the oxidized electrode side. After drying, the first catalyst layer was transferred to the oxidation electrode side of the polymer film using a polymer film in which the catalyst layer on the fuel electrode side was formed in advance.

【0020】さらに、同じインクを用いて、PTFE基
材に流路下流部半分の面積となるように上部にパタ−ン
形成した。以下は、実施例1と同じ方法を用いて、膜電
極接合体と単電池を作製した。図3に、単電池放電試験
による電流密度と電池電圧の関係を示す。
Further, using the same ink, a pattern was formed on an upper portion of the PTFE substrate so as to have an area of a half of the downstream portion of the flow path. Hereinafter, a membrane electrode assembly and a unit cell were manufactured using the same method as in Example 1. FIG. 3 shows the relationship between the current density and the battery voltage in a unit cell discharge test.

【0021】(実施例4)カソード側の触媒層は、比表
面積が800m2/gのライオン社製ケッチェンブラッ
クに白金触媒を50重量%担持した触媒を用い、水素イ
オン導伝性高分子膜と同じイオン交換容量の水素イオン
導電性高分子を、触媒に用いたケッチェンブラックの重
量の1.2倍になるよう混合した。この触媒インクを、
実施例1と同様に、PTFE基材上にスクリ−ン印刷法
を用いて、触媒層全面積の半分に相当する流路上流半分
をパタ−ン形成した。
Example 4 The catalyst layer on the cathode side is a hydrogen ion conductive polymer membrane using a catalyst in which 50% by weight of a platinum catalyst is supported on Ketjen Black manufactured by Lion Corporation having a specific surface area of 800 m 2 / g. A hydrogen ion conductive polymer having the same ion exchange capacity as in Example 1 was mixed so as to be 1.2 times the weight of Ketjen black used for the catalyst. This catalyst ink is
In the same manner as in Example 1, the upstream half of the flow channel corresponding to half of the entire area of the catalyst layer was formed on the PTFE substrate by screen printing.

【0022】一方、流路下流部については水素イオン導
電性高分子を、触媒に用いたケッチェンブラックの重量
の0.8倍となるよう混合したインクを用いて、触媒層
の流路下流部にあたる残りの部分に対して形成した。前
記触媒層を形成した基材を乾燥後、水素イオン導伝性高
分子膜に熱転写した。以下は、実施例3と同じ方法を用
いて、アノード側の触媒層を形成、膜電極接合体と単電
池を作製した。図4に、放電試験による電流密度と電池
電圧の関係を示す。
On the other hand, the downstream portion of the flow channel of the catalyst layer is formed by using an ink obtained by mixing a hydrogen ion conductive polymer with 0.8 times the weight of Ketjen black used as a catalyst. Formed on the remaining portion corresponding to. After drying the substrate on which the catalyst layer was formed, the substrate was thermally transferred to a hydrogen ion conductive polymer membrane. In the following, using the same method as in Example 3, a catalyst layer on the anode side was formed, and a membrane electrode assembly and a unit cell were produced. FIG. 4 shows the relationship between the current density and the battery voltage in a discharge test.

【0023】(比較例1)カソード側の触媒層は、比表
面積が800m2/gのライオン社製ケッチェンブラッ
クに白金触媒を50重量%担持した触媒を用い、水素イ
オン導伝性高分子膜と同じイオン交換用量の水素イオン
導電性高分子を結着剤として、触媒に用いたケッチェン
ブラックの重量と同量になるように混合した。この触媒
インクを、PTFE基材上にスクリ−ン印刷法を用いて
形成した。乾燥後、水素イオン導伝性高分子膜のカソー
ド側に前記形成物を熱転写した。
(Comparative Example 1) The catalyst layer on the cathode side is a hydrogen ion conductive polymer membrane using a catalyst in which 50% by weight of a platinum catalyst is supported on Ketjen Black manufactured by Lion Corporation having a specific surface area of 800 m 2 / g. A hydrogen ion conductive polymer having the same ion exchange dose as in Example 2 was mixed as a binder so as to have the same amount as the weight of Ketjen black used for the catalyst. This catalyst ink was formed on a PTFE substrate using a screen printing method. After drying, the formed product was thermally transferred to the cathode side of the hydrogen ion conductive polymer membrane.

【0024】次に、アノード側の触媒層は、比表面積が
800m2/gのライオン社製ケッチェンブラックにP
t−Ru触媒を60重量%担持した触媒を用い、水素イ
オン導伝性高分子膜と同じイオン交換容量の水素イオン
導電性高分子を、触媒に用いたケッチェンブラックの重
量の1.2倍になるよう混合した。この触媒インクを、
カソード側と同様に、PTFE基材上にスクリ−ン印刷
法を用いて形成した。乾燥後、カソード側の触媒層を予
め形成した高分子膜に転写した。以下は、実施例1と同
じ方法にて、膜電極接合体と単電池を得た。これを用い
て放電試験を行った。図1〜4に、このときの電流密度
と電池電圧の関係を示す。
Next, the catalyst layer on the anode side was coated on a Ketjen black manufactured by Lion Corporation having a specific surface area of 800 m 2 / g.
Using a catalyst carrying 60% by weight of a t-Ru catalyst, a hydrogen ion conductive polymer having the same ion exchange capacity as the hydrogen ion conductive polymer membrane was 1.2 times the weight of Ketjen black used as the catalyst. And mixed. This catalyst ink is
Like the cathode side, it was formed on a PTFE substrate by using a screen printing method. After drying, the catalyst layer on the cathode side was transferred to a polymer film formed in advance. Hereinafter, a membrane electrode assembly and a unit cell were obtained in the same manner as in Example 1. Using this, a discharge test was performed. 1 to 4 show the relationship between the current density and the battery voltage at this time.

【0025】[0025]

【発明の効果】図1から図4において、触媒層中の触媒
粒子の配置量を、前記触媒層の面方向において、前記導
電性セパレータのガス注入口側よりもガス排出口側に対
抗する部分を多くするか、触媒層中の触媒粒子の混合比
を、前記触媒層の面方向において、前記導電性セパレー
タのガス注入口側よりもガス排出口側に対抗する部分が
高いとき、優れた電流−電圧特性を有することを確認し
た。
In FIG. 1 to FIG. 4, the arrangement amount of the catalyst particles in the catalyst layer is changed in the plane direction of the catalyst layer by the portion of the conductive separator that faces the gas outlet side from the gas inlet side. Or when the mixing ratio of the catalyst particles in the catalyst layer is higher in the plane direction of the catalyst layer, where the portion of the conductive separator that faces the gas outlet side is higher than the gas inlet side. -It was confirmed that it had voltage characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である燃料電池の特性図FIG. 1 is a characteristic diagram of a fuel cell according to a first embodiment of the present invention.

【図2】本発明の第2の実施例である燃料電池の特性図FIG. 2 is a characteristic diagram of a fuel cell according to a second embodiment of the present invention.

【図3】本発明の第3の実施例である燃料電池の特性図FIG. 3 is a characteristic diagram of a fuel cell according to a third embodiment of the present invention.

【図4】本発明の第4の実施例である燃料電池の特性図FIG. 4 is a characteristic diagram of a fuel cell according to a fourth embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 広彰 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新倉 順二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 保坂 正人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS02 AS03 CC06 DD05 DD08 DD10 EE03 EE08 EE19 HH00 HH05 5H026 AA06 CC03 CX05 HH00 HH05 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroaki Matsuoka 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Masato Hosaka 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. AS02 AS03 CC06 DD05 DD08 DD10 EE03 EE08 EE19 HH00 HH05 5H026 AA06 CC03 CX05 HH00 HH05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素イオン伝導性高分子電解質膜と、前
記水素イオン伝導性高分子電解質膜の裏表の両面に配置
したカソード及びアノードとで単電池を構成し、前記ア
ノードに水素を含む燃料ガスを供給排出し、前記カソー
ドに酸化剤ガスを供給排出するためのガス流通溝を形成
した一対の導電性セパレータで、前記単電池を挟持し、
前記カソード及びアノードは、前記水素イオン伝導性高
分子電解質膜と接触した触媒層と、前記触媒層及び前記
導電性セパレータに接触したガス拡散層とを有し、前記
触媒層は、触媒粒子と水素イオン伝導性高分子電解質と
を有し、前記導電性セパレータは、前記ガス供給溝に燃
料ガスもしくは酸化剤ガスを導入及び排出するためのガ
ス注入口とガス排出口とを有する高分子電解質型燃料電
池において、 前記触媒層中の触媒粒子の配置量を、前記触媒層の面方
向において、前記導電性セパレータのガス注入口側より
もガス排出口側に対抗する部分を多くしたことを特徴と
する高分子電解質型燃料電池。
1. A unit cell comprising a hydrogen ion conductive polymer electrolyte membrane, and a cathode and an anode disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, wherein the anode contains hydrogen-containing fuel gas. Supply and discharge, sandwiching the unit cell with a pair of conductive separators formed with a gas flow groove for supplying and discharging an oxidizing gas to the cathode,
The cathode and the anode each include a catalyst layer in contact with the proton conductive polymer electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator, wherein the catalyst layer includes catalyst particles and hydrogen. A polymer electrolyte fuel having an ion-conductive polymer electrolyte, wherein the conductive separator has a gas inlet and a gas outlet for introducing and discharging a fuel gas or an oxidizing gas into the gas supply groove. In the battery, the arrangement amount of the catalyst particles in the catalyst layer is such that, in the surface direction of the catalyst layer, a portion opposed to a gas discharge port side of the conductive separator is more than a gas discharge port side. Polymer electrolyte fuel cell.
【請求項2】 水素イオン伝導性高分子電解質膜と、前
記水素イオン伝導性高分子電解質膜の裏表の両面に配置
したカソード及びアノードとで単電池を構成し、前記ア
ノードに水素を含む燃料ガスを供給排出し、前記カソー
ドに酸化剤ガスを供給排出するためのガス流通溝を形成
した一対の導電性セパレータで、前記単電池を挟持し、
前記カソード及びアノードは、前記水素イオン伝導性高
分子電解質膜と接触した触媒層と、前記触媒層及び前記
導電性セパレータに接触したガス拡散層とを有し、前記
触媒層は、触媒粒子と水素イオン伝導性高分子電解質と
を有し、前記導電性セパレータは、前記ガス供給溝に燃
料ガスもしくは酸化剤ガスを導入及び排出するためのガ
ス注入口とガス排出口とを有する高分子電解質型燃料電
池において、 前記触媒層中の触媒粒子の混合比は、前記触媒層の面方
向において、前記導電性セパレータのガス注入口側より
もガス排出口側に対抗する部分が高いことを特徴とする
高分子電解質型燃料電池。
2. A fuel cell comprising a hydrogen ion conductive polymer electrolyte membrane, and a cathode and an anode disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, wherein the anode contains hydrogen. Supply and discharge, sandwiching the unit cell with a pair of conductive separators formed with a gas flow groove for supplying and discharging an oxidizing gas to the cathode,
The cathode and the anode each include a catalyst layer in contact with the proton conductive polymer electrolyte membrane, and a gas diffusion layer in contact with the catalyst layer and the conductive separator, wherein the catalyst layer includes catalyst particles and hydrogen. A polymer electrolyte fuel having an ion-conductive polymer electrolyte, wherein the conductive separator has a gas inlet and a gas outlet for introducing and discharging a fuel gas or an oxidizing gas into the gas supply groove. In the battery, the mixing ratio of the catalyst particles in the catalyst layer is such that, in the surface direction of the catalyst layer, a portion facing the gas outlet side is higher than the gas inlet side of the conductive separator. Molecular electrolyte fuel cell.
JP2001084767A 2001-03-08 2001-03-23 Polymer electrolyte fuel cell Pending JP2002289203A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001084767A JP2002289203A (en) 2001-03-23 2001-03-23 Polymer electrolyte fuel cell
US10/296,895 US6916575B2 (en) 2001-03-08 2002-03-06 Polymer electrolyte type fuel cell
PCT/JP2002/002089 WO2002073723A1 (en) 2001-03-08 2002-03-06 Polymer electrolyte type fuel cell
CN02800587A CN1459133A (en) 2001-03-08 2002-03-06 Polymer electrolyte type fuel cell
EP02702771A EP1357618A1 (en) 2001-03-08 2002-03-06 Polymer electrolyte type fuel cell
KR10-2002-7014941A KR100515741B1 (en) 2001-03-08 2002-03-06 Polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084767A JP2002289203A (en) 2001-03-23 2001-03-23 Polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2002289203A true JP2002289203A (en) 2002-10-04

Family

ID=18940388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084767A Pending JP2002289203A (en) 2001-03-08 2001-03-23 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2002289203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP2007513466A (en) * 2003-11-03 2007-05-24 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
JP2008311154A (en) * 2007-06-15 2008-12-25 Noritake Co Ltd Catalyst layer and membrane-electrode assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2007513466A (en) * 2003-11-03 2007-05-24 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
US7829239B2 (en) 2003-11-03 2010-11-09 Gm Global Technology Operations, Inc. Variable catalyst loading based on flow field geometry
US7927761B2 (en) 2003-11-03 2011-04-19 GM Global Technology Operations LLC Variable catalyst loading based on flow field geometry
JP4764346B2 (en) * 2003-11-03 2011-08-31 ゼネラル・モーターズ・コーポレーション Variable catalyst volume based on flow region geometry
US8227124B2 (en) 2003-11-03 2012-07-24 GM Global Technology Operations LLC Variable catalyst loading based on flow field geometry
JP2008311154A (en) * 2007-06-15 2008-12-25 Noritake Co Ltd Catalyst layer and membrane-electrode assembly

Similar Documents

Publication Publication Date Title
US20050142397A1 (en) Membrane electrode assembly and fuel cell
JP2003123777A (en) Polymer electrolyte fuel cell
US7803490B2 (en) Direct methanol fuel cell
JP2002025560A (en) Fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP5214602B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
KR100515741B1 (en) Polymer electrolyte type fuel cell
US20090053572A1 (en) Pem fuel cell with improved water management
JP2004288388A (en) Electrode for fuel cell, its manufacturing method, and fuel cell
JP2001319663A (en) Solid polymer type fuel cell and its manufacturing method
JP2001338651A (en) Electrode for fuel cell and fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
EP1677378B1 (en) Fuel cell and fuel cell stack
JP2002063912A (en) Manufacturing method of polymer electrolyte fuel cell
JP2001126750A (en) Polymer electrolytic fuel cell and clamping method thereof
CN1985392B (en) Polymer electrolyte fuel cell
US20050147868A1 (en) Fuel cell
JP3989771B2 (en) Polymer electrolyte fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2002289203A (en) Polymer electrolyte fuel cell
JP2003163015A (en) Polymer electrolyte fuel cell and conductive separator plate therefor
EP1622218A1 (en) Method for supporting catalyst for polymer electrolyte fuel cell and membrane electrode assembly
JP2002170581A (en) Polymer electrolyte type fuel battery
JP3685039B2 (en) Polymer electrolyte fuel cell system