JP2002289198A - Electrode material for battery, and manufacturing method thereof - Google Patents

Electrode material for battery, and manufacturing method thereof

Info

Publication number
JP2002289198A
JP2002289198A JP2001087147A JP2001087147A JP2002289198A JP 2002289198 A JP2002289198 A JP 2002289198A JP 2001087147 A JP2001087147 A JP 2001087147A JP 2001087147 A JP2001087147 A JP 2001087147A JP 2002289198 A JP2002289198 A JP 2002289198A
Authority
JP
Japan
Prior art keywords
battery
electrode material
dry film
roughened surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001087147A
Other languages
Japanese (ja)
Inventor
Kentaro Yano
健太郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001087147A priority Critical patent/JP2002289198A/en
Publication of JP2002289198A publication Critical patent/JP2002289198A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material for a battery, together with its manufacturing method, in which a surface of the battery electrode material is efficiently and easily roughened to an arbitrary roughness by a technology which is industrially practicable, which means a dry-type film forming method which lefts no residual, in a dry process requiring no waste liquid treatment. SOLUTION: Related to a plate material used for an electrode of a battery, a roughened surface comprising a dry-type film forming layer is formed on at least one surface side of the plate material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粗面化を必要とす
る電池用電極材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for a battery which requires roughening and a method for producing the same.

【0002】[0002]

【従来の技術】電池用電極には電極表面の面積を増加さ
せ電池の電気容量を増加させるとともに、電極表面に塗
布するカーボンの密着性を向上させる目的で、粗化処理
が行われている。この粗化処理の方法には大きく分けて
化学的な方法と、物理的な方法とが用いられている。化
学的な方法では、板材の片面に、電気めっきにより銅を
主成分とする金属をこぶ状に形成するめっき法、表面を
部分的に腐食し、表面粗さを悪くする方法等のように化
学的に表面を粗化するエッチング法などがある。物理的
な方法としては、ショットブラストのように粒状の固体
をぶつける方法、凹凸のあるダイス工具を押し当てる方
法、そしてプラズマやイオンを用いて表面にエッチング
する、いわゆるドライエッチング法等がある。
2. Description of the Related Art A roughening treatment is performed on a battery electrode in order to increase the area of the electrode surface to increase the electric capacity of the battery and to improve the adhesion of carbon applied to the electrode surface. The roughening method is roughly divided into a chemical method and a physical method. In the chemical method, a plating method in which a metal mainly composed of copper is formed in a bump shape on one side of a plate material by electroplating, a method in which the surface is partially corroded and the surface roughness is deteriorated, etc. There is an etching method for roughening the surface. As a physical method, there are a method of hitting a granular solid like a shot blast, a method of pressing an uneven die tool, and a so-called dry etching method of etching the surface using plasma or ions.

【0003】めっき法の利点としては、図2に示すよう
な先端の丸い独特なこぶ状の突起を形成することが可能
であるという利点がある。エッチング法の利点として
は、設備およびエッチング液が比較的単純で製造費が低
く、ショットブラスト法の利点としては、迅速および簡
便に粗さを得ることができること、凹凸のあるダイスを
押し当てる方法の利点としては、ダイスの表面粗さを転
写することになるので、均質な粗さを得やすいこと、ド
ライエッチング法の利点としては、微細な粗さとするこ
とが可能であることなどが挙げられる。
As an advantage of the plating method, there is an advantage that a unique bump-like projection having a rounded tip as shown in FIG. 2 can be formed. The advantages of the etching method are that the equipment and the etching solution are relatively simple and the production cost is low, and the advantages of the shot blast method are that roughness can be obtained quickly and easily, and a method of pressing a dice having irregularities. As an advantage, since the surface roughness of the die is transferred, uniform roughness can be easily obtained, and advantages of the dry etching method include fine roughness.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
めっき法では製造速度が遅く、製造コストが高いこと、
エッチング法では、形成される面の形態が尖塔状とな
り、こぶ状の形態となるめっき法に比べ接着強さが弱い
ことなどの問題があり、これらのいずれの方法とも湿式
で化学薬品を用いて行なわれるため、表面に反応形成物
や残渣が残る問題や廃液処理などの環境問題がある。ま
た、ショットブラスト法は、粗化形成に用いた粒やその
破片が素材表面に異物として残存するなどの問題、凹凸
のあるダイスを押し当てる方法は、ダイス面の粗さを転
写する都合上、特に厚さが20μm以下の薄い素材におい
ては、素材そのものが変形するため、10μmRz以下の表
面粗さを得ることが難しく、10μm以下の粗化面が求め
られた場合、事実上形成ができない等の問題がある。ド
ライエッチング法は加工速度が遅いため、工業的に製作
可能な表面粗さは1μmRz以下である。本発明の目的
は、工業的に十分実用可能な技術の範囲で、即ち廃液処
理を要しないドライプロセスで、残渣が残らない乾式成
膜法により、効率的にしかも容易に任意の粗さを有する
粗化面が形成された電池用電極材の粗化を効率的に電池
用電極材およびその製造方法を提供する。
However, in the above-mentioned plating method, the production speed is low and the production cost is high.
In the etching method, there is a problem that the form of the surface to be formed has a spire shape, and the adhesive strength is weaker than the plating method in the form of a bump, and any of these methods uses a wet chemical with a chemical. Therefore, there is a problem that a reaction product or a residue remains on the surface or an environmental problem such as waste liquid treatment. In addition, the shot blast method is problematic in that the particles used for roughening and fragments thereof remain as foreign matter on the material surface, and the method of pressing a dice having irregularities is difficult to transfer the roughness of the die surface. In particular, in the case of a thin material having a thickness of 20 μm or less, it is difficult to obtain a surface roughness of 10 μmRz or less because the material itself is deformed. There's a problem. Since the dry etching method has a low processing speed, the surface roughness that can be produced industrially is 1 μmRz or less. An object of the present invention is to have an arbitrary roughness efficiently and easily by a dry film forming method that does not leave a residue within a range of technologies that can be practically used industrially, that is, a dry process that does not require waste liquid treatment. Provided are a battery electrode material having a roughened surface, which is efficiently roughened, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は上述の問題に鑑
みてなされたものであって、本発明者は、乾式成膜法が
電池用電極材の粗化処理に適用できることを見いだし本
発明に到達した。すなわち本発明は、電池の電極に用い
られる板材において、該板材の少なくとも片方の面側に
は乾式成膜層でなる粗化面が形成されている電池用電極
材である。好ましくは、乾式成膜層は、C、Cu、Al、Cu
合金、Al合金の何れかからなる電池用電極材であり、更
に好ましくは、粗化面の表面粗さが1μm〜10μmRzであ
る電池用電極材である。また本発明は、上述の電池用電
極材の製造方法であって、真空槽内で板材の少なくとも
片方の面側に乾式成膜法にて、粗化面となる乾式成膜層
を付着形成する電池用電極材の製造方法であり、好まし
くは、乾式成膜法は、真空蒸着法、イオンプレーティン
グ法、アークイオンプレーティング法の何れかである電
池用電極材の製造方法である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the present inventor has found that a dry film forming method can be applied to a roughening treatment of an electrode material for a battery. Reached. That is, the present invention is a battery electrode material in which a roughened surface formed of a dry film-forming layer is formed on at least one surface side of a plate material used for a battery electrode. Preferably, the dry film formation layer is C, Cu, Al, Cu
An electrode material for a battery made of any one of an alloy and an Al alloy, and more preferably an electrode material for a battery having a roughened surface having a surface roughness of 1 μm to 10 μmRz. The present invention also relates to a method for producing an electrode material for a battery as described above, wherein a dry film forming layer serving as a roughened surface is adhered to at least one surface side of a plate material in a vacuum chamber by a dry film forming method. It is a method for producing an electrode material for a battery, and preferably, the dry film formation method is a method for producing an electrode material for a battery, which is any one of a vacuum deposition method, an ion plating method, and an arc ion plating method.

【0006】[0006]

【発明の実施の形態】本発明の重要な特徴は、ドライプ
ロセスで、残渣が残らない乾式成膜法を用いて粗化面を
形成することにある。以下に本発明を詳しく説明する。
電池用電極には電極表面の面積を増加させ電池の電気容
量を増加させるとともに、電極表面に塗布するカーボン
の密着性を向上させる目的で、粗化面が必要となるた
め、素材の板材の少なくとも片方の面側には粗化面を形
成する。この粗化面の形成は、例えば図5に示すよう
な、少なくとも真空槽(3)内に設けられた巻き出しリー
ルから巻き出された板材素材(1)が蒸着源(2)に対向する
位置で乾式成膜層でなる粗化面を付着形成し、巻き取り
リールで巻き取る構造の装置を用いれば良い。なお、こ
こで用いる板材は連続した帯板でもよいし、切り板材で
もよいが、例えば上述のように帯材を用いる構造の装置
が利用できることを考慮すると、帯材を用いた方が生産
性は良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An important feature of the present invention is that a roughened surface is formed by a dry process using a dry film forming method in which no residue remains. Hereinafter, the present invention will be described in detail.
Since the battery electrode needs a roughened surface for the purpose of increasing the surface area of the electrode to increase the electric capacity of the battery and improving the adhesion of the carbon applied to the electrode surface, at least a plate material is required. A roughened surface is formed on one surface side. The roughened surface is formed at a position where the plate material (1) unwound from at least the unwinding reel provided in the vacuum chamber (3) faces the evaporation source (2) as shown in FIG. 5, for example. Then, an apparatus having a structure in which a roughened surface formed of a dry film formation layer is adhered and then wound up by a take-up reel may be used. The plate material used here may be a continuous band plate or a cut plate material. For example, considering that a device having a structure using a band material as described above can be used, productivity is higher when a band material is used. good.

【0007】粗化は板材の片面のみでもよいが、効率お
よび信頼性の観点からは、両面にするのが好ましいこと
はいうまでもない。この際、乾式成膜装置は両面が同一
真空槽内で処理できる構造の装置とするとより一層生産
性がよい。この時、粗化面が巻き取られる際に、粗化面
の表面が新たに巻き取られた板材に接触して、粗化面の
凸形状が潰れたり擦れたりして、形状の変形が心配され
る場合には、剥離可能な例えば樹脂を粗化面にラミネー
トしても良い。ラミネートは当然、真空槽内で連続的に
行うのがよく、活性な乾式成膜層を保護する効果もあ
る。
Although roughening may be performed on only one side of the plate, it is needless to say that it is preferable to roughen both sides from the viewpoint of efficiency and reliability. At this time, the productivity is further improved if the dry film forming apparatus has a structure capable of processing both surfaces in the same vacuum chamber. At this time, when the roughened surface is rolled up, the surface of the roughened surface comes into contact with the newly wound plate material, and the convex shape of the roughened surface is crushed or rubbed, which may cause deformation of the shape. In this case, a peelable resin, for example, may be laminated on the roughened surface. Naturally, lamination is preferably performed continuously in a vacuum chamber, and has the effect of protecting the active dry film-forming layer.

【0008】この乾式成膜して粗化面となる物質は例え
ば金属、合金の他、C等の非金属でも良く、乾式成膜可
能なものであって、電池用電極として用いた場合に、不
良の原因にならないものであれば特に制限はないが、特
に好ましくはC、Cu、Al、Cu合金、Al合金の何れかの非
金属、金属、合金であれば特に好ましい。これらの金
属、合金は、例えばリチウムイオン電池の正極材として
はAlが適しているからであり、負極材としてはCuが適し
ているからである。また、Cであれば、例えばリチウム
イオン電池の負極としてCu上にCが付着した形態が求め
られているからである。
The substance which becomes a roughened surface by dry film formation may be, for example, a metal, an alloy, or a nonmetal such as C. The substance can be formed into a dry film, and when used as a battery electrode, There is no particular limitation as long as it does not cause a defect, but particularly preferred is any non-metal, metal, or alloy of C, Cu, Al, Cu alloy, or Al alloy. This is because, for example, these metals and alloys are suitable for Al as a positive electrode material of a lithium ion battery, and Cu is suitable for a negative electrode material. Also, in the case of C, for example, a form in which C is attached on Cu is required as a negative electrode of a lithium ion battery.

【0009】また、本発明では乾式成膜法を採用してい
るため、板材の温度、蒸着時間、蒸着時の導入ガスの種
類、導入ガスの圧力、蒸着源の出力値、板材と蒸着源と
の距離などを制御し、蒸着面(粗化面)の表面粗さを適宜
調整して、任意の厚みに調整することも可能であり、し
かも、表面粗さを1μmRz〜10μmRzという従来では湿式
の粗化処理法でしか達成できない表面粗さであっても、
接着強度の高いこぶ形状で、且つ均一な粗化面にするこ
とも可能である。この表面粗さが1μmRz以上とすると、
粗化面の表面にカーボンなどを塗布した場合に脱落し難
くする効果があるが、10μmRzを超えると相対的に電池
電極材の厚さが厚くなり、薄型化が求められるような用
途に不向きなる場合があり、本発明の乾式成膜法による
粗化処理では、10μmRzを超える粗さとなると制御が困
難になる場合があるため、特に1μmRz〜10μmRzの範囲
の粗化面を得るのに好適である。
Further, since the present invention employs a dry film forming method, the temperature of the plate material, the vapor deposition time, the type of gas introduced during the vapor deposition, the pressure of the introduced gas, the output value of the vapor deposition source, the plate material and the vapor deposition source It is also possible to adjust the surface roughness of the evaporation surface (roughened surface) as appropriate by adjusting the surface roughness of the evaporation surface (roughened surface), and to adjust the surface roughness to 1 μmRz to 10 μmRz. Even with surface roughness that can only be achieved by the roughening method,
It is also possible to provide a bumpy shape with high adhesive strength and a uniform roughened surface. If this surface roughness is 1 μmRz or more,
When carbon is applied to the surface of the roughened surface, it has the effect of making it difficult to fall off, but if it exceeds 10 μmRz, the thickness of the battery electrode material becomes relatively thick, making it unsuitable for applications where thinning is required In some cases, in the roughening treatment by the dry film forming method of the present invention, since it may be difficult to control when the roughness exceeds 10 μmRz, it is particularly suitable for obtaining a roughened surface in the range of 1 μmRz to 10 μmRz. .

【0010】なお、本発明でいう乾式成膜法としては、
化学蒸着法や、真空蒸着法、スパッタリング法、イオン
プレーティング法、分子線蒸着法、反応性PVD法、アー
クイオンプレーティング法等の物理蒸着法を採用できる
が、近年の成膜技術の高速化が著しい、真空蒸着法、イ
オンプレーティング法、スパッタリング法の物理蒸着法
が好適である。真空蒸着法は、生産性がよい点で有利で
ある。また、例えば蒸着源はEB銃や抵抗加熱等による方
法を用いることができる。イオンプレーティング法で
は、下地となる板材との密着性がよい点で有利である。
アークイオンプレーティング法では、電極とターゲット
材との間の放電の際に微細なスプラッシュが飛散するた
め、粗化を効率的におこなうことができる。これらで粗
化を行なう場合、真空槽内は1×10-2〜1×102Paのアル
ゴン、窒素、酸素、水素、ヘリウム、ネオン、クリプト
ン、キセノン、フッ素等の一種または複数種、炭化ガス
などの化合物ガス等からなるガス雰囲気とするのが良
い。
Incidentally, the dry film forming method referred to in the present invention includes:
Physical vapor deposition methods such as chemical vapor deposition, vacuum vapor deposition, sputtering, ion plating, molecular beam vapor deposition, reactive PVD, and arc ion plating can be used. However, a physical vapor deposition method such as a vacuum vapor deposition method, an ion plating method, and a sputtering method is preferable. The vacuum deposition method is advantageous in that productivity is good. Also, for example, a method using an EB gun, resistance heating, or the like can be used as the evaporation source. The ion plating method is advantageous in that it has good adhesion to a base plate material.
In the arc ion plating method, fine splashes are scattered at the time of discharge between the electrode and the target material, so that roughening can be performed efficiently. When performing roughening with these, one or more kinds of argon, nitrogen, oxygen, hydrogen, helium, neon, krypton, xenon, fluorine, etc. of 1 × 10 -2 to 1 × 10 2 Pa in the vacuum chamber, carbonized gas It is preferable to use a gas atmosphere composed of a compound gas or the like.

【0011】[0011]

【実施例】以下に本発明を実施例および図面に基づいて
詳細に説明する。図4は、本発明の帯材を素材とした粗
化面形成に用いた乾式成膜装置の概略図である。ここで
素材(1)はシート状の箔材を用いた。素材(1)は真空槽
(3)内にセットされ、蒸着源(2)により、純Cu、42mass%N
i-Fe合金のシートの片面にCuを付着形成してCuでなる乾
式成膜層を粗化面とした電池用電極材を得た。図1に真
空蒸着により製造した本発明の電池用電極材の粗化表面
の電子顕微鏡写真を、図2にアークイオンプレーティン
グにより製造した本発明の電池用電極材の粗化表面の電
子顕微鏡写真を、図3に比較例として乾式成膜をしない
場合の素材表面の電子顕微鏡写真を示す。また、表1に
この製造条件の一例を、表2に実施結果をそれぞれ示
す。なお、表面粗さは、長さ176μmの領域について、オ
リンパス光学株式会社製走査型レーザー顕微鏡OLS1000
を用いて測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments and drawings. FIG. 4 is a schematic diagram of a dry-type film forming apparatus used for forming a roughened surface using the band material of the present invention. Here, a sheet-like foil material was used as the material (1). Material (1) is a vacuum chamber
Set in (3), pure Cu, 42mass% N by evaporation source (2)
An electrode material for a battery was obtained in which Cu was adhered and formed on one side of an i-Fe alloy sheet and a dry film-forming layer made of Cu had a roughened surface. FIG. 1 is an electron micrograph of the roughened surface of the battery electrode material of the present invention manufactured by vacuum deposition, and FIG. 2 is an electron micrograph of the roughened surface of the battery electrode material of the present invention manufactured by arc ion plating. FIG. 3 shows an electron micrograph of the material surface when dry film formation is not performed as a comparative example. Table 1 shows an example of the manufacturing conditions, and Table 2 shows the results of the operation. The surface roughness of the area 176 μm in length was measured using a scanning laser microscope OLS1000 manufactured by Olympus Optical Co., Ltd.
It measured using.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】本発明法によれば、粗化表面の形態は均一
なこぶ状の形態が得られ、且つ表面粗さも3.3から4.4mR
zが得られ、電池用電極材として好適となっていること
が分かる。なお、図1、2を見ても明らかなように、湿
式の粗化処理方法に見られるような残渣を確認すること
はできなかった。
According to the method of the present invention, the surface of the roughened surface has a uniform hump shape, and the surface roughness is 3.3 to 4.4 mR.
z was obtained, and it can be seen that it was suitable as an electrode material for a battery. In addition, as is clear from FIGS. 1 and 2, no residue as seen in the wet roughening method could be confirmed.

【0015】[0015]

【発明の効果】本発明により、電池用電極材の粗化がド
ライプロセスで製造できるようになり、電池の性能、品
質が向上するとともに、生産性を飛躍的に改善すること
ができる。
According to the present invention, the electrode material for a battery can be roughened by a dry process, and the performance and quality of the battery can be improved, and the productivity can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粗化面の電子顕微鏡写真である。FIG. 1 is an electron micrograph of a roughened surface of the present invention.

【図2】本発明の粗化面の電子顕微鏡写真である。FIG. 2 is an electron micrograph of a roughened surface according to the present invention.

【図3】比較例である粗化をおこなっていない表面の電
子顕微鏡写真である。
FIG. 3 is an electron micrograph of a surface without roughening which is a comparative example.

【図4】本発明の製作に用いた乾式成膜装置の概略図で
ある。
FIG. 4 is a schematic view of a dry film forming apparatus used for manufacturing the present invention.

【符号の説明】[Explanation of symbols]

1.素材、2.蒸着源、3.真空槽 1. Materials, 2. 2. evaporation source; Vacuum chamber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池の電極に用いられる板材において、
該板材の少なくとも片方の面側には乾式成膜層でなる粗
化面が形成されていることを特徴とする電池用電極材。
1. A plate material used for an electrode of a battery,
An electrode material for a battery, wherein a roughened surface made of a dry film-forming layer is formed on at least one surface side of the plate material.
【請求項2】 乾式成膜層は、C、Cu、Al、Cu合金、Al
合金の何れかからなることを特徴とする請求項1に記載
の電池用電極材。
2. The dry film forming layer is made of C, Cu, Al, Cu alloy, Al
The battery electrode material according to claim 1, wherein the electrode material is made of any one of an alloy.
【請求項3】 粗化面の表面粗さが1μm〜10μmRzであ
ることを特徴とする請求項1または2に記載の電池用電
極材。
3. The battery electrode material according to claim 1, wherein the roughened surface has a surface roughness of 1 μm to 10 μmRz.
【請求項4】 請求項1乃至3の何れかに記載の電池用
電極材の製造方法であって、真空槽内で板材の少なくと
も片方の面側に乾式成膜法にて、粗化面となる乾式成膜
層を付着形成することを特徴とすることを特徴とする電
池用電極材の製造方法。
4. The method for producing an electrode material for a battery according to claim 1, wherein the roughened surface is formed on at least one surface of the plate material by a dry film forming method in a vacuum chamber. A method for producing an electrode material for a battery, wherein a dry film formation layer is formed by adhesion.
【請求項5】 乾式成膜法は、真空蒸着法、イオンプレ
ーティング法、アークイオンプレーティング法の何れか
であることを特徴とする請求項4に記載の電池用電極材
の製造方法。
5. The method according to claim 4, wherein the dry film forming method is any one of a vacuum deposition method, an ion plating method, and an arc ion plating method.
JP2001087147A 2001-03-26 2001-03-26 Electrode material for battery, and manufacturing method thereof Pending JP2002289198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087147A JP2002289198A (en) 2001-03-26 2001-03-26 Electrode material for battery, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087147A JP2002289198A (en) 2001-03-26 2001-03-26 Electrode material for battery, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2002289198A true JP2002289198A (en) 2002-10-04

Family

ID=18942428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087147A Pending JP2002289198A (en) 2001-03-26 2001-03-26 Electrode material for battery, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2002289198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery
US7767344B2 (en) 2004-03-30 2010-08-03 Sanyo Electric Co., Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
EP1342564A1 (en) Multilayered metal laminate and process for producing the same
JP5108976B2 (en) Fuel cell separator
CA2246571C (en) Cladding material
JPH0755384B2 (en) Clad metal plate manufacturing method and apparatus
TWI504767B (en) Sputtering target - support plate joint and its manufacturing method
EP0887872A1 (en) Safety valve element for battery and battery case cap with safety valve
JP4479184B2 (en) Plastic film manufacturing method and flexible printed circuit board using the same
JP2010218971A (en) Manufacturing method of current collector for nonaqueous electrolyte secondary battery, and current collector
JP2005293899A (en) Manufacturing method of electrode for lithium secondary battery
JP2007165226A (en) Manufacturing method of electrode for lithium secondary battery
JP2002289198A (en) Electrode material for battery, and manufacturing method thereof
JP2968800B2 (en) Method for producing electrode material for electrolytic capacitor
JP2007095865A (en) Aluminum cathode foil for electrolytic capacitor and manufacturing method thereof
Bizyaev et al. Study of surface topography and emission properties of thin Mo and Zr films
US20020064019A1 (en) Cathode electrode material and rotating cathode drum for electrolytic copper foil production using the same
JP4674805B2 (en) Method for producing electrode material for cold cathode fluorescent lamp
GB2056503A (en) Porous metal films
JPH0480448B2 (en)
JP2007123096A (en) Method of manufacturing electrode for lithium secondary battery
WO2016017375A1 (en) Method for manufacturing a coated tool
JP5108986B2 (en) Fuel cell separator
JP2001323363A (en) Metal plate, metallic foil for printed wiring board and their production method
JP2010163654A (en) Copper-vapor-deposited substrate and method for manufacturing the same
JP2009123402A (en) Method of manufacturing negative electrode for lithium secondary battery
JP2011052266A (en) Method for forming metal-containing carbon film for fuel cell separator, and method for forming corrosion-resistant film for fuel cell separator