JP2002286934A - Optical filter, imaging unit using the same and imaging appliance using the same - Google Patents

Optical filter, imaging unit using the same and imaging appliance using the same

Info

Publication number
JP2002286934A
JP2002286934A JP2001093760A JP2001093760A JP2002286934A JP 2002286934 A JP2002286934 A JP 2002286934A JP 2001093760 A JP2001093760 A JP 2001093760A JP 2001093760 A JP2001093760 A JP 2001093760A JP 2002286934 A JP2002286934 A JP 2002286934A
Authority
JP
Japan
Prior art keywords
optical filter
image pickup
birefringent
transmittance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001093760A
Other languages
Japanese (ja)
Inventor
Osamu Tsubokura
理 坪倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001093760A priority Critical patent/JP2002286934A/en
Publication of JP2002286934A publication Critical patent/JP2002286934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging device to make an optical system including an optical filter small-sized and thin and a method therefor so as to make an imaging unit small-sized and thin. SOLUTION: The optical filter is prepared by laminating an IR barrier layer on a birefringent plate made of a lithium niobate single crystal. The obtained filter is used as a cover glass of a package which houses an imaging device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はデジタルカメラや携
帯端末などの撮像機器と、これらに用いる光学フィルタ
及び撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device such as a digital camera or a portable terminal, and an optical filter and an image pickup device used for the same.

【0002】[0002]

【従来の技術】一般的に画像撮像素子として用いられる
CCD(Charge CoupledDevice)や
CMOS(Complementary Metal O
xide Semiconductor)等は周期的に画
素が配列されている。これらの素子を用いた場合、撮像
素子のサンプリング周波数の1/2以上の高周波成分が
含まれると偽信号として取り込まれモアレ等の問題を発
生させる。このため図3に示すように、パッケージ11
に収納されてカバーガラス14で封止された撮像素子1
2と対物レンズ8との間に、複屈折板や回折格子等から
なる光学フィルタ13がおかれている(特開平1−25
4912号、特開平3−284714号公報参照)。
2. Description of the Related Art A CCD (Charge Coupled Device) and a CMOS (Complementary Metal O) generally used as an image pickup device are used.
Pixels are periodically arranged in an element such as “xide semiconductor”. When these elements are used, if a high frequency component equal to or more than 以上 of the sampling frequency of the image pickup element is included, it is captured as a false signal and causes a problem such as moire. Therefore, as shown in FIG.
Image sensor 1 housed in a box and sealed with cover glass 14
An optical filter 13 composed of a birefringent plate, a diffraction grating, or the like is provided between the lens 2 and the objective lens 8 (Japanese Patent Laid-Open No. 1-25 / 1990).
4912, and JP-A-3-284714).

【0003】また、撮像装置の小型化により、図4
(a),(b)に示すように撮像素子12を収納するパ
ッケージ11のカバーガラスに光学フィルタ13を設置
することもある(特開平1−129671号公報、特開
平5−257086号、特開2000−40813号公
報参照)。
[0003] In addition, due to the miniaturization of the imaging apparatus, FIG.
As shown in FIGS. 1A and 1B, an optical filter 13 may be provided on a cover glass of a package 11 containing an image pickup device 12 (Japanese Patent Application Laid-Open Nos. 1-126971, 5-257086, and 5-27086). 2000-40813).

【0004】上記光学フィルタ13として、一般的に回
折格子は精密な形状を形成する事が困難であり、また焦
点の関係上、実装位置に自由度が持たせられないことか
ら、複屈折板が好まれる。また、この複屈折板の材質と
しては水晶が一般的に用いられる。
In general, it is difficult to form a precise shape of the diffraction grating as the optical filter 13 and the mounting position is not given a degree of freedom due to the focal point. Preferred. Quartz is generally used as a material of the birefringent plate.

【0005】この光学フィルタ13は、図5(a),
(b)に示すように水晶からなる複屈折板16,18と
1/4波長板17を積層し、これらの間に赤外線遮断層
19としてガラス板が挟まれていたり、コートを施した
りしている。
[0005] This optical filter 13 is shown in FIG.
As shown in (b), birefringent plates 16 and 18 made of quartz and a quarter-wave plate 17 are laminated, and a glass plate is sandwiched or coated as an infrared shielding layer 19 between them. I have.

【0006】通常これらの撮像素子12を用いる場合、
撮像素子12が赤外光に対し感度がよいことから取り込
まれた画像は一般的に赤味を帯びてしまうため、ある範
囲で赤外光を遮断する必要があり、図5(a),(b)
に示すように赤外線遮断層19を配置している。
Normally, when these image pickup devices 12 are used,
Since the image taken in because the image sensor 12 has high sensitivity to infrared light generally has a reddish tint, it is necessary to block the infrared light in a certain range. b)
The infrared shielding layer 19 is disposed as shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】現在、これら撮像素子
を用いた装置ではさらに小型・薄板化が望まれている。
At present, it is desired to further reduce the size and thickness of an apparatus using such an image sensor.

【0008】しかし、水晶からなる複屈折板16,18
での光学フィルタ13では複屈折が小さいため薄板化が
困難であった。薄板化は複屈折の大きな材料により可能
となるが、その材料としてルチル(TiO2)や方解石
(CaCO3)等を用いると、品質の安定性、供給の安
定性、価格、大きさ等の点で問題があった。
However, birefringent plates 16 and 18 made of quartz are used.
It was difficult to make the optical filter 13 thinner because of low birefringence. Although thinning is possible with a material having a large birefringence, if rutile (TiO 2 ) or calcite (CaCO 3 ) is used as the material, the quality stability, supply stability, price, size, etc. There was a problem.

【0009】[0009]

【課題を解決するための手段】本発明ではニオブ酸リチ
ウム単結晶からなる複屈折板を光学フィルタに用いるこ
とで小型・薄板化を図るとともに、このニオブ酸リチウ
ム単結晶からなる複屈折板に可視光域400〜550n
mでの透過率85%以上で赤外光域725〜1000n
mでの透過率15%以下の赤外線遮断層を積層したこと
を特徴とする。
According to the present invention, a birefringent plate made of a single crystal of lithium niobate is used for an optical filter to reduce the size and thickness of the plate. Light range 400-550n
m is at least 85% and the infrared light range is 725 to 1000 n.
An infrared shielding layer having a transmittance of 15% or less at m is laminated.

【0010】また本発明は、ニオブ酸リチウム単結晶か
らなる複屈折板を複数枚積層させた構造とし、少なくと
も3枚用いて各複屈折板の光軸投影方向を45度乃至9
0度にして、光を正方もしくは長方分離して画素ピッチ
に合わした光学フィルタとしたことを特徴とする。さら
に、この複数枚積層させた複屈折板の少なくとも1枚を
水晶に置き換えたり、あるいは1/4波長板に置き換え
ても分離効果は得られる。
Further, the present invention has a structure in which a plurality of birefringent plates made of a single crystal of lithium niobate are laminated, and the optical axis projection direction of each birefringent plate is 45 to 9 using at least three birefringent plates.
The optical filter is characterized in that the light is separated into a square or a rectangle by setting the angle to 0 degrees, and the optical filter is adjusted to the pixel pitch. Further, even if at least one of the plurality of laminated birefringent plates is replaced with quartz or a quarter-wave plate, the separation effect can be obtained.

【0011】さらに本発明は、上記赤外線遮断層として
P−V値が10%以内であり、光の入射角度20度以内
における透過率の半値波長の変動が±15nm以下とす
る膜を付けることで、更に小型・薄板化を図るようにし
たものである。
Further, according to the present invention, the infrared ray blocking layer is provided with a film having a PV value within 10% and a variation in a half-value wavelength of a transmittance within ± 20 nm within an incident angle of light of ± 15 nm or less. In addition, it is intended to further reduce the size and thickness.

【0012】また本発明は、上記複屈折板にそれぞれ接
する物に対しての反射防止膜を施すことで透過率を向上
させ、光学フィルタ全体の可視光域400〜550nm
での透過率を85%以上とした物である。
Further, according to the present invention, the transmittance is improved by applying an antireflection film to an object in contact with each of the birefringent plates, and the visible light range of the entire optical filter is 400 to 550 nm.
The transmittance was set to 85% or more.

【0013】さらに本発明は、上記光学フィルタを撮像
素子の収納用パッケージに備えることで撮像装置の小型
・薄板化を図るようにしたものである。
Further, in the present invention, by providing the above-mentioned optical filter in a package for accommodating an image pickup device, the size and thickness of the image pickup device can be reduced.

【0014】また本発明は、上記光学フィルタをパッケ
ージに接合するための接合剤として紫外線硬化型などの
温度が上がらない物を用いたり、加熱を必要とする接合
剤においてはニオブ酸リチウム単結晶に近似した8×1
-5〜3×10-6/℃の熱膨張係数を有する物にして割
れを防ぐようにしたものである。またニオブ酸リチウム
単結晶からなる複屈折板の軸方位に応じて数種の接合剤
を同時に用いて接合したり、接合工程でのニオブ酸リチ
ウム単結晶内での温度差を30度以内にすることで割れ
を防ぐようにしたものである。
The present invention also relates to a bonding agent for bonding the optical filter to a package, such as a UV-curable bonding agent which does not rise in temperature, or a bonding agent requiring heating, which is made of lithium niobate single crystal. Approximate 8 × 1
It has a thermal expansion coefficient of 0 -5 to 3 × 10 -6 / ° C. to prevent cracking. In addition, several types of bonding agents are simultaneously used in accordance with the axial orientation of the birefringent plate made of lithium niobate single crystal, or the temperature difference in the lithium niobate single crystal in the bonding step is kept within 30 degrees. This is to prevent cracking.

【0015】[0015]

【発明の実施の形態】本発明の光学フィルタを図1に示
す。
FIG. 1 shows an optical filter according to the present invention.

【0016】ニオブ酸リチウム単結晶からなる複屈折板
1,2,3と赤外線遮断層4を図1のように積層させて
光学フィルタ9を構造する。この赤外線遮断層4の接合
場所は複屈折板1,2,3の表面、もしくは複数の複屈
折板1,2,3の間であっても良い。また、この赤外線
遮断層4は固体でも薄膜でも良い。
An optical filter 9 is formed by laminating birefringent plates 1, 2, 3 made of lithium niobate single crystal and an infrared shielding layer 4 as shown in FIG. The bonding location of the infrared shielding layer 4 may be on the surface of the birefringent plates 1, 2, 3 or between the plurality of birefringent plates 1, 2, 3. Further, the infrared shielding layer 4 may be a solid or a thin film.

【0017】詳細を後述するように図2に示すCCD及
びCMOS等の撮像素子12は周期的に画素が配列さ
れ、それに色フィルターが周期的に付けられているの
で、上記のように少なくとも3枚の複屈折板1,2,3
を用いて、互いの結晶光軸投影方向を45度乃至90度
の角度をもって交差させて、入射光を正方または長方の
4点に均等な光に分離させることで、その撮像素子12
の画素ピッチに対応した光学フィルタ9とする事ができ
る。
As will be described later in detail, the image pickup device 12 such as a CCD and a CMOS shown in FIG. 2 has pixels arranged periodically and color filters are periodically attached thereto. Birefringent plates 1, 2, 3
Is used to intersect the crystal optical axis projection directions at an angle of 45 ° to 90 ° to separate the incident light into four light points of a square or a rectangular shape, so that the image sensor 12
The optical filter 9 corresponding to the pixel pitch can be obtained.

【0018】また、複屈折板1,2,3のうち、中間の
複屈折板2を1/4波長板に置き換えた構成でも良い。
この1/4波長板は水晶やニオブ酸リチウム単結晶等を
結晶方位や厚みを設計して用いる。
The birefringent plates 1, 2, and 3 may be configured such that the intermediate birefringent plate 2 is replaced with a quarter-wave plate.
This quarter-wave plate is made of quartz, lithium niobate single crystal, or the like with its crystal orientation and thickness designed.

【0019】さらに複屈折板1,2,3の少なくとも1
枚を水晶に置き換えても、同様の光の分離効果を得るこ
とができる。
Furthermore, at least one of the birefringent plates 1, 2, 3
The same light separating effect can be obtained even if the sheet is replaced with quartz.

【0020】さらに、図1では3枚の複屈折板を用いた
が、1枚のニオブ酸リチウム単結晶からなる複屈折板1
のみでも光学フィルタ9として用いることができる。赤
外線遮断層4は可視光域である波長400〜550nm
の光を透過して、赤外光域である波長725〜1000
nmの光をカットする性質を持つ。この可視光域400
〜550nmでの透過率はそのまま撮像素子で取り込ま
れた映像の明るさに影響するため高い方が好ましく、ま
た、赤外光域725〜1000nmでの透過率は映像の
赤味に大きく影響するため低い方が好ましく、中間の5
50〜725nmでは連続的にシャープに透過率を減少
させることが好ましい。特に可視光域である波長400
〜550nmでの透過率は85%以上で、赤外光域であ
る波長725〜1000nmでの透過率が15%以下で
あるものを用い、さらに透過率50%の半値波長が63
5±15nmになる様にした状態で連続的に波長域につ
ながったものを用いれば、得られた映像は人の感度に近
い状態で好ましい。
Further, in FIG. 1, three birefringent plates are used, but one birefringent plate 1 made of lithium niobate single crystal is used.
Only the optical filter 9 can be used. The infrared blocking layer 4 has a wavelength of 400 to 550 nm in the visible light range.
At a wavelength of 725 to 1000, which is an infrared light range.
It has the property of cutting light of nm. This visible light region 400
The transmittance at は 550 nm directly affects the brightness of the image captured by the image sensor, and is therefore preferably high. The transmittance in the infrared light range of 725 to 1000 nm greatly affects the redness of the image. Lower is preferable, middle 5
It is preferable to continuously and sharply reduce the transmittance at 50 to 725 nm. In particular, a wavelength of 400 in the visible light range.
The transmittance at 85 to 550 nm is 85% or more, and the transmittance at a wavelength of 725 to 1000 nm, which is an infrared light region, is 15% or less.
If an image which is continuously connected to the wavelength region in a state of 5 ± 15 nm is used, the obtained image is preferable in a state close to human sensitivity.

【0021】また、被写体からの光は光学フィルタ9の
垂直方向に対して20度以内で入射されるため、その範
囲で分光透過率の変動が大きくなると量産時に個々の透
過率特性にあったデジタル信号処理が必要になり、大変
手間を取る。そのため入射角度20度以内での透過率の
半値波長の変動は小さいことが好ましく、±15nm以
下であることが望まれる。
Also, since light from the subject is incident within 20 degrees with respect to the vertical direction of the optical filter 9, if the variation of the spectral transmittance becomes large within that range, the digital light having the individual transmittance characteristics during mass production is obtained. It requires signal processing and takes a lot of time. Therefore, it is preferable that the change in the half-value wavelength of the transmittance within the incident angle of 20 degrees is small, and it is desired that the change is ± 15 nm or less.

【0022】ただし、赤外線遮断層4が薄膜の場合はニ
オブ酸リチウム単結晶からなる複屈折板1,2,3の屈
折率が大きいため、図6に従来の薄膜として示すように
可視光域400〜650nmで数カ所に及び透過率がお
ちるリップルが発生する事になる。これを防止するため
には、赤外線遮断層4として数層にわたり酸化チタン
(TiO2)等の高屈折材と酸化珪素(SiO2)、弗化
マグネシウム(MgF)等の低屈折材からなる薄膜を順
番に積層して400〜550nmでの透過率を85%以
上にして、そのP−V値を10%以下にすることが好ま
しい。また、透過率50%の半値波長を625±25n
mで赤外光域725〜1000nmでの透過率を15%
以下にしたシャープカットな赤外線遮断層4を構成する
ことがさらに好ましい。成膜の方法は蒸着法、スパッタ
法等で可能である。
However, when the infrared shielding layer 4 is a thin film, the birefringent plates 1, 2, and 3 made of lithium niobate single crystal have a large refractive index. Therefore, as shown in FIG. Ripple whose transmittance falls in several places at up to 650 nm is generated. To prevent this, titanium oxide over several layers as an infrared blocking layer 4 (TiO 2) high refractive material and silicon oxide, such as (SiO 2), a thin film made of a low refractive material such as magnesium fluoride (MgF) It is preferable that the layers are sequentially laminated so that the transmittance at 400 to 550 nm is 85% or more and the PV value is 10% or less. Further, the half-value wavelength of the transmittance of 50% is 625 ± 25n.
15% in the infrared light range from 725 to 1000 nm
It is more preferable to form a sharp-cut infrared shielding layer 4 described below. The film can be formed by a vapor deposition method, a sputtering method, or the like.

【0023】また、複屈折板1,2,3や赤外線遮断層
4の各主面にそれぞれの接する物質に対する反射防止膜
5,6,7を形成することで、図7に示すように光学フ
ィルタ9全体の可視光域400〜550nmでの透過率
を85%以上にすることができる。
Further, by forming antireflection films 5, 6, 7 for the substances in contact with the respective main surfaces of the birefringent plates 1, 2, 3 and the infrared shielding layer 4, as shown in FIG. 9 can have a transmittance of 85% or more in the visible light region of 400 to 550 nm.

【0024】光学フィルタ9として構成するニオブ酸リ
チウム単結晶からなる複屈折板1,2,3および赤外線
遮断層4の接合には透光性接着剤を用いたり、機械的な
接合でも可能である。
The birefringent plates 1, 2, 3 made of lithium niobate single crystal constituting the optical filter 9 and the infrared shielding layer 4 can be joined by using a translucent adhesive or by mechanical joining. .

【0025】こうして得た本発明の光学フィルタ9を撮
像装置に用いた例を図2に示す。
FIG. 2 shows an example in which the optical filter 9 of the present invention thus obtained is used in an image pickup apparatus.

【0026】CCDまたはCMOS等の撮像素子12が
パッケージ11に収納されており、その撮像素子12の
受光面側にパッケージ11の開口部があり、そこには透
光性があり撮像素子12を保護し封止するためのカバー
ガラスと兼用して、図1に示す光学フィルタ9を用い
て、接合剤10で接合する。
An image pickup device 12 such as a CCD or a CMOS is housed in a package 11, and an opening portion of the package 11 is provided on a light receiving surface side of the image pickup device 12, and has a light transmitting property to protect the image pickup device 12. The optical filter 9 shown in FIG. 1 is used as a cover glass for sealing, and then joined with a bonding agent 10.

【0027】一般にCCD及びCMOS等の撮像素子1
2は周期的に画素が配列され、それに色フィルターが周
期的に付けられているので、特に複屈折板1,2,3を
少なくとも3枚用いて、互いの結晶光軸投影方向を45
度乃至90度の角度をもって交差させて、入射光を正方
または長方の4点に均等な光に分離させることで、その
撮像素子12の画素ピッチに対応した光学フィルタ9を
備えることにより、従来、光学フィルタ9が置かれてい
たスペースが削減する事ができる。
Generally, an image pickup device 1 such as a CCD and a CMOS
Reference numeral 2 denotes that pixels are periodically arranged and color filters are periodically attached thereto. In particular, at least three birefringent plates 1, 2, 3 are used, and the crystal optical axis projection directions are set to 45.
By intersecting at an angle of degrees to 90 degrees and separating incident light into four lights of square or rectangular shape, the optical filter 9 corresponding to the pixel pitch of the image sensor 12 is provided. In addition, the space where the optical filter 9 is placed can be reduced.

【0028】上記接合剤10としては、ニオブ酸リチウ
ム単結晶と熱膨張が近似した接着剤、ガラス材、樹脂材
等を用い、特に熱膨張係数8×10-5〜3×10-6/℃
程度の熱硬化接合剤が好ましい。
As the bonding agent 10, an adhesive, a glass material, a resin material, or the like whose thermal expansion is similar to that of the lithium niobate single crystal is used, and particularly, the thermal expansion coefficient is 8 × 10 -5 to 3 × 10 -6 / ° C.
A degree of thermosetting bonding agent is preferred.

【0029】また、本発明で複屈折板1,2,3として
用いるニオブ酸リチウム単結晶は、表1のように光軸投
影方向とそれに垂直方向では熱膨張が異なるため、それ
ぞれの方向で熱膨張の近似した複数の接合剤10を用い
ることが好ましい。
The lithium niobate single crystal used as the birefringent plates 1, 2, and 3 in the present invention has different thermal expansions in the optical axis projection direction and the perpendicular direction as shown in Table 1, so that the thermal expansion in each direction is different. It is preferable to use a plurality of bonding agents 10 having similar expansions.

【0030】[0030]

【表1】 [Table 1]

【0031】あるいは、接合剤10として熱がかからな
い紫外線硬化型の接着剤を用いることもできる。
Alternatively, an ultraviolet-curing adhesive to which heat is not applied can be used as the bonding agent 10.

【0032】また、接合時にはニオブ酸リチウム単結晶
内で部分的に大きな温度差があるとクラックが発生しや
すくなるため、単結晶内での温度差が30度以下となる
ようにして製造することが好ましい。
Further, at the time of bonding, cracks are likely to occur if there is a large temperature difference in the lithium niobate single crystal, so that the temperature difference within the single crystal should be 30 ° C. or less. Is preferred.

【0033】このように、本発明のニオブ酸リチウム単
結晶からなる複屈折板1,2,3を用いて赤外線遮断層
膜4を備えた光学フィルタ9を、撮像素子12収納用パ
ッケージ11に設置することで、大幅に光学系の距離の
短縮が可能になり、撮像装置の小型、薄板化ができる。
As described above, the optical filter 9 provided with the infrared shielding layer film 4 using the birefringent plates 1, 2, 3 made of the lithium niobate single crystal of the present invention is installed in the package 11 for accommodating the image sensor 12. By doing so, the distance of the optical system can be greatly reduced, and the size and thickness of the imaging device can be reduced.

【0034】そのため、このような本発明の光学フィル
タや撮像装置をデジタルカメラなどの撮像機器に用いれ
ば、小型、薄板化することができる。
Therefore, if such an optical filter or an image pickup apparatus of the present invention is used for an image pickup apparatus such as a digital camera, it is possible to reduce the size and thickness of the apparatus.

【0035】[0035]

【実施例】結晶光軸面から45度傾けたニオブ酸リチウ
ム単結晶からなる4インチサイズの複屈折板を3枚用い
て、図1の光学フィルタ9を構成する。1枚目の複屈折
板1は基板厚み0.31mmにして、仮にその基板内の
光軸投影方向線を0度とした場合、2枚目、3枚目の複
屈折板2,3の光軸投影方向線を+45度、−45度に
する。その2枚目、3枚目の複屈折板2,3の厚みはそ
れぞれ0.22mmとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical filter 9 of FIG. 1 is constituted by using three 4-inch birefringent plates made of a single crystal of lithium niobate inclined at 45 degrees from the crystal optical axis plane. Assuming that the first birefringent plate 1 has a substrate thickness of 0.31 mm and the optical axis projection direction line in the substrate is 0 °, the light of the second and third birefringent plates 2 and 3 The axis projection direction lines are set to +45 degrees and -45 degrees. The thickness of each of the second and third birefringent plates 2 and 3 was 0.22 mm.

【0036】それぞれの複屈折板1,2,3は接する物
に応じた反射防止膜5,6、7を両面に施す。1枚目の
複屈折板1の片面には空気に対しての反射防止膜5を施
し、他面には反射防止膜7と赤外線遮断層4の膜とを施
した。赤外遮断層4の膜は酸化チタンと酸化珪素の薄膜
を順番に20層以上積層して、可視光域400〜550
nmでの透過率が85%以上で赤外光域725〜100
0nmでの透過率が15%以下で可視光域400〜55
0nmでの透過率のP−V値が10%以下の特性を出し
た。
Each of the birefringent plates 1, 2, and 3 is provided with antireflection films 5, 6, and 7 on both surfaces according to the objects in contact. One surface of the first birefringent plate 1 was provided with an antireflection film 5 for air, and the other surface was provided with an antireflection film 7 and a film of an infrared shielding layer 4. The film of the infrared blocking layer 4 is formed by sequentially laminating 20 or more thin films of titanium oxide and silicon oxide in a visible light range of 400 to 550.
with a transmittance of 85% or more in the infrared region of 725 to 100
When the transmittance at 0 nm is 15% or less and the visible light range is 400 to 55
A characteristic was obtained in which the PV value of the transmittance at 0 nm was 10% or less.

【0037】2枚目の複屈折板2は両面に屈折率1.5
前後の透過性接着剤に対しての反射防止膜6を施し、3
枚目の複屈折板3には片面に前記同様の接着剤に対する
反射防止膜6を施し、他面には空気に対する反射防止膜
5を施した。
The second birefringent plate 2 has a refractive index of 1.5 on both sides.
An antireflection film 6 is applied to the front and rear transparent adhesives,
The second birefringent plate 3 was provided with an anti-reflection film 6 for the same adhesive as described above on one surface, and an anti-reflection film 5 for air on the other surface.

【0038】赤外線遮断層4の膜および反射防止膜5,
6,7は蒸着法で被着したが、スパッタ法等でも可能で
ある。 これらの複屈折板1,2,3を順番に光軸投影
方向を前記角度に正確に保ちながら、前記の接着剤にて
接着固定した。
The film of the infrared shielding layer 4 and the antireflection film 5,
Although Nos. 6 and 7 are deposited by a vapor deposition method, they can be formed by a sputtering method or the like. These birefringent plates 1, 2, and 3 were bonded and fixed with the above-mentioned adhesive while keeping the optical axis projection direction at the above-described angle accurately.

【0039】こうして得られた光学フィルタ9の分光透
過率は図6,図7に示すように可視光域400〜550
nmでの透過率が85%以上でリップルの小さい特性に
改善された。
The spectral transmittance of the optical filter 9 thus obtained has a visible light range of 400 to 550 as shown in FIGS.
When the transmittance in nm was 85% or more, the characteristics were improved with small ripple.

【0040】透過性接着剤の屈折率は特に限定はなく、
その屈折率に応じた反射防止膜を施せばよい。 接着剤
の硬化方法も紫外線硬化、熱硬化等で限定はないが、信
頼性や複屈折板の熱特性を考慮すると紫外線硬化型の接
着剤が好ましい。
The refractive index of the transparent adhesive is not particularly limited.
What is necessary is just to apply an antireflection film according to the refractive index. The method of curing the adhesive is not limited to ultraviolet curing, thermal curing, or the like, but an ultraviolet-curable adhesive is preferable in consideration of reliability and thermal characteristics of the birefringent plate.

【0041】こうして得られたニオブ酸リチウム単結晶
からなる3枚の複屈折板と赤外線遮断層を積層した光学
フィルターをダイシング加工により30×30程度へチ
ップ化する。
The optical filter obtained by laminating the thus obtained three birefringent plates made of lithium niobate single crystal and an infrared shielding layer is formed into chips of about 30 × 30 by dicing.

【0042】この光学フィルタは可視光域での透過率で
90%以上を保ち、正方に約12μmのピッチで4点に
分離する。
This optical filter maintains a transmittance of 90% or more in the visible light region, and separates the light into four points at a pitch of about 12 μm.

【0043】このチップを図2のようにCCD撮像素子
12が収納されたパッケージ11の受光部側のカバーガ
ラスとして接合する。
This chip is joined as a cover glass on the light receiving section side of the package 11 in which the CCD image pickup device 12 is housed as shown in FIG.

【0044】接合方法は紫外線硬化型の接着剤を用いて
光学フィルター全周を接着する。他に熱硬化接着剤、樹
脂、ガラス等を用いた接合も可能だが、加熱する場合
は、その熱膨張係数をニオブ酸リチウム単結晶に類似し
た物を選択する必要がある。また、光学フィルタを積層
するときに用いた接着剤の熱特性も考慮する必要があ
る。
The bonding method is to bond the entire circumference of the optical filter using an ultraviolet curing adhesive. In addition, bonding using a thermosetting adhesive, resin, glass, or the like is also possible, but when heating, it is necessary to select a material having a coefficient of thermal expansion similar to that of lithium niobate single crystal. It is also necessary to consider the thermal characteristics of the adhesive used when laminating the optical filters.

【0045】こうして得られた光学フィルタを一体にし
た撮像装置を用いた光学系は、従来のフィルタが分離し
ている撮像装置の光学系に比べ設置スペースが約1/3
以下の厚みになり、水晶の光学フィルタを一体にした撮
像装置の光学系の設置スペースの約1/2の厚みにする
事が可能になる。
An optical system using an image pickup device integrated with an optical filter obtained in this way requires about one-third the installation space as compared with the optical system of an image pickup device in which a conventional filter is separated.
The thickness is as follows, and it is possible to reduce the thickness to about ス ペ ー ス of the installation space of the optical system of the imaging apparatus in which the quartz optical filter is integrated.

【0046】[0046]

【発明の効果】本発明によれば、ニオブ酸リチウム単結
晶からなる複屈折板を用いて、光学フィルタを構成し、
それを撮像素子が収納されるパッケージのカバーとして
用いることで小型・薄板化された撮像装置が可能にな
る。また、これを実現するに当たり光学フィルタを破損
させない製造方法と、ニオブ酸リチウム単結晶に対し要
求される特性を持った赤外線遮断層の膜の製造を可能に
する。
According to the present invention, an optical filter is constituted by using a birefringent plate made of lithium niobate single crystal,
By using it as a cover of a package in which an image sensor is housed, a small and thin imaging device can be realized. Further, in realizing this, a manufacturing method that does not damage the optical filter and a film of an infrared shielding layer having characteristics required for a lithium niobate single crystal can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学フィルタを示す図である。FIG. 1 is a diagram showing an optical filter of the present invention.

【図2】本発明の撮像装置を示す断面図である。FIG. 2 is a cross-sectional view illustrating the imaging device of the present invention.

【図3】従来の撮像装置を示す断面図である。FIG. 3 is a cross-sectional view illustrating a conventional imaging device.

【図4】(a)(b)は従来の撮像装置を示す断面図で
ある。
FIGS. 4A and 4B are cross-sectional views showing a conventional imaging device.

【図5】(a)(b)は従来の光学フィルタを示す図で
ある。
FIGS. 5A and 5B are diagrams showing a conventional optical filter.

【図6】光学フィルタにおける赤外線遮断層の光透過率
を示した図である。
FIG. 6 is a diagram showing the light transmittance of an infrared shielding layer in the optical filter.

【図7】本発明の光学フィルタにおける光透過率を示し
た図である。
FIG. 7 is a diagram showing light transmittance in the optical filter of the present invention.

【符号の説明】[Explanation of symbols]

1:複屈折板 2:複屈折板 3:複屈折板 4:赤外線遮断層 5:反射防止膜 6:反射防止膜 7:反射防止膜 8:レンズ 9:光学フィルタ 10:接合剤 11:パッケージ 12:撮像素子 13:光学フィルタ 14:カバーガラス 15:接合剤 16:複屈折板 17:複屈折板 18:複屈折板 19:赤外線遮断層 20:反射防止膜 1: birefringent plate 2: birefringent plate 3: birefringent plate 4: infrared blocking layer 5: antireflection film 6: antireflection film 7: antireflection film 8: lens 9: optical filter 10: bonding agent 11: package 12 : Image sensor 13: Optical filter 14: Cover glass 15: Bonding agent 16: Birefringent plate 17: Birefringent plate 18: Birefringent plate 19: Infrared shielding layer 20: Antireflection film

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】ニオブ酸リチウム単結晶からなる複屈折板
に、可視光域である波長400〜550nmの光の透過
率が85%以上で、赤外光域である波長725〜100
0nmの光の透過率が15%以下の赤外線遮断層を積層
したことを特徴とする光学フィルタ。
1. A birefringent plate made of a single crystal of lithium niobate has a transmittance of 85% or more of light having a wavelength of 400 to 550 nm, which is a visible light region, and a wavelength of 725 to 100, which is an infrared light region.
An optical filter comprising an infrared shielding layer having a transmittance of 0 nm light of 15% or less laminated.
【請求項2】上記複屈折板を複数枚積層させ、その最外
面または間に上記赤外線遮断層を積層したことを特徴と
する光学フィルタ。
2. An optical filter comprising a plurality of the birefringent plates laminated, and the infrared shielding layer laminated on the outermost surface or between the birefringent plates.
【請求項3】少なくとも3枚の複屈折板を積層させて、
各板の光軸投影方向が45度乃至90度になるようにし
て、透過光を正方もしくは長方分離させることを特徴と
する請求項2記載の光学フィルタ。
3. At least three birefringent plates are laminated,
The optical filter according to claim 2, wherein the transmitted light is separated into a square or a rectangle so that the optical axis projection direction of each plate is 45 to 90 degrees.
【請求項4】上記複数枚積層させた複屈折板の少なくと
も1枚を水晶に置き換えたことを特徴とする請求項2ま
たは3記載の光学フィルタ。
4. The optical filter according to claim 2, wherein at least one of said plurality of laminated birefringent plates is replaced with quartz.
【請求項5】上記複数枚積層させた複屈折板の少なくと
も1枚を1/4波長板に置き換えたことを特徴とする請
求項2乃至4のいずれかに記載の光学フィルタ。
5. The optical filter according to claim 2, wherein at least one of the plurality of laminated birefringent plates is replaced with a quarter-wave plate.
【請求項6】前記赤外線遮断層が、可視光域である波長
400〜550nmの光の透過率のP−V(Peak
and Valley)値が10%以下であることを特
徴とする請求項1乃至5のいずれかに記載の光学フィル
タ。
6. The infrared shielding layer has a PV (Peak) having a transmittance of light having a wavelength of 400 to 550 nm, which is a visible light region.
The optical filter according to any one of claims 1 to 5, wherein a value of (and Valley) is 10% or less.
【請求項7】前記赤外線遮断層が、光の入射角度20度
以内における透過率の半値波長の変動が±15nm以下
であることを特徴とする請求項1乃至6のいずれかに記
載の光学フィルタ。
7. The optical filter according to claim 1, wherein the infrared cutoff layer has a transmittance half-wavelength variation of ± 15 nm or less within a light incident angle of 20 degrees. .
【請求項8】可視光域である波長400nm〜550n
mの光の透過率が85%以上であることを特徴とする請
求項1乃至7のいずれかに記載の光学フィルタ。
8. A wavelength of 400 nm to 550 n which is a visible light region.
The optical filter according to any one of claims 1 to 7, wherein a transmittance of light of m is 85% or more.
【請求項9】パッケージ内に収納された撮像素子の受光
面の対面に、ニオブ酸リチウム単結晶からなる複屈折板
を備えたことを特徴とする撮像装置。
9. An image pickup apparatus comprising: a birefringent plate made of a single crystal of lithium niobate on a surface opposite to a light receiving surface of an image pickup device housed in a package.
【請求項10】前記複屈折板を複数枚積層させたことを
特徴とする請求項9記載の撮像装置。
10. The imaging device according to claim 9, wherein a plurality of the birefringent plates are stacked.
【請求項11】パッケージ内に収納された撮像素子の受
光面の対面に請求項1乃至8のいずれかに記載の光学フ
ィルタを備えたことを特徴とする撮像装置。
11. An image pickup apparatus comprising: the optical filter according to claim 1 on a surface opposite to a light receiving surface of an image pickup device housed in a package.
【請求項12】紫外線硬化接着剤または8×10-5〜3
×10-6/℃の熱膨張係数を有する接着剤を用いて、前
記複屈折板または光学フィルタをパッケージに接合した
ことを特徴とする請求項9乃至11のいずれかに記載の
撮像装置。
12. An ultraviolet curing adhesive or 8 × 10 -5 to 3
The imaging device according to any one of claims 9 to 11, wherein the birefringent plate or the optical filter is bonded to a package using an adhesive having a coefficient of thermal expansion of 10-6 / C.
【請求項13】上記ニオブ酸リチウム単結晶からなる複
屈折板の軸方位に対して、その熱膨張係数に合わせた複
数の接合剤を用いてパッケージに接合することを特徴と
する請求項9乃至12のいずれかに記載の撮像装置。
13. A package according to claim 9, wherein said birefringent plate made of lithium niobate single crystal is bonded to a package using a plurality of bonding agents corresponding to the thermal expansion coefficient of said birefringent plate. The imaging device according to any one of claims 12 to 12.
【請求項14】上記ニオブ酸リチウム単結晶内での温度
差が30度以下になるようにしてパッケージに接合した
ことを特徴とする請求項9乃至13のいずれかに記載の
撮像装置。
14. The image pickup apparatus according to claim 9, wherein said image pickup device is joined to a package such that a temperature difference in said lithium niobate single crystal is 30 ° C. or less.
【請求項15】請求項1乃至8のいずれかに記載の光学
フィルタ、又は請求項9乃至14のいずれかに記載の撮
像装置を用いたことを特徴とする撮像機器。
15. An image pickup apparatus using the optical filter according to claim 1 or the image pickup apparatus according to claim 9.
JP2001093760A 2001-03-28 2001-03-28 Optical filter, imaging unit using the same and imaging appliance using the same Pending JP2002286934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093760A JP2002286934A (en) 2001-03-28 2001-03-28 Optical filter, imaging unit using the same and imaging appliance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093760A JP2002286934A (en) 2001-03-28 2001-03-28 Optical filter, imaging unit using the same and imaging appliance using the same

Publications (1)

Publication Number Publication Date
JP2002286934A true JP2002286934A (en) 2002-10-03

Family

ID=18948057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093760A Pending JP2002286934A (en) 2001-03-28 2001-03-28 Optical filter, imaging unit using the same and imaging appliance using the same

Country Status (1)

Country Link
JP (1) JP2002286934A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101120A (en) * 2004-09-29 2006-04-13 Nikon Corp Solid-state imaging element and digital camera
JP2006139238A (en) * 2004-11-09 2006-06-01 Samsung Electronics Co Ltd Optical module and its manufacturing method, back light assembly having optical module, and display device having back light assembly
JP2006222700A (en) * 2005-02-09 2006-08-24 Olympus Corp Imaging device
JP2006317695A (en) * 2005-05-12 2006-11-24 Canon Inc Optical device
JP2007043319A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Imaging apparatus and on-vehicle camera system using the same
JP2007110402A (en) * 2005-10-13 2007-04-26 Canon Inc Imaging unit and imaging apparatus with same
JP2008042796A (en) * 2006-08-10 2008-02-21 Epson Toyocom Corp Solid-state imaging element cover and imaging device
JP2008042797A (en) * 2006-08-10 2008-02-21 Epson Toyocom Corp Solid-state imaging element cover and imaging device
JP2009153178A (en) * 2002-09-17 2009-07-09 Anteryon Bv Camera device and method for manufacturing camera device and wafer scale package
WO2016175089A1 (en) * 2015-04-28 2016-11-03 浜松ホトニクス株式会社 Optical detection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153178A (en) * 2002-09-17 2009-07-09 Anteryon Bv Camera device and method for manufacturing camera device and wafer scale package
JP2006101120A (en) * 2004-09-29 2006-04-13 Nikon Corp Solid-state imaging element and digital camera
JP4687053B2 (en) * 2004-09-29 2011-05-25 株式会社ニコン Image sensor unit and digital camera
JP2006139238A (en) * 2004-11-09 2006-06-01 Samsung Electronics Co Ltd Optical module and its manufacturing method, back light assembly having optical module, and display device having back light assembly
JP2006222700A (en) * 2005-02-09 2006-08-24 Olympus Corp Imaging device
JP2006317695A (en) * 2005-05-12 2006-11-24 Canon Inc Optical device
JP2007043319A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Imaging apparatus and on-vehicle camera system using the same
JP2007110402A (en) * 2005-10-13 2007-04-26 Canon Inc Imaging unit and imaging apparatus with same
JP2008042797A (en) * 2006-08-10 2008-02-21 Epson Toyocom Corp Solid-state imaging element cover and imaging device
JP2008042796A (en) * 2006-08-10 2008-02-21 Epson Toyocom Corp Solid-state imaging element cover and imaging device
WO2016175089A1 (en) * 2015-04-28 2016-11-03 浜松ホトニクス株式会社 Optical detection device
JP2016211860A (en) * 2015-04-28 2016-12-15 浜松ホトニクス株式会社 Light detection device
CN113049100A (en) * 2015-04-28 2021-06-29 浜松光子学株式会社 Optical detection device
US11118972B2 (en) 2015-04-28 2021-09-14 Hamamatsu Photonics K.K. Optical detection device having adhesive member
US11555741B2 (en) 2015-04-28 2023-01-17 Hamamatsu Photonics K.K. Optical detection device having adhesive member
CN113049100B (en) * 2015-04-28 2023-11-28 浜松光子学株式会社 Light detection device

Similar Documents

Publication Publication Date Title
KR100705349B1 (en) Solid state imaging device, semiconductor wafer and camera module
US20050180010A1 (en) Dielectric multilayer filter and its manufacturing method, and solid-state imaging device
US20100044815A1 (en) Cmos image sensor package and camera module using same
WO2017126376A1 (en) Image sensor, manufacturing method, and electronic device
JP2006032886A (en) Solid-state imaging device, its manufacturing method, and camera module
JP2005043755A (en) Optical multilayer filter, manufacturing method therefor, optical low-pass filter, and electronic equipment system
WO2001065306A1 (en) Optical device
JP2013218245A (en) Optical element, imaging device, camera, and manufacturing method of optical element
JP2002286934A (en) Optical filter, imaging unit using the same and imaging appliance using the same
TWI352825B (en)
JP2010165939A (en) Solid-state imaging device and method of manufacturing the same
KR102314952B1 (en) Imaging element, imaging device, and production device and method
TW200303619A (en) Solidstate image-taking apparatus
JP2006011408A (en) Optical element and optical equipment
JP2000114502A (en) Solid-state image pickup element
JP2006091625A (en) Optical low pass filter
US20070153115A1 (en) Image pickup device
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP2008034502A (en) Solid-state image sensing device cover and solid-state image sensing apparatus
JPS61124901A (en) Production of color separating filter
JPH0516003B2 (en)
US20080129852A1 (en) Image sensor, method of manufacturing the same, and camera module having the same
JP4853157B2 (en) Antireflection film, optical element, imaging device, and camera
JP2000206325A (en) Infrared ray cut filter and imaging device by using infrared ray cut filter
JP2001324615A (en) Spatial filter