JP2002270466A - Manufacturing method for electric energy storage device - Google Patents

Manufacturing method for electric energy storage device

Info

Publication number
JP2002270466A
JP2002270466A JP2001064231A JP2001064231A JP2002270466A JP 2002270466 A JP2002270466 A JP 2002270466A JP 2001064231 A JP2001064231 A JP 2001064231A JP 2001064231 A JP2001064231 A JP 2001064231A JP 2002270466 A JP2002270466 A JP 2002270466A
Authority
JP
Japan
Prior art keywords
organic solvent
powder
electrode material
energy storage
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064231A
Other languages
Japanese (ja)
Inventor
Seiji Omura
大村  誠司
Takashi Okubo
崇史 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP2001064231A priority Critical patent/JP2002270466A/en
Publication of JP2002270466A publication Critical patent/JP2002270466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To suppress drop in capacity of an electric energy storage device, which uses a π-conjugate conductive high polymer as an electrode material and a nonaqueous organic solvent as an electrolytic solution in contact with the electrode material, due to repeated charging and discharging. SOLUTION: The manufacturing method for the electric energy storage device has a process of producing powder containing the π-conjugate conductive high polymer by polymerizing a monomer as a raw material of the π-conjugate conductive high polymer, and a process of dispersing the powder in cleaning liquid consisting of the nonaqueous organic solvent to clean the powder. The powder having been cleaned is used as the electrode material which comes into contact with the nonaqueous electrolytic solution and further as a nonaqueous organic solvent of the same kind with the nonaqueous organic solvent included in the electrolytic solution is preferably used as the cleaning liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電極材料としてπ共役
系導電性高分子を用い、該電極材料に接する電解液とし
て非水系有機溶媒を含むものを用いた電気エネルギー蓄
積デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric energy storage device using a π-conjugated conductive polymer as an electrode material and a non-aqueous organic solvent as an electrolyte in contact with the electrode material.

【0002】[0002]

【従来の技術】電気二重層キャパシタ、電気化学キャパ
シタ、ポリマー電池等の電気エネルギー蓄積デバイスに
おいて、電極材料としてπ共役系導電性高分子を用い、
該電極材料に接する電解液として非水系有機溶媒を含む
ものを用いる技術は、特開平11−185759号、キ
ャパシタ技術−平成12年度第1回研究会資料−第33
0頁等に開示されている。
2. Description of the Related Art In electric energy storage devices such as electric double layer capacitors, electrochemical capacitors, and polymer batteries, a π-conjugated conductive polymer is used as an electrode material.
A technique using a non-aqueous organic solvent-containing electrolyte as an electrolyte in contact with the electrode material is disclosed in Japanese Patent Application Laid-Open No. H11-185759, Capacitor Technology-
It is disclosed on page 0 and the like.

【0003】電気エネルギー蓄積デバイスの電極材料と
してπ共役系導電性高分子を用い、該電極材料に接する
電解液として非水系有機溶媒を含むものを用いる場合、
他の電極材料/電解液を用いる場合に比べて、エネルギ
ー密度やパワー密度の点で優れた特性を実現しやすい
が、繰り返し充放電を行うと、その容量が著しく低下す
るという問題が発生することがある。
When a π-conjugated conductive polymer is used as an electrode material of an electric energy storage device and a non-aqueous organic solvent is used as an electrolyte in contact with the electrode material,
Excellent characteristics in terms of energy density and power density are easier to achieve than when other electrode materials / electrolyte solutions are used. However, repeated charging / discharging causes a problem that the capacity is significantly reduced. There is.

【0004】充放電の繰り返しに伴う容量低下の原因と
しては、誘電率の高い非水系有機溶媒を含む電解液を用
いているため、電極材料としてのπ共役系導電性高分子
の一部が電解液中に溶解/溶出して、電極が崩れてしま
うというという説もあるが、高次に重合したπ共役系導
電性高分子が、電解液中に溶解/溶出することは考えに
くい。
[0004] The cause of the decrease in capacity due to repetition of charge and discharge is that an electrolytic solution containing a non-aqueous organic solvent having a high dielectric constant is used. Although there is a theory that the electrode disintegrates and dissolves in the solution, the π-conjugated conductive polymer polymerized in a higher order is unlikely to dissolve or elute in the electrolytic solution.

【0005】[0005]

【発明が解決しようとする課題】本発明は、電極材料と
してπ共役系導電性高分子を用い、該電極材料に接する
電解液として非水系有機溶媒を含むものを用いた電気エ
ネルギー蓄積デバイスにおいて、充放電の繰り返しに伴
う容量の低下を抑制するための技術を提供するものであ
る。
The present invention relates to an electric energy storage device using a π-conjugated conductive polymer as an electrode material and a non-aqueous organic solvent as an electrolyte in contact with the electrode material. An object of the present invention is to provide a technique for suppressing a decrease in capacity due to repeated charge and discharge.

【0006】[0006]

【課題を解決するための手段】本発明による電気エネル
ギー蓄積デバイスの製造方法は、π共役系導電性高分子
の原料となる単量体を重合させて、π共役系導電性高分
子を含む粉体を作製する工程と、該粉体を、非水系有機
溶媒からなる洗浄液中に分散させて洗浄する工程とを備
え、前記洗浄処理が施された粉体を、非水系電解液に接
する電極材料として用いることを特徴とするものであ
る。
According to the method of manufacturing an electric energy storage device of the present invention, a powder containing a π-conjugated conductive polymer is polymerized by polymerizing a monomer as a raw material of the π-conjugated conductive polymer. An electrode material that comprises a step of preparing a body, and a step of washing by dispersing the powder in a washing solution comprising a non-aqueous organic solvent, and washing the powder subjected to the washing treatment with a non-aqueous electrolyte solution. It is characterized by being used as

【0007】上記本発明の製法によれば、π共役系導電
性高分子を含む粉体を作製する工程において重合せずに
粉体中に混在した(或いは高分子粉の表面に付着した)
単量体や、高次に重合せずに粉体中に混在した(或いは
高分子粉の表面に付着した)低分子重合体が、非水系有
機溶媒からなる洗浄液中に溶解/溶出し、洗浄後の粉体
中には、前記未重合単量体や低分子重合体がほとんど残
存しない。
According to the production method of the present invention, in the step of preparing a powder containing a π-conjugated conductive polymer, the powder is mixed with the powder (or adhered to the surface of the polymer powder) without being polymerized.
Monomers and low molecular weight polymers that are mixed in the powder without being polymerized in the higher order (or adhere to the surface of the high molecular weight powder) are dissolved / eluted in the cleaning solution composed of the non-aqueous organic solvent and washed. The unpolymerized monomer and the low-molecular polymer hardly remain in the subsequent powder.

【0008】この粉体を電極材料として用いれば、非水
系有機溶媒を含む電解液に接して充放電を繰り返して
も、電極材料が電解液中にほとんど溶解/溶出せず、電
気エネルギー蓄積デバイスとしての容量低下が抑制され
る。
When this powder is used as an electrode material, the electrode material hardly dissolves or elutes in the electrolytic solution even if it is repeatedly charged and discharged in contact with an electrolytic solution containing a non-aqueous organic solvent, and is used as an electric energy storage device. Is suppressed.

【0009】但し、前記洗浄液として用いる非水系有機
溶媒と前記電解液に含まれる非水系有機溶媒とが異種の
ものであると、洗浄後の電極材料粉体中に僅かに残存し
た前記未重合単量体や低分子重合体が、洗浄液と異なる
非水系有機溶媒を含む電解液中に溶解/溶出する可能性
もあるので、前記洗浄液としては、前記電解液に含まれ
る非水系有機溶媒と同種の非水系有機溶媒を用いること
が好ましい。
However, if the non-aqueous organic solvent used as the cleaning liquid and the non-aqueous organic solvent contained in the electrolytic solution are different, the unpolymerized monomer slightly remaining in the electrode material powder after cleaning is different. Monomer or low molecular polymer may be dissolved / eluted in an electrolytic solution containing a non-aqueous organic solvent different from the cleaning solution. Therefore, the cleaning solution may be the same type as the non-aqueous organic solvent contained in the electrolytic solution. It is preferable to use a non-aqueous organic solvent.

【0010】[0010]

【発明の実施の形態】本発明の対象となる電気エネルギ
ー蓄積デバイスにおいては、電極材料としてπ共役系導
電性高分子を用い、該電極材料に接する電解液として非
水系有機溶媒を含むものを用いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an electric energy storage device to which the present invention is applied, a π-conjugated conductive polymer is used as an electrode material, and an electrolyte containing a non-aqueous organic solvent is used as an electrolyte in contact with the electrode material. .

【0011】本発明の一実施形態に従った電気エネルギ
ー蓄積デバイスの製造方法においては、まず、π共役系
導電性高分子の原料となる単量体を電解重合法や化学重
合法により重合させて、π共役系導電性高分子を含む粉
体を作製する。
In a method of manufacturing an electric energy storage device according to one embodiment of the present invention, first, a monomer serving as a raw material of a π-conjugated conductive polymer is polymerized by an electrolytic polymerization method or a chemical polymerization method. To produce a powder containing a π-conjugated conductive polymer.

【0012】π共役系導電性高分子の原料となる単量体
としては、チオフェン、ピロール、ピリジン、アニリ
ン、パラフェニレン、ジアミノアントラキノン、或いは
それらの誘導体等を用いることができる。
As a monomer as a raw material of the π-conjugated conductive polymer, thiophene, pyrrole, pyridine, aniline, paraphenylene, diaminoanthraquinone, or a derivative thereof can be used.

【0013】次に、前記粉体を非水系有機溶媒からなる
洗浄液中に分散させ、攪拌法、超音波法等により洗浄し
た後、濾過する。
Next, the powder is dispersed in a washing liquid comprising a non-aqueous organic solvent, washed by a stirring method, an ultrasonic method or the like, and then filtered.

【0014】前記洗浄液としては、プロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ジメチルカーボーネート、メチルエチルカーボネート、
ジエチルカーボネート等のカーボネート類、γ−ブチロ
ラクトン等のラクトン類、ベンゾニトリル、アセトニト
リル等のニトリル類、トリメチルホスフェート、トリエ
チルホスフェート等のホスフェート類から選ばれる一種
又は複数種の非水系有機溶媒からなるものを用いること
ができる。或いは、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジオキソラン、メチルアセテート、
メチルプロピオネート、N−メチルピロリドン、ジメチ
ルスルホキシド、ジオキサン、ジメトキシエタン、ポリ
エチレングリコール、スルホラン、ジクロロエタン、ク
ロルベンゼン、ニトロベンゼン、その他アミド類、ニト
ロアルカン類、スルホン類、スルホキシド類等からから
選ばれる一種又は複数種の非水系有機溶媒からなるもの
を用いてもよい。
[0014] The washing liquid includes propylene carbonate, ethylene carbonate, butylene carbonate,
Dimethyl carbonate, methyl ethyl carbonate,
Carbonates such as diethyl carbonate, lactones such as γ-butyrolactone, benzonitrile, nitriles such as acetonitrile, trimethyl phosphate, and one or more kinds of non-aqueous organic solvents selected from phosphates such as triethyl phosphate are used. be able to. Alternatively, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate,
Methyl propionate, N-methylpyrrolidone, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, other amides, nitroalkanes, sulfones, sulfoxides, or one or more selected from A mixture of plural kinds of non-aqueous organic solvents may be used.

【0015】そして、前記洗浄処理が施されたπ共役系
導電性高分子の粉体を電極材料として用い、導電剤とし
てのアセチレンブラック、バインダーとしてポリテトラ
フルオロエチレン等と混合し、加圧成形してペレット電
極を作製する。
Then, the powder of the π-conjugated conductive polymer which has been subjected to the above-mentioned washing treatment is used as an electrode material, mixed with acetylene black as a conductive agent, polytetrafluoroethylene as a binder, and pressure-formed. To produce a pellet electrode.

【0016】以下、更に具体的な実施例及び比較例につ
いて説明する。
Hereinafter, more specific examples and comparative examples will be described.

【0017】[0017]

【実施例1】ポリジアミノアントラキノンを含む粉体を
電解重合法により作製し、該粉体をプロピレンカーボネ
ート(以下、PCと略す)中に分散させ、スターラーを
用いて室温、大気中で攪拌洗浄した。
Example 1 A powder containing polydiaminoanthraquinone was prepared by an electrolytic polymerization method, the powder was dispersed in propylene carbonate (hereinafter abbreviated as PC), and the powder was stirred and washed at room temperature and in the air using a stirrer. .

【0018】洗浄液としてPCを用いたのは、洗浄後の
粉体をキャパシタの電極材料とする際に組み合わせる電
解液として、四フッ化ホウ素のテトラエチルアンモニウ
ム塩(以下、TEABF4と略す)を溶質、PCを溶媒
としたものを想定したからである。
The reason why PC was used as the cleaning solution was that a tetraethylammonium salt of boron tetrafluoride (hereinafter abbreviated as TEABF 4 ) was used as an electrolyte solution to combine the washed powder as an electrode material for a capacitor. This is because it was assumed that PC was used as a solvent.

【0019】そして、前記洗浄処理を施した粉末と、導
電剤としてのアセチレンブラックと、バインダーとして
のポリテトラフルオロエチレンとを混合し、該混合物約
0.03gを一軸加圧器にて加圧成形して、φ10mm
のペレット電極を作製した。
Then, the washed powder, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder are mixed, and about 0.03 g of the mixture is pressure-formed using a uniaxial press. And φ10mm
Was prepared.

【0020】このペレット電極について、以下のような
試験を行った。すなわち、 電解液としての1M−TEABF4/PCにペレット
電極を浸漬し、該ペレット電極の膨張状況及び電解液の
変色状況を調べた。 実際にキャパシタセルを組み立てて充放電試験を行
い、放電容量及びサイクル寿命を評価した。放電容量評
価時の放電電流密度は0.8mA/cm2、サイクル寿
命評価時の充放電電流密度は0.8mA/cm2とし、
100サイクル後の容量保持率を求めた。
The pellet electrode was subjected to the following test. That is, the pellet electrode was immersed in 1 M-TEABF 4 / PC as an electrolyte, and the state of expansion of the pellet electrode and the state of discoloration of the electrolyte were examined. Actually, a capacitor cell was assembled and a charge / discharge test was performed to evaluate a discharge capacity and a cycle life. The discharge current density at the time of discharge capacity evaluation was 0.8 mA / cm 2 , and the charge and discharge current density at the time of cycle life evaluation was 0.8 mA / cm 2 ,
The capacity retention after 100 cycles was determined.

【0021】[0021]

【実施例2】ポリジアミノアントラキノンを含む粉体を
化学重合法により作製し、他の条件は実施例1に準じ
て、前記の試験を行った。
Example 2 A powder containing polydiaminoanthraquinone was prepared by a chemical polymerization method, and the above-mentioned test was conducted under the same conditions as in Example 1 except for the above conditions.

【0022】[0022]

【比較例1】ポリジアミノアントラキノンを含む粉体を
電解重合法により作製し、この粉体に前記洗浄処理を施
さないこと以外は実施例1に準じて、前記の試験を
行った。
Comparative Example 1 A powder containing polydiaminoanthraquinone was produced by an electrolytic polymerization method, and the above-described test was performed in the same manner as in Example 1 except that the powder was not subjected to the washing treatment.

【0023】[0023]

【比較例2】ポリジアミノアントラキノンを含む粉体を
化学重合法により作製し、この粉体に前記洗浄処理を施
さないこと以外は実施例2に準じて、前記の試験を
行った。
Comparative Example 2 A powder containing polydiaminoanthraquinone was prepared by a chemical polymerization method, and the above-described test was performed in the same manner as in Example 2 except that the powder was not subjected to the washing treatment.

【0024】各実施例及び比較例に関する前記の試
験結果を表1に示す。
Table 1 shows the test results for the respective examples and comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の試験において、比較例1、2の膨
張率が大きいのは、電極材料の一部(具体的には、ポリ
ジアミノアントラキノンを含む粉体中に残存した未重合
単量体や低分子重合体)が電解液中に溶解/溶出した隙
間に、電解液が含浸してペレット電極が膨潤したことに
よるものと考えられ、比較例1、2の電解液が茶褐色に
染色したのは、電極材料の一部が電解液中に溶解/溶出
したことによるものと考えられる。
In the tests shown in Table 1, the large expansion coefficients of Comparative Examples 1 and 2 were caused by a part of the electrode material (specifically, the unpolymerized monomer remaining in the powder containing polydiaminoanthraquinone or It is considered that the electrolyte solution was impregnated in the gaps where the low molecular weight polymer was dissolved / eluted in the electrolyte solution and the pellet electrodes swelled, and the electrolyte solutions of Comparative Examples 1 and 2 were stained brown. It is considered that a part of the electrode material was dissolved / eluted in the electrolytic solution.

【0027】又、試験における実施例1、2と比較例
1、2との違いに対応して、試験の充放電試験におい
ても、実施例1、2は比較例1、2に比べて優れた特性
を示している。
In response to the difference between Examples 1 and 2 and Comparative Examples 1 and 2 in the test, Examples 1 and 2 were also superior to Comparative Examples 1 and 2 in the charge / discharge test. The characteristics are shown.

【0028】[0028]

【発明の効果】本発明によれば、電極材料としてπ共役
系導電性高分子を用い、該電極材料に接する電解液とし
て非水系有機溶媒を含むものを用いた電気エネルギー蓄
積デバイスにおいて、電極材料の電解液中への溶解/溶
出が抑制され、エネルギー密度やパワー密度の点で優れ
た特性を有し、充放電を繰り返しても容量が低下しにく
い電気エネルギー蓄積デバイスが提供される。
According to the present invention, there is provided an electric energy storage device using a π-conjugated conductive polymer as an electrode material and a non-aqueous organic solvent as an electrolyte in contact with the electrode material. Dissolution / elution in an electrolytic solution is suppressed, and the electric energy storage device has excellent characteristics in terms of energy density and power density, and does not easily decrease in capacity even after repeated charging and discharging.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極材料としてπ共役系導電性高分子を
用い、該電極材料に接する電解液として非水系有機溶媒
を含むものを用いた電気エネルギー蓄積デバイスの製造
方法において、 π共役系導電性高分子の原料となる単量体を重合させ
て、π共役系導電性高分子を含む粉体を作製する工程
と、 該粉体を、非水系有機溶媒からなる洗浄液中に分散させ
て洗浄する工程とを備え、 前記洗浄処理が施された粉体を、前記電極材料として用
いることを特徴とする電気エネルギー蓄積デバイスの製
造方法。
1. A method for manufacturing an electric energy storage device using a π-conjugated conductive polymer as an electrode material and a non-aqueous organic solvent as an electrolyte in contact with the electrode material, comprising the steps of: A step of polymerizing a monomer as a raw material of a polymer to produce a powder containing a π-conjugated conductive polymer, and dispersing the powder in a cleaning liquid comprising a non-aqueous organic solvent for washing; And using the powder that has been subjected to the cleaning treatment as the electrode material.
【請求項2】 前記洗浄液として、カーボネート類、ラ
クトン類、ニトリル類、ホスフェート類から選ばれる一
種又は複数種の非水系有機溶媒を含むものを用いること
を特徴とする請求項1記載の電気エネルギー蓄積デバイ
スの製造方法。
2. The electric energy storage according to claim 1, wherein the cleaning liquid contains one or more non-aqueous organic solvents selected from carbonates, lactones, nitriles, and phosphates. Device manufacturing method.
【請求項3】 前記洗浄液として、前記電解液に含まれ
る非水系有機溶媒と同種の非水系有機溶媒を用いること
を特徴とする請求項1又は2記載の電気エネルギー蓄積
デバイスの製造方法。
3. The method for manufacturing an electric energy storage device according to claim 1, wherein a non-aqueous organic solvent of the same type as the non-aqueous organic solvent contained in the electrolytic solution is used as the cleaning liquid.
【請求項4】 前記電極材料として、チオフェン、ピロ
ール、ピリジン、アニリン、パラフェニレン、ジアミノ
アントラキノン又はそれらの誘導体を重合させたπ共役
系導電性高分子を用いることを特徴とする請求項1、2
又は3記載の電気エネルギー蓄積デバイスの製造方法。
4. The π-conjugated conductive polymer obtained by polymerizing thiophene, pyrrole, pyridine, aniline, paraphenylene, diaminoanthraquinone or a derivative thereof is used as the electrode material.
Or the manufacturing method of the electrical energy storage device of 3.
JP2001064231A 2001-03-08 2001-03-08 Manufacturing method for electric energy storage device Pending JP2002270466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064231A JP2002270466A (en) 2001-03-08 2001-03-08 Manufacturing method for electric energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064231A JP2002270466A (en) 2001-03-08 2001-03-08 Manufacturing method for electric energy storage device

Publications (1)

Publication Number Publication Date
JP2002270466A true JP2002270466A (en) 2002-09-20

Family

ID=18923080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064231A Pending JP2002270466A (en) 2001-03-08 2001-03-08 Manufacturing method for electric energy storage device

Country Status (1)

Country Link
JP (1) JP2002270466A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095480A1 (en) * 2003-04-23 2004-11-04 Tdk Corporation Method for producing electrode for electrochemical capacitor, method for producing electrochemical capacitor, and porous particle with solvent used in such methods
JP2005116301A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment, its manufacturing method, electrode, and its manufacturing method
KR100744965B1 (en) 2003-12-26 2007-08-02 티디케이가부시기가이샤 Fabrication method of electrode for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor and method for fabricating thereof
CN102074370A (en) * 2009-11-20 2011-05-25 三洋电机株式会社 Method of manufacturing solid electrolytic capacitor
JP2014003322A (en) * 2013-09-02 2014-01-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095480A1 (en) * 2003-04-23 2004-11-04 Tdk Corporation Method for producing electrode for electrochemical capacitor, method for producing electrochemical capacitor, and porous particle with solvent used in such methods
US7403371B2 (en) 2003-04-23 2008-07-22 Tdk Corporation Method of making electrochemical capacitor electrode, method of making electrochemical capacitor, and porous particle with solvent for use therein
JP2005116301A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment, its manufacturing method, electrode, and its manufacturing method
KR100744965B1 (en) 2003-12-26 2007-08-02 티디케이가부시기가이샤 Fabrication method of electrode for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor and method for fabricating thereof
CN102074370A (en) * 2009-11-20 2011-05-25 三洋电机株式会社 Method of manufacturing solid electrolytic capacitor
JP2011109024A (en) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
US8702817B2 (en) 2009-11-20 2014-04-22 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
US9287053B2 (en) 2009-11-20 2016-03-15 Panasonic Intellectual Propety Management Co., Ltd. Method of manufacturing solid electrolytic capacitor
JP2014003322A (en) * 2013-09-02 2014-01-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor

Similar Documents

Publication Publication Date Title
CN1186391C (en) Polymer gel electrolyte and lithium cell using same
JP5280313B2 (en) Lithium ion polymer battery comprising a polyolefin microporous membrane surface-modified with a hydrophilic polymer, a surface modification method thereof, and a surface-modified polyolefin microporous membrane as a separator
US7897674B2 (en) Polymer electrolyte with high stability, its use in electrochemical systems
CN104240968B (en) Electrolyte having eutectic mixture and electrochemical device containing the same
CN1192762A (en) Rechargeable battery polymeric electrolyte
JP4859845B2 (en) Aqueous adhesive, its production method and application to production of positive electrode sheet for lithium ion battery
CN108493434A (en) A kind of nickel cobalt lithium aluminate cathode material and preparation method thereof of conducting polymer cladding
CN112615006A (en) Preparation method of high-performance composite binder for energy storage charging system battery
CN104871351A (en) Electricity storage device, electrode used therein, and porous sheet
JPH11135129A (en) Polymer binder for organic electrolyte battery electrode
Buttol et al. The electrochemical characteristics of a polydithienothiophene electrode in lithium cells
JP2002270466A (en) Manufacturing method for electric energy storage device
CN113851656A (en) Negative pole piece and lithium ion battery comprising same
KR102282949B1 (en) Binder for lithium secondary battery, and electrode and lithium secondary battery comprising the same
KR20030079325A (en) Electric double layer capacitor using uv-curing gel polymer electrolyte
KR101604442B1 (en) Preparation of electrolyte for enhanced temperature characteristics on energy storage devices its manufacturing method and energy storage devices thereby
KR20180048554A (en) Polymeric binder for anodes using interaction between polyacrylic acid and polyaniline
KR20230136944A (en) Hydrogel electrolyte and zinc ion battery using the same
CN104813517A (en) Electricity storage device, electrode used therein, and porous sheet
JP5656127B2 (en) Electrolyte material composition, electrolyte material composition formed therefrom, and use thereof
KR20180012384A (en) Polymeric binder for anodes using interaction between polyacrylic acid and polyaniline
JP3700736B2 (en) Manufacturing method of thin lithium battery
CN104769752A (en) Power storage device, and electrode and porous sheet used in same
JP2002260440A (en) Ion conductive composition, and cell and electrochemical element using the same
JPH10116620A (en) Thin type lithium battery and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040310

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Effective date: 20060804

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A02