JP2002267693A - Current measuring system, measuring device and measuring method - Google Patents

Current measuring system, measuring device and measuring method

Info

Publication number
JP2002267693A
JP2002267693A JP2001069158A JP2001069158A JP2002267693A JP 2002267693 A JP2002267693 A JP 2002267693A JP 2001069158 A JP2001069158 A JP 2001069158A JP 2001069158 A JP2001069158 A JP 2001069158A JP 2002267693 A JP2002267693 A JP 2002267693A
Authority
JP
Japan
Prior art keywords
conductor
current
magnetometer
magnetic field
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001069158A
Other languages
Japanese (ja)
Other versions
JP4367601B2 (en
Inventor
Takaharu Kawase
川瀬隆治
Tetsuya Ichikawa
市川哲也
Kiyoshi Yazawa
矢沢清
Atsushi Ito
伊藤篤志
Hiroyuki Ito
伊東博之
Toshiyuki Eto
衛藤敏幸
Masashi Hiroki
廣木雅司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KIYUUKOU DENTETSU KK
Tokyu Construction Co Ltd
Original Assignee
TOKYO KIYUUKOU DENTETSU KK
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KIYUUKOU DENTETSU KK, Tokyu Construction Co Ltd filed Critical TOKYO KIYUUKOU DENTETSU KK
Priority to JP2001069158A priority Critical patent/JP4367601B2/en
Publication of JP2002267693A publication Critical patent/JP2002267693A/en
Application granted granted Critical
Publication of JP4367601B2 publication Critical patent/JP4367601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the current flowing in a conductor easily measurable by a non-contact method. SOLUTION: The current measuring system 1 is provided with a magnetometer 11 arranged in the vicinity of the conductor without surrounding the conductor 2, and a processor 12 for calculating the sum of the current flowing in each cross section part of the conductor when a value subtracting the magnetic field intensity of the magnetic force meter position in the state that current is not flowing in the conductor 2 from the magnetic field intensity measured with the magnetometer 11 and the magnetic field intensity of the magnetic force meter position determined by the current flowing in the current flowing in each cross section part of the conductor 2 become equal and measuring the current flowing in the conductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道のレールなど
場所によらない断面形状を有する導電体に流れる電流の
計測に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of a current flowing through a conductor having a sectional shape independent of a place such as a rail of a railway.

【0002】[0002]

【従来の技術】従来、導電体に流れる電流を非接触式で
計測する電流計としてクランプ型電流計がある。クラン
プ型電流計は、導電体の周囲をリングで包囲するもので
ある。しかし、導電体の周囲を包囲できないもの、例え
ば、鉄道のレールのように車輪がレール上を走るもの
は、このクランプ型電流計を使用することができない。
2. Description of the Related Art Conventionally, there is a clamp type ammeter as a non-contact type ammeter for measuring a current flowing through a conductor. The clamp-type ammeter encloses a conductor around a ring. However, the clamp-type ammeter cannot be used for an object that cannot surround the conductor, for example, a wheel such as a rail of a railway running on a rail.

【0003】近年、電車線路から発生する磁場を調べる
ことが求められている。電車線路から発生する磁場の大
きさは、線路の電線やレールを流れる電流の大きさによ
って変化する。線路の電線には、き電線、吊架線やトロ
リ線がある。そのため、線路の上方に張られた、例えば
図4のように、き電線にクランプ型電流計を設置して電
流値を計測する方法がある。しかし、き電線に高圧の電
圧がかけられているため地絡事故の発生、き電線に計測
機材を設置するため高所作業による墜落事故の発生、ま
た、終電後の深夜作業などの問題点がある。
In recent years, there has been a demand for investigating a magnetic field generated from a train line. The magnitude of the magnetic field generated from the train line changes depending on the magnitude of the current flowing through the electric wires and rails of the track. Track wires include feeder wires, suspension wires and trolley wires. For this reason, there is a method of measuring a current value by installing a clamp-type ammeter on a feeder line, for example, as shown in FIG. However, there are problems such as ground faults due to high voltage applied to the feeder, crashes due to work at heights due to installation of measuring equipment on the feeder, and late night work after the last train. is there.

【0004】線路の電線やレールに流れる電流は、直流
電車の場合を例に取ると、直流変電所からき電線、吊架
線やトロリ線、車輌を介してレールに流れ、直流変電所
に戻る経路を通る。そのため、き電線の電流値を計測す
る代わりに、レールの電流値を計測しても良い。そこ
で、電車線路から発生する磁場を調べるために、レール
に流れる電流を計る方法がある。その方法として、例え
ば図4のように、インピーダンスボンドにクランプ型電
流計を取り付けることができる。インピーダンスボンド
では、レールに引き出しケーブルを接続し、レールに流
れる全電流が流れるようにしてある。しかし、インピー
ダンスボンドの設置場所は限られており、レールを流れ
る電流値が計る場所によって異なるにも係わらず、電車
線路の任意の場所に流れる電流値を計測することができ
ないといった問題点がある。
[0004] In the case of a DC train, the current flowing in the electric wires and rails of the track flows from the DC substation to the rail via a feeder line, a suspension line or a trolley wire, or a vehicle, and passes through a path returning to the DC substation. Pass. Therefore, instead of measuring the current value of the feeder line, the current value of the rail may be measured. Therefore, there is a method of measuring a current flowing through a rail in order to check a magnetic field generated from a train line. As a method, for example, as shown in FIG. 4, a clamp-type ammeter can be attached to the impedance bond. In the impedance bond, a lead cable is connected to the rail so that all the current flowing through the rail flows. However, the installation location of the impedance bond is limited, and there is a problem that the current value flowing in an arbitrary location on the train line cannot be measured, although the current value flowing through the rail differs depending on the measurement location.

【0005】また、通常のレールボンドにクランプ型電
流計を取り付ける方法がある。通常のレールボンドは、
数10cm程度の長さの導線でレールに接続してある。
しかし、通常のレールボンドには、レールに流れる全て
の電流が流れるわけではないため、正確なレール電流を
計測することができない。レールボンドに流れる電流
は、レールの湿潤状態や、温度、接続方法などによって
大きく変わるため、この電流値を計測しても、レールに
流れる全電流を推定することは困難である。
There is also a method of attaching a clamp type ammeter to an ordinary rail bond. Normal rail bond is
It is connected to the rail by a conducting wire having a length of about several tens cm.
However, not all the current flowing through the rail flows through a normal rail bond, so that an accurate rail current cannot be measured. Since the current flowing through the rail bond changes greatly depending on the wet state of the rail, the temperature, the connection method, and the like, it is difficult to estimate the total current flowing through the rail even if the current value is measured.

【0006】上記クランプ型電流計は、「周回する磁力
線に沿って積分した磁場は、磁力線の輪の中にある電流
に比例する」という電流と磁界の関係を示すアンペール
の周回積分の法則を利用したものである。この法則は、
電流を測定する導線の周囲を囲えれば、導線がどの位置
にあっても測定でき、汎用性が高い。しかし、レールの
ように周囲を囲えない導線の電流計測には応用ができな
い。それに対して、電流と磁場の関係を示す他の法則と
して、「ある線分電流が、任意の位置に発生させる磁界
の大きさを定める」というビオ・サバールの法則がある
が、電流線と磁力計との位置関係が固定されている場合
でないと適用できず、汎用性が低いために、電車線路に
は応用されていなかった。
The clamp-type ammeter described above uses Ampere's orbital integration law indicating the relationship between current and magnetic field, that is, "the magnetic field integrated along the circling magnetic field line is proportional to the current in the loop of the magnetic field line". It was done. This law states that
By surrounding the conductor for measuring the current, the conductor can be measured at any position, and the versatility is high. However, it cannot be applied to the current measurement of a conductor that cannot be surrounded by surroundings like a rail. On the other hand, as another law indicating the relationship between current and magnetic field, Biot-Savart's law states that a certain line segment current determines the magnitude of the magnetic field generated at an arbitrary position. It cannot be applied unless the positional relationship with the meter is fixed, and has not been applied to train lines due to low versatility.

【0007】[0007]

【発明が解決しようとする課題】<イ>本発明は、導電
体に流れる電流を非接触式で容易に計測できるようにす
ることにある。 <ロ>また、本発明は、鉄道のレールなどの断面形状が
一定の導電体に流れる電流を容易に計測できるようにす
ることにある。
<B> It is an object of the present invention to make it possible to easily measure a current flowing through a conductor in a non-contact manner. <B> Another object of the present invention is to make it possible to easily measure a current flowing through a conductor having a constant cross-sectional shape such as a rail of a railway.

【0008】[0008]

【課題を解決するための手段】本願発明は、導電体に流
れる電流を計測する電流計測システムにおいて、導電体
の周囲を包囲することなく導電体の近傍に配置される磁
力計と、磁力計で計測した磁場の強さから導電体に電流
が流れていない状態での磁力計位置の磁場の強さを差し
引いた値と、導電体の断面形状の各部分に流れる電流で
決まる磁力計位置の磁場の強さとが等しくなる時の導電
体の各部分に流れる電流の合計を算出して、導電体に流
れる電流を計測する処理装置とを備えていることを特徴
とする、電流計測システム、又は、断面形状がほぼ一定
の導電体に流れる電流を計測する電流計測システムにお
いて、導電体の周囲を包囲することなく導電体の近傍に
配置される磁力計と、磁力計で計測した磁場の強さから
導電体に電流が流れていない状態での磁力計位置の磁場
の強さを差し引いた値と、導電体の断面形状の各部分に
流れる電流で決まる磁力計位置の磁場の強さとが等しく
なる時の導電体の各部分に流れる電流の合計を算出し
て、導電体に流れる電流を計測する処理装置とを備えて
いることを特徴とする、電流計測システム、又は、レー
ルに流れる電流を計測する電流計測システムにおいて、
レールの周囲を包囲することなくレールの近傍に配置さ
れる磁力計と、磁力計で計測した磁場の強さからレール
に電流が流れていない状態での磁力計位置の磁場の強さ
を差し引いた値と、レールの断面形状の各部分に流れる
電流で決まる磁力計位置の磁場の強さとが等しくなる時
のレールの各部分に流れる電流の合計を算出して、レー
ルに流れる電流を計測する処理装置とを備えていること
を特徴とする、電流計測システム、又は、 導電体に流
れる電流を計測する電流計測装置において、導電体の周
囲を包囲することなく導電体の近傍に配置される磁力計
と、磁力計で計測した磁場の強さから導電体に電流が流
れていない状態での磁力計位置の磁場の強さを差し引い
た値と、導電体の断面形状の各部分に流れる電流で決ま
る磁力計位置の磁場の強さとが等しくなる時の導電体の
各部分に流れる電流の合計を算出して、導電体に流れる
電流を計測する処理装置とを備えていることを特徴とす
る、電流計測装置、又は、 導電体に流れる電流を計測
する電流計測方法において、導電体の周囲を包囲するこ
となく導電体の近傍に磁力計を配置し、磁力計で計測し
た磁場の強さから導電体に電流が流れていない状態での
磁力計位置の磁場の強さを差し引いた値と、導電体の断
面形状の各部分に流れる電流で決まる磁力計位置の磁場
の強さとが等しくなる時の導電体の各部分に流れる電流
の合計を算出して、導電体に流れる電流を計測すること
を特徴とする、電流計測方法、又は、レールに流れる電
流を計測する電流計測方法において、レールの近傍に磁
力計を配置し、磁力計で計測した磁場の強さからレール
に電流が流れていない状態での磁力計位置の磁場の強さ
を差し引いた値と、レールの断面形状の各部分に流れる
電流で決まる磁力計位置の磁場の強さとが等しくなる時
のレールの各部分に流れる電流の合計を算出して、レー
ルに流れる電流を計測することを特徴とする、電流計測
方法にある。
SUMMARY OF THE INVENTION The present invention relates to a current measuring system for measuring a current flowing through a conductor, a magnetometer disposed near the conductor without surrounding the periphery of the conductor, and a magnetometer. The magnetic field at the magnetometer position determined by the value obtained by subtracting the magnetic field strength at the magnetometer position when no current is flowing through the conductor from the measured magnetic field strength, and the current flowing through each part of the cross-sectional shape of the conductor Calculate the sum of the current flowing through each part of the conductor when the strength of the current is equal, characterized by comprising a processing device that measures the current flowing through the conductor, or a current measurement system, or In a current measurement system that measures the current flowing through a conductor whose cross-sectional shape is almost constant, a magnetometer placed near the conductor without surrounding the conductor and the strength of the magnetic field measured by the magnetometer Electric current flows through the conductor Each part of the conductor when the value obtained by subtracting the strength of the magnetic field at the magnetometer position when not in position and the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the conductor are equal A current measurement system that calculates a sum of currents flowing through the device, and includes a processing device that measures a current flowing through the conductor, or a current measurement system that measures a current flowing through a rail.
The strength of the magnetic field at the position of the magnetometer without current flowing through the rail was subtracted from the strength of the magnetic field measured by the magnetometer and the magnetometer placed near the rail without surrounding the rail. The process of calculating the total current flowing in each part of the rail when the value and the strength of the magnetic field at the magnetometer position determined by the current flowing in each part of the cross-sectional shape of the rail are equal, and measuring the current flowing in the rail. A current measuring system, or a current measuring device for measuring a current flowing through a conductor, wherein the magnetometer is arranged in the vicinity of the conductor without surrounding the periphery of the conductor. And the value obtained by subtracting the strength of the magnetic field at the position of the magnetometer when no current is flowing through the conductor from the strength of the magnetic field measured by the magnetometer, and the current flowing through each part of the cross-sectional shape of the conductor Magnetic field at magnetometer position Calculate the sum of the current flowing in each portion of the conductor when the strength of the current is equal, characterized by comprising a processing device that measures the current flowing in the conductor, or a current measurement device, or In a current measurement method for measuring a current flowing through a conductor, a magnetometer is arranged near the conductor without surrounding the periphery of the conductor, and the current flows through the conductor based on the strength of the magnetic field measured by the magnetometer. When the strength of the magnetic field at the magnetometer position, which is determined by the value obtained by subtracting the strength of the magnetic field at the magnetometer position in the absence state and the current flowing through each part of the cross-sectional shape of the conductor, is equal, Calculating the total current flowing and measuring the current flowing through the conductor, in the current measuring method or the current measuring method for measuring the current flowing in the rail, a magnetometer is disposed near the rail. Of the magnetic field measured by the magnetometer The value obtained by subtracting the strength of the magnetic field at the magnetometer position when no current is flowing through the rail from the strength is equal to the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the rail. A current measuring method is characterized in that a total current flowing through each part of the rail at the time is calculated and a current flowing through the rail is measured.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0010】<イ>電流計測システム 電流計測システムは、導電体に流れる電流を非接触で計
測できるものであり、例えば図1のように、鉄道のレー
ルなどの導電体の近傍に磁力計を配置し、磁力計と磁力
計で計測した計測値を処理装置で演算処理して導電体に
流れる電流を算出するものである。磁力計は、測定精度
を高めるために磁界方向とほぼ平行に配置すると良い。
磁力計は、種類によって測定値が飽和するフルスケール
レンジが異なるため、測定される磁界の大きさがフルス
ケールレンジを越えないように使用する。磁力計は、磁
場の強さを計測できるものであればよく、例えば、磁力
計MM123(株式会社MTI製)を使用できる。
<A> Current measuring system The current measuring system is capable of measuring a current flowing through a conductor in a non-contact manner. For example, as shown in FIG. 1, a magnetometer is arranged near a conductor such as a rail of a railway. Then, a magnetometer and a measurement value measured by the magnetometer are processed by a processing device to calculate a current flowing through the conductor. The magnetometer is preferably arranged substantially parallel to the direction of the magnetic field in order to increase the measurement accuracy.
Magnetometers are used so that the magnitude of the measured magnetic field does not exceed the full-scale range because the full-scale range in which the measured value is saturated differs depending on the type. The magnetometer may be any as long as it can measure the strength of the magnetic field. For example, a magnetometer MM123 (manufactured by MTI) can be used.

【0011】鉄道には、直流と交流の方式があり、レー
ルに流れる電流は、どちらでも測定できるが、本実施例
では、一例としてレールに流れる直流電流の測定につい
て記載する。本発明は、直流電流の測定に限定するもの
ではない。
There are two types of railways, DC and AC, and the current flowing in the rail can be measured either way. In this embodiment, the measurement of the DC current flowing in the rail is described as an example. The invention is not limited to measuring direct current.

【0012】<ロ>電流と磁場の強さの関係式 電流と磁場の強さの関係式は、ビオ・サバールの法則
(式1を参照)に従って求めることができる。導電体の
断面を多数に区画し、各区画に微小電流iが流れた場
合、磁力計のある場所に発生する磁場の強さdHをビオ
・サバールの法則に従って求める。即ち、断面全体に流
れる電流は、各区画に流れる電流iの総和Iとなり、磁
力計のある場所rに発生する磁場の強さは、各区画によ
って生じる磁場の強さdHの総和Hとなる。即ち、電流
I=kHとなり、ここで係数kは、断面積や磁力計のあ
る場所rに依存する定数である。このHは、電流Iによ
って発生する磁場であり、実際計測された磁場の強さH
は、導電体に流れる電流以外で発生する磁場が含まれ
ている。導電体に流れる電流以外で発生する磁場として
は、地磁気などの定常的な磁界や付近の導電体に流れる
電流による変動磁界がある。ただし、鉄道のレールに流
れる電流を測定する例の場合には、付近の導電体である
隣接のレール、き電線、吊架線、トロリ線などによって
発生する変動磁界は、測定するレールの電流によって発
生する磁界に比例しており、これに比べると、通常は弱
く殆ど無視することができる。そこで、こうした場合に
は、地磁気などの定常的な磁場の強さHを求めて、計
測した磁場の強さHから引いておく必要がある。その
結果、電流と磁場の強さの関係式は、電流I=k(H
−H )となる。ここで、磁場の強さHの計測方法
は、導電体に電流を流さない状態のときの磁力計の計測
値を利用する方法や、後説する2点で同時測定する方法
などがある。
<B> Relational expression between current and magnetic field strength The relational expression between current and magnetic field strength is given by Biot-Savart's law.
(See Equation 1). Conductive
When a section is divided into many sections and a small current i flows in each section
The strength dH of the magnetic field generated at the location of the magnetometer
・ Calculate according to Savart's law. That is, the flow is
The current that flows is the sum I of the current i flowing through each section,
The strength of the magnetic field generated at the location r where the dynamometer is
Is the total H of the magnetic field strength dH generated as a result. That is, the current
I = kH, where the coefficient k depends on the cross-sectional area and the magnetometer
Is a constant depending on the location r. This H depends on the current I.
The magnetic field strength H is actually measured, and the actually measured magnetic field strength H
mContains a magnetic field generated by a current other than the current flowing through a conductor.
ing. As a magnetic field generated by other than the current flowing through the conductor
Flows through a stationary magnetic field such as geomagnetism or a nearby conductor
There is a fluctuating magnetic field due to current. However, the current
In the case of measuring the current flowing, it is a nearby conductor
By adjacent rail, feeder, suspension wire, trolley wire, etc.
The fluctuating magnetic field generated is generated by the rail current to be measured.
It is proportional to the magnetic field generated and is usually
Can be almost ignored. So, in these cases
Is the strength of a stationary magnetic field such as geomagnetism H0For the total
Measured magnetic field strength HmNeed to be subtracted from. That
As a result, the relational expression between the current and the strength of the magnetic field is expressed as follows: current I = k (Hm
-H 0). Here, the magnetic field strength H0Measurement method
Shows the measurement of the magnetometer when no current is flowing through the conductor.
Method of using the value and method of simultaneous measurement at two points described later
and so on.

【0013】[0013]

【式1】 (Equation 1)

【0014】<ハ>磁界の強さHの測定で2点で同時
測定する方法 磁場の強さHは、レールに電流が流れていない時に求
める方法の他に、磁力計を測定点AとBの2箇所に設置
して求めることができる。測定点AとBの2箇所の測定
磁場HmA、HmBと電流値Iの関係は、以下の式とな
る。
[0014] <C> strength H 0 of the method the magnetic field measured simultaneously at two points in the measurement of the strength H 0 of the magnetic field, in addition to the method of determining when no current is flowing in the rail, the measurement point A magnetometer And B can be obtained by setting them at two places. The relationship between the measurement magnetic fields H mA and H mB at the two measurement points A and B and the current value I is represented by the following equation.

【0015】[0015]

【式2】 (Equation 2)

【0016】[0016]

【式3】 (Equation 3)

【0017】2箇所で同時に測定し、H0A=H0B
なる個所がある場合、この式と上記式2と式3からH
=H0A=H0Bを求めることができる。即ち、H0A
=H 0Bとなる2点に磁力計を設置して測定すれば、H
を求めることができる。
Measured simultaneously at two points,0A= H0BWhen
If there is a certain part, from this equation, the above equations 2 and 3, H0
= H0A= H0BCan be requested. That is, H0A
= H 0BIf a magnetometer is installed at two points where
0Can be requested.

【0018】<ニ>処理装置 処理装置は、磁力計で計測した計測値を電流と磁場の強
さの関係式に入れて、導電体に流れる電流値を算出する
ものであり、専用の演算処理装置やパソコンなどでの処
理装置を使用することができる。処理装置は、磁力計と
電気的に接続して測定値を入力してもよく、又は、処理
装置と磁力計を分離しておき、磁力計の計測値をデータ
ロガー(図示していない)で記憶し、後で、その計測デ
ータを処理装置で処理してもよい。処理装置には、測定
値の表示部や、アナログ電圧出力端子など、測定値の記
録に必要な機器を取り付けることができる。また、パソ
コンとの接続に必要なケーブル端子や通信機器との接続
端子、データ記録装置やデータ通信装置などを取り付け
ることもできる。
<D> Processing device The processing device calculates the value of the current flowing through the conductor by putting the measurement value measured by the magnetometer into the relational expression between the current and the strength of the magnetic field. A processing device such as an apparatus or a personal computer can be used. The processing device may be electrically connected to the magnetometer and input the measured value, or the processing device and the magnetometer may be separated, and the measured value of the magnetometer may be measured by a data logger (not shown). The measurement data may be stored and later processed by the processing device. Devices necessary for recording the measured values, such as a measured value display unit and an analog voltage output terminal, can be attached to the processing device. Also, a cable terminal required for connection with a personal computer, a connection terminal for communication equipment, a data recording device, a data communication device, and the like can be attached.

【0019】<ホ>計測対象導電体 計測対象の導電体は、電気が流れるものならよく、鉄道
やモノレールのレールの他にも、アース用金属配管、金
属ワイヤ、鉄骨部材、高圧送電線、柱や梁などの筒状構
造部材などがある。レールなどの長手方向の導電体にお
いて、長手方向に電流が流れ、長手方向に直交する断面
形状が一定なものは、長手方向の任意の位置で同一の電
流と磁場の強さの関係式で電流を求めることができる。
レールのように断面形状が同一で何処でも電流密度が一
定となる場合、ビオ・サバールの法則を利用することに
より、計測を容易に行うことができる。
<E> Conductor to be Measured Conductor to be measured may be any conductor that conducts electricity. In addition to rails of railways and monorails, metal pipes for grounding, metal wires, steel members, high-voltage transmission lines, columns And cylindrical structural members such as beams and beams. In a longitudinal conductor such as a rail, a current flows in the longitudinal direction, and the cross-sectional shape perpendicular to the longitudinal direction is constant.The current is expressed by the relational expression of the same current and magnetic field strength at any position in the longitudinal direction. Can be requested.
When the current density is constant everywhere and the cross-sectional shape is the same like a rail, the measurement can be easily performed by using Biot-Savart's law.

【0020】<ヘ>固定治具 固定治具3は、磁力計11をレール21の所定位置に位
置合わせできるものであり、また、磁力計11を必要に
応じて適切な位置に固定できる。固定治具3の材質は、
測定値に影響を与えないように、非磁性、非導電性のも
のが好ましい。固定治具3は、例えば図2に示すよう
に、磁力計11をレール21に位置合わせできるので、
磁力計11がレール21の決まった位置に設置され、線
路の何処でも容易に電流を計測することができる。固定
具の形状は、種々あり、一例を図2(A)〜(C)に示
す。固定治具3には、磁力計11の他に、処理装置12
や留め具14を備えている。処理装置には、表示部13
があり、測定値を即座に知ることができる。
<F> Fixing Jig The fixing jig 3 can position the magnetometer 11 at a predetermined position on the rail 21 and can fix the magnetometer 11 to an appropriate position as required. The material of the fixing jig 3 is
Non-magnetic and non-conductive materials are preferred so as not to affect the measured values. Since the fixing jig 3 can position the magnetometer 11 on the rail 21 as shown in FIG. 2, for example,
The magnetometer 11 is installed at a fixed position on the rail 21 so that the current can be easily measured anywhere on the track. There are various shapes of the fixture, and an example is shown in FIGS. The fixing jig 3 has a processing device 12 in addition to the magnetometer 11.
And a fastener 14. The processing unit has a display unit 13
The measurement value can be immediately known.

【0021】以下に、レールに流れる電流値の計測方法
を説明する。
Hereinafter, a method for measuring the value of the current flowing through the rail will be described.

【0022】<イ>磁力計の配置 磁力計の配置場所は、レールの近傍、即ちレールに流れ
た電流で作られる磁場が計測できる強さであり、測定対
象のレール以外から発生する変動磁場の影響を受けない
ところならよい。経験的にレールの場合は、70cm以
上離れた位置では測定が困難であることが知られた。電
流と磁場の強さの関係式の係数kは、磁力計の配置位置
(レールの断面を含む平面上の位置)の変化で変わるの
で、予め決めた位置に配置するとよい。例えば、レール
の面対称の位置で、底面の中央から下、数cm、例えば
1cm〜5cm程度の個所では、磁場の強さが適当な大
きさであり、磁場の方向がレールの底面に平行で、正し
い測定値が得られ易い。
<A> Arrangement of Magnetometer The arrangement place of the magnetometer is the strength at which the magnetic field generated by the current flowing in the vicinity of the rail, that is, the rail, can be measured. Any place that is not affected. It has been empirically found that in the case of a rail, measurement is difficult at a position separated by 70 cm or more. Since the coefficient k of the relational expression between the strength of the current and the strength of the magnetic field changes depending on the change in the position of the magnetometer (the position on the plane including the cross section of the rail), the coefficient k is preferably set at a predetermined position. For example, at a plane symmetrical position of the rail, a few cm, for example, about 1 cm to 5 cm below the center of the bottom surface, the strength of the magnetic field is appropriate, and the direction of the magnetic field is parallel to the bottom surface of the rail. And correct measurement values are easily obtained.

【0023】<ロ>レールに流れる電流の算出 磁力計11で測定した磁場の強さを処理装置12に入力
し、電流と磁場の強さの関係式の磁場の強さHに代入
してレール21に流れる電流値Iを算出し、表示装置に
表示する。
[0023] <b> the strength of the magnetic field measured by calculating magnetometer 11 of the current flowing in the rails and input to the processing unit 12, by substituting the strength H m of the magnetic field strength of the relationship of the current and the magnetic field The current value I flowing through the rail 21 is calculated and displayed on the display device.

【0024】<ハ>実際の測定値の比較 実際の電車線路において、時刻15時20分から15時
30分の10分間に電車が通過した際に測定した。ここ
では、インピーダンスボンド付近のレール底面下3cm
に磁力計を配置し、データロガーで計測値を記録した。
同時に従来のインピーダンスボンドの個所でクランプ型
電流計を配置し電流値を計測し、データロガーで記録し
た。それらの電流値を比較したグラフを図3に示す。
<C> Comparison of Actual Measured Values On an actual train line, measurements were taken when the train passed from 15:20 to 15:30 at 10 minutes. Here, 3 cm below the rail bottom near the impedance bond
A magnetometer was placed at the center, and the measured values were recorded by a data logger.
At the same time, a clamp-type ammeter was placed at the location of the conventional impedance bond, and the current value was measured and recorded with a data logger. FIG. 3 shows a graph comparing the current values.

【0025】本発明で得られた電流値とインピーダンス
ボンドで測定した電流値は、正負300アンペアと大幅
に変動しても、殆ど一致していた。両者の相関係数は、
0.99であった。このように、非接触式で、レール周
囲を覆うこと無く磁場の強さを測定しても、レールに流
れる電流値を正確に測定することができた。
The current value obtained by the present invention and the current value measured by the impedance bond were almost the same even if the current value significantly fluctuated to 300 amperes. The correlation coefficient between the two is
0.99. As described above, even if the strength of the magnetic field was measured without covering the periphery of the rail in a non-contact manner, the value of the current flowing through the rail could be accurately measured.

【0026】[0026]

【発明の効果】本発明は、次のような効果を得ることが
できる。 <イ>本発明によって、導電体に流れる電流を非接触の
方法で容易に計測することができる。 <ロ>また、本発明によって、クランプ型電流計が設置
できない大きさや形状、その他の状況の導電体でも電流
値を容易に計測することができる。 <ハ>また、本発明によって、電車の走行に支障なく、
レールの直流電流値を容易に計測することができる。 <ニ>また、本発明によって、電車線路を流れる電流を
任意の個所で任意の時刻に容易に計測できるので、電車
線路から発生する磁場が調査すべき周辺に及ぼす影響を
検討することができる。 <ホ>また、本発明によって、電車線路を流れる最大電
流を任意の個所で容易に計測できるので、き電線、吊架
線、トロリ線の材質、断面積、条数を決めることがで
き、それに基づいて、架線の保持材の強度や、電車線路
を保持する橋脚などの強度を求めることができる。その
結果、電車線路の設計時に、必要最小限の構造部材を検
討できるようになり、不要コストの削減、環境対策に寄
与することができる。 <ヘ>また、本発明によって、き電線、吊架線、トロリ
線を流れる電流の総和は、同じ場所でのレール電流値と
レールからの漏洩電流値の総和に等しいので、レールか
らの漏洩電流を計測することができる。 <ト>また、本発明によって、水道管、ガス管などの金
属配管に流れる迷走電流を計測でき、電食の危険性を知
ることができる。
According to the present invention, the following effects can be obtained. <A> According to the present invention, a current flowing through a conductor can be easily measured by a non-contact method. <B> Further, according to the present invention, it is possible to easily measure a current value even in a conductor having a size, a shape, and other situations where a clamp-type ammeter cannot be installed. <C> In addition, according to the present invention, there is no problem in running the train,
The DC current value of the rail can be easily measured. <D> Further, according to the present invention, the current flowing through the train line can be easily measured at any place and at any time, so that the influence of the magnetic field generated from the train line on the periphery to be investigated can be examined. <E> In addition, according to the present invention, the maximum current flowing through the train line can be easily measured at any point, so that the material, cross-sectional area, and number of feeder wires, suspension wires, and trolley wires can be determined. Thus, the strength of the holding material of the overhead wire and the strength of the pier holding the train track can be obtained. As a result, it becomes possible to consider the minimum necessary structural members when designing a train line, thereby reducing unnecessary costs and contributing to environmental measures. <F> According to the present invention, the sum of the currents flowing through the feeder line, the suspension wire, and the trolley wire is equal to the sum of the rail current value at the same place and the leak current value from the rail. Can be measured. <G> Further, according to the present invention, stray current flowing through metal pipes such as water pipes and gas pipes can be measured, and the danger of electrolytic corrosion can be known.

【図面の簡単な説明】[Brief description of the drawings]

【図1】導電体に流れる電流を計測する電流計測システ
ムの説明図
FIG. 1 is an explanatory diagram of a current measurement system that measures a current flowing through a conductor.

【図2】レール電流計測システムの説明図FIG. 2 is an explanatory diagram of a rail current measurement system.

【図3】本発明で計測した電流値を示すグラフの図FIG. 3 is a graph showing a current value measured by the present invention.

【図4】従来の電車線路に流れる電流計測の説明図FIG. 4 is an explanatory diagram of measuring a current flowing through a conventional train line.

【符号の説明】[Explanation of symbols]

1・・・電流計測システム 11・・磁力計 12・・処理装置 13・・表示部 2・・・導電体 21・・レール 3・・・固定治具 DESCRIPTION OF SYMBOLS 1 ... Current measurement system 11 ... Magnetometer 12 ... Processing device 13 ... Display part 2 ... Conductor 21 ... Rail 3 ... Fixing jig

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川哲也 東京都渋谷区渋谷一丁目16番14号 東急建 設株式会社内 (72)発明者 矢沢清 東京都渋谷区渋谷一丁目16番14号 東急建 設株式会社内 (72)発明者 伊藤篤志 東京都渋谷区南平台町5番6号 東京急行 電鉄株式会社内 (72)発明者 伊東博之 東京都渋谷区南平台町5番6号 東京急行 電鉄株式会社内 (72)発明者 衛藤敏幸 東京都渋谷区南平台町5番6号 東京急行 電鉄株式会社内 (72)発明者 廣木雅司 東京都渋谷区南平台町5番6号 東京急行 電鉄株式会社内 Fターム(参考) 2G017 AA14 AB02 AC06 BA15 2G025 AA03 AA17 AB00 2G035 AA12 AB02 AC02 AC13 AD66 5H161 AA01 BB18 DD02 DD11 FF05 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsuya Ichikawa 1-16-14 Shibuya, Shibuya-ku, Tokyo Tokyu Construction Co., Ltd. (72) Inventor Kiyoshi Yazawa 1-16-14 Shibuya, Shibuya-ku, Tokyo (72) Inventor Atsushi Ito Atsushi 5-6 Minamihiradaicho, Shibuya-ku, Tokyo Tokyu Corporation Inside (72) Inventor Hiroyuki Ito 5-6 Minamihiradaicho, Shibuya-ku, Tokyo Tokyu Corporation (72) Inventor Toshiyuki Eto 5-6 Minamihiradai-cho, Shibuya-ku, Tokyo Tokyo Express Electric Railway Co., Ltd. (72) Inventor Masashi Hiroki 5-6 Minamihiradai-cho, Shibuya-ku, Tokyo Tokyo Electric Railway F-term ( Reference) 2G017 AA14 AB02 AC06 BA15 2G025 AA03 AA17 AB00 2G035 AA12 AB02 AC02 AC13 AD66 5H161 AA01 BB18 DD02 DD11 FF05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導電体に流れる電流を計測する電流計測シ
ステムにおいて、 導電体の周囲を包囲することなく導電体の近傍に配置さ
れる磁力計と、 磁力計で計測した磁場の強さから導電体に電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、導電体の断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時の導電体の各部
分に流れる電流の合計を算出して、導電体に流れる電流
を計測する処理装置とを備えていることを特徴とする、
電流計測システム。
1. A current measuring system for measuring a current flowing through a conductor, comprising: a magnetometer disposed in the vicinity of the conductor without surrounding the periphery of the conductor; and a conductive meter based on the strength of the magnetic field measured by the magnetometer. When the value obtained by subtracting the strength of the magnetic field at the magnetometer position when no current is flowing through the body is equal to the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the conductor Calculating the sum of the current flowing through each part of the conductor, and a processing device that measures the current flowing through the conductor,
Current measurement system.
【請求項2】断面形状がほぼ一定の導電体に流れる電流
を計測する電流計測システムにおいて、 導電体の周囲を包囲することなく導電体の近傍に配置さ
れる磁力計と、 磁力計で計測した磁場の強さから導電体に電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、導電体の断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時の導電体の各部
分に流れる電流の合計を算出して、導電体に流れる電流
を計測する処理装置とを備えていることを特徴とする、
電流計測システム。
2. A current measuring system for measuring a current flowing through a conductor having a substantially constant cross-sectional shape, wherein the magnetometer is disposed in the vicinity of the conductor without surrounding the periphery of the conductor, and the magnetometer is used for measurement. The value obtained by subtracting the strength of the magnetic field at the magnetometer position when no current is flowing through the conductor from the strength of the magnetic field, and the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the conductor And calculating the sum of the currents flowing through the respective portions of the conductor when they are equal, and having a processing device that measures the current flowing through the conductors,
Current measurement system.
【請求項3】レールに流れる電流を計測する電流計測シ
ステムにおいて、 レールの周囲を包囲することなくレールの近傍に配置さ
れる磁力計と、 磁力計で計測した磁場の強さからレールに電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、レールの断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時のレールの各部
分に流れる電流の合計を算出して、レールに流れる電流
を計測する処理装置とを備えていることを特徴とする、
電流計測システム。
3. A current measuring system for measuring a current flowing through a rail, comprising: a magnetometer arranged in the vicinity of the rail without surrounding the periphery of the rail; and a current flowing through the rail based on the strength of the magnetic field measured by the magnetometer. The value obtained by subtracting the strength of the magnetic field at the magnetometer position in the non-flowing state and each part of the rail when the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the rail is equal A processing device that calculates the total of the flowing currents and measures the current flowing through the rails,
Current measurement system.
【請求項4】導電体に流れる電流を計測する電流計測装
置において、 導電体の周囲を包囲することなく導電体の近傍に配置さ
れる磁力計と、 磁力計で計測した磁場の強さから導電体に電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、導電体の断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時の導電体の各部
分に流れる電流の合計を算出して、導電体に流れる電流
を計測する処理装置とを備えていることを特徴とする、
電流計測装置。
4. A current measuring device for measuring a current flowing through a conductor, comprising: a magnetometer arranged in the vicinity of the conductor without surrounding the periphery of the conductor; When the value obtained by subtracting the strength of the magnetic field at the magnetometer position when no current is flowing through the body is equal to the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the conductor Calculating the sum of the current flowing through each part of the conductor, and a processing device that measures the current flowing through the conductor,
Current measuring device.
【請求項5】導電体に流れる電流を計測する電流計測方
法において、 導電体の周囲を包囲することなく導電体の近傍に磁力計
を配置し、 磁力計で計測した磁場の強さから導電体に電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、導電体の断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時の導電体の各部
分に流れる電流の合計を算出して、導電体に流れる電流
を計測することを特徴とする、電流計測方法。
5. A current measuring method for measuring a current flowing through a conductor, wherein a magnetometer is arranged near the conductor without surrounding the periphery of the conductor, and the conductor is measured from the strength of the magnetic field measured by the magnetometer. When the value obtained by subtracting the strength of the magnetic field at the position of the magnetometer when no current is flowing through the magnet is equal to the strength of the magnetic field at the position of the magnetometer, which is determined by the current flowing through each part of the cross-sectional shape of the conductor A current measuring method, comprising: calculating a total of currents flowing through respective parts of a body and measuring a current flowing through a conductor.
【請求項6】レールに流れる電流を計測する電流計測方
法において、 レールの近傍に磁力計を配置し、 磁力計で計測した磁場の強さからレールに電流が流れて
いない状態での磁力計位置の磁場の強さを差し引いた値
と、レールの断面形状の各部分に流れる電流で決まる磁
力計位置の磁場の強さとが等しくなる時のレールの各部
分に流れる電流の合計を算出して、レールに流れる電流
を計測することを特徴とする、電流計測方法。
6. A current measuring method for measuring a current flowing in a rail, wherein a magnetometer is arranged near the rail, and the position of the magnetometer is determined based on the strength of the magnetic field measured by the magnetometer without the current flowing through the rail. Calculate the sum of the current flowing through each part of the rail when the value obtained by subtracting the strength of the magnetic field of the rail and the strength of the magnetic field at the magnetometer position determined by the current flowing through each part of the cross-sectional shape of the rail are equal, A current measuring method, comprising measuring a current flowing through a rail.
JP2001069158A 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method Expired - Lifetime JP4367601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069158A JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069158A JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2002267693A true JP2002267693A (en) 2002-09-18
JP4367601B2 JP4367601B2 (en) 2009-11-18

Family

ID=18927230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069158A Expired - Lifetime JP4367601B2 (en) 2001-03-12 2001-03-12 Current measuring system, measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP4367601B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153255A (en) * 2005-12-08 2007-06-21 West Japan Railway Co Rail direct current detecting device
JP2007282337A (en) * 2006-04-04 2007-10-25 Eiraku Denki Kk Device for determining line wire grounded circuit in direct-current electric railroad
JP2008074354A (en) * 2006-09-25 2008-04-03 Railway Technical Res Inst Section part overhead wire breakage preventive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153255A (en) * 2005-12-08 2007-06-21 West Japan Railway Co Rail direct current detecting device
JP2007282337A (en) * 2006-04-04 2007-10-25 Eiraku Denki Kk Device for determining line wire grounded circuit in direct-current electric railroad
JP2008074354A (en) * 2006-09-25 2008-04-03 Railway Technical Res Inst Section part overhead wire breakage preventive device

Also Published As

Publication number Publication date
JP4367601B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
US8866486B2 (en) Device for detecting and locating electric discharges in fluid-insulated electrical equipment
US20200378885A1 (en) Multielectrode Probes For Monitoring Fluctuating Stray Current Effects And Ac Interference On Corrosion Of Burried Pipelines And Metal Structures
EP3374244A1 (en) Detecting stray currents in electric railway systems
EP2799850B1 (en) Pipeline ac corrosion risk measurement and evaluation method and measurement and evaluation device
JP2008281433A (en) Method and apparatus for measuring/evaluating cathode corrosion condition of underground pipeline
JP2006145492A (en) Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
US5109196A (en) Method and apparatus for magnetic identification and localization of flaws in conductors by canceling the field about the conductor with the field about a flawless conductor
RU167903U1 (en) DEVICE FOR MEASURING EARTHING RESISTANCE WITHOUT DISCONNECTING THE GROUND PROTECTING CABLE
EP0375375A1 (en) Loop impedance tester
RU144337U1 (en) DEVICE FOR MEASURING EARTH RESISTANCE WITHOUT DISCONNECTING THE DARK-PROTECTED CABLE
JP2002267693A (en) Current measuring system, measuring device and measuring method
RU152421U1 (en) DEVICE FOR MEASURING RESISTANCE OF EARTH GROUNDERS OF U-SHAPED SUPPORTS OF ELECTRIC TRANSMISSION AIR LINES WITHOUT DISCONNECTING THE GROUND PROTECTION ROPE
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
CN110161117A (en) A kind of cable fatigue damage detection method based on guided wave group velocity
JP2003527596A (en) Method and apparatus for improving current survey
JP2015040317A (en) Method of measuring cathode corrosion protection condition of buried pipeline
Xu et al. On-line detection of railway power frequency current based on tunnel magnetoresistance
RU167859U1 (en) DEVICE FOR MEASURING RESISTANCE OF GROUNDERS OF ELECTRIC TRANSMISSION SUPPORT AIR LINES WITHOUT DISCONNECTING A DANGEROUS ROPE CABLE
RU2591027C1 (en) Method of measuring and spatial distribution of local magnetic field caused by corrosion flow on metal surface in solution
Li et al. Non-contact determination of the phase sequence and voltage level of overhead conductors in air insulated substations
RU212581U1 (en) DEVICE FOR CONTROL OF VOLUME STRAYING CURRENTS IN THE AREA OF LAYING UNDERGROUND PIPELINES
JPH03197858A (en) Inspecting method for corrosion state of body buried underground
JP2003048465A (en) Leakage current detecting device for railway feeder circuit
RU2299421C2 (en) Method of determining corrosion condition of metallic members of anchor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

R150 Certificate of patent or registration of utility model

Ref document number: 4367601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term