JP2002267602A - Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same - Google Patents

Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same

Info

Publication number
JP2002267602A
JP2002267602A JP2001070579A JP2001070579A JP2002267602A JP 2002267602 A JP2002267602 A JP 2002267602A JP 2001070579 A JP2001070579 A JP 2001070579A JP 2001070579 A JP2001070579 A JP 2001070579A JP 2002267602 A JP2002267602 A JP 2002267602A
Authority
JP
Japan
Prior art keywords
island
film
metal film
infrared
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001070579A
Other languages
Japanese (ja)
Inventor
Akira Maruyama
昭 丸山
Yuji Nishikawa
雄司 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001070579A priority Critical patent/JP2002267602A/en
Publication of JP2002267602A publication Critical patent/JP2002267602A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an insular metal film material for surface-increased infrared absorption spectrum capable of with standing use of a plurality of times and capable of measuring a very small amount of a liquid substance with ultrahigh sensitivity, and a method of manufacturing the same. SOLUTION: In the method of manufacturing the insular metal film material for surface-increased infrared absorption spectrum, an insular metal oxide film is formed on a substrate for infrared transmission and an insular metal film of a metal element is subsequently formed in the same vacuum tank by a continuous film forming method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は表面増強赤外吸収分
光用島状金属膜材料及びその製造方法に関する。
The present invention relates to an island-shaped metal film material for surface-enhanced infrared absorption spectroscopy and a method for producing the same.

【0002】[0002]

【発明の背景】島状金属膜に赤外線を照射すると、赤外
光によるプラズマ振動で金属膜が励起され、金属膜上の
液状物(測定試料)が吸収増大を起こして超高感度の測
定ができる。この現象を利用して超微量液状物(オイル
類、低融点有機物、残留農薬、発汗成分など)の成分同
定に応用する。
BACKGROUND OF THE INVENTION Irradiating an island-shaped metal film with infrared light excites the metal film due to plasma vibrations caused by the infrared light, causing an increase in the absorption of a liquid material (measurement sample) on the metal film, making it possible to perform ultra-sensitive measurement. it can. Utilizing this phenomenon, it is applied to component identification of ultra-trace liquids (oils, low-melting organic substances, pesticide residues, perspiration components, etc.).

【0003】測定手段は、例えば図2に示す如く、
(A)試料なしの状態で赤外光を照射してバックグラン
ド測定を行い、(B)測定試料である液状物を用意して
転写準備を行い、(C)測定試料である液状物を加圧す
ることによって基板上の島状金属膜に転写するか、また
はマイクロキャピラリー吸引法、溶剤希釈法などを応用
し、(D)測定試料である液状物に対し赤外光を照射し
て試料測定を行う。
The measuring means is, for example, as shown in FIG.
(A) Irradiation of infrared light without a sample is performed to perform background measurement, (B) a liquid material as a measurement sample is prepared and transfer preparation is performed, and (C) a liquid material as a measurement sample is added. (D) Irradiate infrared light to the liquid sample to measure the sample, and transfer the sample to the island-like metal film on the substrate by applying pressure, or apply the microcapillary suction method, solvent dilution method, etc. Do.

【0004】尚、赤外光の照射は基板側から行われても
よく、基板側から赤外光照射しても何ら影響を受けずに
増強効果が認められた。これらは、 (1)Y.Nishikawa,et.al.Appl
ied Spectroscopy.44,691(1
990). (2)A.Hartstein,J.R.Kirtle
y,J.C.Tsang,Phys.Rev.Let
t.,45.201(1980). (3)A.Hatta,Y.Suzuki,W.Sue
taka,Appl.Phys.,A35.135(1
984). 等の文献に記載がある。
[0004] Irradiation with infrared light may be performed from the substrate side. Irradiation with infrared light from the substrate side has been found to have an enhancing effect without any influence. These are: (1) Y. Nishikawa, et. al. Appl
ied Spectroscopy. 44, 691 (1
990). (2) A. Hartstein, J.M. R. Kirtle
y, J. et al. C. Tsang, Phys. Rev .. Let
t. , 45.201 (1980). (3) A. Hatta, Y .; Suzuki, W.C. Sue
Taka, Appl. Phys. , A35.135 (1
984). And so on.

【0005】[0005]

【従来の技術】従来技術では赤外線透過用基板に直接、
金、銀、白金等の金属元素の超微細島状蒸着膜を製膜し
ていたが膜付きと経時保存性が悪く、1回だけの使い切
りであった。このため測定の都度、新たな金属蒸着膜の
製膜が必要で迅速測定ができなかった。また従来、測定
試料である液状物の赤外測定は、数百マイクログラム程
度が必要であったが、試料を入手してから蒸着製膜して
いる間に試料の超微量液状物が飛散消失して量不足とな
り、測定不可になることも発生していた。
2. Description of the Related Art In the prior art, an infrared transmitting substrate is directly
Although an ultra-fine island-like vapor-deposited film of a metal element such as gold, silver, platinum or the like was formed, the storage stability with time was poor when the film was attached, and it was only used once. Therefore, a new metal deposition film must be formed each time the measurement is performed, and rapid measurement cannot be performed. Conventionally, the infrared measurement of a liquid sample, which is a measurement sample, required several hundred micrograms. As a result, the amount became insufficient and measurement became impossible.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の目的
は、複数回の使用に耐え、且つ超微量液状物を超高感度
に測定できる表面増強赤外吸収分光用島状金属膜材料及
びその製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an island-shaped metal film material for surface enhanced infrared absorption spectroscopy capable of withstanding multiple uses and measuring a very small amount of a liquid substance with ultra-high sensitivity, and an object thereof. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明の上記課題は、以
下の手段により達成された。 1.赤外線透過用基板に島状金属酸化物皮膜を製膜後、
同一真空槽内で連続製膜により金属元素の島状金属膜を
製膜することを特徴とする表面増強赤外吸収分光用島状
金属膜材料の製造方法。
The above objects of the present invention have been attained by the following means. 1. After forming an island-shaped metal oxide film on the substrate for infrared transmission,
A method for producing an island-shaped metal film material for surface enhanced infrared absorption spectroscopy, wherein an island-shaped metal film of a metal element is formed by continuous film formation in the same vacuum chamber.

【0008】2.赤外線透過用基板上に金属元素の島状
金属膜を有するに表面増強赤外吸収分光用島状金属膜材
料において、前記赤外線透過用基板と金属元素の島状金
属膜との間に島状金属酸化物皮膜を有することを特徴と
する表面増強赤外吸収分光用島状金属膜材料。
[0008] 2. In an island-shaped metal film material for surface enhanced infrared absorption spectroscopy having an island-shaped metal film of a metal element on an infrared-transmitting substrate, the island-shaped metal is disposed between the infrared-transmitting substrate and the island-shaped metal film of the metal element. An island-shaped metal film material for surface enhanced infrared absorption spectroscopy, comprising an oxide film.

【0009】本発明は、金属蒸着膜を製膜する前に下引
き処理として、赤外線透過用基板表面に赤外透過性を有
する金属酸化物を製膜後に、連続製膜で金属蒸着膜を製
膜することにより、膜付きと経時保存性を同時に解決す
る耐久性超微細島状金属膜を製造できる方法を見出し、
本発明を完成した。
According to the present invention, a metal oxide film having an infrared-transmitting property is formed on the surface of an infrared-transmitting substrate as a subbing process before forming the metal-deposited film, and then the metal-deposited film is formed by continuous film formation. By forming a film, a method for manufacturing a durable ultra-fine island-shaped metal film that simultaneously solves the film formation and the storage stability over time was found,
The present invention has been completed.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳述する。
先ず、赤外線透過用基板について説明する。基板素材と
しては、赤外線領域(波長2μm〜15μm)に透過性
を有する素材であれば、公知のものを特別の制限なく用
いることができる。例えば、フッ化バリウム(Ba
)、フッ化カルシウム(CaF)、ダイヤモン
ド、ゲルマニウム(Ge)、KRS−5(TlBrI=
沃化タリウムと臭化タリウムの結晶混合物)、セレン化
亜鉛(ZnSe)、シリコン(Si)などが挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, the infrared transmitting substrate will be described. As the substrate material, a known material can be used without any particular limitation as long as it has a transmittance in an infrared region (wavelength: 2 μm to 15 μm). For example, barium fluoride (Ba)
F 2 ), calcium fluoride (CaF 2 ), diamond, germanium (Ge), KRS-5 (TlBrI =
Crystalline mixture of thallium iodide and thallium bromide), zinc selenide (ZnSe), silicon (Si) and the like.

【0011】これらの中でも、膜付きの良い島状金属膜
製造に好ましいのは、フッ化バリウム、フッ化カルシウ
ム、ダイヤモンド、ゲルマニウム、シリコンである。
Among these, barium fluoride, calcium fluoride, diamond, germanium, and silicon are preferable for producing an island-shaped metal film having a good film.

【0012】素材形状は、赤外分光の測定モードに対応
した形状であればよく、例えば、円板状、台形状、半円
状、半球状、短針上、角柱状、蒲鉾状などである。
The shape of the material may be any shape corresponding to the measurement mode of infrared spectroscopy, and is, for example, a disk shape, a trapezoidal shape, a semicircular shape, a hemispherical shape, a short needle, a prismatic shape, a squabber shape, and the like.

【0013】次に、下引き用金属酸化物皮膜の製膜方法
について述べる。金属酸化物皮膜素材としては、赤外線
領域(波長2μm〜15μm)に透過性を有する素材で
あれば、公知のものを特別の制限なく用いることができ
る。例えば、酸化クロム(Cr)、酸化セリウム
(CeO)、酸化チタン(TiO)、酸化インジウ
ム(InO)などで、好ましくは酸化クロム、酸化セ
リウムである。
Next, a method of forming a metal oxide film for undercoating will be described. As the metal oxide film material, a known material can be used without particular limitation as long as it is a material having transparency in an infrared region (wavelength: 2 μm to 15 μm). For example, chromium oxide (Cr 2 O 3 ), cerium oxide (CeO 2 ), titanium oxide (TiO 2 ), indium oxide (InO 3 ), and the like are preferable, and chromium oxide and cerium oxide are preferable.

【0014】酸化物被膜製造には金属酸化物をそのまま
蒸発源とする製膜法と、蒸着用金属を蒸発源として真空
中に酸素ガスを導入しながら製膜する反応蒸着法があ
り、本発明においては、いずれの方法でも製膜可能であ
る。
There are two methods for producing an oxide film: a film forming method using a metal oxide as an evaporation source as it is, and a reactive vapor deposition method using a metal for evaporation as an evaporation source while introducing oxygen gas into a vacuum. Can be formed by any method.

【0015】製膜装置としては、一般的に知られている
抵抗加熱蒸着法、電子ビーム蒸着法、化学的気相堆積
法、スパッタリング法などに用いられるものであれば、
公知のものを特別の制限なく用いることができる。好ま
しくは抵抗加熱蒸着法と電子ビーム蒸着法に用いられる
装置の組み合わせ使用である。
As a film forming apparatus, any apparatus used for generally known resistance heating evaporation, electron beam evaporation, chemical vapor deposition, sputtering, etc.
Known ones can be used without particular limitation. Preferably, a combination of devices used for the resistance heating evaporation method and the electron beam evaporation method is used.

【0016】一例として酸化クロム(Cr)を電
子ビーム蒸着法で製膜後、連続製膜により金(Au)を
抵抗加熱蒸着法で製膜した超微細島状蒸着膜を得た。
尚、この超微細島状蒸着膜は10回以上の使用に実用で
きた。この一例のように、製膜には2連以上の蒸発源を
備えた装置が必要であり、スパッタリング法では2連以
上の蒸発源ターゲットを必要とする。
As an example, after forming chromium oxide (Cr 2 O 3 ) by an electron beam evaporation method, an ultra-fine island-like evaporation film was formed by continuous film formation of gold (Au) by a resistance heating evaporation method.
In addition, this ultra-fine island-like deposited film was practically used for 10 times or more. As in this example, the film formation requires an apparatus having two or more evaporation sources, and the sputtering method requires two or more evaporation source targets.

【0017】尚、上記化学的気相堆積法(CVD=Ch
emical Vaper Depisition)と
は、真空槽内に気体(酸素、窒素、弗素、塩素、反応性
特殊ガスなど)を導入し、この気体に高圧電場をかけプ
ラズマ化して、加熱ボートから蒸発した金属蒸気と反応
させて製膜する方法である。一般的には、製膜した化合
物が高融点のため、抵抗加熱ではそのまま蒸着できない
ものを、金属状態で蒸発させてから導入ガスと反応させ
て製膜する方法として用いる。
The above chemical vapor deposition (CVD = Ch)
The "Electrical Vapor Deposition" is a method in which a gas (oxygen, nitrogen, fluorine, chlorine, reactive special gas, etc.) is introduced into a vacuum chamber, a high-piezoelectric field is applied to the gas, and the gas is turned into plasma. This is a method of forming a film by reacting. In general, a film-forming compound having a high melting point, which cannot be vapor-deposited by resistance heating as it is, is used as a method of evaporating in a metal state and reacting with an introduced gas to form a film.

【0018】本発明に係る島状金属酸化物皮膜の製膜状
態は、例えば、平均膜厚が0.1nm〜200nm、平
均島状直径が0.1nm〜100nm、平均島状皮膜間
距離が0.1nm〜100nmであり、好ましくは平均
膜厚が1nm〜10nm、平均島状直径が10nm〜8
0nm、平均島状皮膜間距離が0.1nm〜20nmで
あるのがよい。また金属酸化物皮膜は島状でなくても平
均膜厚が10nm〜100nmの均一層であれば何ら影
響を受けずに本発明の特性効果が認められた。
The film-forming state of the island-shaped metal oxide film according to the present invention is, for example, an average film thickness of 0.1 nm to 200 nm, an average island diameter of 0.1 nm to 100 nm, and an average distance between island films of 0 nm. 0.1 nm to 100 nm, preferably 1 nm to 10 nm in average thickness and 10 nm to 8 in average island diameter.
0 nm and the average inter-island distance are preferably 0.1 nm to 20 nm. Even if the metal oxide film is not island-shaped, the characteristics and effects of the present invention were recognized without any influence as long as the average film thickness was a uniform layer having a thickness of 10 nm to 100 nm.

【0019】平均膜厚は非接触三次元表面粗さ計(商品
名:WYCO/ワイコ)で測定し、島状直径と皮膜間距
離は画像処理装置(商品名:LUZEX/ルーゼック
ス)で測定し、各島々の面積を真円換算して算出した。
測定した島状個数は150個であった。尚、真円換算以
外にも整列楕円換算、正方形換算も有効である。
The average film thickness is measured with a non-contact three-dimensional surface roughness meter (trade name: WYCO / Wyco), the island diameter and the distance between the films are measured with an image processing device (trade name: LUZEX / Luzex), The area of each island was calculated by converting it to a perfect circle.
The number of islands measured was 150. In addition to the true circle conversion, the alignment ellipse conversion and the square conversion are also effective.

【0020】製膜条件は真空度、蒸着速度、蒸発源〜被
着赤外線透過用基板間距離の3条件が重要である。例え
ば、真空度は1×10−2Pa以下、蒸着速度は0.0
1nm/sec〜2.0nm/sec、蒸発源〜被着赤
外線透過用基板間距離は50mm〜500mmであり、
好ましくは真空度は1×10−3Pa以下、蒸着速度は
0.01nm/sec〜0.1nm/sec、蒸発源〜
被着赤外線透過用基板間距離は100mm〜300mm
が適性条件である。
Three important conditions for film formation are the degree of vacuum, the deposition rate, and the distance between the evaporation source and the substrate for transmitting infrared radiation. For example, the degree of vacuum is 1 × 10 −2 Pa or less, and the deposition rate is 0.0
1 nm / sec to 2.0 nm / sec, the distance between the evaporation source and the substrate for transmitting infrared radiation is 50 mm to 500 mm,
Preferably, the degree of vacuum is 1 × 10 −3 Pa or less, the deposition rate is 0.01 nm / sec to 0.1 nm / sec, and the evaporation source is
The distance between the substrates for infrared transmission is 100mm-300mm
Is the suitability condition.

【0021】この製膜で特に重要なのは、蒸着速度と蒸
発源〜被着赤外線透過用基板間距離の2条件で、緻密な
島状製膜には欠かせない条件である。また、製膜時の被
着赤外線透過用基板は固定したままで製膜するのが好ま
しい。
Particularly important in this film formation are two conditions of a deposition rate and a distance between an evaporation source and a substrate for transmitting an infrared ray to be deposited, which are essential conditions for a dense island-like film formation. Further, it is preferable to form a film while the substrate for transmitting infrared rays adhered during film formation is fixed.

【0022】次に、金属膜製膜方法について述べる。本
発明に用いられる金属素材としては、製膜した金属膜が
薄膜状態で赤外線領域(波長2μm〜15μm)に透過
性を有する素材であり、金、銀、白金、パラジウム、
銅、タングステンなどが適性を示す。これらのうちで好
ましいのは金、白金、パラジウムの白金族元素である。
Next, a method for forming a metal film will be described. The metal material used in the present invention is a material in which a formed metal film is transparent in the infrared region (wavelength: 2 μm to 15 μm) in a thin film state, and includes gold, silver, platinum, palladium,
Copper, tungsten, etc. show suitability. Of these, preferred are platinum group elements such as gold, platinum and palladium.

【0023】尚、銀、銅、タングステンなどは蒸着後の
保存状態により表面が酸化して表面増強効果が極度に低
下するため製膜直後だけの限定使用となる。
Incidentally, silver, copper, tungsten and the like are oxidized on the surface depending on the storage state after vapor deposition, and the surface enhancing effect is extremely reduced.

【0024】製膜装置としては、一般的には抵抗加熱蒸
着法、電子ビーム蒸着法、スパッタリング法に用いられ
るものであれば、公知のものを特別の制限なく用いるこ
とができる。好ましくは抵抗加熱蒸着法と電子ビーム蒸
着法に用いられる装置である。
As the film forming apparatus, a known apparatus can be used without particular limitation as long as it is generally used for a resistance heating evaporation method, an electron beam evaporation method, and a sputtering method. Preferably, it is an apparatus used for the resistance heating evaporation method and the electron beam evaporation method.

【0025】金属酸化物皮膜の製膜法でも触れたように
特に好ましいのは抵抗加熱蒸着法である。抵抗加熱蒸着
法で製膜する金属酸化物皮膜は製膜時の蒸発分子が微少
なため緻密な島状膜を製膜できる利点がある。
As mentioned in the method for forming a metal oxide film, a resistance heating evaporation method is particularly preferred. A metal oxide film formed by the resistance heating vapor deposition method has an advantage that a dense island-like film can be formed because molecules evaporated during the film formation are very small.

【0026】島状金属膜の製膜状態は、例えば、平均膜
厚が0.1nm〜200nm、平均島状直径が0.1n
m〜100nm、平均島状皮膜間距離が0.1nm〜1
00nmであり、好ましくは平均膜厚が5nm〜50n
m、平均島状直径が10nm〜50nm、平均島状皮膜
間距離が0.1nm〜20nmであるのがよい。
The film-forming state of the island-shaped metal film is, for example, an average film thickness of 0.1 nm to 200 nm and an average island-shaped diameter of 0.1 n.
m to 100 nm, average distance between island-like films is 0.1 nm to 1
00 nm, preferably with an average film thickness of 5 nm to 50 n.
m, the average island diameter is preferably 10 nm to 50 nm, and the average inter-island distance is preferably 0.1 nm to 20 nm.

【0027】製膜条件は真空度、蒸着速度、蒸発源〜被
着赤外線透過用基板間距離の3条件が重要である。例え
ば、真空度は1×10−2Pa以下、蒸着速度は0.0
1nm/sec〜2nm/sec、蒸発源〜被着赤外線
透過用基板間距離は50mm〜300mmであり、特に
好ましくは真空度は1×10−3Pa以下、蒸着速度は
0.01nm/sec〜0.1nm/sec、蒸発源〜
被着赤外線透過用基板間距離は100mm〜200mm
が適性条件である。
As film forming conditions, three conditions of a degree of vacuum, a deposition rate, and a distance between an evaporation source and a substrate for transmitting infrared rays to be deposited are important. For example, the degree of vacuum is 1 × 10 −2 Pa or less, and the deposition rate is 0.0
1 nm / sec to 2 nm / sec, the distance between the evaporation source and the substrate for transmitting infrared radiation is 50 mm to 300 mm, particularly preferably, the degree of vacuum is 1 × 10 −3 Pa or less, and the deposition rate is 0.01 nm / sec to 0 mm. .1 nm / sec, evaporation source
The distance between the substrates for infrared transmission is 100mm-200mm
Is the suitability condition.

【0028】この製膜で特に重要なのは、蒸着速度と蒸
発源〜被着赤外線透過用基板間距離の2条件で、緻密な
島状金属膜製膜には欠かせない条件である。また、製膜
時の被着赤外線透過用基板は固定したままで製膜するの
が好ましい。
Particularly important in this film formation are two conditions of a deposition rate and a distance between an evaporation source and a substrate for transmitting infrared rays to be deposited, which are essential conditions for forming a dense island-shaped metal film. Further, it is preferable to form a film while the substrate for transmitting infrared rays adhered during film formation is fixed.

【0029】表面増強赤外吸収分光用島状金属膜材料を
用いた赤外測定法は、多種多様のものが知られており、
本発明に係る島状金属膜材料を用いた測定法では透過法
(図2参照)に限らず、反射法、ATR法、顕微透過
法、顕微ATR法、短針状結晶を用いた近接場赤外分光
法など、公知のあらゆる種類の赤外測定法への適用ない
し応用ができる。
A wide variety of infrared measurement methods using island-shaped metal film materials for surface enhanced infrared absorption spectroscopy are known.
The measurement method using the island-shaped metal film material according to the present invention is not limited to the transmission method (see FIG. 2), but is also a reflection method, an ATR method, a micro transmission method, a micro ATR method, and near-field infrared using a short needle crystal. It can be applied or applied to all kinds of known infrared measurement methods such as spectroscopy.

【0030】これら赤外測定法は、下記の文献に記載が
ある。 1)透過法に関する文献 ・Y.Nishikawa,K.Fujiwara,a
nd T.Shima,Applied Spectr
oscopy.44,691(1990). ・Y.Nishikawa,K.Fujiwara,a
nd T.Shima,Applied Spectr
oscopy.45,747(1991). ・Y.Nishikawa,Y.Ito,K.Fuji
wara,and T.Shima,Surface
Interface Analysis.18,481
(1992). ・Y.Nishikawa,T.Nagasawa,
K.Fujiwara,and M.Osawa,Vi
brational Spectroscopy.6,
43(1993).
These infrared measuring methods are described in the following documents. 1) Documents relating to the transmission method Nishikawa, K .; Fujiwara, a
nd T. Shima, Applied Spectr
oscopy. 44, 691 (1990).・ Y. Nishikawa, K .; Fujiwara, a
nd T. Shima, Applied Spectr
oscopy. 45,747 (1991).・ Y. Nishikawa, Y .; Ito, K .; Fuji
wara, and T.W. Shima, Surface
Interface Analysis. 18,481
(1992).・ Y. Nishikawa, T .; Nagasawa,
K. Fujiwara, and M.S. Osawa, Vi
blantional Spectroscopy. 6,
43 (1993).

【0031】2)ATR法に関する文献 ・A.Hartstein,J.R.Kirtley,
and J.C.Tsang,Phys.Rev.Le
tt.45.201(1980). ・A.Hatta,T.Ohshima,and W.
Suetaka,Appl.Phys.,A29.71
(1982). ・R.Roseller,E.H.Korte,Fre
senius J.Anal.Chem.362,51
(1998).
2) Literature on ATR method Hartstein, J.M. R. Kirtley,
and J.J. C. Tsang, Phys. Rev .. Le
tt. 45.201 (1980). A. Hatta, T .; Ohshima, and W.W.
See Sutake, Appl. Phys. , A29.71
(1982).・ R. Roseller, E .; H. Korte, Fre
senius J .; Anal. Chem. 362,51
(1998).

【0032】3)反射法 ・Y.Nishikawa,K.Fujiwara,
K.Ataka,andM.Osawa,Anal.C
hem.65,556(1993).
3) Reflection method Nishikawa, K .; Fujiwara,
K. Ataka, andM. Osawa, Anal. C
hem. 65, 556 (1993).

【0033】4)顕微赤外分光法(透過法:測定面積1
00×100μm) ・Y.Nishikawa,K.Fujiwara,a
nd T.Shima,Applied Spectr
oscopy.45,747(1991).
4) Microscopic infrared spectroscopy (transmission method: measurement area 1)
00 × 100 μm) Y. Nishikawa, K .; Fujiwara, a
nd T. Shima, Applied Spectr
oscopy. 45,747 (1991).

【0034】[0034]

【実施例】以下、実施例によって本発明を例証する。 実施例1 赤外線透過用基板には厚さ1mm、直径20mmの円板
状弗化バリウム板を用い、金属酸化物製膜には酸化クロ
ム(Cr)を用い、金属膜製膜には金(Au)を
用い、蒸発用ボートには酸化クロム蒸発用、金蒸発用と
もタングステン製を用いた。
The present invention will now be illustrated by way of examples. Example 1 A disc-shaped barium fluoride plate having a thickness of 1 mm and a diameter of 20 mm was used for a substrate for infrared transmission, chromium oxide (Cr 2 O 3 ) was used for a metal oxide film, and a metal film was formed. Gold (Au) was used, and the evaporation boat was made of tungsten for chromium oxide evaporation and for gold evaporation.

【0035】また、2個の蒸発用ボートの10mm上方
にはスライド式シャッターを設けて、一方を蒸発中はも
う一方の蒸着材が汚染しないように準備した。
A sliding shutter was provided 10 mm above the two evaporation boats, and one of them was prepared so that the other evaporation material would not be contaminated during evaporation.

【0036】蒸着装置はベルジャー内容積が150リッ
トルの円筒型2連電極付きで、電子ビーム照射用のタン
グステンフィラメント、ロータリー真空ポンプ、油拡散
ポンプを備えた装置を使用した。
The vapor deposition device used was a device equipped with a cylindrical twin electrode having a bell jar inner volume of 150 liters and provided with a tungsten filament for electron beam irradiation, a rotary vacuum pump, and an oil diffusion pump.

【0037】真空蒸着装置はベルジャー内に、前記弗化
バリウム板を蒸発源より200mm上方に固定し、電極
−1には酸化クロムの顆粒を2グラム入れたタングステ
ンボートを準備し、電極−2には1mm径×10mm長
さの金線を2本いれたタングステンボートを準備した。
In the vacuum evaporation apparatus, the barium fluoride plate was fixed 200 mm above the evaporation source in a bell jar. A tungsten boat containing 2 g of chromium oxide granules was prepared for electrode-1. Prepared a tungsten boat having two gold wires each having a diameter of 1 mm and a length of 10 mm.

【0038】真空度を0.8×10−3Paに調整し、
電極−1に10A(アンペア)の電流を流し、酸化クロ
ムを低温加熱しながら、加速電圧6kV、電流値50m
Aでタングステンフィラメントから酸化クロムに電子線
照射して0.01nm/secの蒸着速度で弗化バリウ
ム板に酸化クロムを5分間電子ビーム蒸着した。弗化バ
リウム板に、平均膜厚が3nm、平均島状直径が50n
m、平均島状皮膜間距離10nmの酸化クロム膜を製膜
した。
The degree of vacuum was adjusted to 0.8 × 10 −3 Pa,
A current of 10 A (ampere) is applied to the electrode-1, and while the chromium oxide is heated at a low temperature, an acceleration voltage of 6 kV and a current value of 50 m
Chromium oxide was irradiated on the barium fluoride plate by electron beam irradiation at a deposition rate of 0.01 nm / sec by irradiating the chromium oxide with an electron beam from the tungsten filament at A, for 5 minutes. A barium fluoride plate having an average film thickness of 3 nm and an average island diameter of 50 n
m, a chromium oxide film having an average inter-island distance of 10 nm was formed.

【0039】続いて同じ真空度で抵抗加熱蒸着により、
電極−2に20Aの電流を流し、0.01nm/sec
の蒸着速度で金(Au)を33分間蒸着した。酸化クロ
ムを下引き製膜した弗化バリウム板に、平均膜厚20n
m、平均島状直径が50nm、平均島状皮膜間距離10
nmの超微細島状金属膜が製膜された。
Subsequently, resistance heating deposition was performed at the same degree of vacuum,
A current of 20 A is applied to electrode-2, and 0.01 nm / sec.
(Au) was deposited at a deposition rate of 33 minutes. An average film thickness of 20 n was applied to a barium fluoride plate on which chromium oxide had been coated.
m, average island diameter 50 nm, average inter-island distance 10
An ultra-fine island-shaped metal film having a thickness of nm was formed.

【0040】実施例2 赤外線透過用基板には厚さ1mm、直径20mmの円板
状弗化バリウム板を用い、金属酸化物製膜には酸化クロ
ム(Cr)を用い、金属膜製膜には金(Au)を
用い、蒸発用ボートには酸化クロム蒸発用、金蒸発用と
もタングステン製を用いた。
Example 2 A disc-shaped barium fluoride plate having a thickness of 1 mm and a diameter of 20 mm was used for an infrared transmitting substrate, chromium oxide (Cr 2 O 3 ) was used for a metal oxide film, and a metal film was used. Gold (Au) was used for the film, and tungsten was used for the evaporation boat for both chromium oxide evaporation and gold evaporation.

【0041】また、2個の蒸発用ボートの10mm上方
にはスライド式シャッターを設けて、一方を蒸発中はも
う一方の蒸着材が汚染しないように準備した。
A sliding shutter was provided 10 mm above the two evaporation boats, and one of them was prepared so that the other evaporation material was not contaminated during evaporation.

【0042】蒸着装置はベルジャー内容積が150リッ
トルの円筒型2連電極付きで、電子ビーム照射用のタン
グステンフィラメント、ロータリー真空ポンプ、油拡散
ポンプを備えた装置を使用した。
As the vapor deposition device, a device equipped with a cylindrical twin electrode having a bell jar inner volume of 150 liters and equipped with a tungsten filament for electron beam irradiation, a rotary vacuum pump, and an oil diffusion pump was used.

【0043】真空蒸着装置はベルジャー内に、前記弗化
バリウム板を蒸発源より200mm上方に固定し、電極
−1には酸化クロムの顆粒を2グラム入れたタングステ
ンボートを準備し、電極−2には1mm径×10mm長
さの金線を2本いれたタングステンボートを準備した。
In the vacuum evaporation apparatus, the barium fluoride plate was fixed 200 mm above the evaporation source in a bell jar. A tungsten boat containing 2 g of chromium oxide granules was prepared for electrode-1. Prepared a tungsten boat having two gold wires each having a diameter of 1 mm and a length of 10 mm.

【0044】真空度を0.8×10−3Paに調整し、
電極−1に10Aの電流を流し、酸化クロムを低温加熱
しながら、加速電圧6kV、電流値30mAでタングス
テンフィラメントから酸化クロムに電子線照射して0.
01nm/secの蒸着速度で弗化バリウム板に酸化ク
ロムを5分間電子ビーム蒸着した。弗化バリウム板に、
平均膜厚が3nm、平均島状直径が20nm、平均島状
皮膜間距離10nmの酸化クロム膜を製膜した。
The degree of vacuum was adjusted to 0.8 × 10 −3 Pa,
An electron beam was applied to the chromium oxide from the tungsten filament at an accelerating voltage of 6 kV and a current value of 30 mA while applying a current of 10 A to the electrode-1 while heating the chromium oxide at a low temperature.
Chromium oxide was electron beam deposited on a barium fluoride plate at a deposition rate of 01 nm / sec for 5 minutes. For barium fluoride plate,
A chromium oxide film having an average thickness of 3 nm, an average island diameter of 20 nm, and an average inter-island distance of 10 nm was formed.

【0045】続いて同じ真空度で抵抗加熱蒸着により、
電極−2に40Aの電流を流し、蒸着速度0.1nm/
secで金(Au)を1分間蒸着した。酸化クロムを下
引き製膜した弗化バリウム板に、平均膜厚5nm、平均
島状直径が20nm、平均島状皮膜間距離10nmの超
微細島状金属膜が製膜された。
Subsequently, resistance heating evaporation was performed at the same degree of vacuum,
A current of 40 A was applied to electrode-2, and a deposition rate of 0.1 nm /
In a second, gold (Au) was deposited for one minute. An ultra-fine island-shaped metal film having an average film thickness of 5 nm, an average island diameter of 20 nm, and an average inter-island distance of 10 nm was formed on a barium fluoride plate on which chromium oxide was formed.

【0046】実施例3、4及び5 上記実施例1と2のように、金(Au)の蒸発速度を電
流値を変化させることによって、酸化クロムを下引き製
膜した弗化バリウム板に、平均膜厚2nm、10nm及
び15nmの超微細島状金属膜を製膜した。
Examples 3, 4 and 5 As in Examples 1 and 2, the evaporation rate of gold (Au) was changed by changing the current value, thereby forming a barium fluoride plate on which chromium oxide was formed undercoating. Ultrafine island-shaped metal films having an average film thickness of 2 nm, 10 nm and 15 nm were formed.

【0047】比較例1 実施例1において、酸化クロム膜を製膜することなく弗
化バリウム板に、金(Au)皮膜を製膜した。
Comparative Example 1 In Example 1, a gold (Au) film was formed on a barium fluoride plate without forming a chromium oxide film.

【0048】比較例2 金属膜を製膜しない弗化バリウム板にTPPを25ng
/cmの量を塗布した。 (注)TPP=TriPhenylPhosphate 主にプラスチック樹脂を成型するときに用いる可塑剤で
軟質塩化ビニル、TACフィルムなどに多用される化合
物。
Comparative Example 2 25 ng of TPP was applied to a barium fluoride plate on which no metal film was formed.
/ Cm 2 was applied. (Note) TPP = TriPhenylPhosphate A plasticizer mainly used for molding plastic resins, a compound often used in soft vinyl chloride and TAC films.

【0049】図3に実施例1〜5、比較例1で得られた
超微細島状金属膜について、図2に示すように、赤外感
度の高いTPPを測定基準に選択して、効果を確かめ
た。その結果得られた感度(比較例2の感度を1とする
相対感度)の相対図を示す。また、図4に従来膜(比較
例1)と新規蒸着膜(実施例1)とについて、使用回数
と感度変化の関係を示す耐久性図表を示す。
As shown in FIG. 3, the effect of the ultrafine island-like metal films obtained in Examples 1 to 5 and Comparative Example 1 was selected by selecting TPP having high infrared sensitivity as a measurement standard, as shown in FIG. I confirmed. A relative diagram of the resulting sensitivity (relative sensitivity with the sensitivity of Comparative Example 2 being 1) is shown. FIG. 4 is a durability chart showing the relationship between the number of times of use and the change in sensitivity for the conventional film (Comparative Example 1) and the newly deposited film (Example 1).

【0050】[0050]

【発明の効果】本発明によれば、複数回の使用に耐え、
且つ数ナノグラム単位の超微量液状物を超高感度に測定
できる表面増強赤外吸収分光用島状金属膜材料及びその
製造方法を提供できる。
According to the present invention, it can withstand multiple uses,
In addition, it is possible to provide an island-shaped metal film material for surface-enhanced infrared absorption spectroscopy capable of measuring a very small amount of a liquid substance in a unit of several nanograms with ultra-high sensitivity, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超微細島状金属膜の電子顕微鏡写真であり、
(A)が実施例1の写真、(B)が実施例2の写真
FIG. 1 is an electron micrograph of an ultrafine island-like metal film,
(A) is a photograph of Example 1, (B) is a photograph of Example 2.

【図2】測定手段を示す試料転写模式図FIG. 2 is a schematic diagram of a sample transfer showing a measuring unit.

【図3】平均島状膜厚と相対感度を示す感度相対図FIG. 3 is a relative sensitivity diagram showing average island-like film thickness and relative sensitivity.

【図4】使用回数と感度変化の関係を示す耐久性図表FIG. 4 is a durability chart showing a relationship between the number of uses and a change in sensitivity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G052 AD06 AD46 DA01 DA05 GA11 2G059 AA01 BB04 EE01 HH01 PP10 4K029 AA04 AA06 BA01 BA04 BA05 BA08 BA13 BA43 BA45 BA48 BB03 BC07 BD00 CA01 CA02 DB03 DB05 4K044 AA11 AB02 BA08 BA12 BB03 BB08 BC14 CA13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G052 AD06 AD46 DA01 DA05 GA11 2G059 AA01 BB04 EE01 HH01 PP10 4K029 AA04 AA06 BA01 BA04 BA05 BA08 BA13 BA43 BA45 BA48 BB03 BC07 BD00 CA01 CA02 DB03 DB05 4K044 AA11 BB03 BA08 BA08 CA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】赤外線透過用基板に島状金属酸化物皮膜を
製膜後、同一真空槽内で連続製膜により金属元素の島状
金属膜を製膜することを特徴とする表面増強赤外吸収分
光用島状金属膜材料の製造方法。
1. A surface-enhanced infrared radiation method comprising: forming an island-shaped metal oxide film on an infrared transmitting substrate; and forming an island-shaped metal film of a metal element by continuous film formation in the same vacuum chamber. A method for producing an island-shaped metal film material for absorption spectroscopy.
【請求項2】赤外線透過用基板上に金属元素の島状金属
膜を有するに表面増強赤外吸収分光用島状金属膜材料に
おいて、前記赤外線透過用基板と金属元素の島状金属膜
との間に島状金属酸化物皮膜を有することを特徴とする
表面増強赤外吸収分光用島状金属膜材料。
2. An island metal film material for surface-enhanced infrared absorption spectroscopy having an island-shaped metal film of a metal element on a substrate for infrared transmission. An island-shaped metal film material for surface-enhanced infrared absorption spectroscopy, comprising an island-shaped metal oxide film in between.
JP2001070579A 2001-03-13 2001-03-13 Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same Pending JP2002267602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070579A JP2002267602A (en) 2001-03-13 2001-03-13 Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070579A JP2002267602A (en) 2001-03-13 2001-03-13 Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002267602A true JP2002267602A (en) 2002-09-18

Family

ID=18928427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070579A Pending JP2002267602A (en) 2001-03-13 2001-03-13 Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002267602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505325A (en) * 2004-07-08 2008-02-21 スウィンバーン ユニバーシティ オブ テクノロジー Fiber sensor manufacturing
WO2009031662A1 (en) * 2007-09-07 2009-03-12 National Institute For Materials Science Surface enhanced infrared absorption sensor and process for rpoducing the surface enhanced infrared absorption sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505325A (en) * 2004-07-08 2008-02-21 スウィンバーン ユニバーシティ オブ テクノロジー Fiber sensor manufacturing
WO2009031662A1 (en) * 2007-09-07 2009-03-12 National Institute For Materials Science Surface enhanced infrared absorption sensor and process for rpoducing the surface enhanced infrared absorption sensor
JP2009080109A (en) * 2007-09-07 2009-04-16 National Institute For Materials Science Surface enhanced infrared absorption sensor and process for producing it
JP2012233903A (en) * 2007-09-07 2012-11-29 National Institute For Materials Science Method for manufacturing surface enhanced infrared absorption sensor

Similar Documents

Publication Publication Date Title
JP2902456B2 (en) Inorganic polarizing thin film
Rodríguez-de Marcos et al. Self-consistent optical constants of MgF 2, LaF 3, and CeF 3 films
US7648834B2 (en) Plasmon fluorescence augmentation for chemical and biological testing apparatus
Ritter Optical film materials and their applications
Bennett et al. Infrared reflectance of evaporated aluminum films
AU5607598A (en) Coatings, methods and apparatus for reducing reflection from optical substrates
Cong et al. Optical characterization of a four-medium thin film structure by real time spectroscopic ellipsometry: amorphous carbon on tantalum
CN1161656C (en) Attenuating embedded phase shift photomask blanks
JP2002267602A (en) Insular metal film material for surface-increased infrared absorption spectrum and method of manufacturing the same
CN108291988A (en) Nanometer bi-material layers electromagnetic spectrum frequency shifter
Haque et al. Extended x-ray absorption fine structure measurements on asymmetric bipolar pulse direct current magnetron sputtered Ta 2 O 5 thin films
CN105745529B (en) Produce the method and gained sensor of hydrogen detection sensor
Potočnik et al. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique
Wiatrowski et al. Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels
Haque et al. Effect of oxygen partial pressure in deposition ambient on the properties of RF magnetron sputter deposited Gd 2 O 3 thin films
Albertinetti et al. Granularity in ion-beam-sputtered TiO 2 films
JP3994715B2 (en) Island-like metal film material for surface enhanced infrared absorption spectroscopy and method for producing the same
Azarov et al. Scintillator surface modification by glancing angle deposition of thin ZrO2 films
JP3476301B2 (en) Transparent gas barrier film
Bruns et al. Recent developments in precision optical coatings prepared by cylindrical magnetron sputtering
TWI251030B (en) Method of manufacturing, plated hybrid optic film by using ion beam to sputter dual target materials
JPH0743527A (en) Color developing method using nanometer particle thin film
JPH09189801A (en) Optical parts with heat resistant antireflection film
JPH06330318A (en) Method for producing gas barrier film and device therefor
TW593724B (en) Method for the formation of the multilayer film and the device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908