JP2002266749A - Power generating device combinedly using geothermy and wind power - Google Patents

Power generating device combinedly using geothermy and wind power

Info

Publication number
JP2002266749A
JP2002266749A JP2001113270A JP2001113270A JP2002266749A JP 2002266749 A JP2002266749 A JP 2002266749A JP 2001113270 A JP2001113270 A JP 2001113270A JP 2001113270 A JP2001113270 A JP 2001113270A JP 2002266749 A JP2002266749 A JP 2002266749A
Authority
JP
Japan
Prior art keywords
air
power
heat
heat exchanger
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001113270A
Other languages
Japanese (ja)
Inventor
Makoto Yanagida
誠 柳田
Masaaki Inoue
正昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001113270A priority Critical patent/JP2002266749A/en
Publication of JP2002266749A publication Critical patent/JP2002266749A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new power generating device capable of securing generating power in relatively lower-temperature geothermy and a no-wind state by combinedly using the geothermy and wind power and stably generating the power. SOLUTION: This power generating device heats ground air using underground heat secured in any place on the earth, mutually operates with an air suction speed increasing mechanism A installed in the uppermost part of a cylindrical pipe installation including an erected taper (same herein after) using the heated air, generates ventilating power for increasing the ventilating air volume of an air vane or an air turbine B installed in the pipe, enhances the generating power by a ventilation, adjusts and stabilizes the air volume from the wind and the air volume heated by the geothermy, and can efficiently and stably drive a power generator E connected thereby. This device is additionally provided with a winter-season snow damage protection mechanism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、天然現象の地熱
・風力を併用した発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator using both natural phenomena of geothermal power and wind power.

【0002】[0002]

【従来の技術】従来迄の天然現象である地熱・風力利用
の発電装置は地熱は蒸気乃至熱水を利用しての発電装置
であり、風力はプロペラ式乃至上部機構として空気通過
増大を意図した吸引装置を持った空洞内部に設置した空
気羽根乃至空気タ−ビン式の別はあったが、両者を併用
する方式が無かった事に加え、地熱利用の範囲も蒸気乃
至高温熱水に限定され比較的低温、即ち、130℃以下
の熱を利用する発電方式は全く存在しなかった。
2. Description of the Related Art Conventionally, a power generation device utilizing geothermal power and wind power, which is a natural phenomenon, is a power generation device using steam or hot water for geothermal power, and wind power is intended to increase air passage as a propeller type or upper mechanism. Although there were air blades or air turbines installed inside the cavity with the suction device, there was no system that uses both, and the range of geothermal use is limited to steam or high-temperature hot water. There has been no power generation system that uses heat at a relatively low temperature, that is, 130 ° C. or less.

【0003】風力利用に関しては従来迄の円筒管(テ−
パ−付を含む、以下同じ)を用い、上部装置による吸引
力乃至太陽熱によりその内部に発生させた上昇気流を利
用した特許出願に関しては発明名称「上昇通風力を利用
した発電装置」(特開昭58−214679)、「風力
発電装置」(特開昭59−46374)等やインパルス
風力発電装置(特開平10−37844)が出願されて
いる。これらの出願は従来のプロペラ回転式の発電装置
に対比して、特定の条件下では優れた発電能力を示すも
のと推定されるが、大きな吸引力を簡単には発生させら
れない事や、太陽熱利用装置乃至燃焼炉等の熱源施設を
併設し、地上、上空間の温度差を拡大する方法をとる事
が能力拡大に有効である事は明瞭であったとしても、太
陽熱利用が時間的・季節的に大きな限界がある事に加
え、多くの風力発電設備の適地が僻遠の地である事例の
多い処から、熱源としての暖房設備乃至廃棄物処理等を
目的とする燃焼炉・焼却炉等の施設をかかる地域に設置
する事は難しい事は明らかであった。
[0003] Regarding the use of wind power, a conventional cylindrical pipe (tape)
For a patent application using suction air generated by an upper device or solar heat generated therein by using an upper device, the invention name is "a power generation device using ascending wind force" 58-214679), "Wind power generator" (Japanese Patent Application Laid-Open No. 59-46374), and an impulse wind power generator (Japanese Patent Application Laid-Open No. 10-37844) have been filed. These applications are presumed to show superior power generation capacity under specific conditions compared to conventional propeller rotary power generators, but they cannot easily generate large suction power, Even if it is clear that it is effective to increase the temperature difference between the ground and the upper space by installing a heat source facility such as a utilization device or a combustion furnace, it is effective to expand the capacity, In addition to the major limitations, many places where wind power generation facilities are suitable for remote areas are often used, such as heating facilities as heat sources or combustion furnaces and incinerators for the purpose of waste disposal. It was clear that it would be difficult to set up these facilities in such an area.

【0004】[0004]

【発明が解決しようとする課題】本発明の意図は風力の
みに依存する方式からも、又地熱に依存する方式からも
脱却し、両者を併用する事により、常時、風力状況・設
置場所・時間的・季節的要因との関係を無くし、地熱の
利用と相乗的にして必要電力を効果的に発電する事にあ
る。更に風力による空気量の変動を地熱による加熱空気
の空気量にて、その変動を調節出来る装置を付加し、発
電機の安定的運転を効率的運転に加えて確保出来る機能
も合わせ持つ必要がある。更に付帯的には風力利用装置
が不可避的に影響を受ける冬季間の雪等の氷結防止機構
を組込む事は実用上の問題としては重要であり、地熱そ
の他の熱源を確保して問題無からしめる必要がある。
The intent of the present invention is to deviate from a system relying only on wind power or a system relying on geothermal energy, and to use both of them to constantly maintain the wind condition, installation location, and time. The purpose is to eliminate the relationship with the seasonal and seasonal factors and to effectively generate the required power in synergy with the use of geothermal energy. In addition, it is necessary to add a device that can adjust the fluctuation of the air volume due to the wind power by the air volume of the heated air due to geothermal heat, and also have a function that can ensure stable operation of the generator in addition to efficient operation. . In addition, it is important as a practical matter to incorporate a mechanism to prevent icing of snow etc. during the winter season, in which the wind power utilization equipment is inevitably affected, and secure geothermal and other heat sources to eliminate the problem. There is a need.

【0005】[0005]

【課題を解決する為の手段】本発明はかかる状況に鑑
み、風力状況や熱発生を伴う設置場所等の選択を求め
ず、地球上の如何なる場所に於いても地下熱を利用する
事により、風力発電能力を飛躍的に高める効果を伴うも
のである。特に高い地熱を有する高温地熱帯は勿論の
事、地下温度は深度100mに対して平均的に約3℃の
上昇を伴う処から、それ以外の地域で地熱帯でなくと
も、特に冬期間の寒冷地に於いては浅い抗井にても温度
差を確保出来、大きな上昇風力を確保して大きな発電用
風力を確保可能にするものである。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention utilizes underground heat in any place on the earth without requiring the selection of a place where wind power or heat is generated. This has the effect of dramatically increasing wind power generation capacity. In particular, since the underground temperature rises on average by about 3 ° C for a depth of 100m, not only in the hot tropical zone with high geothermal power, but even in other regions, even if it is not a tropical zone, it is especially cold during winter. On the ground, it is possible to secure a temperature difference even in a shallow well, and to secure a large rising wind power and a large power generation wind power.

【0006】本発明は地下温度が高温で外気温が低温で
ある場合の格差が大きく、年間平均風速が大きい地域に
設置した場合に、その効果を最大限に発揮出来る事にな
る為、日本国内に於いては北海道・東北地方での設置が
効果的と判断される。
The present invention has a large difference when the underground temperature is high and the outside temperature is low, and when installed in an area where the annual average wind speed is high, the effect can be maximized. It is considered that installation in Hokkaido and Tohoku regions is effective.

【0007】本発明と従来の地熱利用の発電方法の大き
な相違は、従来の方法が高温・高圧にて蒸気発生とその
利用を前提としているのに対比して、本発明の方法は地
熱にて発生する熱水・蒸気等を直接使用する方法でな
く、熱交換機を使用して、地下高熱を伝導した空気を熱
媒体として利用し、地下で発生した熱水・蒸気は直接地
上に放出される事が無い方法である点である。
The major difference between the present invention and the conventional power generation method using geothermal energy is that the method of the present invention uses geothermal heat, while the conventional method presupposes the generation and use of steam at high temperature and high pressure. Instead of using the generated hot water / steam directly, use a heat exchanger to use the air that has conducted high heat underground as a heat medium, and the hot water / steam generated underground is discharged directly to the ground. It is a method without things.

【0008】本方法の場合、地下熱利用効率からは、や
や低下する結果となる恐れもあるが、直接利用方法が負
う気水分離器・熱水の地下還元装置の設置や熱水の冷却
設備等の地上処理の必要性等を考慮する必要が無い点
と、蒸気の圧力・量・温度等との関連を希薄化した中で
発電に必要とされる高温空気を確保する事が出来る。
In the case of this method, there is a possibility that the efficiency of underground heat utilization may be slightly lowered. However, the installation of a steam-water separator / underground reduction device of hot water and cooling equipment of hot water, It is not necessary to consider the necessity of ground treatment such as the above, and the relationship between the pressure, amount, temperature, etc. of the steam is diluted, so that high-temperature air required for power generation can be secured.

【0009】従来の地熱利用の発電に於いては一定条件
範囲以内の地下蒸気を確保する必要のある処から、蒸気
温度・量・圧力等が大きな制約条件となる場合が多々あ
ったが、地下熱を空気に伝導して、その高熱空気を上昇
気流の発生用に利用する本発明の方法では、かかる制約
条件は大幅に緩和される事が十分に期待される。かかる
状況からすれば圧力の併用よりは、高熱利用のみの方が
設備の簡易化に資する可能性が高いと判断される。装置
全体としては気水分離装置や圧力調整弁等を設置する場
合もあり得るが、これらは本発明の基本部分では無く、
非常事態への対応機器である。
In the conventional power generation using geothermal energy, the steam temperature, amount, pressure, etc. are often limited because of the need to secure underground steam within a certain condition range. In the method of the present invention, in which heat is transferred to air and the hot air is used to generate an updraft, such constraints are fully expected to be greatly reduced. Under such circumstances, it is determined that the use of only high heat is more likely to contribute to the simplification of the equipment than the combined use of pressure. Although there may be a case where a steam-water separation device or a pressure regulating valve is installed as the entire device, these are not the basic parts of the present invention,
It is an emergency response device.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面にて説明する。
Embodiments of the present invention will be described with reference to the drawings based on embodiments.

【0011】図1は地熱並びに風力を利用する発電装置
の全体概念図である。但し、抗井管外に熱交換機を設置
する場合の一例として地上に設置する場合等は極めて容
易に理解可能である処から、熱交換機を抗井内部に設置
する「請求項1」の場合の図示を行なった。後述する様
に熱交換機を抗井管中に設置し、それから生ずる煙突効
果を利用するこの「請求項1」の方法は、熱交換機を地
上に設置する方法に対比して、その通風力に大きな差異
の生ずるものであり、発明の実施に於いても極力採用し
たい方法である。AからEは風力利用装置並びに発電設
備、GからMは地下熱利用設備の概要を示した。図2は
風力利用による空気吸引増速機構並びに発電設備の概要
を示した。図3は地下抗井内に設置する熱交換機の概
要、図4は地下抗井並びに集中管理機器と発電設備の関
係を示す概念図である。以下図別に本発明の内容を説明
する。
FIG. 1 is an overall conceptual diagram of a power generation device utilizing geothermal power and wind power. However, as an example of the case where the heat exchanger is installed outside the well tube, it is extremely easy to understand when installing the heat exchanger on the ground. Illustrated. As will be described later, the method of claim 1 in which a heat exchanger is installed in a wellbore and a chimney effect generated from the heat exchanger is used, the method of claim 1 has a greater influence on the wind power than the method in which the heat exchanger is installed on the ground. This is a method that makes a difference, and it is desirable to adopt it as much as possible in practicing the invention. A to E show outlines of wind power utilization equipment and power generation equipment, and G to M show outlines of underground heat utilization equipment. FIG. 2 shows an outline of an air suction speed increasing mechanism and a power generation facility using wind power. FIG. 3 is an outline of a heat exchanger installed in an underground well, and FIG. 4 is a conceptual diagram showing the relationship between an underground well, centralized management equipment, and power generation equipment. The contents of the present invention will be described below with reference to the drawings.

【0012】図1にて表示した本発明の特色の第一は地
下抗井中に設置する熱交換機の最低部から地上に設置す
る円筒管の最上部、即ち風力吸引増速機構迄の距離、即
ち(h)を煙突として利用し通風効果を発揮・増大させ
る事である。煙突内の圧力は一般的に下記数式で表示さ
れる。即ち、 (註)H=図1に示した(h),即ち煙突の高さ Ta=図1、C部位の温度 Tb=図1、M最深部の温度 本公式から明らかな様に、通風力に等しい圧力Pの大き
さは温度差に加えて実質的に煙突効果を発揮する図1の
(h)にて示した長さである。地下の既存抗井を利用出
来る場合にはこの長さを数10mから数100m、又は
それ以上に出来て通風力を地下施設を利用して強化出来
る事になる。この煙突効果を出す為には図1に示したK
以降Cに至る空気通過経路は他と遮断される事が求めら
る。地上入口からの常温空気は流入管にて熱交換機の下
部迄導入され、これに連続する排出管である熱交換機能
管によって高温空気に変換される事になる。地上からの
常温空気のスム−スな流下の為には、密度の高い空気が
求められ地上常温空気導入管は温度上昇を押さえる為に
断熱処理を施す事が望ましい。但し、この断熱処理は熱
交換機の最低部の空気温度を低温に維持する事になり、
空気上昇力を弱める方に作用する処から、この空気上昇
力と言う観点からは、常温空気導入管の低部は断熱処理
を行なわない様にするか、以降の熱交換機にて急速に加
温に期待する事になる。
The first feature of the present invention shown in FIG. 1 is the distance from the lowest part of the heat exchanger installed in the underground well to the uppermost part of the cylindrical pipe installed on the ground, ie, the wind suction speed increasing mechanism, ie, (H) is used as a chimney to exhibit and increase the ventilation effect. The pressure in the chimney is generally expressed by the following equation. That is, (Note) H = (h) shown in Fig. 1, that is, the height of the chimney Ta = Fig. 1, the temperature at the C site Tb = Fig. 1, the temperature at the deepest point of M As is clear from this formula, it is equal to the wind flow The magnitude of the pressure P is the length shown in FIG. 1 (h), which substantially exerts the chimney effect in addition to the temperature difference. If existing underground wells can be used, this length can be increased to several tens of meters to several hundreds meters or more, and the wind power can be strengthened using underground facilities. To achieve this chimney effect, the K shown in FIG.
Thereafter, the air passage route to C is required to be cut off from the others. Room temperature air from the ground entrance is introduced into the lower part of the heat exchanger through an inflow pipe, and is converted into high-temperature air by a heat exchange function pipe which is a continuous discharge pipe. In order to smoothly flow normal-temperature air from the ground, high-density air is required, and it is desirable that the normal-temperature air introduction pipe be subjected to an adiabatic treatment to suppress a rise in temperature. However, this insulation treatment keeps the air temperature in the lowest part of the heat exchanger low,
From the point of acting on the one that weakens the air rising power, from the viewpoint of this air rising power, do not perform the heat insulation treatment on the lower part of the room temperature air introduction pipe, or heat it rapidly with the subsequent heat exchanger. Will be expected.

【0013】本発明の特色の第二は設備上部に設置する
空気吸引増速機構である。それは2重の機構の組合せに
て構成されている。その第一は図2の(1)より(1
0)迄にて構成される(6)の上部通過空気と下部通過
空気の速度差から生ずる圧力差にて(18)に陰圧を生
じて生ずる吸引力と(13)の外部通過空気にて稼働す
るファンに連動した、内部ファン(11)による増速効
果を総合して利用する事である。更に本発明では円筒状
管内の空気上昇力を地下熱による加温空気を併用して行
なう事が加わる事になる。
A second feature of the present invention is an air suction speed-up mechanism installed above the equipment. It consists of a combination of double mechanisms. The first is from (1) in FIG.
The suction force generated by generating a negative pressure in (18) due to the pressure difference resulting from the speed difference between the upper passing air and the lower passing air in (6) constituted by (0) and the external passing air in (13) This is to utilize the speed increasing effect of the internal fan (11) in synchronism with the operating fan. Further, in the present invention, the effect of raising the air in the cylindrical tube by using the heated air by the underground heat is added.

【0014】運転開始時にてもAの空気吸引増速機構が
十分な風がある場合には、空気取入口Kに発生する空気
の自然流入により全体が作動する事になるが、風が無い
場合にはKに設置したブロア−を作動させ、空気を熱交
換機に送風する必要がある。但し、これも運転を開始す
れば、以降は送風は吸引力に連動して発生するものであ
る処からこれ利用し、送風に要する動力を大幅に削減す
る事も充分に可能である。又、Kの部位にAに於ける吸
引力の著しい低下等の異常事態への対策として逆止弁を
設置する場合もあり得る。
If the air suction speed-increasing mechanism of A has sufficient wind even at the start of operation, the entire system will operate due to the natural inflow of air generated in the air intake port K. It is necessary to operate the blower installed in K to blow air to the heat exchanger. However, once the operation is started, the air is thereafter generated in conjunction with the suction force, so that it can be used from where it is generated, and the power required for the air blowing can be significantly reduced. In addition, a check valve may be provided at the portion K as a countermeasure against abnormal situations such as a remarkable decrease in suction force at the portion A.

【0015】以上の説明を更に詳述するがその説明は風
力増大効果が著しい内部空洞の形状が円錐状、即ちテ−
パ−付円筒の場合図2に関して行なう。
The above explanation will be described in more detail. The explanation is that the internal cavity in which the effect of increasing wind power is remarkable has a conical shape, that is, a tape.
In the case of a cylinder with a par, the procedure is performed with reference to FIG.

【0016】本風力発電装置は最上部の飛行機翼形をし
た自然風力利用加速装置部分(6)、テ−パ−付円筒管
本体(空気圧縮用タ−ビン収納部分)(20)、空気圧
縮用タ−ビン(21)、地下高温熱を円筒管部分に伝え
る熱熱供給管(24)、誘導発電機(25)、全体の制
御部分(図上には表示せず)等に分けられる。(1)
(2)から(10)に至る空気経路は(7)(6)間並
びに(8)(6)間に設けられた(4)(5)の空気通
過部分を通って(10)に誘導される。その誘導・増速
を助長する為に後部に設けられた(13)の大型ファン
に繋がる空気排気管内に設置された小型ファン(11)
が機能することになる。
The wind power generator is composed of an accelerating device for natural wind utilizing an airfoil at the uppermost part (6), a cylindrical tube body with a taper (turbine housing for air compression) (20), and air compression. A turbine (21), a heat and heat supply pipe (24) for transmitting underground high-temperature heat to a cylindrical pipe portion, an induction generator (25), and an overall control section (not shown in the figure). (1)
The air path from (2) to (10) is guided to (10) through the air passage portions (4) and (5) provided between (7) and (6) and between (8) and (6). You. A small fan (11) installed in the air exhaust pipe leading to the large fan (13) provided at the rear to promote its guidance and speeding up
Will work.

【0017】地上が無風状態でも、本発明の構造により
地下熱からの加熱空気が加熱空気供給管(24)より供
給されると、テ−パ−形円筒管(20)を上昇して空気
圧縮用タ−ビン(21)の入口から内部を通過して空気
圧縮用タ−ビンの回転翼(22)が回転を初めて行き、
この回転により縮流された空気は速度を増して上部出口
である(18)の上昇し、又、(1)(2)より流入を
始め、(10)の出口にて吸出され、(4)通過の空気
は(5)通過の空気に対して高速化され、その分、低圧
化して下部からの空気吸引力を増した状態からして、上
部への空気排出量が増大して行く。空気圧縮用タ−ビン
は直接誘導発電機(25)に接続し発電を開始する事に
なる。
[0017] Even if the ground is in a windless state, when heated air from underground heat is supplied from the heated air supply pipe (24) by the structure of the present invention, the tapered cylindrical pipe (20) is raised to compress the air. The rotary blades (22) of the air compression turbine first rotate after passing through the inside from the inlet of the air turbine (21),
The air condensed by this rotation increases in speed and rises at the upper outlet (18), starts flowing in from (1) and (2), is sucked out at the outlet of (10), and (4) (5) The speed of the passing air is increased with respect to the passing air, and the amount of air discharged to the upper portion increases as the pressure decreases and the air suction force from the lower portion increases. The air compression turbine is directly connected to the induction generator (25) to start power generation.

【0018】飛行機の翼形をした空気流入加速装置並び
にその付加装置(1、2、3、4、5、6にて構成)
は、当然、本装置部分は風向に対応して自由に向きを変
更出来る様に作成されて居り、(9)の風向板はその為
の装置である。(19)の回転支持装置により360°
の自由な回転機能が保証されている。通常の風の状況に
於いても、翼形の上部を通過した空気、即ち、(1)
(2)から流入した空気は飛行翼(6)を形成する翼形
の上部に翼形に添い取付けられた板(7)乃至、翼形の
下部にそれに添い取付けられた板(8)〈何れも支持柱
(3)にて(3)と(7)乃至(8)が固定されてい
る〉にて流入口(1)(2)から(10)迄翼形に添い
通過する事になる。翼形上部を通過した空気は下部を通
過した空気に対比して高速化し、後部出口(10)に於
ける吸引力を一気に増大させられる。この為、下部の空
気圧縮用タ−ビンを収納したテイパ−付円筒管(20)
を通過した空気は、この吸引力により更に風速を増して
出口(18)から排出される事になる。空気タ−ビンと
発電機間には通常の風力発電装置が具備する様な増速歯
車、ブレ−キ等を設置する事は自由である。
An air inflow acceleration device in the form of an airfoil of an airplane and its additional device (constituted by 1, 2, 3, 4, 5, and 6)
Of course, this device part is created so that the direction can be freely changed according to the wind direction, and the wind direction plate (9) is a device for that purpose. 360 ° by the rotation support device of (19)
Free rotation function is guaranteed. Even in normal wind conditions, air passing over the upper part of the airfoil, ie, (1)
The air flowing in from (2) is a plate (7) attached to the upper part of the airfoil forming the flight wing (6) along with the airfoil, or a plate (8) attached to the lower part of the airfoil. Also, (3) and (7) to (8) are fixed by the support pillar (3)>, and the air flows from the inlets (1) (2) to (10) along the airfoil. The air passing through the upper part of the airfoil speeds up as compared with the air passing through the lower part, and the suction force at the rear exit (10) can be increased at once. For this reason, a cylindrical tube with a taper (20) containing a lower air compression turbine.
The air that has passed through is further increased in wind speed by this suction force and is discharged from the outlet (18). Between the air turbine and the generator, it is possible to freely install a speed increasing gear, a brake, and the like as provided in a normal wind power generator.

【0019】地下熱の更なる利用方法として、飛行機翼
形(6)の先頭部分である(1)並びに(2)の入口が
冬期間に於いて雪等による氷結にて風力の流入が阻害さ
れる事を防止する為に、この空気を利用して導管(2
7)を利用して高温空気を供給し、(6)上部並びに下
部の設けた(28)の出口より吹出して保温する方法も
必要に応じて行なう事が出来る様に工夫するものとす
る。この部分の雪害防止方法としては、(6)の上部並
びに下部、更に(7)及び(8)の空気通過面を電熱等
で加熱する方法も状況に応じて適用するものとする。
As a further utilization method of the underground heat, the entrances of (1) and (2), which are the leading portions of the airfoil airfoil (6), are blocked by the freezing due to snow or the like during the winter period, so that the inflow of wind power is hindered. This air is used to prevent
The method of supplying high-temperature air using (7), and (6) blowing out from the outlet of (28) provided on the upper and lower parts to keep the temperature warm should be devised so that it can be performed as needed. As a method of preventing snow damage at this portion, the method of heating the upper and lower portions of (6) and the air passage surfaces of (7) and (8) with electric heat or the like may be applied depending on the situation.

【0020】次に図3に表示した抗井管中に設置される
熱交換機に関して説明する。通常、地下抗井は2重管に
て構成されて居り、図3(30)にて表示した抗井管は
2重管の内部管である場合もあり得る。又、図示した熱
交換機は上部を地上に出した形であるが、これは地熱温
度が比較的高温を想定した場合であり、地下深部に高温
帯がある場合には熱交換機を深部に設置する事もあり得
るものとする。熱交換機最低部の温度を低温に保つ必要
から図3の(31)の地上空気導入管は断熱処理を施す
事が望ましい。図3(36)の先に図1のOに示した抗
井蒸気・熱水・熱気排出管並びに排出弁、Gに示した気
水分離・圧力調整装置は通常の運転に於いては必要とす
るもので無く、熱交換機を経た高熱空気は直接図2の
(24)から空気吸引増速機構に導かれる。
Next, the heat exchanger installed in the wellbore shown in FIG. 3 will be described. Normally, an underground well is composed of a double tube, and the well tube shown in FIG. 3 (30) may be an inner tube of the double tube. Also, the illustrated heat exchanger has a shape in which the upper part is exposed above the ground, but this is a case where the geothermal temperature is relatively high, and if there is a high temperature zone deep underground, the heat exchanger is installed deeply. Things can happen. Since it is necessary to keep the temperature of the lowest part of the heat exchanger at a low temperature, it is desirable that the above-mentioned ground air inlet pipe (31) in FIG. The well-well steam / hot water / hot air discharge pipe and discharge valve shown at O in FIG. 1 and the discharge valve shown at G in FIG. 3 (36) are necessary for normal operation. Instead, the hot air that has passed through the heat exchanger is directly led to the air suction speed increasing mechanism from (24) in FIG.

【0021】次に(1)から(4)を通過して(18)
にて空気吸引増速機能を発揮する空気量の変動に応じて
地熱による加熱空気の流入量を調整する方法を説明す
る。前者の空気量の測定に関しては(4)の空間に風量
計を設置し、その測定結果に合わせて自動的に(K)に
設置した流入空気調整弁等にて地熱加熱用の熱交換機に
送り込まれる空気量を調整する。この調整の方法に関し
ては本方法に止まらず配管(H)に空気調整用の装置を
設けて変動調整を行なう方法等でもよい。
Next, after passing through (1) to (4), (18)
A method of adjusting the amount of inflow of heated air due to geothermal heat according to the fluctuation of the amount of air exhibiting the air suction speed increasing function will be described. Regarding the former measurement of the air amount, an air flow meter is installed in the space of (4) and automatically sent to the heat exchanger for geothermal heating by the inflow air regulating valve etc. installed in (K) according to the measurement result. Adjust the amount of air that is supplied. The method of this adjustment is not limited to this method, but may be a method of providing a device for air adjustment in the pipe (H) and performing a fluctuation adjustment.

【0022】次に図4に関して説明する。地下高温確保
の為の抗井設置方法は数箇所の発電設備に対して1ヵ所
の抗井を設置し、保温配管にて熱媒体による熱の供給を
確保すれば充分である。これを模試的に表示したのが図
4である。A,B,C,D,E,〜Hは個別発電設備で
あり、[I]は地下抗井(請求項2の場合には地上に設
置した熱交換機を含む)並びに集中管理機器を表示し
た。[1]と個別発電設備間の矢印は相互間の熱供給、
発電電力移送、運転管理等の相互依存関係を示した。破
線乃至折線は距離関係の遠隔性を示した。
Referring now to FIG. It is sufficient to install one well for several power generation facilities and to secure the supply of heat by the heat medium through the heat-retaining pipes to secure the underground high temperature. FIG. 4 schematically shows this. A, B, C, D, E, to H are individual power generation facilities, and [I] indicates an underground well (including a heat exchanger installed on the ground in the case of claim 2) and centralized management equipment. . The arrow between [1] and the individual power generation equipment indicates the mutual heat supply,
The interdependence of power transfer and operation management was shown. Dashed or broken lines indicate the remoteness of the distance relationship.

【0023】図1、図2、図3に示した各部分の大きさ
の相対関係は絶対的なものでは無く、全体的理解に資す
る目的に添ったものである。
The relative relationships between the sizes of the parts shown in FIGS. 1, 2 and 3 are not absolute, but are for the purpose of contributing to the overall understanding.

【0024】本発明による発電装置が通常の風力発電装
置に対比して優れている点は、従来の発電装置の弱点で
あった電圧・周波数の変動幅を大きく均質化出来る事で
ある。かかる点からして通常の風力発電装置にて必要と
される周波数制御装置の必要が無くなるか乃至大幅に軽
減される事である。
An advantage of the power generator according to the present invention as compared with a normal wind power generator is that the fluctuation range of voltage and frequency, which is a weak point of the conventional power generator, can be largely homogenized. From this point, the need for a frequency control device required for a normal wind power generator is eliminated or greatly reduced.

【0025】[0025]

【発明の効果】以上の構成により、無風乃至無風に近い
気象状況下でも、必要とされる発電が発電設備の上部・
下部に温度差を増大される地下熱を適宜供給する事によ
り空気羽根乃至空気タ−ビンの回転を確保する事が可能
になり発電を効率的に行なう事が出来る。更に両者空気
の調整により、安定的運転を確保出来、冬季間の運転阻
害条件も克服出来ることになる。
According to the above configuration, the required power generation can be performed in the upper part of the power generation equipment even in a windless or almost windless weather condition.
By appropriately supplying underground heat whose temperature difference is increased to the lower portion, rotation of the air blades or the air turbine can be secured, and power generation can be performed efficiently. Further, by adjusting both air, stable operation can be ensured, and the operation inhibition condition in winter can be overcome.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 地熱並びに風力を利用する発電装置の全体概
念図である。AからEは風力利用装置並びに発電設備、
GからMは地下熱利用設備の概要を示した。
FIG. 1 is an overall conceptual diagram of a power generation device using geothermal power and wind power. A to E are wind power utilization equipment and power generation equipment,
G to M show the outline of the underground heat utilization equipment.

【図2】 風力利用による空気吸引機構並びに発電設備
の概要を示した。
FIG. 2 shows an outline of an air suction mechanism using wind power and a power generation facility.

【図3】 地下抗井内に設置する熱交換機の概要、Fig. 3 Outline of heat exchanger installed in underground well

【図4】 地下抗井並びに集中管理機器と発電設備の関
係を示す概念図である。
FIG. 4 is a conceptual diagram showing a relationship between an underground well and a centralized management device and a power generation facility.

【符号の説明】[Explanation of symbols]

A 構造最上部の空気吸引機構 B 空気羽根乃至空気タ−ビンを収納する円錐体 C A機構自由回転装置 D Cとの代替にて設置 E 装置基礎並びに誘導発電機収納部分 F 地上線 G 気水分離・圧力調整装置 H 加熱空気移送管 I 熱交換機地上保持機構 J 常温空気流入管 K 常温空気流入口並びに流入空気調整機構 L 抗井外部管 M 熱交換機本体 N 地底 O 抗井蒸気・熱水排出管並びに排出弁 (h) 煙突効果を発揮する長さ 1 飛行翼上部空気取入口 2 飛行翼下部空気取入口 3 飛行翼上部・下部空気流入支持板 4 飛行機翼上部空気流入間隙 5 飛行機翼下部空気流入間隙 6 飛行翼本体 7 飛行機翼上部保護板 8 飛行機翼下部保護板 9 設備方向支持板 10 飛行翼後方空気出口 11 空気強制排出用ファン 12 13ファン駆動用空気取入口 13 11の空気強制排出ファン駆動用大型ファン 14 13ファン駆動用空気排出口 15 13大型ファン収納部 16 11、13ファン同時駆動用連動同軸 17 11、13ファン同時駆動用連動同軸収納空
気排気管 18 本体通過空気の絞り出口 19 上部飛行翼本体回転支持装置 20 発電機等収納円錐状本体 21 発電用タ−ビン固定翼 22 発電用タ−ビン回転翼並びに回転軸 23 上部本体回転支持装置 24 地下熱供給管 25 誘導発電機 26 通過空気量測定通報装置 27 高温空気誘導管 28 高温空気誘導管出口 30 抗井外壁管 31 常温空気下降管 32 空気加熱の熱交換管 33 熱交換機の地下先端で下降空気の上昇切替機
構 34 常温空気の取入管 35 加熱空気の移送管 36 抗井蒸気・熱水排出管 37 地上レベル 38 地底 B,C,D,E,F,G,H=発電設備 [I]=地下抗井並びに集中管理機器
A Air suction mechanism at the top of the structure B Conical body for storing air blades or air turbines C A Mechanism free rotation device DC Installed in place of C E Device base and induction generator storage portion F Ground line G Steam Separation / pressure adjustment device H Heated air transfer pipe I Heat exchanger ground holding mechanism J Room temperature air inlet pipe K Room temperature air inlet and inflow air adjustment mechanism L Outer well outer pipe M Heat exchanger body N Underground O Well well steam / hot water discharge Pipe and exhaust valve (h) Length of chimney effect 1 Flying wing upper air intake 2 Flying wing lower air intake 3 Flying wing upper and lower air inflow support plate 4 Aircraft wing upper air inflow gap 5 Aircraft wing lower air Inflow gap 6 Flight wing body 7 Airplane wing upper protection plate 8 Aircraft wing lower protection plate 9 Equipment direction support plate 10 Flight wing rear air outlet 11 Air forced exhaust fan 12 13 Fan drive air intake Large fan for driving air forced exhaust fan at port 13 11 14 13 Air exhaust port for driving fan 15 13 Large fan storage unit 16 Interlocking coaxial for simultaneous driving of 11 and 13 fans 17 Interlocking coaxial storage air exhaust pipe for simultaneous driving of 11 and 13 fans Reference Signs List 18 throttle outlet for air passing through the main body 19 upper flight wing main body rotation support device 20 generator-contained conical main body 21 power generation turbine fixed blade 22 power generation turbine rotary blade and rotation shaft 23 upper main body rotation support device 24 underground Heat supply pipe 25 Induction generator 26 Passing air amount measurement and notification device 27 High temperature air guide pipe 28 High temperature air guide pipe outlet 30 Well outer wall pipe 31 Room temperature downcomer pipe 32 Heat exchange pipe for air heating 33 Down at the basement of heat exchanger Air rise switching mechanism 34 Room temperature air intake pipe 35 Heated air transfer pipe 36 Well steam / hot water discharge pipe 37 Ground level 38 Underground B, C, D, E, F, G, H = Power generation equipment [I] = Underground well and centralized management equipment

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】十分な地下熱が得られる抗井に、その抗井
管中に任意の長さで煙突効果を得られる熱交換機を設置
し、地上入口から常温空気を下降する流入管にて同機下
部迄導入し、連続して上昇する熱交換機能を有する排出
管によって高温空気に変換すると共に、同機出口から連
続して設置した適当な長さと径を有する直立した円筒管
(テ−パ−付を含む、以下同じ)の下部から、この高温
空気を上昇力にて加速し送風する。更に円筒管の最上部
に風力を利用する為に設けられた空気吸引増速機構と連
結して相互作用により送風速度を増大し、円筒管内部に
設置した空気羽根乃至空気タ−ビンに連結された発電機
を効率的に回転する様にした発電装置。
(1) A heat exchanger capable of obtaining a chimney effect of an arbitrary length is installed in a well well where sufficient underground heat is obtained, and an inlet pipe which descends room-temperature air from a ground entrance is provided. It is introduced into the lower part of the airframe, is converted into high-temperature air by a continuously rising exhaust pipe having a heat exchange function, and is an upright cylindrical pipe (taper) having an appropriate length and diameter installed continuously from the airplane outlet. This high-temperature air is accelerated by the ascending force and blown from the lower part of the same (including the following). Further, it is connected to an air suction increasing mechanism provided at the uppermost portion of the cylindrical tube for utilizing the wind force to increase the blowing speed by interaction, and is connected to an air blade or an air turbine installed inside the cylindrical tube. Power generator that allows the generator to rotate efficiently.
【請求項2】十分な地下熱が得られる抗井に、その抗井
管外の任意の場所に熱交換機を設置し、その入口から地
上の常温空気を導入し、熱交換によって高温空気に変換
すると共に、以下「請求項1」記載と同様な方法により
円筒管内部に設置した空気羽根乃至空気タ−ビンに連結
された発電機を効率的に回転する様にした発電装置。
2. In a well where sufficient underground heat is obtained, a heat exchanger is installed at an arbitrary location outside the well tube, and room-temperature air is introduced from the inlet of the well and converted into high-temperature air by heat exchange. A power generator in which a generator connected to an air blade or an air turbine installed inside a cylindrical tube is rotated efficiently by a method similar to the one described in "Claim 1".
【請求項3】「請求項1」及び「請求項2」の熱交換機
の両者を併用して使用する様にした、「請求項1及び
2」の発電装置。
3. The power generator according to claim 1, wherein both the heat exchanger according to claim 1 and the heat exchanger according to claim 2 are used in combination.
【請求項4】「請求項1、2及び3」記載の発電装置の
運転制御方法に関して、風力による空気量の変動を、地
熱による加熱空気の空気量を調整する事によりその変動
を吸収して平準化し、空気羽根等の回転を安定化し、こ
れらに連結された発電機の運転の安定化を効率化と同時
に行なう事を特色とする発電装置。
4. A method for controlling the operation of a power generator according to the first, second, and third aspects, wherein the fluctuation of the air amount due to wind power is absorbed by adjusting the air amount of the heated air due to geothermal heat. A power generation device characterized by leveling, stabilizing the rotation of air blades, etc., and simultaneously stabilizing the operation of the generator connected to these at the same time as efficiency.
【請求項5】「請求項1、2及び3」記載の空気吸引増
速機構に関して冬季間の空気流入を妨げる雪等の付着防
止方法として熱交換機にて得られた高温空気乃至電熱等
を利用する機構を有する発電装置。
5. A method for preventing the adhesion of snow or the like which prevents air from flowing in winter in the air suction speed increasing mechanism according to claim 1, 2 and 3, utilizing high temperature air or electric heat obtained by a heat exchanger. A power generator having a mechanism for performing
JP2001113270A 2001-03-08 2001-03-08 Power generating device combinedly using geothermy and wind power Pending JP2002266749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001113270A JP2002266749A (en) 2001-03-08 2001-03-08 Power generating device combinedly using geothermy and wind power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001113270A JP2002266749A (en) 2001-03-08 2001-03-08 Power generating device combinedly using geothermy and wind power

Publications (1)

Publication Number Publication Date
JP2002266749A true JP2002266749A (en) 2002-09-18

Family

ID=18964520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001113270A Pending JP2002266749A (en) 2001-03-08 2001-03-08 Power generating device combinedly using geothermy and wind power

Country Status (1)

Country Link
JP (1) JP2002266749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102635A (en) * 2011-03-07 2011-06-22 舒明 Wind energy and geothermal energy cooperative power generation system
EP1798837A3 (en) * 2005-12-19 2015-12-09 General Electric Company Electrical power generation system and method for generating electrical power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798837A3 (en) * 2005-12-19 2015-12-09 General Electric Company Electrical power generation system and method for generating electrical power
CN102102635A (en) * 2011-03-07 2011-06-22 舒明 Wind energy and geothermal energy cooperative power generation system

Similar Documents

Publication Publication Date Title
TWI356875B (en)
US8664781B2 (en) Tunnel power turbine system to generate potential energy from waste kinetic energy
CN101535638B (en) Vortex engine
JP4981702B2 (en) Wind power generator
WO2003025395A1 (en) Atmospheric vortex engine
EA006690B1 (en) Anti-icing system for wind turbines
WO2006047934A1 (en) Artifical cyclone generating apparatus and its generating method
US20140284928A1 (en) Harnessing electricity from controlled tornado
CN205744310U (en) Blade of wind-driven generator, blade de-icing device and wind power generating set
WO2006066502A1 (en) Natural-air-power generating system
US20220349382A1 (en) Back-up power supply for wind turbines
JP2002276540A (en) Generating device highly using geothermal energy and wind power
JP2002266749A (en) Power generating device combinedly using geothermy and wind power
JPH0688565A (en) Wind power takeout device
JP2002364518A (en) Power generator utilizing combined air force
KR20110129249A (en) Wind power generating appratus using high-rise building
US20200187430A1 (en) Helical artificial generator of tornado, hurricane, yellow dust, and typhoon
RU2444645C2 (en) Mountain air-draft thermal power plant
LT2008072A (en) Vertical pipe power plant with a turbine therefor and building comprising this electricity generating system
JP4948123B2 (en) Chimney with wind generator
CN101922415A (en) Altitude difference extraction-type artificial wind power generation device and method thereof
TW201250113A (en) Building-integrated wind power generation system
US11384734B1 (en) Wind turbine
JP2011144745A (en) Operation control method of geothermal power station
RU204426U1 (en) Wind power plant