JP2002263494A - Method of manufacturing methane from carbon dioxide - Google Patents

Method of manufacturing methane from carbon dioxide

Info

Publication number
JP2002263494A
JP2002263494A JP2001064134A JP2001064134A JP2002263494A JP 2002263494 A JP2002263494 A JP 2002263494A JP 2001064134 A JP2001064134 A JP 2001064134A JP 2001064134 A JP2001064134 A JP 2001064134A JP 2002263494 A JP2002263494 A JP 2002263494A
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
methane
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001064134A
Other languages
Japanese (ja)
Other versions
JP4214218B2 (en
Inventor
Takeo Ebina
武雄 蛯名
Norihiko Tsubo
紀彦 坪
Chiaki Yokoyama
千昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001064134A priority Critical patent/JP4214218B2/en
Publication of JP2002263494A publication Critical patent/JP2002263494A/en
Application granted granted Critical
Publication of JP4214218B2 publication Critical patent/JP4214218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing methane from carbon dioxide and to provide a catalyst used therefor. SOLUTION: A catalyst is obtained by adding a cationic organic compound into a hydrous oxide expressed by general formula (1): Si4-x Alx M<2+> y O8-x/2+y-z/2 (OH)2 .nH2 O (in the formula, (x) is 0<=x<=0.8, (y) is 2.2<=y<=3.0, (z) is 2.0<=z<=4.5, (n) satisfies the relation of indefinite ratio and M<2+> represents Ni<2+> or one of bivalent metallic ion of Ni<2+> and Mg<2+> ), hydrothermally treating and calcining in the air at 100-1,000 deg.C. The method of manufacturing methane from carbon dioxide is performed by reducing the 3-octahedral smectite like synthetic porous body of the resultant catalyst with hydrogen at 200-600 deg.C to use as a catalyst and bringing a gas containing substantially no carbon monoxide and containing carbon dioxide and hydrogen into contact with the catalyst to produce methane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素からメ
タンを製造する方法に関するものであり、更に詳しく
は、二酸化炭素のメタン化反応で二酸化炭素からメタン
を生成する活性を有する3−八面体型スメクタイト様合
成多孔体からなる触媒、および当該3−八面体型スメク
タイト様合成多孔体を触媒として使用し、二酸化炭素の
メタン化反応を利用して二酸化炭素を水素化することに
より、燃料や化学原料として有用なメタンを効率的に合
成する新規な方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing methane from carbon dioxide, and more particularly to a 3-octahedral type having an activity of producing methane from carbon dioxide by a methanation reaction of carbon dioxide. By using a catalyst comprising a smectite-like synthetic porous body and the 3-octahedral smectite-like synthetic porous body as a catalyst, hydrogenation of carbon dioxide using a methanation reaction of carbon dioxide provides a fuel or a chemical raw material. The present invention relates to a novel method for efficiently synthesizing methane useful as a catalyst.

【0002】[0002]

【従来の技術】一般に、石油、石炭などの化石資源の急
激な消費に伴い、それらの枯渇が危倶されるようになる
とともに、排出され続ける二酸化炭素の大気中濃度の上
昇は、近年の地球温暖化の主要因と考えられている。こ
のように、エネルギー問題は、地球温暖化問題と等価で
あると考えられる。これらの問題に対処する方法とし
て、省エネルギーの推進や代替エネルギーの開発などに
よる二酸化炭素の排出量の削減、二酸化炭素の物理的、
生物的あるいは化学的固定化などが考えられている。ま
た、二酸化炭素は、地球上に無尽蔵にある未利用資源で
あるという観点からも、人工的な二酸化炭素の再循環、
再資源化技術の開発が期待されている。
2. Description of the Related Art In general, with the rapid consumption of fossil resources such as petroleum and coal, their depletion has been threatened, and the rise in the atmospheric concentration of carbon dioxide that has been continuously discharged has increased in recent years. It is considered a major cause of global warming. Thus, the energy problem is considered to be equivalent to the global warming problem. Measures to address these issues include reducing carbon emissions by promoting energy savings and developing alternative energy sources,
Biological or chemical immobilization is considered. Also, from the viewpoint that carbon dioxide is an inexhaustible resource that is inexhaustible on the earth, artificial recirculation of carbon dioxide,
The development of recycling technology is expected.

【0003】それらの技術的手段の中のひとつとして、
二酸化炭素の接触水素化が挙げられ、二酸化炭素を高性
能触媒により効率よくメタン、あるいはメタノール等の
有用な工業的化学原料に変換する方法が提案されてきて
おり、そのための触媒開発を中心とした多くの研究がな
されてきている。しかし、それらの反応に提案されてき
た触媒の活性は必ずしも十分ではなく、一層の性能改善
が要求されている。
[0003] As one of those technical means,
Catalytic hydrogenation of carbon dioxide has been proposed, and a method of efficiently converting carbon dioxide into useful industrial chemical raw materials such as methane or methanol using a high-performance catalyst has been proposed. Much research has been done. However, the activity of the catalysts proposed for these reactions is not always sufficient, and further improvement in performance is required.

【0004】一般に、二酸化炭素のメタン化反応は、次
式で表される。 CO2 +4H2 →CH4 +2H2 O 工業的には、この反応において高選択率を有する触媒の
活性成分としては、Ni系触媒が最もよく用いられてい
る。触媒の活性を高めるために、高比表面積を有するシ
リカ、アルミナ等の担体に触媒の活性成分を高分散に担
持したりしている。触媒の担持方法は、調製の容易さか
ら、含浸法がもっとも用いられる。含浸法で調製した触
媒では、活性金属成分と促進剤との添加量を任意に制御
することが容易であるが、これらの成分は、主に触媒表
面に偏析しているために、反応に先立つ前処理や反応条
件下において凝集しやすく、粒子径を微小かつ均一に保
つことが困難であった。このため、含浸法で調製した触
媒では、本来期待されるべきレベルの高い触媒活性が得
られないばかりではなく、主生成物のメタンの他に、一
酸化炭素のような好ましくない副生物の生成が顕著であ
るという問題があった。
In general, the methanation reaction of carbon dioxide is represented by the following equation. CO 2 + 4H 2 → CH 4 + 2H 2 O Industrially, a Ni-based catalyst is most often used as an active component of a catalyst having a high selectivity in this reaction. In order to enhance the activity of the catalyst, the active component of the catalyst is supported in a highly dispersed manner on a carrier such as silica or alumina having a high specific surface area. The most common method for supporting the catalyst is the impregnation method because of the ease of preparation. In the catalyst prepared by the impregnation method, it is easy to arbitrarily control the addition amount of the active metal component and the promoter, but since these components are mainly segregated on the catalyst surface, they precede the reaction. Under pretreatment and reaction conditions, the particles easily aggregated, and it was difficult to keep the particle size fine and uniform. For this reason, the catalyst prepared by the impregnation method cannot not only obtain the expected high level of catalytic activity, but also generate undesired by-products such as carbon monoxide in addition to the main product methane. There is a problem that is noticeable.

【0005】[0005]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、二酸化炭素
を水素化し、メタン等を製造する触媒について鋭意研究
を行った結果、Ni2+あるいはNi2+およびMg2+を含
む3−八面体型スメクタイト様合成多孔体を100〜2
50℃での水熱処理によって合成し、空気中において1
00〜1000℃で焼成した合成多孔体を200〜60
0℃で水素還元処理したものを触媒として用いることに
より、二酸化炭素と水素からなる混合ガスから、一酸化
炭素の副生を抑制し、メタンを高選択率で製造すること
が可能な新しい方法を見出し、本発明を完成するに至っ
た。本発明は、二酸化炭素のメタン化反応で二酸化炭素
からメタンを生成する活性を有する3−八面体型スメク
タイト様合成多孔体からなる触媒を提供することを目的
とするものである。また、本発明は、上記触媒を用い
て、二酸化炭素からメタンを高選択率で製造する方法を
提供することを目的とするものである。
Under these circumstances, the present inventors have conducted intensive studies on a catalyst for hydrogenating carbon dioxide and producing methane and the like in view of the above prior art. Ni-2 + or a 3-octahedral smectite-like synthetic porous material containing Ni2 + and Mg2 + is 100 to 2
Synthesized by hydrothermal treatment at 50 ° C.
The synthetic porous body fired at 00 to 1000 ° C.
By using a catalyst that has been subjected to hydrogen reduction treatment at 0 ° C as a catalyst, a new method capable of suppressing the by-product of carbon monoxide from a mixed gas consisting of carbon dioxide and hydrogen and producing methane with high selectivity. As a result, the present invention has been completed. An object of the present invention is to provide a catalyst comprising a 3-octahedral smectite-like synthetic porous material having an activity of generating methane from carbon dioxide by a methanation reaction of carbon dioxide. Another object of the present invention is to provide a method for producing methane with high selectivity from carbon dioxide using the above catalyst.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)二酸化炭素のメタン化反応で二酸化炭素からメタ
ンを生成する活性を有する触媒であって、一般式
(I); Si4-x Alx2+ y8-x/2+y-z/2 (OH)2 ・nH2 O (I) (式中xは、0≦x≦0.8、yは、2.2≦y≦3.
0、zは、2.0≦z.4.5、nは、不定比の関係を
満たし、M2+は、Ni2+あるいはNi2+およびMg2+
いずれかの2価金属イオンを表す) で示される含水酸化
物に、カチオン性有機化合物を添加し、100〜250
℃で水熱処理し、空気中において100〜1000℃で
焼成して得られる、比表面積が250〜1000m2
gであり、平均細孔径が20〜100Åであり、細孔容
積が0.2〜1.5ml/gである3−八面体型スメク
タイト様合成多孔体からなることを特徴とする触媒。 (2)前記(1)に記載の3−八面体型スメクタイト様
合成多孔体を200〜600℃で水素還元処理したもの
を触媒として用いて、二酸化炭素のメタン化反応で二酸
化炭素からメタンを製造する方法であって、当該触媒
に、実質的に一酸化炭素を含まず、二酸化炭素と水素を
含有するガスを接触させ、メタンを生成させることを特
徴とする二酸化炭素からのメタンの製造方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A catalyst having an activity of producing methane from carbon dioxide in a carbon dioxide methanation reaction, which is represented by the following general formula (I): Si 4-x Al x M 2+ y O 8-x / 2 + yz / 2 (OH) 2 .nH 2 O (I) (where x is 0 ≦ x ≦ 0.8, and y is 2.2 ≦ y ≦ 3.0.
0 and z are 2.0 ≦ z. 4.5, n satisfies the nonstoichiometric relationship, and M 2+ represents Ni 2+ or any divalent metal ion of Ni 2+ and Mg 2+ ). 100-250
Hydrothermal treatment at 100 ° C. and firing in air at 100-1000 ° C., having a specific surface area of 250-1000 m 2 /
g, an average pore diameter of 20 to 100 °, and a pore volume of 0.2 to 1.5 ml / g, comprising a 3-octahedral smectite-like synthetic porous body. (2) Using the 3-octahedral smectite-like synthetic porous body described in the above (1), which has been subjected to a hydrogen reduction treatment at 200 to 600 ° C, as a catalyst, produces methane from carbon dioxide by a methanation reaction of carbon dioxide. A method for producing methane from carbon dioxide, comprising contacting a gas containing carbon dioxide and hydrogen substantially without carbon monoxide with the catalyst to generate methane.

【0007】[0007]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明は、ケイ素、アルミニウムの他に、ニ
ッケルあるいはニッケルおよびマグネシウムを含有した
複合沈殿物を水熱合成により調製し、空気中において1
00〜1000℃の温度で焼成して得られる、3−八面
体型スメクタイト様合成多孔体からなる触媒、この3−
八面体型スメクタイト様合成多孔体を、更に、水素気流
中で200〜600℃の温度で還元処理したものを触媒
として用い、当該触媒に、実質的に一酸化炭素を含ま
ず、二酸化炭素と水素を含有するガスを接触させ、メタ
ンを生成させることを特徴とする、二酸化炭素と水素か
らなる混合ガスからメタンを高効率で製造する方法、で
ある。
Next, the present invention will be described in more detail. The present invention provides a method for preparing a composite precipitate containing nickel or nickel and magnesium in addition to silicon and aluminum by hydrothermal synthesis,
A catalyst comprising a 3-octahedral smectite-like synthetic porous body obtained by calcining at a temperature of 00 to 1000 ° C;
The octahedral smectite-like synthetic porous material is further reduced in a hydrogen stream at a temperature of 200 to 600 ° C as a catalyst. The catalyst contains substantially no carbon monoxide, carbon dioxide and hydrogen. A method for producing methane from a mixed gas consisting of carbon dioxide and hydrogen with high efficiency, comprising contacting a gas containing methane to produce methane.

【0008】本発明では、ケイ素、アルミニウムの他
に、ニッケルあるいはニッケルおよびマグネシウムが、
一般式(I)で示された値を満足するように、ケイ酸ナ
トリウム溶液とアルミニウム塩水溶液、およびマグネシ
ウム、ニッケル、コバルトの各金属塩のいずれか1種類
以上の水溶液を混合し、混合液のpHを8以上、好まし
くは9.5以上に調整し、各成分の複合沈殿物を得る。
アルミニウム、マグネシウム、ニッケル、コバルト、の
各金属は、塩化物、炭酸塩、フッ化物、水酸化物、硝酸
塩、硫酸塩、リン酸塩、過塩素酸塩などの形で用いられ
る。混合液のpHは、水酸化ナトリウム水溶液、水酸化
カリウム水溶液、アンモニア水等で調整することができ
る。得られた沈殿物を水洗することにより、副生塩を除
去した後、水および要すれば水酸化ナトリウム水溶液、
水酸化カルシウム水溶液、アンモニウム水などを添加
し、更に、カチオン性有機化合物として、例えば、ドデ
シルトリメチルアンモニウムクロライド等を添加するこ
とにより、原料スラリーを調製する。
In the present invention, nickel or nickel and magnesium, in addition to silicon and aluminum,
A sodium silicate solution and an aqueous solution of an aluminum salt, and an aqueous solution of one or more of the metal salts of magnesium, nickel, and cobalt are mixed so as to satisfy the value represented by the general formula (I). The pH is adjusted to 8 or more, preferably 9.5 or more, to obtain a composite precipitate of each component.
Each metal of aluminum, magnesium, nickel and cobalt is used in the form of chloride, carbonate, fluoride, hydroxide, nitrate, sulfate, phosphate, perchlorate and the like. The pH of the mixed solution can be adjusted with an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, aqueous ammonia, or the like. After removing the by-produced salt by washing the obtained precipitate with water, water and, if necessary, an aqueous solution of sodium hydroxide,
A raw material slurry is prepared by adding an aqueous solution of calcium hydroxide, ammonium water, and the like, and further adding, for example, dodecyltrimethylammonium chloride as a cationic organic compound.

【0009】カチオン性有機化合物の配合量は、含水酸
化物に対して(x−2y+6)当量(式中、xおよびy
は一般式(I)と同じ) である。この値は有効に作用し
うる最大量であり、一般的には、水熱処理後の段階で
も、含水酸化物は、水酸基を含む程度にとどまるので、
更に少量でも良い。得られた原料スラリーをオートクレ
ーブに移し、水熱反応させる。水熱反応温度は、100
〜250℃、好ましくは100〜200℃である。水熱
反応物は、濾過、水洗後、乾燥する。水洗は最終生成物
の均質性、特性の再現性に影響を与えるため、50〜9
0℃の温水を用い、迅速に洗浄するのが好ましいが、洗
浄工程を省くこともできる。乾燥は、一般的な乾燥機ま
たは真空乾燥機を用い、常温から200℃で脱水乾燥す
るか、あるいは凍結乾燥する。また、必要により粉砕し
ても良い。
The compounding amount of the cationic organic compound is (x−2y + 6) equivalents (where x and y are equivalent to the hydrated oxide).
Is the same as in the general formula (I). This value is the maximum amount that can work effectively, and in general, even after the hydrothermal treatment, the hydrated oxide contains only a hydroxyl group,
Further, a small amount may be used. The obtained raw material slurry is transferred to an autoclave and subjected to a hydrothermal reaction. Hydrothermal reaction temperature is 100
To 250 ° C, preferably 100 to 200 ° C. The hydrothermal reaction product is filtered, washed with water, and then dried. Since water washing affects the homogeneity of the final product and the reproducibility of the properties, 50 to 9
It is preferable to wash quickly using hot water at 0 ° C., but the washing step can be omitted. Drying is performed by using a general drier or a vacuum drier, and dehydrating and drying at room temperature to 200 ° C. or freeze-drying. Moreover, you may grind | pulverize as needed.

【0010】得られた乾燥反応生成物を、電気炉等で1
00〜1000℃、好ましくは400〜600℃で加熱
処理することで、3−八面体型スメクタイト様合成多孔
体が生成し、本発明の触媒が得られる。これよりも温度
が低いと、多孔体材料に起因する有機物の残留が顕著で
あり、これによる活性金属種表面の被毒のため活性が低
い。一方、これよりも温度が高いと、多孔体構造の一部
崩壊により活性金属種の表面積が減少し、活性が低下す
るため、いずれも好ましくない。加熱時間は2時間程度
で十分である。反応に先立つ水素処理温度は、200〜
600℃、好ましくは350〜500℃の温度範囲で、
水素ガス流速50〜200ml/min/g−触媒の範
囲で行う。
The obtained dried reaction product is treated with an electric furnace or the like for 1 hour.
By performing a heat treatment at 00 to 1000 ° C, preferably 400 to 600 ° C, a 3-octahedral smectite-like synthetic porous body is generated, and the catalyst of the present invention is obtained. If the temperature is lower than this, the organic matter resulting from the porous material is remarkable, and the activity is low due to the poisoning of the active metal species surface. On the other hand, if the temperature is higher than this, the surface area of the active metal species decreases due to partial collapse of the porous structure, and the activity decreases. A heating time of about 2 hours is sufficient. The hydrogen treatment temperature prior to the reaction is 200-
At a temperature range of 600 ° C, preferably 350-500 ° C,
The hydrogen gas flow rate is in the range of 50 to 200 ml / min / g-catalyst.

【0011】本発明に従って製造された3−八面体型ス
メクタイト様合成多孔体は、高められた温度で、実質的
に一酸化炭素を含まず、二酸化炭素と水素を含有するガ
スを選択的にメタンに転化し、しかも、一酸化炭素の副
生の少ない触媒として使用される。反応の形式は、気相
固定床である。
The 3-octahedral smectite-like synthetic porous material produced according to the present invention can selectively remove gas containing carbon dioxide and hydrogen substantially without methane at an elevated temperature. And is used as a catalyst with less by-product of carbon monoxide. The type of reaction is a gas phase fixed bed.

【0012】本発明の触媒を用いて、二酸化炭素と水素
の混合ガスからメタンを合成する場合、その反応条件と
して、二酸化炭素と水素のCO2 /H2 モル比は1/1
0〜1/1、好ましくは1/2〜1/4であり、反応温
度は150〜450℃、好ましくは300〜400℃で
あり、反応圧力は1〜50kg/cm2 である。反応物
質のガス流速は適宜変えることができ、通常は50〜2
00ml/min/g−触媒の範囲が望ましい。接触の
際、反応物質は不活性気体で希釈しても良い。本発明に
おいては、二酸化炭素の水素化により得られる生成物
は、主としてメタンであり、副生物として一酸化炭素が
得られる。反応温度、反応圧力、ガス流速などの反応条
件を変化させることにより、主生成物であるメタンの生
成量を高めることができる。
When methane is synthesized from a mixed gas of carbon dioxide and hydrogen using the catalyst of the present invention, the reaction conditions are such that the CO 2 / H 2 molar ratio of carbon dioxide and hydrogen is 1/1.
The reaction temperature is from 150 to 450 ° C, preferably from 300 to 400 ° C, and the reaction pressure is from 1 to 50 kg / cm 2 . The gas flow rate of the reactants can be changed as appropriate, and is usually 50 to 2
A range of 00 ml / min / g-catalyst is desirable. Upon contact, the reactants may be diluted with an inert gas. In the present invention, the product obtained by hydrogenating carbon dioxide is mainly methane, and carbon monoxide is obtained as a by-product. By changing reaction conditions such as reaction temperature, reaction pressure and gas flow rate, the amount of methane, which is a main product, can be increased.

【0013】[0013]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例1 (1)触媒の調製 3号水ガラス(SiO2 28%,Na2 O 9%,モ
ル比3.22)26.1gを蒸留水120mlに溶解さ
せ、13規定の硝酸9.6mlを加えた溶液に、蒸留水
60mlに塩化アルミニウム六水和物特級試薬3.28
gおよび塩化ニッケル六水和物特級試薬24.2gを溶
解した溶液を攪拌させながら1分間で加えて混合した。
3規定水酸化ナトリウム水溶液100mlに攪拌しなが
らこの溶液を1分間で加えて混合すると、直ちに反応沈
殿物が得られた。更に、3規定水酸化ナトリウム水溶液
を滴下し、溶液のpHを11.5とした。反応沈殿物を
濾過した後、十分に水洗した。沈殿物を蒸留水500m
lに入れスラリー状とし、ドデシルトリメチルアンモニ
ウムクロライド特級試薬3.59gを加え、よく攪拌し
たのち、オートクレーブに移し、175〜250℃で2
時間反応させた。冷却後、反応生成物を取り出し、70
℃で一晩乾燥して、Ni含有3−八面体型スメクタイト
様合成多孔体12gを得た。窒素吸着測定により、比表
面積461m2 /g、細孔容積0.235cm3 /g、
平均細孔径27.1Åであった(175℃の場合)。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example 1 (1) Preparation of Catalyst 26.1 g of No. 3 water glass (SiO 2 28%, Na 2 O 9%, molar ratio 3.22) was dissolved in distilled water 120 ml, and 13 N nitric acid 9.6 ml was added. To the added solution, 60 ml of distilled water and 3.28 aluminum chloride hexahydrate special grade reagent were added.
g and a solution of 24.2 g of a special grade reagent of nickel chloride hexahydrate were added and mixed with stirring for 1 minute.
This solution was added to 100 ml of a 3 N aqueous sodium hydroxide solution with stirring for 1 minute while stirring, and a reaction precipitate was immediately obtained. Further, a 3N aqueous solution of sodium hydroxide was added dropwise to adjust the pH of the solution to 11.5. After filtering the reaction precipitate, it was sufficiently washed with water. The precipitate is distilled water 500m
into a slurry, add 3.59 g of dodecyltrimethylammonium chloride special grade reagent, stir well, transfer to autoclave,
Allowed to react for hours. After cooling, the reaction product was taken out,
Drying at ℃ overnight resulted in 12 g of Ni-containing 3-octahedral smectite-like synthetic porous body. According to the nitrogen adsorption measurement, the specific surface area was 461 m 2 / g, the pore volume was 0.235 cm 3 / g,
The average pore size was 27.1 ° (at 175 ° C.).

【0014】(2)二酸化炭素からメタンの製造 この触媒を、粉砕し、10〜28meshに整粒し、反
応に使用した。この触媒1gを固定床反応管に充填し、
水素気流中(150ml/min/g−触媒)におい
て、450℃で3時間還元処理を行った。アルゴンガス
10mol%を含むCO2 /H2 =1/3の組成を有す
る混合ガスを100ml/min/g−触媒の流速で流
し、常圧、350℃の条件で反応を行った。原料ガスに
含まれるアルゴンガスを内部標準として、反応管に直結
したガスクロマトグラフを用いて反応生成物を分析し
た。主生成物のメタンの他に、少量の一酸化炭素の副生
が認められた。これらの収量およびメタン選択率を表1
に示す。
(2) Production of methane from carbon dioxide This catalyst was pulverized, sized to 10 to 28 mesh, and used for the reaction. 1 g of this catalyst is filled in a fixed bed reaction tube,
The reduction treatment was performed at 450 ° C. for 3 hours in a hydrogen stream (150 ml / min / g-catalyst). A mixed gas containing 10 mol% of argon gas and having a composition of CO 2 / H 2 = 1/3 was flowed at a flow rate of 100 ml / min / g-catalyst, and the reaction was carried out under normal pressure and 350 ° C. The reaction product was analyzed using a gas chromatograph directly connected to the reaction tube using argon gas contained in the raw material gas as an internal standard. In addition to the main product, methane, a small amount of by-product of carbon monoxide was observed. Table 1 shows the yield and methane selectivity.
Shown in

【0015】比較例1 塩化ニッケル六水和物特級試薬の代わりに塩化コバルト
六水和物を加えて、実施例1と同様の方法でCo含有3
−八面体型スメクタイト様合成多孔体を合成した。これ
を実施例1と同様の条件で反応に使用した。反応結果を
表1に示す。
COMPARATIVE EXAMPLE 1 Cobalt chloride hexahydrate was added in place of the special grade reagent of nickel chloride hexahydrate.
-An octahedral smectite-like synthetic porous body was synthesized. This was used for the reaction under the same conditions as in Example 1. Table 1 shows the reaction results.

【0016】比較例2 塩化ニッケル六水和物特級試薬の代わりに塩化鉄(II)
水和物を加えて、実施例1と同様の方法でFe含有3−
八面体型スメクタイト様合成多孔体を合成した。これを
反応温度が300℃である以外は、実施例1と同様の条
件で反応に使用した。反応結果を表1に示す。
Comparative Example 2 Iron (II) chloride instead of nickel chloride hexahydrate
The hydrate was added, and Fe-containing 3-
An octahedral smectite-like synthetic porous body was synthesized. This was used for the reaction under the same conditions as in Example 1 except that the reaction temperature was 300 ° C. Table 1 shows the reaction results.

【0017】比較例3 市販のシリカゲル(Aldrich社製、Silica
gel,DavisilTM,grade636,35
−60mesh,比表面積480m2 /g,細孔容積
0.75cm3 /g,平均細孔径60Å)に塩化ニッケ
ル水溶液を通常の方法(J.Catal.,45,41
(1976).)で含浸し、ニッケルを10wt.%含
むシリカゲルを調製した。これを実施例1と同様の条件
で反応に使用した。反応結果を表1に示す。
Comparative Example 3 Commercially available silica gel (manufactured by Aldrich, Silica)
gel, Davisil , grade 636, 35
−60 mesh, a specific surface area of 480 m 2 / g, a pore volume of 0.75 cm 3 / g, and an average pore diameter of 60 °) using an aqueous nickel chloride solution according to a conventional method (J. Catal., 45, 41).
(1976). ), And nickel was added at 10 wt. % Silica gel was prepared. This was used for the reaction under the same conditions as in Example 1. Table 1 shows the reaction results.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明により、次のような効果が奏され
る。 (1)二酸化炭素のメタン化反応で二酸化炭素からメタ
ンを生成するのに用いる3−八面体型スメクタイト様合
成多孔体からなる触媒を提供することができる。 (2)二酸化炭素と水素を含有するガスからメタンを高
選択率で合成することができる。 (3)一酸化炭素のような好ましくない副生成物の生成
が少ない。 (4)反応条件を調整することにより、メタンの生成量
を高めることができる。 (5)触媒の調製温度を制御することにより、メタンの
生成量を高めることができる。
According to the present invention, the following effects can be obtained. (1) A catalyst comprising a 3-octahedral smectite-like synthetic porous material used to generate methane from carbon dioxide in a carbon dioxide methanation reaction can be provided. (2) Methane can be synthesized at a high selectivity from a gas containing carbon dioxide and hydrogen. (3) Less undesirable by-products such as carbon monoxide are produced. (4) The amount of methane generated can be increased by adjusting the reaction conditions. (5) By controlling the catalyst preparation temperature, the amount of methane produced can be increased.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C10L 3/00 A (72)発明者 横山 千昭 宮城県仙台市青葉区川内元支倉35 川内住 宅4−303 Fターム(参考) 4G069 AA02 AA08 AA09 AA12 BB06A BB06B BC10A BC16A BC16B BC16C BC68A BC68B BC68C BD05A BD05B BD05C CC22 EC04X EC06X EC07X EC08X EC14X EC22X FB08 FB36 FB77 4H006 AA02 AC13 BA68 BA81 BC13 BE20 BE41 DA15 DA46 4H039 CA11 CB20 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) // C07B 61/00 300 C10L 3/00 A (72) Inventor Chiaki Yokoyama 35 Housing 4-303 F-term (reference) 4G069 AA02 AA08 AA09 AA12 BB06A BB06B BC10A BC16A BC16B BC16C BC68A BC68B BC68C BD05A BD05B BD05C CC22 EC04X EC06X EC07X EC08X EC14X EC22X FB08 DAB18 BA18 AC4

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素のメタン化反応で二酸化炭素
からメタンを生成する活性を有する触媒であって、一般
式(I); Si4-x Alx2+ y8-x/2+y-z/2 (OH)2 ・nH2 O (I) (式中xは、0≦x≦0.8、yは、2.2≦y≦3.
0、zは、2.0≦z.4.5、nは、不定比の関係を
満たし、M2+は、Ni2+あるいはNi2+およびMg2+
いずれかの2価金属イオンを表す) で示される含水酸化
物に、カチオン性有機化合物を添加し、100〜250
℃で水熱処理し、空気中において100〜1000℃で
焼成して得られる、比表面積が250〜1000m2
gであり、平均細孔径が20〜100Åであり、細孔容
積が0.2〜1.5ml/gである3−八面体型スメク
タイト様合成多孔体からなることを特徴とする触媒。
1. A catalyst having an activity of producing methane from carbon dioxide by a methanation reaction of carbon dioxide, comprising a general formula (I): Si 4-x Al x M 2+ y O 8-x / 2 + yz / 2 (OH) 2 .nH 2 O (I) (where x is 0 ≦ x ≦ 0.8, and y is 2.2 ≦ y ≦ 3.
0 and z are 2.0 ≦ z. 4.5, n satisfies the nonstoichiometric relationship, and M 2+ represents Ni 2+ or any divalent metal ion of Ni 2+ and Mg 2+ ). 100-250
Hydrothermal treatment at 100 ° C. and firing in air at 100-1000 ° C., having a specific surface area of 250-1000 m 2 /
g, an average pore diameter of 20 to 100 °, and a pore volume of 0.2 to 1.5 ml / g, comprising a 3-octahedral smectite-like synthetic porous body.
【請求項2】 請求項1に記載の3−八面体型スメクタ
イト様合成多孔体を200〜600℃で水素還元処理し
たものを触媒として用いて、二酸化炭素のメタン化反応
で二酸化炭素からメタンを製造する方法であって、当該
触媒に、実質的に一酸化炭素を含まず、二酸化炭素と水
素を含有するガスを接触させ、メタンを生成させること
を特徴とする二酸化炭素からのメタンの製造方法。
2. A methane from carbon dioxide by a methanation reaction of carbon dioxide using a catalyst obtained by subjecting the 3-octahedral smectite-like synthetic porous body of claim 1 to a hydrogen reduction treatment at 200 to 600 ° C. as a catalyst. A method for producing methane from carbon dioxide, comprising contacting a gas containing carbon dioxide and hydrogen substantially free of carbon monoxide with the catalyst to produce methane. .
JP2001064134A 2001-03-07 2001-03-07 Method for producing methane from carbon dioxide Expired - Lifetime JP4214218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064134A JP4214218B2 (en) 2001-03-07 2001-03-07 Method for producing methane from carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064134A JP4214218B2 (en) 2001-03-07 2001-03-07 Method for producing methane from carbon dioxide

Publications (2)

Publication Number Publication Date
JP2002263494A true JP2002263494A (en) 2002-09-17
JP4214218B2 JP4214218B2 (en) 2009-01-28

Family

ID=18923006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064134A Expired - Lifetime JP4214218B2 (en) 2001-03-07 2001-03-07 Method for producing methane from carbon dioxide

Country Status (1)

Country Link
JP (1) JP4214218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241182A (en) * 2010-05-19 2011-12-01 Tokyo Gas Co Ltd Method for synthesizing methane from carbon dioxide and hydrogen
JP2014534901A (en) * 2011-10-19 2014-12-25 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Carbon dioxide methanation catalyst, method for preparing and using carbon dioxide methanation catalyst
JP2018103172A (en) * 2016-12-22 2018-07-05 国立成功大学 Nano-nickel catalyst and carbon oxide hydrogenation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241182A (en) * 2010-05-19 2011-12-01 Tokyo Gas Co Ltd Method for synthesizing methane from carbon dioxide and hydrogen
JP2014534901A (en) * 2011-10-19 2014-12-25 武▲漢凱▼迪工程技▲術▼研究▲総▼院有限公司 Carbon dioxide methanation catalyst, method for preparing and using carbon dioxide methanation catalyst
JP2018103172A (en) * 2016-12-22 2018-07-05 国立成功大学 Nano-nickel catalyst and carbon oxide hydrogenation method

Also Published As

Publication number Publication date
JP4214218B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
CN108262055B (en) Catalyst for preparing hydrocarbons by one-step hydrogenation of carbon dioxide and preparation method thereof
JP4747339B2 (en) Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
JP4309627B2 (en) Method for producing dimethyl ether
CN106694031A (en) Zeolite and method for producing same, and cracking catalyst for paraffin
JP2010532245A5 (en)
CN86103725A (en) Catalyst cracking method
WO2005044760A2 (en) Catalyst, process for preparing the catalyst and process for producing lower hydrocarbon with the catalyst
JP2007083197A (en) Method for producing copper-zinc-aluminum based catalyst
WO2019183842A1 (en) Composite catalyst, preparation method therefor and method for preparing ethylene
JP3855047B2 (en) Manufacturing method of nano acicular ceria particles
WO2012065326A1 (en) Auxiliary-modified catalyst for producing methanol by catalytic hydrogenation of carbon dioxide and preparation thereof
CN114160143A (en) CO (carbon monoxide)2Catalyst for preparing methanol by hydrogenation, preparation method and application thereof
WO2008072428A1 (en) Process for production of nitrogenated compound
JP2002263494A (en) Method of manufacturing methane from carbon dioxide
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
CN114405538B (en) Hierarchical pore Fe/ZSM-5 molecular sieve and preparation method and application thereof
CN112619652B (en) Catalyst for preparing low-carbon olefin from synthesis gas and preparation method thereof
CN1451035A (en) Hydrocarbon synthesis catalyst and process
CN115196651A (en) Preparation method and application of sodium-free Cu-SSZ-13 zeolite
US8754137B2 (en) Methanation reaction methods utilizing enhanced catalyst formulations and methods of preparing enhanced methanation catalysts
JP2006016345A (en) Method for producing propylene
JP3849753B2 (en) Method for producing ethyl alcohol
WO2019183841A1 (en) Composite catalyst, preparation method therefor, and method for preparing ethylene
JP2001205089A (en) Catalyst for synthesizing methanol and manufacturing method therfor
CN115805091B (en) Preparation method of copper-silver double single-atom photocatalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060301

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080801

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4214218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term