JP2002257706A - Probe for measuring light scattering - Google Patents

Probe for measuring light scattering

Info

Publication number
JP2002257706A
JP2002257706A JP2001057202A JP2001057202A JP2002257706A JP 2002257706 A JP2002257706 A JP 2002257706A JP 2001057202 A JP2001057202 A JP 2001057202A JP 2001057202 A JP2001057202 A JP 2001057202A JP 2002257706 A JP2002257706 A JP 2002257706A
Authority
JP
Japan
Prior art keywords
light
light scattering
optical fiber
measurement probe
scattering measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001057202A
Other languages
Japanese (ja)
Other versions
JP4563600B2 (en
Inventor
Kazunori Tsutsui
和典 筒井
Tsutomu Mizuguchi
勉 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP2001057202A priority Critical patent/JP4563600B2/en
Publication of JP2002257706A publication Critical patent/JP2002257706A/en
Application granted granted Critical
Publication of JP4563600B2 publication Critical patent/JP4563600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light scattering measuring probe easily manufactured and capable of measurng intensity of scattered light precisely and highly reliably over a wide concentration range. SOLUTION: An optical fiber 4 for light incidence for propagating light emitted toward a sample, and an optical fiber 6 for measuring the scattered light for collectitng the scattered light to be propagated are inserted, intermeadiate lens 36, 37 are set respectively to bring the lights in the optical fibers into parallel in end faces of the both optical fibers 4, 6 inside the light scattering measuring probe, a single condenser lens 38 is arranged to focus the respective parallelized lights in a converging point, and the converging point of the condenser lens 38 is positioned outside an opening face of the light scattering measuring probe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料に光を照射
し、散乱体積内から散乱される光を検出することにより
光散乱測定を行う光散乱測定プローブに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light scattering measurement probe for irradiating a sample with light and detecting light scattered from a scattering volume to perform light scattering measurement.

【0002】[0002]

【従来の技術】光散乱測定装置は、流体中に存在する粒
子の動き(ブラウン運動)に起因する散乱光強度の揺ら
ぎ(時間変化)を測定することにより、粒子の拡散係数
や流体力学的な大きさを求めるための装置である。従来
の光散乱測定装置では、試料流体の入った円筒形や直方
体のセルに、レーザ光を、レンズを介して照射し、試料
から出てくる散乱光を、ピンホール等で観測体積を制限
された受光光学系を通して、フォトマルチプライヤ等の
光検出器で測定していた。
2. Description of the Related Art A light scattering measuring device measures the fluctuation (time change) of the scattered light intensity caused by the movement (Brownian motion) of a particle present in a fluid, thereby obtaining the diffusion coefficient of the particle and the hydrodynamics. This is a device for determining the size. In a conventional light scattering measurement device, a cylindrical or rectangular cell containing a sample fluid is irradiated with laser light through a lens, and the scattered light coming out of the sample is limited in observation volume by a pinhole or the like. Through a light receiving optical system, measurement was performed with a photodetector such as a photomultiplier.

【0003】この従来の光散乱測定装置では、セル内の
試料流体の光路長が長いので、溶液の粒子濃度が高くな
ると、セル内で散乱光による散乱(多重散乱)が起こ
り、正確な散乱光の情報を測定することができない。そ
こで、入射光ファイバと受光ファイバとの端面同士を、
セル内で、所定角度で対向させ、しかも端面同士の距離
を近接させた光散乱測定プローブの構造が提案されてい
る(R.R.Khan, H.S.Dhadwal, and K.Suh, Applied Optic
s 33(25), 1994)。この光散乱測定プローブを使えば、
観測体積を小さくでき、多重散乱の問題を避けることが
できる。
[0003] In this conventional light scattering measurement apparatus, since the optical path length of the sample fluid in the cell is long, when the particle concentration of the solution increases, scattering (multiple scattering) occurs in the cell due to scattered light, and accurate scattered light is generated. Information cannot be measured. Therefore, the end faces of the incident optical fiber and the receiving fiber are
In a cell, a structure of a light scattering measurement probe that is opposed at a predetermined angle and the distance between the end faces is made closer has been proposed (RRKhan, HSDhadwal, and K.Suh, Applied Optic
s 33 (25), 1994). With this light scattering measurement probe,
The observation volume can be reduced, and the problem of multiple scattering can be avoided.

【0004】[0004]

【発明が解決しようとする課題】前記の光散乱測定プロ
ーブでは、入射光ファイバの端面と受光ファイバの端面
に、それぞれ、光ファイバーの焦点を目的の位置に合わ
せるための微小なレンズ(グレーデッドインデックスフ
ァイバーを含む)を配置している。このため、光ファイ
バーやレンズの位置関係に高い精度が要求され、実用レ
ベルの製品としての品質確保が困難となる。
In the light scattering measurement probe, a minute lens (graded index fiber) for focusing the optical fiber at a target position is provided on each of the end face of the incident optical fiber and the end face of the light receiving fiber. Are included). For this reason, a high precision is required for the positional relationship between the optical fiber and the lens, and it is difficult to ensure the quality as a practical level product.

【0005】そこで、本発明は、製造が容易で、流体中
の粒子濃度の低い試料(濃度0.001%程度)から粒子濃
度の高い試料(濃度10%程度)までの広い濃度範囲にお
いて、精度のよい、かつ信頼性の高い散乱光強度測定を
行うことのできる光散乱測定プローブを実現することを
目的とする。
Therefore, the present invention is easy to manufacture and has high precision in a wide concentration range from a sample having a low particle concentration (about 0.001%) to a sample having a high particle concentration (about 10%) in a fluid. It is another object of the present invention to realize a light scattering measurement probe capable of performing highly reliable scattered light intensity measurement.

【0006】[0006]

【課題を解決するための手段】本発明の光散乱測定プロ
ーブは、試料に照射する光を伝播するための入射用光フ
ァイバと、散乱光を集めて伝搬するための散乱光測定用
光ファイバとを挿入し、光散乱測定プローブ内におい
て、両光ファイバの端面に、光ファイバの光を平行にす
るための中間レンズをそれぞれ設置し、前記平行にされ
た各光を同一の集光点に結ぶための単一の集光レンズを
配置し、前記集光レンズの集光点は、光散乱測定プロー
ブの開口面よりも外部に位置しているものである(請求
項1)。
According to the present invention, there is provided a light scattering measurement probe comprising: an incident optical fiber for propagating light irradiated to a sample; and an scattered light measuring optical fiber for collecting and transmitting scattered light. Is inserted, and in the light scattering measurement probe, an intermediate lens for parallelizing the light of the optical fibers is installed at the end faces of both optical fibers, and the parallelized lights are connected to the same light-converging point. And a condensing point of the condensing lens is located outside the aperture surface of the light scattering measurement probe (claim 1).

【0007】前記の構成によれば、入射用光ファイバか
ら出射された光は、前記中間レンズによってそれぞれ平
行光とされ、前記集光レンズによって集光される。この
集光点からの散乱光は中間レンズを通して散乱光測定用
光ファイバに入る。したがって、散乱光測定用光ファイ
バの光を検出することにより、散乱光の測定をすること
ができる。前記中間レンズは、光ファイバの光を平行に
するためのものなので、その光軸上の前後位置に厳密さ
は要求されない。したがって、光学配置時の調整が少な
くなり、製造が非常に簡単となる。
According to the above arrangement, the light emitted from the incident optical fiber is converted into parallel light by the intermediate lens, and is condensed by the condenser lens. The scattered light from this focal point enters the scattered light measuring optical fiber through the intermediate lens. Therefore, the scattered light can be measured by detecting the light of the scattered light measuring optical fiber. Since the intermediate lens is for collimating the light of the optical fiber, strictness is not required at the front and rear positions on the optical axis. Therefore, the adjustment at the time of the optical arrangement is reduced, and the manufacturing becomes very simple.

【0008】検出する散乱角度は、集光レンズの焦点距
離と、2本の光ファイバ間の距離によって定まるので、
焦点距離の異なる集光レンズを使用したり、2本の光フ
ァイバ間の距離を設定したりすることによって、散乱角
度を所望の角度にすることができる。前記集光レンズの
集光点は、光散乱測定プローブの開口面よりも外部に位
置していることが好ましい(請求項2)。この構造によ
り、光散乱測定プローブが試料流体に触れずに、散乱光
が観測できる。
The scattering angle to be detected is determined by the focal length of the condenser lens and the distance between the two optical fibers.
By using condensing lenses having different focal lengths or setting the distance between two optical fibers, the scattering angle can be set to a desired angle. It is preferable that the condensing point of the condensing lens is located outside the opening surface of the light scattering measurement probe (claim 2). With this structure, the scattered light can be observed without the light scattering measurement probe touching the sample fluid.

【0009】前記開口面に透明板を密閉して設置し、前
記集光レンズの集光位置を、前記透明板の外側に位置さ
せてもよい(請求項3)。この構造であれば、光散乱測
定プローブごと試料流体に浸けて、散乱光を測定するこ
とができる。前記透明板は、集光レンズからの距離を変
化させることができるように、移動可能になっている構
造であってもよい(請求項4)。この構造であれば、集
光レンズが設計時と多少ずれていても、透明板を移動さ
せることにより、前記集光レンズの集光位置を、前記透
明板の外側の所定位置に設定することができる。
[0009] A transparent plate may be hermetically mounted on the opening surface, and a light condensing position of the condensing lens may be located outside the transparent plate. With this structure, the scattered light can be measured by immersing the entire light scattering measurement probe in the sample fluid. The transparent plate may have a movable structure so that the distance from the condenser lens can be changed (claim 4). With this structure, even if the condensing lens is slightly deviated from the design time, the condensing position of the condensing lens can be set to a predetermined position outside the transparent plate by moving the transparent plate. it can.

【0010】前記入射用光ファイバから出て、前記透明
板に当たって反射する光を吸収する光吸収部材を設ける
ことが好ましい(請求項5)。この光吸収部材により、
光散乱測定プローブ内部に余分な光(迷光)が存在する
のを防止できる。前記透明板の、光の通らない部分を、
不透明色で処理していることが好ましい(請求項6)。
光散乱測定プローブ内部に余分な光(迷光)を吸収する
ためである。
[0010] It is preferable that a light absorbing member is provided for absorbing light reflected from the incident optical fiber and hitting the transparent plate. With this light absorbing member,
Excess light (stray light) can be prevented from being present inside the light scattering measurement probe. The part of the transparent plate, through which light does not pass,
It is preferable that the treatment is performed using an opaque color.
This is for absorbing extra light (stray light) inside the light scattering measurement probe.

【0011】光ファイバは、シングルモード光ファイバ
であることが好ましい(請求項7)。これにより、より
コヒーレンスのよい条件で測定ができる。
Preferably, the optical fiber is a single mode optical fiber. Thereby, measurement can be performed under conditions with better coherence.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を、添付図面
を参照しながら詳細に説明する。図1は、光散乱測定プ
ローブ3を含む測定システムの全体構成図である。レー
ザ装置1から照射された光は、レンズ2で絞られ、入射
用光ファイバ4に入射される。入射用光ファイバ4の先
は光散乱測定プローブ3に結合されている。光散乱測定
プローブ3は、試料液体hを満たしたセル5に挿入さ
れ、光散乱測定プローブ3の先端からレーザ光が試料に
照射される。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram of a measurement system including a light scattering measurement probe 3. Light emitted from the laser device 1 is stopped down by the lens 2 and is incident on the optical fiber 4 for incidence. The tip of the input optical fiber 4 is connected to the light scattering measurement probe 3. The light scattering measurement probe 3 is inserted into the cell 5 filled with the sample liquid h, and the sample is irradiated with laser light from the tip of the light scattering measurement probe 3.

【0013】試料からの散乱光は、光散乱測定プローブ
3の先端で受光され、光散乱測定プローブ3から散乱光
測定用光ファイバ6を通して、フォトマルチプライヤ等
の受光素子7に入り、受光素子7において時系列データ
が測定される。そして、図示しない処理回路において、
そのデータの自己相関係数が計算され、粒子サイズ等が
求められる。入射用光ファイバ4、散乱光測定用光ファ
イバ6は、シングルモード光ファイバであることが、光
のコヒーレンスを保つ上から、好ましい。
The scattered light from the sample is received at the tip of the light scattering measurement probe 3 and enters the light receiving element 7 such as a photomultiplier through the scattered light measuring optical fiber 6 from the light scattering measurement probe 3. Time series data is measured. Then, in a processing circuit (not shown),
The autocorrelation coefficient of the data is calculated, and the particle size and the like are obtained. The incident optical fiber 4 and the scattered light measuring optical fiber 6 are preferably single mode optical fibers from the viewpoint of maintaining light coherence.

【0014】図2は、光散乱測定プローブ3の断面図
(a)および底面図(b)を示す。底面図(b)は、集光レン
ズ38、透明ガラス板39を取り外した状態で見た底面
図となっている。光散乱測定プローブ3は、筒状の胴部
31と、胴部31に結合される先端部32とを有してい
る。胴部31には、入射用光ファイバ4および散乱光測
定用光ファイバ6が挿通している。なお、光散乱測定プ
ローブ3は、試料液体hに浸けられるものであるため、
試料液体hの浸入を防止するため、入射用光ファイバ4
および散乱光測定用光ファイバ6はチューブ33に通さ
れ、このチューブ33ごと胴部31に挿入される構造と
なっている。チューブ33と胴部31との接合部、先端
部32と透明ガラス板39との接合部は接着剤により水
密となっている。また、胴部31と先端部32との接合
部は、パッキン51により水密となっている。
FIG. 2 is a sectional view of the light scattering measurement probe 3.
(a) and a bottom view (b) are shown. The bottom view (b) is a bottom view when the condenser lens 38 and the transparent glass plate 39 are removed. The light scattering measurement probe 3 has a cylindrical body 31 and a tip 32 coupled to the body 31. The incident optical fiber 4 and the scattered light measuring optical fiber 6 pass through the body 31. Since the light scattering measurement probe 3 is immersed in the sample liquid h,
In order to prevent the sample liquid h from entering, the incident optical fiber 4
The scattered light measuring optical fiber 6 is passed through a tube 33 and inserted into the body 31 together with the tube 33. The joint between the tube 33 and the body 31 and the joint between the distal end 32 and the transparent glass plate 39 are watertight with an adhesive. The joint between the body 31 and the tip 32 is made watertight by a packing 51.

【0015】先端部32には、入射用光ファイバ4およ
び散乱光測定用光ファイバ6とそれぞれ光学的に結合す
る導光部34,35が備えられ、各導光部34,35の
先端には、入射用光ファイバ4および散乱光測定用光フ
ァイバ6の光を平行光に変換する非球面中間レンズ3
6,37が設けられている。さらに、これらの非球面中
間レンズ36,37で変換された平行光を1つの焦点に
集める集光レンズ38が設けられている。集光レンズ3
8の集光位置のわずか手前には、先端部32の開口端を
カバーする透明ガラス板39が配置されている。41は
反射光の吸収トラップである。前記導光部34,35
は、具体的には、マルチモード光ファイバ又はシングル
モード光ファイバの断片からなる。
The distal end portion 32 is provided with light guide portions 34 and 35 which are optically coupled to the incident optical fiber 4 and the scattered light measuring optical fiber 6, respectively. Aspherical intermediate lens 3 for converting the light of the incident optical fiber 4 and the scattered light measuring optical fiber 6 into parallel light
6, 37 are provided. Further, a condensing lens 38 for collecting the parallel light converted by the aspheric intermediate lenses 36 and 37 at one focal point is provided. Condensing lens 3
A transparent glass plate 39 that covers the open end of the distal end portion 32 is disposed slightly before the light condensing position 8. Reference numeral 41 denotes a reflected light absorption trap. The light guides 34 and 35
Consists of a multimode optical fiber or a fragment of a single mode optical fiber.

【0016】図3は、先端部32の要部を示す断面図で
ある。先端部32の開口端に配置された透明ガラス板3
9の外面の少し先に、集光レンズの焦点Pが設定されて
いる。図4は、焦点位置付近の拡大図である。主に図4
を参照して説明すると、焦点位置Pは、透明ガラス板3
9の外面39aからd(d=50〜100μm)離れた
位置に設定されている。集光レンズ38で絞られた入射
用光ファイバ4の入射光iの断面積は、焦点位置Pでも
っとも小さくなり、また、集光レンズ38で平行光線に
変換される散乱光測定用光ファイバ6の散乱光sの断面
積も、焦点位置Pでもっとも小さくなるように、集光レ
ンズ38の焦点距離または屈折力(power)が設計されて
いる。
FIG. 3 is a sectional view showing a main part of the distal end portion 32. As shown in FIG. Transparent glass plate 3 arranged at the opening end of tip 32
The focal point P of the condenser lens is set slightly ahead of the outer surface 9. FIG. 4 is an enlarged view near the focal position. Mainly Figure 4
The focal position P is set to the transparent glass plate 3
9 is set at a position d (d = 50 to 100 μm) away from the outer surface 39a. The cross-sectional area of the incident light i of the incident optical fiber 4 narrowed by the condenser lens 38 becomes the smallest at the focal position P, and the scattered light measuring optical fiber 6 converted into a parallel light beam by the condenser lens 38. The focal length or refracting power of the condenser lens 38 is designed so that the cross-sectional area of the scattered light s at the focal position P is also minimized.

【0017】集光レンズ38で絞られた入射用光ファイ
バ4の入射光iと、集光レンズで変換される散乱光測定
用光ファイバ6の散乱光sとのクロスする部分が、試料
液体hの散乱体積V(散乱光を測定する部分)となる。
また、図2〜図4において、集光レンズ38で絞られた
入射用光ファイバ4の入射光iは、透明ガラス板39の
内面で正反射する。この正反射光が光散乱測定プローブ
3の内部で何回も反射して散乱光測定用光ファイバ6に
入ると、散乱光測定に悪い影響を及ぼすので、反射光吸
収トラップ41を設けて、この正反射光を吸収してい
る。
The cross section of the incident light i of the incident optical fiber 4 narrowed by the condenser lens 38 and the scattered light s of the scattered light measuring optical fiber 6 converted by the condenser lens is the sample liquid h. (Scattering light measuring portion).
2 to 4, the incident light i of the incident optical fiber 4 narrowed by the condenser lens 38 is regularly reflected on the inner surface of the transparent glass plate 39. When the specularly reflected light is reflected many times inside the light scattering measurement probe 3 and enters the scattered light measurement optical fiber 6, the scattered light measurement is adversely affected. Therefore, the reflected light absorption trap 41 is provided. Absorbs specularly reflected light.

【0018】さらに、光散乱測定プローブ3の内部の迷
光を吸収するため、透明ガラス板39の光i,s,rの
透過部分以外に、エッチングなどによる光吸収処理を施
していることが好ましい。図5の斜線は、透明ガラス板
39の光吸収処理を施したエッチング部分を示してい
る。以上の構成の光散乱測定プローブ3を試料液体hに
浸け、入射用光ファイバ4にレーザ光を入射すると、散
乱光測定用光ファイバ6を通して散乱光が出射される。
この散乱光を受光素子7で検出することができる。散乱
体積を非常に小さくできるので、多重散乱による測定精
度低下を防ぐことができる。
Further, in order to absorb stray light inside the light scattering measurement probe 3, it is preferable to perform a light absorption process by etching or the like on the transparent glass plate 39 other than the portions where the light i, s, and r are transmitted. The hatched portions in FIG. 5 indicate the etched portions of the transparent glass plate 39 that have been subjected to the light absorption processing. When the light scattering measurement probe 3 having the above configuration is immersed in the sample liquid h and laser light is incident on the incident optical fiber 4, scattered light is emitted through the scattered light measurement optical fiber 6.
This scattered light can be detected by the light receiving element 7. Since the scattering volume can be made very small, it is possible to prevent a decrease in measurement accuracy due to multiple scattering.

【0019】図6は、変更例に係る光散乱測定プローブ
3Aの断面図(a)および底面図(b)を示す。この光散乱
測定プローブ3Aの特徴は、先端部32が、導光部3
4,35、非球面中間レンズ36,37、集光レンズ3
8を装着した第1の筐体32aと、透明ガラス板39を
装着した第2の筐体32bとに分割されていることであ
る。第1の筐体32aに雄ねじ、第2の筐体32bに雌
ねじが形成されていて、それぞれが嵌合できるようにな
っている。このねじの位置に応じて、透明ガラス板39
が第1の筐体32aに対して相対的に前後移動する。し
たがって、焦点位置Pを、透明ガラス板39から任意の
距離になるように調節することができる。
FIG. 6 shows a sectional view (a) and a bottom view (b) of a light scattering measurement probe 3A according to a modification. The feature of the light scattering measurement probe 3A is that the tip 32 is
4, 35, aspheric intermediate lenses 36, 37, condenser lens 3
8 is divided into a first housing 32a on which a transparent glass plate 39 is mounted and a second housing 32b on which a transparent glass plate 39 is mounted. A male screw is formed in the first housing 32a and a female screw is formed in the second housing 32b, so that they can be fitted. Depending on the position of this screw, the transparent glass plate 39
Moves relatively back and forth with respect to the first housing 32a. Therefore, the focal position P can be adjusted to be an arbitrary distance from the transparent glass plate 39.

【0020】この構造のメリットは、焦点位置Pを透明
ガラス板39から所定の距離に正確に設定できることで
ある。光散乱測定プローブ3Aの製造者が、出荷前に焦
点位置Pを正確に設定して(設定後は、接着により、第
1の筐体32aと第2の筐体32bとを固定する)、出
荷することができる。図7は、他の変更例に係る光散乱
測定プローブ3Bの断面図(a)および底面図(b)を示
す。
The merit of this structure is that the focal position P can be accurately set at a predetermined distance from the transparent glass plate 39. The manufacturer of the light scattering measurement probe 3A accurately sets the focal position P before shipping (after setting, the first housing 32a and the second housing 32b are fixed by bonding) and shipped. can do. FIG. 7 shows a sectional view (a) and a bottom view (b) of a light scattering measurement probe 3B according to another modification.

【0021】この光散乱測定プローブ3Bの特徴は、先
端部32の開口面に透明ガラス板が装着されていないこ
とである。したがって、水密構造ではない。集光レンズ
38の集光点は、光散乱測定プローブの開口面よりも外
部に位置している。この構造のため、光散乱測定プロー
ブ3B全体を液体に浸けて測定することはできないが、
例えば図8(a)に示すように、試料液体hの表面に触れ
ずに測定することはできる。また、図8(b)に示すよう
に、試料液体hを満たしたセル5の透明壁の外から測定
することもできる。
A feature of the light scattering measurement probe 3B is that a transparent glass plate is not mounted on the opening surface of the distal end portion 32. Therefore, it is not a watertight structure. The focal point of the condenser lens 38 is located outside the aperture surface of the light scattering measurement probe. Due to this structure, the entire light scattering measurement probe 3B cannot be immersed in liquid for measurement.
For example, as shown in FIG. 8A, measurement can be performed without touching the surface of the sample liquid h. In addition, as shown in FIG. 8B, the measurement can be performed from outside the transparent wall of the cell 5 filled with the sample liquid h.

【0022】このような測定をする場合、ガラス板がな
いので、ガラス板による光の屈折や吸収を免れることが
でき、より感度の高い散乱光測定が可能となる。以上
で、本発明の実施の形態を説明したが、本発明の実施
は、前記の形態に限定されるものではなく、本発明の範
囲内で種々の変更を施すことができる。
In such a measurement, since there is no glass plate, refraction or absorption of light by the glass plate can be avoided, and scattered light measurement with higher sensitivity can be performed. Although the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.

【0023】[0023]

【発明の効果】以上のように本発明の光散乱測定プロー
ブによれば、試料流体の広い濃度範囲において、精度の
よい、かつ信頼性の高い散乱光強度測定を行うことがで
きる。
As described above, according to the light scattering measurement probe of the present invention, accurate and highly reliable scattered light intensity measurement can be performed in a wide concentration range of the sample fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光散乱測定プローブ3を含む測定システムの全
体構成図である。
FIG. 1 is an overall configuration diagram of a measurement system including a light scattering measurement probe 3.

【図2】光散乱測定プローブ3の断面図(a)および底面
図(b)である。
FIG. 2 is a sectional view (a) and a bottom view (b) of the light scattering measurement probe 3.

【図3】先端部32の要部を示す断面図である。FIG. 3 is a cross-sectional view showing a main part of a distal end portion 32.

【図4】先端部32の焦点位置付近の拡大図である。FIG. 4 is an enlarged view of the vicinity of a focal point of a distal end portion 32.

【図5】光吸収処理を施した透明ガラス板39を示す図
である。
FIG. 5 is a view showing a transparent glass plate 39 that has been subjected to light absorption processing.

【図6】本発明の変更例に係る光散乱測定プローブ3A
の断面図(a)および底面図(b)である。
FIG. 6 is a light scattering measurement probe 3A according to a modification of the present invention.
2A and 2B are a sectional view and a bottom view, respectively.

【図7】本発明の他の変更例に係る光散乱測定プローブ
3Bの断面図(a)および底面図(b)である。
FIG. 7 is a sectional view (a) and a bottom view (b) of a light scattering measurement probe 3B according to another modified example of the present invention.

【図8】光散乱測定プローブ3Bの使用方法を示す図で
ある。
FIG. 8 is a diagram showing a method of using a light scattering measurement probe 3B.

【符号の説明】[Explanation of symbols]

1 レーザ装置 2 レンズ 3,3A,3B 光散乱測定プローブ 4 入射用光ファイバ 5 セル 6 散乱光測定用光ファイバ 7 受光素子 31 胴部 32,32a,32b 先端部 33 チューブ 34,35 導光部 36,37 非球面中間レンズ 38 集光レンズ 39 透明ガラス板 41 吸収トラップ Reference Signs List 1 laser device 2 lens 3, 3A, 3B light scattering measurement probe 4 incidence optical fiber 5 cell 6 scattered light measurement optical fiber 7 light receiving element 31 body 32, 32a, 32b tip 33 tube 34, 35 light guide 36 , 37 Aspherical intermediate lens 38 Condensing lens 39 Transparent glass plate 41 Absorption trap

Claims (7)

【特許請求の範囲】[The claims] 【請求項1】試料に光を照射し、散乱体積内から散乱さ
れる光を検出することにより光散乱測定を行う光散乱測
定プローブであって、 光散乱測定プローブに、試料に照射する光を伝播するた
めの入射用光ファイバと、散乱光を集めて伝搬するため
の散乱光測定用光ファイバとを挿入し、 光散乱測定プローブ内において、両光ファイバの端面
に、光ファイバの光を平行にするための中間レンズをそ
れぞれ設置し、前記平行にされた各光を同一の集光点に
結ぶための単一の集光レンズを配置していることを特徴
とする光散乱測定プローブ。
1. A light scattering measurement probe for irradiating a sample with light and detecting light scattered from within a scattering volume to perform light scattering measurement. Insert the incident optical fiber for propagation and the scattered light measurement optical fiber for collecting and propagating the scattered light, and in the light scattering measurement probe, parallel the light of the optical fiber to the end faces of both optical fibers. A light scattering measurement probe, wherein an intermediate lens is provided for each of the first and second light sources, and a single light condensing lens for connecting each of the collimated lights to the same light condensing point is disposed.
【請求項2】前記集光レンズの集光点は、光散乱測定プ
ローブの開口面よりも外部に位置していることを特徴と
する請求項1記載の光散乱測定プローブ。
2. The light scattering measurement probe according to claim 1, wherein the light collection point of the light collection lens is located outside the opening surface of the light scattering measurement probe.
【請求項3】前記開口面に透明板を密閉して設置し、前
記集光レンズの集光位置は、前記透明板の外側に位置し
ていることを特徴とする請求項1記載の光散乱測定プロ
ーブ。
3. The light scattering device according to claim 1, wherein a transparent plate is hermetically mounted on the opening surface, and a light condensing position of the condenser lens is located outside the transparent plate. Measuring probe.
【請求項4】前記透明板は、集光レンズからの距離を変
化させることができるように、移動可能になっているこ
とを特徴とする請求項3記載の光散乱測定プローブ。
4. The light scattering measurement probe according to claim 3, wherein the transparent plate is movable so that a distance from the condenser lens can be changed.
【請求項5】前記入射用光ファイバから出て、前記透明
板に当たって反射する光を吸収する光吸収部材を設けて
いることを特徴とする請求項3記載の光散乱測定プロー
ブ。
5. The light scattering measurement probe according to claim 3, further comprising a light absorbing member that absorbs light that emerges from the incident optical fiber and strikes the transparent plate and is reflected.
【請求項6】前記透明板の、光の通らない部分を、不透
明色で処理していることを特徴とする請求項3記載の光
散乱測定プローブ。
6. The light scattering measurement probe according to claim 3, wherein a portion of the transparent plate through which light does not pass is treated with an opaque color.
【請求項7】前記光ファイバは、シングルモード光ファ
イバであることを特徴とする請求項1記載の光散乱測定
プローブ。
7. The light scattering measurement probe according to claim 1, wherein said optical fiber is a single mode optical fiber.
JP2001057202A 2001-03-01 2001-03-01 Light scattering measurement probe Expired - Lifetime JP4563600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057202A JP4563600B2 (en) 2001-03-01 2001-03-01 Light scattering measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001057202A JP4563600B2 (en) 2001-03-01 2001-03-01 Light scattering measurement probe

Publications (2)

Publication Number Publication Date
JP2002257706A true JP2002257706A (en) 2002-09-11
JP4563600B2 JP4563600B2 (en) 2010-10-13

Family

ID=18917117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057202A Expired - Lifetime JP4563600B2 (en) 2001-03-01 2001-03-01 Light scattering measurement probe

Country Status (1)

Country Link
JP (1) JP4563600B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109010A (en) * 2002-09-19 2004-04-08 Otsuka Denshi Co Ltd Scattered light measuring device
CN1329709C (en) * 2005-05-27 2007-08-01 哈尔滨工业大学 Double optical fiber coupling contact type micro measuring force aiming sensor
JP2008505324A (en) * 2004-07-02 2008-02-21 バイエル・ヘルスケア・エルエルシー Photoconductor inspection sensor used for determining an analyte in a fluid sample, and method for manufacturing the same
JP2012032308A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Light scattering intensity measuring method and dynamic light scattering measuring equipment
JP2013228391A (en) * 2012-04-24 2013-11-07 Pangang Group Steel Vanadium & Titanium Co Ltd Device for detecting hydrolysis of titanium oxysulfate in real time and control apparatus
JP2020020706A (en) * 2018-08-02 2020-02-06 株式会社島津製作所 Light scattering detection device
WO2024024242A1 (en) * 2022-07-29 2024-02-01 株式会社日立ハイテク Distance measuring device and distance measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315140A (en) * 1986-07-07 1988-01-22 Seiko Instr & Electronics Ltd Turbidity sensor
JPH02196943A (en) * 1989-01-26 1990-08-03 Hamamatsu Photonics Kk Sample cell for measuring microobject
JPH02245637A (en) * 1989-03-17 1990-10-01 Meidensha Corp Sludge densitometer
JPH04157339A (en) * 1990-10-20 1992-05-29 Toshiba Corp Particle diameter and velocity measuring instrument
JPH10508105A (en) * 1995-03-03 1998-08-04 ガリレオ エレクトロ−オプティクス コーポレーション Diffuse reflection probe
JPH1151843A (en) * 1997-06-15 1999-02-26 Alv Laser Vertriebs Gmbh Fiber detector for detecting scattering light or fluorescent light of suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315140A (en) * 1986-07-07 1988-01-22 Seiko Instr & Electronics Ltd Turbidity sensor
JPH02196943A (en) * 1989-01-26 1990-08-03 Hamamatsu Photonics Kk Sample cell for measuring microobject
JPH02245637A (en) * 1989-03-17 1990-10-01 Meidensha Corp Sludge densitometer
JPH04157339A (en) * 1990-10-20 1992-05-29 Toshiba Corp Particle diameter and velocity measuring instrument
JPH10508105A (en) * 1995-03-03 1998-08-04 ガリレオ エレクトロ−オプティクス コーポレーション Diffuse reflection probe
JPH1151843A (en) * 1997-06-15 1999-02-26 Alv Laser Vertriebs Gmbh Fiber detector for detecting scattering light or fluorescent light of suspension

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109010A (en) * 2002-09-19 2004-04-08 Otsuka Denshi Co Ltd Scattered light measuring device
JP2008505324A (en) * 2004-07-02 2008-02-21 バイエル・ヘルスケア・エルエルシー Photoconductor inspection sensor used for determining an analyte in a fluid sample, and method for manufacturing the same
JP2012145583A (en) * 2004-07-02 2012-08-02 Bayer Healthcare Llc Light guide inspection sensor to be used for determining test body in fluid sample, and method for manufacturing the same
US8383414B2 (en) 2004-07-02 2013-02-26 Bayer Healthcare Llc Methods of manufacturing a light guide test sensor
US8940237B2 (en) 2004-07-02 2015-01-27 Bayer Healthcare Llc Light guide test sensor
CN1329709C (en) * 2005-05-27 2007-08-01 哈尔滨工业大学 Double optical fiber coupling contact type micro measuring force aiming sensor
JP2012032308A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Light scattering intensity measuring method and dynamic light scattering measuring equipment
JP2013228391A (en) * 2012-04-24 2013-11-07 Pangang Group Steel Vanadium & Titanium Co Ltd Device for detecting hydrolysis of titanium oxysulfate in real time and control apparatus
JP2020020706A (en) * 2018-08-02 2020-02-06 株式会社島津製作所 Light scattering detection device
JP7187874B2 (en) 2018-08-02 2022-12-13 株式会社島津製作所 light scattering detector
WO2024024242A1 (en) * 2022-07-29 2024-02-01 株式会社日立ハイテク Distance measuring device and distance measuring method

Also Published As

Publication number Publication date
JP4563600B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US4197007A (en) Device for evaluating the light-transmitting characteristics of optical fibers
JP2009544015A (en) Compact catadioptric spectrometer
JP2007526468A (en) Optical measuring head
JP2007248063A (en) Photodetector
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
CN110146430A (en) A kind of flow cytometer optical system
JPH05340865A (en) Measuring instrument
US4124302A (en) Device for photometering a substance placed in a cylinder-shaped cell
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
JP2002257706A (en) Probe for measuring light scattering
US5008556A (en) Measuring a gap between a tube and a float
RU2327959C2 (en) Fiber optic indicator of fluid level
CN102692392A (en) Device for measuring gas and liquid refractive indexes
JP4565205B2 (en) Sample analysis element
CN110567934A (en) Raman test auxiliary adjustment coupling real-time imaging system and testing method based on micro-structure optical fiber
CA1177665A (en) Fibre index profilers
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
CN211206261U (en) Raman test auxiliary coupling adjustment real-time imaging system based on micro-structure optical fiber
CN108885168B (en) Detection system and signal enhancement device
JP7170954B1 (en) Particle measurement sensor
RU2460988C1 (en) Method of measuring particle size distribution in wide range of concentrations and apparatus for realising said method (versions)
WO2000031514A1 (en) Instrument for measuring light scattering
CN105319162A (en) Detecting head for trace liquid analysis and capable of eliminating stray light interference
RU2796797C2 (en) Fibre-optic method for determining the refractive coefficient of a transparent substance and a fibre-optical refractometric measuring converter implementing it
US7505151B2 (en) Arrangement for the optical distance determination of a reflecting surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term