JP2002256423A - Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor - Google Patents

Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor

Info

Publication number
JP2002256423A
JP2002256423A JP2001060045A JP2001060045A JP2002256423A JP 2002256423 A JP2002256423 A JP 2002256423A JP 2001060045 A JP2001060045 A JP 2001060045A JP 2001060045 A JP2001060045 A JP 2001060045A JP 2002256423 A JP2002256423 A JP 2002256423A
Authority
JP
Japan
Prior art keywords
target
film
molybdenum
indium
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001060045A
Other languages
Japanese (ja)
Inventor
Takayuki Abe
能之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001060045A priority Critical patent/JP2002256423A/en
Publication of JP2002256423A publication Critical patent/JP2002256423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a target for stably manufacturing a transparent electroconductive thin-film, of which the transmittance decreases very little in an infrared wavelength region, and which has an low resistance equal to that of a transparent electroconductive thin-film obtained by ITO based target, by a sputtering method with an adequate reproducibility. SOLUTION: This target is a sintered body consisting of indium and molybdenum, in which molybdenum exists at the rate of 0.003-0.20 by atomic ratio against indium, and of which the relative density of the sintered body is 90% or more. Preferably the molybdenum is substitutionally dissolved into indium sites of indium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池などに用
いられる低抵抗透明導電膜をスパッタリング法で製造す
る際に利用される焼結体スパッタリングターゲットに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered sputtering target used for producing a low-resistance transparent conductive film used for a solar cell or the like by a sputtering method.

【0002】[0002]

【従来の技術】透明導電膜は、高い導電性と可視光領域
での高い透過率とを有する。これは、太陽電池や液晶表
示素子、その他各種受光素子の電極などに利用されてい
る他、自動車や建築用の熱線反射膜、帯電防止膜、冷凍
ショーケースなどの各種の防曇用の透明発熱体としても
利用されている。
2. Description of the Related Art A transparent conductive film has high conductivity and high transmittance in a visible light region. It is used for electrodes of solar cells, liquid crystal display devices, and other light-receiving devices, as well as for transparent heat generation for various types of anti-fog such as heat ray reflective films, antistatic films, and freezer showcases for automobiles and buildings. It is also used as a body.

【0003】透明導電膜には、アンチモンやフッ素をド
ーパントとして含む酸化錫や、アルミニウムやガリウム
をドーパントとして含む酸化亜鉛や、錫をドーパントと
して含む酸化インジウムなどが広範に利用されている。
これらの中で、特に錫をドーパントとして含む酸化イン
ジウム膜、すなわち酸化インジウム−錫系膜はITO膜
と称され、特に低抵抗の膜となることが良く用いられて
いる。
As the transparent conductive film, tin oxide containing antimony or fluorine as a dopant, zinc oxide containing aluminum or gallium as a dopant, indium oxide containing tin as a dopant, and the like are widely used.
Among them, an indium oxide film containing tin as a dopant, that is, an indium oxide-tin film is particularly called an ITO film, and is often used as a film having a particularly low resistance.

【0004】これらの透明導電膜の製造方法としてはス
パッタリング法が良く用いられている。スパッタリング
法は、蒸気圧の低い材料の成膜や精密な膜厚制御を必要
とする際に有効な手法であり、操作が非常に簡便である
ためである。
As a method for producing these transparent conductive films, a sputtering method is often used. The sputtering method is an effective technique when film formation of a material having a low vapor pressure or precise film thickness control is required, and the operation is extremely simple.

【0005】スパッタリング法では成膜原料をターゲッ
トに成型して用いる。そして、一般に約10Pa以下の
ガス圧のもとで、被成膜材料を基板とし、この基板を陽
極とし、ターゲットを陰極とし、陽極と陰極との間にグ
ロー放電を起こしてアルゴンプラズマを発生させ、プラ
ズマ中で発生したアルゴン陽イオンを陰極のターゲット
に衝突させ、これによってはじきとばされるターゲット
成分の粒子を基板上に堆積させて膜を形成する。
[0005] In the sputtering method, a film-forming material is formed into a target and used. In general, under a gas pressure of about 10 Pa or less, a film-forming material is used as a substrate, this substrate is used as an anode, a target is used as a cathode, and a glow discharge is caused between the anode and the cathode to generate argon plasma. Then, argon cations generated in the plasma are made to collide with a cathode target, whereby particles of a target component to be repelled are deposited on a substrate to form a film.

【0006】スパッタリング法は、アルゴンプラズマの
発生方法で分類され、高周波プラズマを用いるものは高
周波スパッタリング法、直流プラズマを用いるものは直
流スパッタリング法と呼ばれる。また、ターゲットの裏
側にマグネットを配置してプラズマをターゲット直上に
集中させ、低ガス圧でもアルゴンイオンの発生効率を上
げて成膜する方法をマグネトロンスパッタ法という。通
常、上記の透明導電膜の製造法には直流マグネトロンス
パッタ法が採用されている。
[0006] Sputtering methods are classified according to the method of generating argon plasma. Those using high-frequency plasma are called high-frequency sputtering, and those using DC plasma are called DC sputtering. Also, a method of arranging a magnet on the back side of the target to concentrate plasma directly above the target and increasing the argon ion generation efficiency even at a low gas pressure to form a film is called a magnetron sputtering method. Normally, a direct current magnetron sputtering method is employed as a method for producing the above-mentioned transparent conductive film.

【0007】ところで、前記透明導電膜は低抵抗である
ものの、キャリア濃度が非常に高いため赤外波長領域で
の透過率が低い。これは赤外光がキャリア電子のプラズ
マ吸収により吸収されるためである。したがって、前記
の透明導電膜を太陽電池に用いた場合、赤外領域の光は
十分太陽電池セルに入射することができず、赤外領域の
光はエネルギーとして有効に利用されないことになる。
Although the transparent conductive film has a low resistance, it has a very high carrier concentration and thus has a low transmittance in the infrared wavelength region. This is because infrared light is absorbed by plasma absorption of carrier electrons. Therefore, when the above-mentioned transparent conductive film is used in a solar cell, light in the infrared region cannot sufficiently enter the solar cell, and light in the infrared region is not effectively used as energy.

【0008】こうした欠点を有さない各種の透明導電膜
の作製が試みられているが、スパッタリング法で安定に
良質の膜を作製できるターゲットが存在しないのが実状
である。
Although attempts have been made to produce various transparent conductive films that do not have these disadvantages, the reality is that there is no target capable of stably producing a high-quality film by a sputtering method.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、赤外
波長領域で透過率の低下が非常に少なく、しかもIn2
3−Sn系と同等の低抵抗値を有する透明導電膜をス
パッタリング法で再現性良く安定に製造できるターゲッ
トとを提供しようとするものである。
An object of the present invention is to provide a reduction in transmittance in the infrared wavelength region is very low, yet In 2
An object of the present invention is to provide a target capable of stably producing a transparent conductive film having a low resistance value equivalent to that of an O 3 -Sn-based material with good reproducibility by a sputtering method.

【0010】[0010]

【課題を解決するための手段】本発明に係わる透明導電
膜作製用焼結体ターゲットは、インジウムとモリブデン
と酸素とからなる焼結体であり、モリブデンがインジウ
ムに対して原子数比で0.003〜0.20の割合で存
在し、焼結体相対密度が90%以上のものである。そし
て、好ましくは、酸化インジウムのインジウムサイトに
モリブデンが置換固溶しているものである。
The sintered body target for producing a transparent conductive film according to the present invention is a sintered body composed of indium, molybdenum, and oxygen. It is present at a ratio of 003 to 0.20 and has a sintered body relative density of 90% or more. Preferably, molybdenum is substituted and dissolved in the indium site of indium oxide.

【0011】[0011]

【発明の実施の形態】モリブデンのインジウムに対する
原子数比の範囲を規定した理由は、Mo/Inの原子比
でモリブデンの存在比が0.003より少なくなると低
抵抗な膜が得られなくなり、また0.20より多くなる
と抵抗値が上昇し、赤外波長領域での透過率が減少して
しまうからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reason for defining the range of the atomic ratio of molybdenum to indium is that when the abundance ratio of molybdenum is less than 0.003 in the atomic ratio of Mo / In, a low-resistance film cannot be obtained. This is because if it exceeds 0.20, the resistance value increases and the transmittance in the infrared wavelength region decreases.

【0012】また、ターゲットの焼結体密度が低くなる
と、長時間スパッタリングした場合、エロージョン近傍
にノジュールと呼ばれる突起物が発生して成膜中にアー
キングが起きやすくなる。成膜中にアーキングが起きる
と得られる膜の質が悪化して低抵抗の膜とならない。ノ
ジュール、アーキングの生じやすさは焼結体の密度と密
接に関連があり、本発明の実施例、比較例より密度を9
0%以上にすることで効果的にノジュール、アーキング
を抑制できることがわかる。
Further, when the density of the sintered body of the target is low, when sputtering is performed for a long time, a projection called a nodule is generated in the vicinity of the erosion, and arcing easily occurs during film formation. If arcing occurs during film formation, the quality of the obtained film deteriorates and a low-resistance film is not obtained. The easiness of nodules and arcing is closely related to the density of the sintered body.
It is understood that nodule and arcing can be effectively suppressed by setting the content to 0% or more.

【0013】前記モリブデン元素がターゲット内に含ま
れる形態は、MoO3やMoO2などの酸化モリブデンの
形で酸化インジウム燒結体中に分散している形態でもよ
い。しかし、InMo46やIn2Mo312或いはIn
11Mo462などのインジウムとモリブデンの複合酸化
物の形態で酸化インジウム焼結体中に分散している形態
でもよい。好ましくは、モリブデン原子が酸化インジウ
ムのインジウムサイトに置換固溶してモリブデンが酸化
インジウム燒結体中に原子レベルで分散している方が、
スパッタリングにおいて放電も安定であり、低抵抗の膜
を得るためには有効である。
The form in which the molybdenum element is contained in the target may be a form in which the molybdenum oxide such as MoO 3 or MoO 2 is dispersed in the indium oxide sintered body. However, InMo 4 O 6 , In 2 Mo 3 O 12 or In
It may be in the form of a composite oxide of indium and molybdenum, such as 11 Mo 4 O 62 , dispersed in the indium oxide sintered body. Preferably, molybdenum atoms are substituted at indium sites of indium oxide and form a solid solution, and molybdenum is dispersed in the indium oxide sintered body at an atomic level.
Discharge is stable in sputtering, and it is effective to obtain a low-resistance film.

【0014】本発明に係わる焼結体ターゲットによれ
ば、酸化インジウムにモリブデンがMo/Inの原子比
で0.003〜0.20の割合にて添加されているた
め、スパッタリング法で得られる膜は従来のIn23
Sn系よりもキャリア濃度が少なく移動度の高い透明導
電膜、すなわち赤外領域での透過率が低下しないIn2
3−Sn系と同等の比抵抗を有する透明導電膜が得ら
れる。
According to the sintered target of the present invention, since molybdenum is added to indium oxide at a Mo / In atomic ratio of 0.003 to 0.20, a film obtained by a sputtering method is used. Is the conventional In 2 O 3
A transparent conductive film having a lower carrier concentration and a higher mobility than that of a Sn-based material, that is, In 2 which does not decrease in transmittance in the infrared region
A transparent conductive film having a specific resistance equivalent to that of the O 3 -Sn system can be obtained.

【0015】また、相対密度を90%以上とし、モリブ
デンが酸化インジウムのインジウムサイトに置換固溶し
た焼結体ターゲットを用いれば、安定して良質の透明導
電膜を製造することができる。
When a relative density is set to 90% or more and a sintered target in which molybdenum is substituted and dissolved in indium sites of indium oxide is used, a high-quality transparent conductive film can be stably manufactured.

【0016】[0016]

【実施例】以下、実施例によって本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0017】(実施例1〜8、比較例1〜3)表1に示
したモリブデン含有量が異なるいくつかのモリブデンを
含有する酸化インジウムの焼結体ターゲットを以下の手
順で製造した。
(Examples 1 to 8, Comparative Examples 1 to 3) Sintered targets of indium oxide containing several molybdenum oxides having different molybdenum contents shown in Table 1 were produced by the following procedure.

【0018】平均粒径が1μm以下のIn23粉末、及
び平均粒径が1μm以下のMoO3粉末を原料粉末とし
た。In23粉末とMoO3粉末を所定の割合で樹脂製
ポットに調合して入れ、湿式ボールミルで混合した。そ
の際、硬質ZrO2ボールを用い、混合時間を20時間
とした。混合スラリーを取り出し、濾過、乾燥、造粒し
た。造粒物を円形の型に充填し、冷間静水圧プレスを用
い、3ton/cm2の圧力を掛けて円盤状に成形し
た。
In 2 O 3 powder having an average particle size of 1 μm or less and MoO 3 powder having an average particle size of 1 μm or less were used as raw material powders. The In 2 O 3 powder and the MoO 3 powder were mixed at a predetermined ratio into a resin pot and mixed with a wet ball mill. At that time, a hard ZrO 2 ball was used, and the mixing time was 20 hours. The mixed slurry was taken out, filtered, dried and granulated. The granulated product was filled in a circular mold, and was formed into a disk shape by applying a pressure of 3 ton / cm 2 using a cold isostatic press.

【0019】次に、成形体を雰囲気調整炉に入れ、燒結
した。焼結に際して、炉内容積0.1m3当たり5リッ
トル/分の割合で炉内に酸素を導入しつつ、1500℃
で5時間燒結した。この際、1000℃まで1℃/分、
1000℃から1500℃までを3℃/分の昇音速度で
昇温した。焼結終了後、酸素の導入を停止し、1500
℃から1300℃までを10℃/分の割合で降温した。
そして、炉内容積0.1m3当たり10リットル/分の
割合でArを炉内に導入しつつ、1300℃で3時間保
持した後、放冷した。これにより密度90%以上のMo
を含有する焼結体を得た。
Next, the compact was placed in an atmosphere adjusting furnace and sintered. During sintering, 1500 ° C. while introducing oxygen into the furnace at a rate of 5 liters / minute per 0.1 m 3 of furnace volume.
For 5 hours. At this time, 1 ° C / min up to 1000 ° C,
The temperature was raised from 1000 ° C to 1500 ° C at a rate of 3 ° C / min. After sintering, the introduction of oxygen was stopped and
The temperature was lowered from 10 ° C. to 1300 ° C. at a rate of 10 ° C./min.
Then, the mixture was kept at 1300 ° C. for 3 hours while introducing Ar into the furnace at a rate of 10 liters / minute per 0.1 m 3 of the furnace inner volume, and then allowed to cool. As a result, Mo with a density of 90% or more
Was obtained.

【0020】次に、得た焼結体のスパッタ面とする面を
カップ砥石で磨き、直径152mm、厚み5mmに加工
してターゲットを得、これをIn系合金を用いてバッキ
ングプレートに貼り合わせ、直流マグネトロンスパッタ
装置に陽極として取り付け、ターゲットの対向面にガラ
ス基板を陰極として取り付けた。ターゲット表面と基板
表面との間隔を70mmとし、チャンバ1内の真空度が
1×10-4Pa以下に達した時点で、純度99.999
9重量%のArガスを導入してガス圧0.5Paに調節
し、直流電力300Wをターゲット基板間に投入して、
直流プラズマを発生させて、150℃にヒーター加熱し
た厚み1.1mmの#7059ガラス基板上に膜厚約500n
mの透明導電膜を形成した。
Next, the sputtered surface of the obtained sintered body was polished with a cup grindstone, processed to a diameter of 152 mm and a thickness of 5 mm to obtain a target, which was bonded to a backing plate using an In-based alloy. The anode was attached to a DC magnetron sputtering apparatus, and the glass substrate was attached to the opposite surface of the target as a cathode. When the distance between the target surface and the substrate surface is 70 mm, and the degree of vacuum in the chamber 1 reaches 1 × 10 −4 Pa or less, the purity is 99.999.
9 wt% of Ar gas was introduced to adjust the gas pressure to 0.5 Pa, and DC power of 300 W was applied between the target substrates.
A DC plasma is generated and a film thickness of about 500 n is formed on a 1.1 mm-thick # 7059 glass substrate heated to 150 ° C. by a heater.
m of the transparent conductive film was formed.

【0021】上記の製造条件で作製した透明導電膜の比
抵抗を四探針法で測定し、基板を含めた1000nmに
おける光透過率を分光光度計で測定した。なお使用した
#7059基板自体の1000nmにおける光透過率は92
%である。
The specific resistance of the transparent conductive film prepared under the above manufacturing conditions was measured by a four probe method, and the light transmittance at 1000 nm including the substrate was measured by a spectrophotometer. The light transmittance at 1000 nm of the used # 7059 substrate itself was 92%.
%.

【0022】また、ターゲットの結晶相を粉末X線回折
測定法で同定してターゲットのMo/Inの比率を求め
た。なお、用いたターゲットは何れも密度90%以上で
ある。その結果を表1に示す。
Further, the crystal phase of the target was identified by a powder X-ray diffraction measurement method, and the Mo / In ratio of the target was determined. Each of the targets used has a density of 90% or more. Table 1 shows the results.

【0023】 表1 ターゲット中の 膜の比抵抗 1000nmにおける 備 考 Mo/In原子比 光透過率(%) 0.002 7.0×10-4Ωcm 90 比較例1 0.003 3.5×10-4Ωcm 89 実施例1 0.006 3.3×10-4Ωcm 89 実施例2 0.01 3.0×10-4Ωcm 88 実施例3 0.05 2.2×10-4Ωcm 88 実施例4 0.10 2.1×10-4Ωcm 88 実施例5 0.13 2.2×10-4Ωcm 88 実施例6 0.15 2.5×10-4Ωcm 88 実施例7 0.20 3.1×10-4Ωcm 86 実施例8 0.22 5.7×10-4Ωcm 83 比較例2 0.25 7.2×10-4Ωcm 81 比較例3 表1から明らかなように本発明のMo/Inの原子比の
範囲、0.003〜0.20の範囲において2〜4×1
-4Ω・cmの低抵抗でかつ1000nmの波長に対し
て光透過率が高い透明導電膜が得られたことがわかる。
比較のために、従来広範に用いられているSnを添加し
たITOターゲット(10質量%のSnO2添加したも
の)を用いて同一のスパッタリング条件で膜を作製した
ところ、比抵抗は2.5×10-4Ωcmと低いものの、1
000nmにおける光透過率は61%であり、赤外光の
透過率が本発明と比べて大幅に低いといえる。
Table 1 Specific resistance of the film in the target at 1000 nm Remark Mo / In atomic ratio Light transmittance (%) 0.002 7.0 × 10 −4 Ωcm 90 Comparative Example 1 0.003 3.5 × 10 −4 Ωcm 89 Example 1 0.006 3.3 × 10 -4 Ωcm 89 Example 2 0.01 3.0 × 10 -4 Ωcm 88 Example 3 0.05 2.2 × 10 -4 Ωcm 88 Example 4 0.10 2.1 × 10 -4 Ωcm 88 Example 5 0.13 2.2 × 10 -4 Ωcm 88 Example 6 0.15 2.5 × 10 -4 Ωcm 88 Example 7 0.20 3.1 × 10 -4 Ωcm 86 Example 8 0.22 5.7 × 10 -4 Ωcm 83 Comparative example 2 0.25 7.2 × 10 -4 Ωcm 81 Comparative example 3 Table 1 As is clear from the above, in the range of the Mo / In atomic ratio of the present invention, in the range of 0.003 to 0.20, 2 to 4 × 1
It can be seen that a transparent conductive film having a low resistance of 0 −4 Ω · cm and a high light transmittance at a wavelength of 1000 nm was obtained.
For comparison, a film was produced under the same sputtering conditions using an ITO target to which Sn was widely used (to which SnO 2 was added at 10% by mass), which had been widely used in the past. Although low as 10 -4 Ωcm, 1
The light transmittance at 000 nm is 61%, which means that the transmittance of infrared light is significantly lower than that of the present invention.

【0024】(実施例9、10)本例では、ターゲット
中のモリブデン原子の含有形態により得られる膜の比抵
抗がどうか割るかということについて調べた。
(Examples 9 and 10) In this example, it was examined whether the specific resistance of a film obtained by the form of molybdenum atoms contained in a target could be divided.

【0025】密度が約95%でモリブデン/インジウム
原子比が0.10であり、MoがIn23のInサイト
に完全に置換固溶して均一に分散しているものと、Mo
がMoO3粒子の形態でIn23焼結体中に分散してい
る以外は前記と同じターゲットの二種類を用意した。こ
れらのターゲットを用いて上記の成膜条件を用いて試験
した結果を下表に示す。
A material having a density of about 95%, an atomic ratio of molybdenum / indium of 0.10, and Mo being completely substituted and solid-dissolved at the In site of In 2 O 3 ,
Were dispersed in the form of MoO 3 particles in the In 2 O 3 sintered body, and two types of the same targets were prepared. The following table shows the results of tests using these targets under the above-described film forming conditions.

【0026】 表2 Moの含有形態 比抵抗 備 考 Inサイトへの置換固溶 2.1×10-4Ωcm 実施例9 MoO3粒子として分散 3.5×10-4Ωcm 実施例10 同一の成膜条件で作製した膜の比抵抗は、Inサイトに
Moが置換固溶したターゲットの方が低抵抗であった。
また成膜時の投入パワーを上げていくと実施例10のタ
ーゲットではアーキングが発生し始めたことから、安定
に成膜できる条件の範囲がInサイトにMoが固溶した
実施例9のターゲットより狭いといえる。よって、実施
例のようにInサイトにMoが置換固溶したターゲットの
方が、得られる膜特性、成膜安定性の面で有利であり、
好ましい。
Table 2 Mo content form Specific resistance Remarks Substitution solid solution at In site 2.1 × 10 −4 Ωcm Example 9 Dispersed as MoO 3 particles 3.5 × 10 −4 Ωcm Example 10 Manufactured under the same film forming conditions The specific resistance of the resulting film was lower in the target in which Mo was substituted and dissolved in the In site.
When the input power during film formation was increased, arcing began to occur in the target of Example 10; therefore, the range of conditions under which the film could be formed stably was smaller than that of the target of Example 9 in which Mo was dissolved in the In site. It can be said that it is narrow. Therefore, the target in which Mo is substituted and dissolved in the In site as in the example is advantageous in terms of the obtained film characteristics and film formation stability,
preferable.

【0027】(実施例11〜15、比較例4〜7)次に
上記の製造法の中で燒結温度と時間を変えて種種の密度
を有する厚み5mmのターゲットを作製し、上述の条件
に従った直流プラズマを発生させて連続スパッタリング
を実施して、アーキングが多発(10回/分以上)しは
じめるときのエロージョン最大深さの違いを調べた。タ
ーゲットには上記の製造法で製造したMo/In原子比
で0.10の組成を有し、MoはInサイトに置換固溶
したものを使用した。
(Examples 11 to 15 and Comparative Examples 4 to 7) Next, in the above-mentioned production method, sintering temperatures and times were changed to produce 5 mm-thick targets having various densities, and according to the conditions described above. A continuous plasma was generated by generating a DC plasma, and the difference in the maximum erosion depth when arcing started to occur frequently (10 times / min or more) was examined. The target used had a composition of 0.10 in terms of the Mo / In atomic ratio produced by the above-mentioned production method, and Mo was substituted and dissolved in the In site.

【0028】 表3 ターゲット密度(%) アーキンク゛が多発し始めたときの 備 考 エローシ゛ョン最大深さ(mm) 70 1.2mmから発生 比較例4 82 2.2mmから発生 比較例5 86 3.6mmから発生 比較例6 88 4.1mmから発生 比較例7 90 最後まで未発生 実施例11 95 最後まで未発生 実施例12 97 最後まで未発生 実施例13 99 最後まで未発生 実施例14 99.8 最後まで未発生 実施例15 このようにターゲットの密度が高いと長時間のスパッタ
リングでもアーキングが発生し難い。よって、90%以
上の密度を有しなければならない。アーキングが多発し
始めたときにはターゲットエロージョン近傍にはノジュ
ールが大量に発生しており、そのような状態で作製して
得た膜の比抵抗は発生していないときに作製した膜と比
べてその質が大幅に悪化していた。
Table 3 Target density (%) Remarks when arcing begins to occur frequently Remarks Maximum depth of erosion (mm) 70 Generated from 1.2 mm Comparative example 4 Generated from 82 2.2 mm Comparative example 5 Generated from 86 3.6 mm Comparative example 6 88 Generated from 4.1 mm Comparative Example 7 90 Not generated to the end Example 11 95 Not generated to the end Example 12 97 Not generated to the end Example 13 99 Not generated to the end Example 14 99.8 Not generated to the end Example 15 This When the density of the target is high as described above, arcing hardly occurs even for a long time of sputtering. Therefore, it must have a density of 90% or more. When arcing began to occur frequently, a large amount of nodules was generated near the target erosion, and the specific resistance of the film produced in such a state was lower than that of the film produced when there was no occurrence. Was significantly worse.

【0029】[0029]

【発明の効果】以上詳述したように、本発明のターゲッ
トを使用すれば、従来のIn23−Sn 系と同等の低
抵抗値を有し、しかも赤外光の透過率が高い透明導電膜
を安定に提供でき、太陽電池の窓材などに有効に利用で
きるなどの効果を有する。
As described in detail above, when the target of the present invention is used, a transparent material having a low resistance value equivalent to that of the conventional In 2 O 3 —Sn system and having a high infrared light transmittance is obtained. The conductive film can be provided stably and has an effect that it can be effectively used as a window material of a solar cell.

フロントページの続き Fターム(参考) 4G030 AA23 AA34 BA03 BA15 GA11 GA27 GA28 4G048 AA03 AB05 AC04 AC06 AD02 AD06 4K029 BA45 BA50 BC09 BD00 DC05 DC09 5F103 AA08 BB22 DD28 HH04 LL13 PP11 5G323 BA02 BB05 Continued on front page F term (reference) 4G030 AA23 AA34 BA03 BA15 GA11 GA27 GA28 4G048 AA03 AB05 AC04 AC06 AD02 AD06 4K029 BA45 BA50 BC09 BD00 DC05 DC09 5F103 AA08 BB22 DD28 HH04 LL13 PP11 5G323 BA02 BB05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 インジウムとモリブデンと酸素とからな
る透明導電膜作成用焼結体であり、モリブデンがインジ
ウムに対して原子数比で0.003〜0.20の割合で
存在し、焼結体相対密度が90%以上であることを特徴
とする透明導電膜作製用焼結体ターゲット。
1. A sintered body for producing a transparent conductive film comprising indium, molybdenum and oxygen, wherein molybdenum is present in a ratio of 0.003 to 0.20 in atomic ratio with respect to indium. A sintered body target for producing a transparent conductive film, having a relative density of 90% or more.
【請求項2】 請求項1記載の焼結体ターゲットにおい
て、酸化インジウムのインジウムサイトにモリブデンが
置換固溶していることを特徴とする透明導電膜作製用焼
結体ターゲット。
2. The sintered body target for producing a transparent conductive film according to claim 1, wherein molybdenum is substituted and solid-solved in the indium site of indium oxide.
JP2001060045A 2001-03-05 2001-03-05 Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor Pending JP2002256423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060045A JP2002256423A (en) 2001-03-05 2001-03-05 Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060045A JP2002256423A (en) 2001-03-05 2001-03-05 Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002256423A true JP2002256423A (en) 2002-09-11

Family

ID=18919517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060045A Pending JP2002256423A (en) 2001-03-05 2001-03-05 Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002256423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510263A (en) * 2005-09-29 2009-03-12 ハー ツェー シュタルク インコーポレイテッド Sputtering target, low resistance transparent conductive coating, method for forming such coating and composition for use in the conductive coating
WO2020031410A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Oxide sputtering target and production method therefor, and oxide thin film formed using oxide sputtering target
US10903376B2 (en) 2012-08-09 2021-01-26 Sony Corporation Light receiving/emitting element, solar cell, optical sensor, light emitting diode, and surface emitting laser element
CN114591070A (en) * 2022-01-11 2022-06-07 先导薄膜材料有限公司 Preparation method of high-purity Mo-doped ITO target material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510263A (en) * 2005-09-29 2009-03-12 ハー ツェー シュタルク インコーポレイテッド Sputtering target, low resistance transparent conductive coating, method for forming such coating and composition for use in the conductive coating
US10903376B2 (en) 2012-08-09 2021-01-26 Sony Corporation Light receiving/emitting element, solar cell, optical sensor, light emitting diode, and surface emitting laser element
WO2020031410A1 (en) * 2018-08-09 2020-02-13 Jx金属株式会社 Oxide sputtering target and production method therefor, and oxide thin film formed using oxide sputtering target
CN111164233A (en) * 2018-08-09 2020-05-15 捷客斯金属株式会社 Oxide sputtering target, method for producing same, and oxide thin film formed using same
JPWO2020031410A1 (en) * 2018-08-09 2020-08-20 Jx金属株式会社 Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the oxide sputtering target
KR20210116686A (en) * 2018-08-09 2021-09-27 제이엑스금속주식회사 Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the sputtering target
KR102367663B1 (en) * 2018-08-09 2022-02-28 제이엑스금속주식회사 Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the sputtering target
CN111164233B (en) * 2018-08-09 2022-04-05 捷客斯金属株式会社 Oxide sputtering target, method for producing same, and oxide thin film formed using same
CN114591070A (en) * 2022-01-11 2022-06-07 先导薄膜材料有限公司 Preparation method of high-purity Mo-doped ITO target material
CN114591070B (en) * 2022-01-11 2023-04-04 先导薄膜材料有限公司 Preparation method of high-purity Mo-doped ITO target material

Similar Documents

Publication Publication Date Title
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
JP3906766B2 (en) Oxide sintered body
EP1947673B1 (en) Method of manufacturing an indium tin oxide target
JP2007277075A (en) Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
KR20080016698A (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
CN103717779A (en) Zn-sn-o type oxide sintered body and method for producing same
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JP2002275623A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
JP4175071B2 (en) Oxide sintered body and sputtering target
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
US20110163277A1 (en) Oxide sintered compact for preparing transparent conductive film
JP2002256423A (en) Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor
JP6064895B2 (en) Indium oxide-based oxide sintered body and method for producing the same
JP3775344B2 (en) Oxide sintered body
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JPH11302017A (en) Transparent electrically conductive film
JP4211558B2 (en) Sputtering target material, manufacturing method thereof, and manufacturing method of transparent conductive film using the same
JPH08218165A (en) Target for indium-tin oxide film
JP4234483B2 (en) ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
JPH03164461A (en) Sputtering target of sintered body of conductive zinc oxide and production thereof
JP4794757B2 (en) Sputtering target for forming a transparent electrode film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407