JP2002254132A - Hot forging and forming method for magnesium alloy member - Google Patents

Hot forging and forming method for magnesium alloy member

Info

Publication number
JP2002254132A
JP2002254132A JP2001107807A JP2001107807A JP2002254132A JP 2002254132 A JP2002254132 A JP 2002254132A JP 2001107807 A JP2001107807 A JP 2001107807A JP 2001107807 A JP2001107807 A JP 2001107807A JP 2002254132 A JP2002254132 A JP 2002254132A
Authority
JP
Japan
Prior art keywords
magnesium alloy
hot
forging
mold
hot forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001107807A
Other languages
Japanese (ja)
Inventor
Takashi Moriwaki
孝 森脇
Haruhiro Nakatsu
玄弘 中津
Yukio Honda
幸男 本田
Masahiro Nogawa
雅弘 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKUSUI FORGING CO OP
KIKUSUI FORGING CO-OP
Original Assignee
KIKUSUI FORGING CO OP
KIKUSUI FORGING CO-OP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKUSUI FORGING CO OP, KIKUSUI FORGING CO-OP filed Critical KIKUSUI FORGING CO OP
Priority to JP2001107807A priority Critical patent/JP2002254132A/en
Publication of JP2002254132A publication Critical patent/JP2002254132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot forging and forming method for a magnesium alloy member by which breaking or cracking is hard to be caused. SOLUTION: The hot forging and forming method for magnesium alloy members characterized by the feature that magnesium alloy materials obtained by hot extruding and hot forming are contained by the dies 1, 2 and are pressed at a speed of substantially 200 mm/second or more so that forging and forming are executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マグネシウム合金
部材の熱間鍛造成形方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for hot forging a magnesium alloy member.

【0002】[0002]

【従来の技術】鍛造による塑性加工は、輸送用機械を始
め、様々な分野の強度部材に使用され、鉄系、非鉄系を
問わず、多様な工法が開発されている。非鉄系材料の中
でもアルミニウム系は、温暖化防止のための車輌の省燃
費化、軽量化の要求もあり、車輌部品等を中心に需要が
拡大しつつある。
2. Description of the Related Art Plastic working by forging is used for strength members in various fields including transport machines, and various construction methods have been developed irrespective of ferrous or non-ferrous. Among non-ferrous materials, aluminum-based materials are also required to reduce fuel consumption and reduce the weight of vehicles in order to prevent global warming, and the demand is increasing mainly for vehicle parts.

【0003】一方、マグネシウムはアルミニウムの略2
/3の比重であり、実用金属中最軽量であるにもかかわ
らず、素材が高価であることに加えて、取り扱いが難し
いため、マグネシウム合金による鍛造品は、軍需用の航
空機や競争用車輌の大型部品等で一部採用されている程
度で、市場への浸透が遅れている。しかし、ダイキャス
ト法、チクソモールド法によるマグネシウム合金の鋳造
品が、いわゆるIT(Information Tec
hnology)機器の発展とともに、近年、構造材等
に徐々に採用されるようになっている。
[0003] On the other hand, magnesium is approximately 2 of aluminum.
/ 3, and although it is the lightest among practical metals, the material is expensive and difficult to handle, so forged parts made of magnesium alloy are not suitable for military aircraft and competitive vehicles It is only partially used in large parts, etc., and its penetration into the market is slow. However, a magnesium alloy casting by a die casting method or a thixomolding method is called IT (Information Tec).
In recent years, with the development of hnology devices, they have been gradually adopted as structural materials and the like.

【0004】以下、従来のマグネシウム合金を用いた鍛
造法を説明すると、素材としては、例えば、直径が略1
80乃至300mm程度の大径の連続鋳造材を使用し、
熱風循環式雰囲気炉等で素材を略290乃至400℃程
度に加熱した上で金型間に拘束し、略6000乃至10
000t(トン)程度の加圧力を有する大型の液圧プレ
スを用いて略200mm/秒未満の速度で鍛造成形す
る。
[0004] A conventional forging method using a magnesium alloy will be described below.
Using a large diameter continuous cast material of about 80 to 300 mm,
The material is heated to about 290 to 400 ° C. in a hot-air circulation type atmosphere furnace or the like, and then constrained between the molds.
Forging is performed at a speed of less than approximately 200 mm / sec using a large hydraulic press having a pressing force of about 000 t (ton).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のマグ
ネシウム合金を用いた鍛造法では、鍛造時のプレス速度
が略200mm/秒未満と低速であるから、生産性が悪
いという問題がある。一方、生産性を高めるために、鍛
造時のプレス速度を上昇させると、鍛造品に割れや亀裂
が生じやすくなる。
However, in the forging method using the magnesium alloy described above, there is a problem that productivity is poor because the pressing speed at the time of forging is as low as less than approximately 200 mm / sec. On the other hand, if the press speed at the time of forging is increased in order to increase productivity, cracks and cracks are likely to occur in the forged product.

【0006】プレス速度を高速にすると割れ等が発生し
やすい理由としては、(1)マグネシウム合金は熱伝導
性が極めて良好であるため、鍛造時に接触する治工具や
金型に容易に熱を吸収され、素材温度が再結晶温度以下
になること、(2)マグネシウム合金は最密六方格子の
結晶構造を有し、他の結晶構造よりすべり系が少ないこ
と、等が考えられる。
The reasons why cracks and the like are likely to occur when the press speed is increased are as follows: (1) Magnesium alloy easily absorbs heat to jigs and tools that come into contact during forging because magnesium alloy has extremely good thermal conductivity. It is considered that the raw material temperature is lower than the recrystallization temperature, and (2) the magnesium alloy has a close-packed hexagonal lattice crystal structure and has less slip system than other crystal structures.

【0007】上記(1)については、金型をマグネシウ
ム合金素材の加熱温度近傍まで予熱するとともに、鍛造
中にその温度を維持することにより、ある程度対応が可
能であるが、そのための金型の予熱等が必要となり、煩
雑である。また、金型の予熱等を行っても上記(2)に
は対応できないため、従来はマグネシウム合金の鍛造品
の割れや亀裂を防止しつつ生産性を向上させることは困
難であった。
[0007] The above (1) can be dealt with to some extent by preheating the mold to near the heating temperature of the magnesium alloy material and maintaining the temperature during forging. And so on, which is complicated. In addition, since it is not possible to cope with the above (2) even if the die is preheated, it has conventionally been difficult to improve the productivity while preventing cracks and cracks in the forged magnesium alloy.

【0008】例えば、従来、上下の金型を開放した状態
で、素材高さの40%以上を熱間(略280乃至380
℃)にて据込鍛造を行った場合、通常、上記(2)の理
由により鍛造品に割れが発生していた。
For example, conventionally, when the upper and lower molds are opened, 40% or more of the material height is hot (about 280 to 380).
° C), cracks usually occurred in the forged product due to the reason (2) above.

【0009】[0009]

【課題を解決するための手段】本発明は前記の課題を解
決するため、割れや亀裂を防止しつつ生産性を向上させ
ることのできるマグネシウム合金部材の熱間鍛造成形方
法を提供することを目的とする。そのため、本発明の請
求項1のマグネシウム合金部材の熱間鍛造成形方法は、
熱間押出し成形したマグネシウム合金素材を金型により
拘束し、略200mm/秒以上の速度でプレスして熱間
鍛造成形することを特徴とするものである。上記のプレ
ス速度は、より好ましくは、略700mm/秒以上とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for hot forging a magnesium alloy member which can improve productivity while preventing cracks and cracks. And Therefore, the hot forging method of the magnesium alloy member according to claim 1 of the present invention includes:
The method is characterized in that a hot-extruded magnesium alloy material is constrained by a mold and pressed at a speed of about 200 mm / sec or more to perform hot forging. The above-mentioned press speed is more preferably about 700 mm / sec or more.

【0010】上記の熱間押出し成形したマグネシウム合
金素材は、従来使用している連続鋳造したのみのマグネ
シウム合金素材に比べて素材の結晶粒径がより微細なも
のであるが、結晶粒径が略50μm以下となるように熱
間押出し成形したマグネシウム合金素材を用いることが
特に好ましい。
The above-mentioned hot-extruded magnesium alloy material has a finer crystal grain size than the conventionally used magnesium alloy material that has only been continuously cast. It is particularly preferable to use a magnesium alloy material that is hot-extruded to have a thickness of 50 μm or less.

【0011】請求項2のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1の方法において、上記熱間押出
し成形したマグネシウム合金素材に溶体化処理を施した
後、熱間鍛造成形することを特徴とするものである。
The hot forging method of a magnesium alloy member according to a second aspect is the method of the first aspect, wherein the hot extruded magnesium alloy material is subjected to a solution treatment and then hot forged. It is a feature.

【0012】請求項3のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1又は2の方法において、上記金
型は密閉型、又はフラッシュランドの厚さ寸法を鍛造す
べきマグネシウム合金部材の厚さ寸法の略1乃至5%と
した開放型であることを特徴とするものである。
The hot forging method of a magnesium alloy member according to a third aspect of the present invention is the method according to the first or second aspect, wherein the mold is a closed mold or the thickness of the magnesium alloy member to be forged with a flash land thickness. It is characterized in that it is an open type in which the length is approximately 1 to 5%.

【0013】請求項4のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1乃至3のいずれかの方法におい
て、上記熱間鍛造成形後、時効処理を施すことを特徴と
している。
According to a fourth aspect of the present invention, there is provided a method for hot forging a magnesium alloy member according to any one of the first to third aspects, wherein an aging treatment is performed after the hot forging.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。マグネシウム合金部材の熱間鍛造
成形に際しては、図1のフローチャートに示すように、
まず、連続鋳造法により、直径が略150乃至700m
m程度のマグネシウム合金のビレットを作成する(S
1)。
Embodiments of the present invention will be described below with reference to the drawings. At the time of hot forging of a magnesium alloy member, as shown in the flowchart of FIG.
First, the diameter is approximately 150 to 700 m by the continuous casting method.
m of magnesium alloy billet (S
1).

【0015】次に、上記ビレットを熱間押出し成形し、
直径が略25乃至90mm程度で、かつ所定長さのマグ
ネシウム合金素材を形成する(S2)。素材の直径及び
長さは製造すべき鍛造品の形状、サイズ等に応じて決定
する。
Next, the above billet is subjected to hot extrusion molding,
A magnesium alloy material having a diameter of about 25 to 90 mm and a predetermined length is formed (S2). The diameter and length of the material are determined according to the shape and size of the forged product to be manufactured.

【0016】マグネシウム合金素材として熱間押出し成
形したものを用いると、結晶粒径が微細になるため、鍛
造時の成形性が良好になる。上記マグネシウム合金素材
は、結晶粒径が略50μm以下となるように熱間押出し
成形したものを用いることが成形性を高める上で特に好
適である。
When a magnesium alloy material that has been hot extruded is used, the crystal grain size becomes fine, so that the formability during forging is improved. It is particularly preferable to use the magnesium alloy material that has been hot extruded so as to have a crystal grain size of about 50 μm or less in order to enhance the formability.

【0017】上記マグネシウム合金素材に対して、次
に、溶体化処理(JIS(日本工業規格)によるT4処
理)を実施する(S3)。具体的には、素材を略390
乃至410℃で略2乃至5時間程度加熱する。このよう
に、熱間鍛造成形前に溶体化処理を施すことにより、鍛
造時の塑性流動が促され、成形性を一層向上させること
ができる。
Next, the magnesium alloy material is subjected to a solution treatment (T4 treatment according to JIS (Japanese Industrial Standards)) (S3). Specifically, the material is approximately 390
Heat at about 410 ° C. for about 2 to 5 hours. As described above, by performing the solution treatment before hot forging, plastic flow during forging is promoted, and formability can be further improved.

【0018】続いて、図2に示すように、例えば、上型
1と下型2からなる金型間に溶体化処理済みの図示しな
いマグネシウム合金素材を拘束し、不図示のメカニカル
プレスにより略200乃至1000mm/秒程度の高速
でプレスすることにより、素材を熱間鍛造成形する(S
4)。生産性の大幅向上の観点から、上記プレス速度
は、通常略700乃至1000mm/秒程度の速度とす
る。
Then, as shown in FIG. 2, for example, a solution-treated magnesium alloy material (not shown) is constrained between dies composed of an upper mold 1 and a lower mold 2 and approximately 200 mm by a mechanical press (not shown). The material is hot forged by pressing at a high speed of about 1000 mm / sec (S
4). From the viewpoint of greatly improving the productivity, the above pressing speed is usually set to approximately 700 to 1000 mm / sec.

【0019】また、このように、プレス速度を高速化し
た上で、後述のように、拘束性の高い金型を使用するこ
とにより、鍛造品の割れや亀裂を減少させることができ
るが、これは、鍛造時に金型内のマグネシウム合金素材
に瞬時に高圧の内部応力が発生し、素材が部分的に溶融
状態となるためであると推測される。
Further, as described later, by using a mold having high restraint after the press speed is increased, cracks and cracks of the forged product can be reduced. It is presumed that the reason for this is that a high-pressure internal stress is instantaneously generated in the magnesium alloy material in the mold during forging, and the material is partially melted.

【0020】上記熱間鍛造成形に際して、マグネシウム
合金素材は熱風循環雰囲気炉等で略280乃至380℃
程度に加熱しておく。鍛造品の肉厚が大きい場合、金型
の予熱は不要であるが、鍛造品が薄物である場合、素材
の熱が金型等に吸収され、鍛造品の亀裂等を誘発するお
それがあるため、金型を略150乃至250℃程度に予
熱することが好ましい。
At the time of the hot forging, the magnesium alloy material is heated at about 280 to 380 ° C. in a hot air circulating atmosphere furnace or the like.
Heat to about. If the thickness of the forged product is large, preheating of the die is not necessary, but if the forged product is thin, the heat of the material is absorbed by the die, etc., which may cause cracking of the forged product. Preferably, the mold is preheated to about 150 to 250 ° C.

【0021】金型は、図2のように、プレス完了時に上
型1と下型2が密着する密閉型でも、図3のように、プ
レス完了時に上型1と下型2との間にフラッシュランド
3が形成される開放型のいずれでもよく、製品形状に応
じて、いずれかのタイプを選択すればよい。また、金型
形状も鍛造品の形状に応じて適宜に決定できる。
As shown in FIG. 2, the mold is a closed mold in which the upper mold 1 and the lower mold 2 are in close contact with each other when the press is completed. An open type in which the flash land 3 is formed may be used, and any type may be selected according to the product shape. Also, the shape of the mold can be appropriately determined according to the shape of the forged product.

【0022】なお、フラッシュランド3の厚み寸法tが
大きくなり過ぎると、鍛造時に予肉(マグネシウム合金
素材の一部)が金型外へ流出し、金型内の素材の内部応
力が十分に上昇せず、従って、素材温度も十分に上昇し
ないため、プレス時に上記した素材の溶融化が生じにく
く、鍛造品に割れ等が発生しやすくなる。このような不
具合を防止するため、フラッシュランド3の厚み寸法t
は、鍛造品の厚み寸法の略1乃至5%程度とすることが
好適である。
If the thickness t of the flash land 3 becomes too large, the pre-thickness (part of the magnesium alloy material) flows out of the mold during forging, and the internal stress of the material in the mold is sufficiently increased. Therefore, the temperature of the material does not rise sufficiently, so that the material is hardly melted at the time of pressing, and cracks and the like are easily generated in the forged product. In order to prevent such a problem, the thickness t of the flash land 3 is set.
Is preferably about 1 to 5% of the thickness of the forged product.

【0023】また、図2及び図3には、単一の金型によ
るプレスで鍛造を完了する単式型を示したが、これ以外
に、寸法が互いに異なり、かつ略相似形の複数の金型で
順次プレスする複数型を用いることもできる。上記金型
の表面は、Ra(平均粗さ)が略0.2μm程度の表面
粗さとし、鏡面状態とすることが好ましい。なお、通
常、金型の潤滑は不要である。
FIG. 2 and FIG. 3 show a single mold in which forging is completed by pressing with a single mold. In addition, a plurality of molds having different dimensions and substantially similar shapes are shown. A plurality of dies that are sequentially pressed can also be used. It is preferable that the surface of the mold has a surface roughness of about 0.2 μm in Ra (average roughness) and is in a mirror surface state. Normally, lubrication of the mold is unnecessary.

【0024】熱間鍛造成形後に、鍛造品に時効処理(J
ISにおけるT5処理)を施す(S5)。具体的には、
例えば、略170乃至180℃で略10乃至15時間程
度加熱する。これは、鍛造品の強度特性のばらつきを抑
制し、安定した品質、強度を付与するためである。
After hot forging, aging treatment (J
(T5 processing in IS) is performed (S5). In particular,
For example, heating is performed at approximately 170 to 180 ° C. for approximately 10 to 15 hours. This is for suppressing variation in the strength characteristics of the forged product and providing stable quality and strength.

【0025】本発明による熱間鍛造成形方法の対象とす
るマグネシウム合金としては、従来から鍛造が比較的容
易とされているZK系(Mg−Zn−Zr)のマグネシ
ウム合金等の他に、従来、鍛造が困難とされているAZ
系(Mg−Al−Zn)のマグネシウム合金等も含むこ
とができる。
As the magnesium alloy to be subjected to the hot forging method according to the present invention, in addition to a ZK-based (Mg-Zn-Zr) magnesium alloy and the like which have been relatively easily forged, AZ is difficult to forge
A system (Mg-Al-Zn) magnesium alloy can also be included.

【0026】すなわち、本発明法により、割れや亀裂等
を抑制しながら高速での鍛造が可能となるAZ系のマグ
ネシウム合金は、具体的には、例えば、ASTM(Am
erican Society of Testing
and Material)のAZ31乃至AZ80
等に規定されたマグネシウム合金であり、その化学組成
は、Alの含有量が略2.5乃至9.2重量%程度、Z
nの含有量が略0.2乃至1.4重量%、Mnの含有量
が略0.2乃至0.4重量%程度である。
That is, according to the method of the present invention, an AZ-based magnesium alloy capable of forging at a high speed while suppressing cracks and cracks is specifically, for example, ASTM (Am
eric Society of Testing
and Material) AZ31 to AZ80
Etc., whose chemical composition is such that the Al content is approximately 2.5 to 9.2% by weight,
The content of n is about 0.2 to 1.4% by weight, and the content of Mn is about 0.2 to 0.4% by weight.

【0027】本発明法により製造されるマグネシウム合
金部材としては、車輌部品を始め、軽量で高強度を要求
される部材、また、高減衰能を生かした耐震部材等が挙
げられる。更に、マグネシウム合金はリサイクル性が良
好であることと、軽量であるため、環境対応型の商品へ
の応用が期待できる。
Examples of the magnesium alloy member manufactured by the method of the present invention include a vehicle part, a member requiring light weight and high strength, and a seismic member utilizing high damping ability. Further, since magnesium alloy has good recyclability and is lightweight, it can be expected to be applied to environmentally friendly products.

【0028】本発明者は、メカニカルプレスを用いて高
速で熱間鍛造成形することに加えて、熱間鍛造成形前に
係る溶体化処理を行うことにより、鍛造品の品質を一層
向上させることができることを実証するために、図1の
フローチャートのように熱間鍛造成形前に溶体化処理を
行った場合(以下の実施例1)と、熱間鍛造成形後に溶
体化処理を行った場合(実施例2)の各々について、素
材から鍛造後の熱処理に至る各段階におけるマグネシウ
ム合金の組織を比較観察した。その結果を以下に示す。
The present inventor can further improve the quality of a forged product by performing a solution treatment before hot forging in addition to hot forging at a high speed using a mechanical press. In order to prove that it is possible, a solution treatment was performed before hot forging as shown in the flowchart of FIG. 1 (Example 1 below), and a solution treatment was performed after hot forging (implementation) For each of Example 2), the structure of the magnesium alloy at each stage from the raw material to the heat treatment after forging was compared and observed. The results are shown below.

【0029】(実施例1)実施例1は、上記実施の形態
通りの手順でAZ系のマグネシウム合金部材を製造した
例である。図4中(a)(b)は各々熱間押出し成形し
たASTMのAZ80からなる素材(直径70mm)の
流線方向(つまり、押出し方向)及び断面方向(押出し
素材の断面方向)に切断した切断面の組織を顕微鏡で1
00倍に拡大した図面代用写真である。なお、同図中
(a)(b)に限らず、図面代用写真は、全て100倍
に拡大したものである。
Example 1 Example 1 is an example in which an AZ-based magnesium alloy member was manufactured by the procedure as in the above embodiment. 4 (a) and 4 (b) are cuts of a material (diameter 70mm) made of hot-extruded ASTM AZ80 cut in the streamline direction (that is, the extrusion direction) and the cross-sectional direction (the cross-sectional direction of the extruded material). Microstructure of the surface 1
It is a drawing substitute photograph magnified by 00 times. In addition, not only (a) and (b) in the figure, but all of the drawing substitute photographs are enlarged 100 times.

【0030】図4中(c)(d)は各々同図中(a)
(b)の素材を400℃で5時間加熱して溶体化処理
(JISのT4処理)を施した後の流線方向及び断面方
向における切断面の組織を示している。更に、図4中
(e)(f)は各々同図中(c)(d)の素材をメカニ
カルプレスを用いて高速でプレスして鍛造した後の流線
方向及び断面方向における切断面の組織を示している。
FIGS. 4 (c) and 4 (d) respectively show (a) in FIG.
The texture of the cut surface in the streamline direction and the cross-sectional direction after the material of (b) is heated at 400 ° C. for 5 hours and subjected to a solution treatment (T4 treatment of JIS) is shown. Further, (e) and (f) in FIG. 4 show the structure of the cut surface in the streamline direction and the cross-sectional direction after forging the material of (c) and (d) in the same figure at a high speed using a mechanical press, respectively. Is shown.

【0031】図4中(g)(h)は各々同図中(e)
(f)の鍛造品を175℃で15時間加熱して時効処理
(JISのT5処理)を施した後の流線方向及び断面方
向における切断面の組織を示している。図4中(g)
(h)から明らかなように、鍛造前に溶体化処理を施す
ことにより、時効処理後の鍛造品は極めて微細な組織を
有している。
(G) and (h) in FIG. 4 are (e) in FIG.
The structure of the cut surface in the streamline direction and the cross-sectional direction after aging treatment (T5 treatment of JIS) by heating the forged product of (f) at 175 ° C. for 15 hours is shown. (G) in FIG.
As apparent from (h), by performing the solution treatment before forging, the forged product after the aging treatment has an extremely fine structure.

【0032】(実施例2)実施例2は、本発明範囲には
含まれるが、上記実施の形態とは異なる手順でマグネシ
ウム合金部材を製造した例である。ここでは、図4中
(a)(b)に示したのと同一の押出し素材を用い、こ
の押出し素材に、まずメカニカルプレスを用いて高速で
熱間鍛造成形を施し、図5中(a)(b)に示すような
流線方向及び断面方向における切断面の組織を有する鍛
造品を得た。この鍛造品に対し、順次溶体化処理及び時
効処理の2種類の熱処理を施した。溶体化処理及び時効
処理の条件は実施例1と同一であった。
(Example 2) Example 2 is an example in which a magnesium alloy member is manufactured by a procedure different from that of the above embodiment, although it is included in the scope of the present invention. Here, the same extruded material as shown in (a) and (b) in FIG. 4 was used, and this extruded material was first subjected to hot forging at a high speed using a mechanical press. A forged product having the structure of the cut surface in the streamline direction and the cross-sectional direction as shown in (b) was obtained. This forged product was sequentially subjected to two types of heat treatment, a solution treatment and an aging treatment. The conditions for the solution treatment and the aging treatment were the same as in Example 1.

【0033】図5中(c)(d)は、実施例2における
溶体化処理後の鍛造品の流線方向及び断面方向における
切断面の組織を示し、同図中(e)(f)は時効処理後
の鍛造品の流線方向及び断面方向における切断面の組織
を示している。同図中(e)(f)から明らかなよう
に、鍛造後に溶体化処理を施した場合は、上記実施例1
と比べて、鍛造品の組織が粗くなっている。
(C) and (d) in FIG. 5 show the structure of the cut surface in the streamline direction and the cross-sectional direction of the forged product after the solution treatment in Example 2, and (e) and (f) in FIG. 2 shows a structure of a cut surface in a streamline direction and a cross-sectional direction of a forged product after an aging treatment. As is clear from (e) and (f) in the figure, when the solution treatment was performed after the forging, the first embodiment was used.
Compared with, the structure of the forged product is coarse.

【0034】[0034]

【発明の効果】本発明の請求項1のマグネシウム合金部
材の熱間鍛造成形方法は、熱間押出し成形したマグネシ
ウム合金素材を金型により拘束し、略200mm/秒以
上の速度、つまり、従来より高速でプレスして熱間鍛造
成形するものであるから、鍛造による生産性を従来より
向上させることができる。プレス速度を本発明の好適な
範囲である略700mm/秒以上の速度とした場合、生
産性は従来より大幅に向上する。なお、マグネシウム合
金素材として、熱間押出し成形した結晶粒径が微細なも
のを使用したので、鍛造時における成形性がよくなる結
果、鍛造時のプレス速度を上昇させても鍛造品の割れや
亀裂が一層生じにくくなる。
According to the hot forging method of a magnesium alloy member according to the first aspect of the present invention, a hot-extruded magnesium alloy material is constrained by a mold, and a speed of about 200 mm / sec or more, that is, a conventional method. Since hot forging is performed by pressing at a high speed, productivity by forging can be improved as compared with the related art. When the pressing speed is set to a speed of approximately 700 mm / sec or more, which is a preferable range of the present invention, the productivity is greatly improved as compared with the related art. As a magnesium alloy material, a hot extruded material with a fine crystal grain size was used, so that the formability at the time of forging was improved. It is even less likely to occur.

【0035】請求項2のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1の方法において、上記熱間押出
し成形したマグネシウム合金素材に溶体化処理を施した
後、熱間鍛造成形するものであり、上記の溶体化処理に
より、マグネシウム合金素材の鍛造時の成形性が一層良
好になる結果、プレス速度の高速化に伴う鍛造品の割れ
や亀裂が更に生じにくくなる。
A hot forging method of a magnesium alloy member according to a second aspect is the method according to the first aspect, wherein the hot extruded magnesium alloy material is subjected to a solution treatment and then hot forged. In addition, as a result of the above solution treatment, the formability of the magnesium alloy material at the time of forging is further improved, so that the forged product is less likely to crack or crack due to the increase in the pressing speed.

【0036】請求項3のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1又は2の方法において、上記金
型は密閉型、又はフラッシュランドの厚さ寸法を鍛造す
べきマグネシウム合金部材の厚さ寸法の略1乃至5%と
した開放型であり、このように金型を密閉型又はフラッ
シュランドの厚さ方向寸法の比較的小さい開放型とする
と、鍛造品の割れや亀裂が一層生じにくくなる。
The hot forging method of a magnesium alloy member according to a third aspect of the present invention is the method according to the first or second aspect, wherein the mold is a closed mold or the thickness of the magnesium alloy member to be forged to have a flash land thickness dimension. The open mold has a size of about 1 to 5% of the size. When the mold is a closed mold or an open mold having a relatively small size in the thickness direction of the flash land, cracks and cracks in the forged product are less likely to occur. Become.

【0037】その理由は完全には解明されていないが、
上記のような拘束性の高い金型を使用した上で、マグネ
シウム合金素材を略200mm/秒以上の高速でプレス
すると、プレス時に金型内のマグネシウム合金素材に瞬
時に高圧の内部応力が発生し、素材内部の粒子間摩擦に
より、略430℃付近のマグネシウム合金の溶融開始点
を超え、素材内部が部分的に溶融状態になるためである
と推測される。
Although the reason has not been completely elucidated,
When a magnesium alloy material is pressed at a high speed of approximately 200 mm / sec or more after using a highly restrictive mold as described above, a high-pressure internal stress is instantaneously generated in the magnesium alloy material in the mold at the time of pressing. It is presumed that this is because the melting start point of the magnesium alloy at about 430 ° C. is exceeded due to friction between particles inside the material, and the inside of the material is partially melted.

【0038】また、上記のように、高速プレスにより、
金型内の素材が加熱されるため、鍛造前に金型を予熱す
る必要性が減少する結果、工程の単純化を図ることがで
きる。これに対し、フラッシュランドの厚さ方向寸法の
比較的大きい開放型を用いた場合、プレス時における素
材の内部応力が不足するため、素材の溶融状態が生じに
くくなり、鍛造品の割れや亀裂が発生しやすくなる。
Further, as described above, by the high-speed press,
Since the material in the mold is heated, the necessity of preheating the mold before forging is reduced, so that the process can be simplified. On the other hand, when using an open die with a relatively large size in the thickness direction of the flash land, the internal stress of the material at the time of pressing is insufficient. More likely to occur.

【0039】請求項4のマグネシウム合金部材の熱間鍛
造成形方法は、請求項1乃至3のいずれかの方法におい
て、上記熱間鍛造成形後、時効処理を施すものであり、
係る時効処理により、鍛造品の強度特性のばらつきを抑
制し、安定した品質及び強度を保証できる。
A hot forging method of a magnesium alloy member according to a fourth aspect is the method according to any one of the first to third aspects, wherein an aging treatment is performed after the hot forging.
By such aging treatment, variation in the strength characteristics of the forged product can be suppressed, and stable quality and strength can be guaranteed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるマグネシウム合金
の熱間鍛造成形手順を示すフローチャート。
FIG. 1 is a flowchart showing a procedure for hot forging of a magnesium alloy according to an embodiment of the present invention.

【図2】上記鍛造に使用する金型の一例を示す概略部分
断面図。
FIG. 2 is a schematic partial sectional view showing an example of a mold used for the forging.

【図3】上記鍛造に使用する金型の他の一例を示す概略
部分断面図。。
FIG. 3 is a schematic partial cross-sectional view showing another example of a mold used for the forging. .

【図4】上記実施の形態の手順で鍛造した場合のマグネ
シウム合金の表面組織を示す図面代用写真。
FIG. 4 is a drawing substitute photograph showing a surface structure of a magnesium alloy when forged by the procedure of the above embodiment.

【図5】鍛造後に溶体化処理を施した場合のマグネシウ
ム合金の表面組織を示す図面代用写真。
FIG. 5 is a photograph as a drawing showing the surface structure of a magnesium alloy when a solution treatment is performed after forging.

【符号の説明】[Explanation of symbols]

1 上型(金型) 2 下型(金型) 1 Upper die (die) 2 Lower die (die)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B21J 13/02 B21J 13/02 C C22F 1/06 C22F 1/06 // C22F 1/00 604 1/00 604 612 612 691 691B 694 694Z (72)発明者 本田 幸男 鳥取県米子市夜見町2923 協業組合菊水フ ォージング内 (72)発明者 野川 雅弘 鳥取県米子市夜見町2923 協業組合菊水フ ォージング内 Fターム(参考) 4E087 AA05 AA10 BA03 BA15 BA21 CA12 CA13 CB01 DB14 DB22 DB24 EC02 EC04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B21J 13/02 B21J 13/02 C C22F 1/06 C22F 1/06 // C22F 1/00 604 1/00 604 612 612 691 691B 694 694Z (72) Inventor: Yukio Honda 2923, Yomicho, Yonago, Tottori Pref., Kikusui Forging Co., Ltd. Terms (reference) 4E087 AA05 AA10 BA03 BA15 BA21 CA12 CA13 CB01 DB14 DB22 DB24 EC02 EC04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱間押出し成形したマグネシウム合金素
材を金型により拘束し、略200mm/秒以上の速度で
プレスして熱間鍛造成形することを特徴とするマグネシ
ウム合金部材の熱間鍛造成形方法。
1. A hot forging method for a magnesium alloy member, wherein a hot extruded magnesium alloy material is constrained by a mold and pressed at a speed of about 200 mm / sec or more to perform hot forging. .
【請求項2】 上記熱間押出し成形したマグネシウム合
金素材に溶体化処理を施した後、熱間鍛造成形すること
を特徴とする請求項1記載のマグネシウム合金部材の熱
間鍛造成形方法。
2. The hot forging method for a magnesium alloy member according to claim 1, wherein said hot extruded magnesium alloy material is subjected to a solution treatment and then hot forged.
【請求項3】 上記金型は密閉型、又はフラッシュラン
ドの厚さ寸法を鍛造すべきマグネシウム合金部材の厚さ
寸法の略1乃至5%とした開放型であることを特徴とす
る請求項1又は2記載のマグネシウム合金部材の熱間鍛
造成形方法。
3. The mold according to claim 1, wherein the mold is a closed mold or an open mold in which the thickness of the flash land is approximately 1 to 5% of the thickness of the magnesium alloy member to be forged. Or the hot forging method of the magnesium alloy member according to 2.
【請求項4】 上記熱間鍛造成形後、時効処理を施すこ
とを特徴とする請求項1乃至3のいずれか記載のマグネ
シウム合金部材の熱間鍛造成形方法。
4. The hot forging method of a magnesium alloy member according to claim 1, wherein an aging treatment is performed after said hot forging.
JP2001107807A 2001-02-28 2001-02-28 Hot forging and forming method for magnesium alloy member Pending JP2002254132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107807A JP2002254132A (en) 2001-02-28 2001-02-28 Hot forging and forming method for magnesium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107807A JP2002254132A (en) 2001-02-28 2001-02-28 Hot forging and forming method for magnesium alloy member

Publications (1)

Publication Number Publication Date
JP2002254132A true JP2002254132A (en) 2002-09-10

Family

ID=18960064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107807A Pending JP2002254132A (en) 2001-02-28 2001-02-28 Hot forging and forming method for magnesium alloy member

Country Status (1)

Country Link
JP (1) JP2002254132A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946863A1 (en) 2006-12-20 2008-07-23 Yamaha Hatsudoki Kabushiki Kaisha Forged product and method of making the product
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
US7874734B2 (en) 2005-06-02 2011-01-25 Ntn Corporation Wheel support bearing assembly
US7883272B2 (en) 2004-10-08 2011-02-08 Ntn Corporation Wheel support bearing assembly
US8221004B2 (en) 2007-01-17 2012-07-17 Ntn Corporation Method of making wheel support bearing
JP2013119118A (en) * 2011-12-08 2013-06-17 Fair Friend Green Technology Corp Method of manufacturing magnesium alloy product
US8745874B2 (en) 2005-12-05 2014-06-10 Ntn Corporation Method of manufacturing wheel support bearing assembly
JP2016003736A (en) * 2014-06-18 2016-01-12 Ntn株式会社 Outside joint member of constant velocity universal joint and its manufacturing method
JP2017109224A (en) * 2015-12-16 2017-06-22 しのはらプレスサービス株式会社 Manufacturing method of metal product using new forging processing method
CN106890865A (en) * 2017-03-23 2017-06-27 中南大学 Major diameter AQ80M magnesium alloy cakes material squeezes the integrated forming technology of forging
CN110743996A (en) * 2019-11-08 2020-02-04 中国兵器工业第五九研究所 Forming method of high-strength corrosion-resistant magnesium alloy
CN112845744A (en) * 2021-01-05 2021-05-28 中国第一重型机械股份公司 Preparation method of metal solid-solid composite additive blank
US11292551B2 (en) * 2017-06-09 2022-04-05 Yamaha Hatsudoki Kabushiki Kaisha Method for producing handle pipe for straddled vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883272B2 (en) 2004-10-08 2011-02-08 Ntn Corporation Wheel support bearing assembly
US7874734B2 (en) 2005-06-02 2011-01-25 Ntn Corporation Wheel support bearing assembly
US8745874B2 (en) 2005-12-05 2014-06-10 Ntn Corporation Method of manufacturing wheel support bearing assembly
EP1946863A1 (en) 2006-12-20 2008-07-23 Yamaha Hatsudoki Kabushiki Kaisha Forged product and method of making the product
US7677134B2 (en) 2006-12-20 2010-03-16 Yamaha Hatsudoki Kabushiki Kaisha Forged product and method of making the product
US8221004B2 (en) 2007-01-17 2012-07-17 Ntn Corporation Method of making wheel support bearing
JP2010137284A (en) * 2008-11-13 2010-06-24 Tobata Turret Kosakusho:Kk Isothermal forging method and isothermal forging device
JP2013119118A (en) * 2011-12-08 2013-06-17 Fair Friend Green Technology Corp Method of manufacturing magnesium alloy product
JP2016003736A (en) * 2014-06-18 2016-01-12 Ntn株式会社 Outside joint member of constant velocity universal joint and its manufacturing method
US10280984B2 (en) 2014-06-18 2019-05-07 Ntn Corporation Constant velocity universal joint outer joint member and manufacturing method for same
JP2017109224A (en) * 2015-12-16 2017-06-22 しのはらプレスサービス株式会社 Manufacturing method of metal product using new forging processing method
CN106890865A (en) * 2017-03-23 2017-06-27 中南大学 Major diameter AQ80M magnesium alloy cakes material squeezes the integrated forming technology of forging
CN106890865B (en) * 2017-03-23 2018-08-21 中南大学 Major diameter AQ80M magnesium alloy cake materials squeeze forging and integrate forming technology
US11292551B2 (en) * 2017-06-09 2022-04-05 Yamaha Hatsudoki Kabushiki Kaisha Method for producing handle pipe for straddled vehicle
CN110743996A (en) * 2019-11-08 2020-02-04 中国兵器工业第五九研究所 Forming method of high-strength corrosion-resistant magnesium alloy
CN112845744A (en) * 2021-01-05 2021-05-28 中国第一重型机械股份公司 Preparation method of metal solid-solid composite additive blank
CN112845744B (en) * 2021-01-05 2022-04-08 中国第一重型机械股份公司 Preparation method of metal solid-solid composite additive blank

Similar Documents

Publication Publication Date Title
JP5711253B2 (en) Method of forming a component of complex shape from sheet material
JP2002254132A (en) Hot forging and forming method for magnesium alloy member
JP5416624B2 (en) Automotive undercarriage parts and manufacturing method thereof
CN1283822C (en) Method for making magnesium alloy product
JP2008196009A (en) Method for manufacturing aluminum alloy material, and heat treatment type aluminum alloy material
CN105960294A (en) Warm forming of work-hardened sheet alloys
US10442241B2 (en) Methods and apparatus to produce high performance axisymmetric components
JP2022512990A (en) Rapidly aged high-strength and heat-treatable aluminum alloy products and methods for manufacturing them
AU2016333810A1 (en) A process for warm forming an age hardenable aluminum alloy in T4 temper
Madaj et al. Magnesium-alloy die forgings for automotive applications
JP2001020047A (en) Stock for aluminum alloy forging and its production
JP6625530B2 (en) Aluminum alloy sheet for automobile body structure
Kumar et al. Sheet forming processes for AW-7xxx alloys: relevant process parameters
JP4146364B2 (en) Method for manufacturing plastic working member
JP4666659B2 (en) Magnesium alloy forged thin casing and method for manufacturing the same
JP3771203B2 (en) Method for deep drawing of magnesium alloy sheet and molded body thereof
US20050139297A1 (en) Magnesium alloy and method of manufacturing a seat frame for an automobile using the same
JP5588884B2 (en) Magnesium alloy forged piston manufacturing method and magnesium alloy forged piston
JP2001507291A (en) Small piece removal method when shearing aluminum sheet
KR20190030296A (en) Methods of treating aluminum alloy
JPH06248402A (en) Production of member made of magnesium alloy
JP2002361354A (en) Closed forging method, shaped material of upper arm and lower arm, yoke, die, and closed forging production system
JP2006299342A (en) Method for manufacturing aluminum alloy material for press forming and pressed material
CN105377469B (en) The method for being used to form the aluminium alloy part with special mechanical performance
Runge et al. Base metal microstructural considerations for anodizing aluminum substrates