JP2002248357A - Method for manufacturing plate type catalyst and plate type catalyst - Google Patents

Method for manufacturing plate type catalyst and plate type catalyst

Info

Publication number
JP2002248357A
JP2002248357A JP2001052227A JP2001052227A JP2002248357A JP 2002248357 A JP2002248357 A JP 2002248357A JP 2001052227 A JP2001052227 A JP 2001052227A JP 2001052227 A JP2001052227 A JP 2001052227A JP 2002248357 A JP2002248357 A JP 2002248357A
Authority
JP
Japan
Prior art keywords
catalyst
type catalyst
plate
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001052227A
Other languages
Japanese (ja)
Other versions
JP4650858B2 (en
Inventor
Satoru Igarashi
哲 五十嵐
Hajime Iida
肇 飯田
Akira Kobuchi
彰 小渕
Mitsuhiro Yoshida
光弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2001052227A priority Critical patent/JP4650858B2/en
Publication of JP2002248357A publication Critical patent/JP2002248357A/en
Application granted granted Critical
Publication of JP4650858B2 publication Critical patent/JP4650858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plate type catalyst manufacturing method using a coating composition whose amount to be adhered by coating one time is satisfactory and to provide a plate type catalyst which has excellent adhesive strength and excellent catalytic performance and enables the cost reduction and the compactification of an apparatus. SOLUTION: This plate type catalyst is manufactured by applying the coating composition containing a catalyst, a binder and preferable hydroxyethyl cellulose to a substrate obtained by firing an aluminum-containing stainless plate preferably at 1,000-1,150 deg.C and baking the coating composition-applied substrate preferably at 500-600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定のコーティン
グ用組成物を使用する、プレート型触媒の製造方法およ
びプレート型触媒に関するものであり、詳しくは、1回
のコーティングにより多くの付着量を得られるコーティ
ング用組成物を使用した水蒸気改質用のプレート型触媒
の製造方法およびプレート型触媒に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a plate catalyst and a plate catalyst using a specific coating composition. The present invention relates to a method for producing a plate-type catalyst for steam reforming using a coating composition to be obtained, and a plate-type catalyst.

【0002】[0002]

【従来の技術】従来、反応器中で、触媒を使用して、水
蒸気改質、水素化、脱硫、燃焼、CO変性、部分酸化な
どさまざまな反応が行われている。なかでも、水蒸気改
質反応は、石油精製や、化学工業、電子工業などに使用
される他に、クリーン燃料として燃料電池などへの需要
が増加している水素の製造方法として重要視されてい
る。水蒸気改質法は、天然ガスやナフサを原料とするも
のであり、通常は、反応温度が800〜900℃と高温
であるため、エネルギー消費量が多く、改質ガス中に二
酸化炭素が多く含まれる問題がある。そして、ジルコニ
ア(ZrO2)を担体とした、ロジウム(Rh)触媒ま
たはルテニウム(Ru)触媒は、低温で、低水蒸気比で
優れた触媒性能を発揮し、かつ長寿命であることが知ら
れている。
2. Description of the Related Art Conventionally, various reactions such as steam reforming, hydrogenation, desulfurization, combustion, CO modification, and partial oxidation have been carried out in a reactor using a catalyst. Among them, the steam reforming reaction is used as a method for producing hydrogen, which is used in petroleum refining, the chemical industry, the electronics industry, and the like, and is increasing in demand for fuel cells and the like as a clean fuel. . The steam reforming method uses natural gas or naphtha as a raw material, and usually has a high reaction temperature of 800 to 900 ° C., and thus consumes a large amount of energy and contains a large amount of carbon dioxide in the reformed gas. Problem. A rhodium (Rh) or ruthenium (Ru) catalyst using zirconia (ZrO 2 ) as a carrier is known to exhibit excellent catalytic performance at a low temperature, a low water vapor ratio, and a long life. I have.

【0003】また、上記水蒸気改質などの反応を行う場
合、反応器中への触媒の設置方法としては、充填層型と
管壁型に分けられる。充填層型反応器は、触媒成分を担
持したペレット状などの触媒を反応器中に充填し、反応
ガスを通過させるものであり、圧力損失が大きく、負荷
応答性が悪い問題がある。また、反応器壁面から加熱伝
熱するため、反応器中央部では温度が低くなり、温度勾
配が急となり、反応器中で反応温度を一定に保つことが
難しい。一方、管壁型反応器は、反応器壁面上にプレー
ト型触媒面を形成させ、反応ガスを通過させるものであ
り、反応器壁面からの伝熱特性が良好であり、かつ、圧
力損失の低減、負荷応答性の向上、エネルギー消費の低
減に効果がある。
[0003] When performing the above-mentioned reaction such as steam reforming, the method of installing the catalyst in the reactor is divided into a packed bed type and a tube wall type. A packed-bed reactor is a reactor in which a catalyst such as a pellet supporting a catalyst component is charged into the reactor and a reaction gas is passed therethrough, and has a problem that pressure loss is large and load response is poor. In addition, since heat is transferred from the reactor wall surface, the temperature decreases in the central portion of the reactor, the temperature gradient becomes steep, and it is difficult to keep the reaction temperature constant in the reactor. On the other hand, the tube wall type reactor has a plate-type catalyst surface formed on the reactor wall surface and allows the reaction gas to pass through, and has good heat transfer characteristics from the reactor wall surface and reduced pressure loss. This is effective in improving load response and reducing energy consumption.

【0004】上記管壁型反応器に使用されるプレート型
触媒は、基板へ触媒成分を付着させて製造されるもので
あり、触媒成分の付着方法としては、圧着法、ディップ
コーティング法、スプレーコーティング法、セルコーテ
ィング法、ブレードコーティング法、バーコーティング
法、ロールコーティング法、カーテンコーティング法、
ウオッシュコート法、めっき法(浸漬、溶解、無電
解)、溶射法(プラズマ、サーモ)、陽極酸化法などが
ある。なかでも、ディップコーティング法は、コーティ
ング操作が比較的容易であり、コーティング液にディッ
ピング(浸漬)されたところは、複雑な形状の表面でも
均一な厚みの触媒層が得られ、また、比較的安価に製造
できるなどの利点を有する。
[0004] The plate-type catalyst used in the tube wall type reactor is manufactured by attaching a catalyst component to a substrate, and the catalyst component can be attached by a pressure bonding method, a dip coating method, a spray coating method or the like. Method, cell coating method, blade coating method, bar coating method, roll coating method, curtain coating method,
Wash coating, plating (immersion, dissolution, electroless), thermal spraying (plasma, thermo), anodic oxidation, and the like. Above all, the dip coating method is relatively easy to perform a coating operation, and when dipped (immersed) in a coating solution, a catalyst layer having a uniform thickness can be obtained even on a surface having a complicated shape, and is relatively inexpensive. It has the advantage that it can be manufactured in a short time.

【0005】しかし、従来のディップコーティング法に
おいては、1回のコーティングで得られる付着量に限界
があり、付着量を大きくするにはディップコーティング
を何回も繰り返す必要があり、効率が悪い。また、基板
への密着性が悪いため、触媒層の亀裂、剥離が起きやす
く、さらにディップコーティング法を適用する基材とし
て、ガラスに限定されているものが多く、ステンレス、
樹脂などの他の素材への適用が困難である、などの問題
がある。ここで、RhまたはRu触媒/ZrO2担体を
触媒成分とする、付着量の多いプレート型触媒が、容易
に製造可能であれば、触媒効率に優れ、装置のコンパク
ト化およびコストダウンを可能にすることのでき、結果
的にエネルギー消費の少ない水蒸気改質反応が期待され
る。
[0005] However, in the conventional dip coating method, there is a limit to the amount of adhesion obtained by one coating, and to increase the amount of adhesion, it is necessary to repeat dip coating many times, which is inefficient. In addition, because of poor adhesion to the substrate, cracking of the catalyst layer, peeling is likely to occur, furthermore, the substrate to which the dip coating method is applied is often limited to glass, stainless steel,
It is difficult to apply to other materials such as resin. Here, if a plate-type catalyst having a large amount of adhesion and comprising a Rh or Ru catalyst / ZrO 2 carrier as a catalyst component can be easily manufactured, the catalyst efficiency is excellent, and the apparatus can be made compact and the cost can be reduced. As a result, a steam reforming reaction with low energy consumption is expected.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、1回のコーティングで充分な付着量を得るこ
とができるコーティング用組成物を使用したプレート型
触媒の製造方法、ならびに、密着性に優れ、優れた触媒
性能を有し、装置のコンパクト化およびコストダウンを
可能にすることのできるプレート型触媒を提供すること
を、目的としている。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides a method for producing a plate-type catalyst using a coating composition capable of obtaining a sufficient coating amount by one coating, and An object of the present invention is to provide a plate-type catalyst having excellent adhesion, excellent catalytic performance, and capable of reducing the size and cost of an apparatus.

【0007】[0007]

【課題を解決するための手段】本発明は、アルミニウム
を含有するステンレス板を焼成してプレート型触媒の基
板を作製し、この基板上に、触媒、バインダーおよび増
粘剤を含有するコーティング用組成物を塗布し、次いで
焼成することを特徴とするプレート型触媒の製造方法に
関するものである。上記基板は、アルミニウムを含有す
るステンレス板を1,000〜1,150℃で焼成した
ものであることが好ましい。また、上記増粘剤は、ヒド
ロキシエチルセルロースであることが好ましい。さら
に、上記コーティング用組成物の焼成温度は、500〜
600℃であることが好ましい。また、本発明は、上記
プレート型触媒の製造方法により製造されたプレート型
触媒に関するものである。
According to the present invention, a plate-type catalyst substrate is prepared by firing a stainless steel plate containing aluminum, and a coating composition containing a catalyst, a binder and a thickener is formed on the substrate. The present invention relates to a method for producing a plate-type catalyst, which comprises applying a product and then firing the product. It is preferable that the substrate is obtained by firing a stainless steel plate containing aluminum at 1,000 to 1,150 ° C. Further, the thickener is preferably hydroxyethyl cellulose. Further, the firing temperature of the coating composition is 500 to
Preferably it is 600 ° C. The present invention also relates to a plate-type catalyst manufactured by the above-described method for manufacturing a plate-type catalyst.

【0008】[0008]

【発明の実施の形態】本発明は、アルミニウムを含有す
るステンレス板を焼成してプレート型触媒の基板を作製
し、この基板上に、コーティング用組成物を塗布し、次
いで焼成することを特徴とするプレート型触媒の製造方
法に関する。アルミニウムを含有するステンレス基板と
しては、具体的には、カルソニック(株)製、20Cr
−Al,HTステンレスなどが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized in that a stainless steel plate containing aluminum is fired to prepare a plate-type catalyst substrate, a coating composition is applied on the substrate, and then fired. To a method for producing a plate-type catalyst. As a stainless steel substrate containing aluminum, specifically, 20Cr manufactured by Calsonic Corporation
-Al, HT stainless steel and the like.

【0009】ステンレス基板の焼成(前処理)条件は、
好ましくは1,000〜1,150℃で1〜3時間、さ
らに好ましくは1,050〜1,150℃で1〜3時
間、特に好ましくは1,100〜1,150℃で1〜3
時間である。上記範囲内で焼成を行うと、ステンレス基
板表面に、酸化アルミニウムが析出し、基板表面が粗面
化するため、コーティング用組成物の付着量が増加す
る。図1に、アルミニウムを5重量%含有するステンレ
ス基板を、1,150℃、1,030℃、925℃で、
2時間焼成して得られた粗面化ステンレス基板の薄膜法
X線回折図を、縦軸に回折強度〔CPS〕、回折角〔2
θ/deg〕をとり、縦軸に温度をずらして示す。1,
150℃で焼成したステンレス板には、析出した酸化ア
ルミニウム(Al23)による鋭いピークが表れ、1,
030℃で焼成したステンレス板にも、ピークが見られ
るが、925℃で焼成したステンレス板には、ピークが
ほとんど見られない。このことから、約1,000℃以
上で酸化アルミニウムが析出すると考えられる。
The firing (pretreatment) conditions for the stainless steel substrate are as follows:
Preferably at 1,000 to 1,150 ° C for 1 to 3 hours, more preferably at 1,050 to 1,150 ° C for 1 to 3 hours, particularly preferably at 1,100 to 1,150 ° C for 1 to 3 hours.
Time. When baking is performed within the above range, aluminum oxide precipitates on the surface of the stainless steel substrate, and the surface of the substrate is roughened, so that the adhesion amount of the coating composition increases. FIG. 1 shows a stainless steel substrate containing 5% by weight of aluminum at 1,150 ° C., 1,030 ° C., and 925 ° C.
The thin film X-ray diffraction diagram of the roughened stainless steel substrate obtained by baking for 2 hours is shown with the vertical axis representing the diffraction intensity [CPS] and the diffraction angle [2
θ / deg], and the temperature is shifted on the vertical axis. 1,
A sharp peak due to precipitated aluminum oxide (Al 2 O 3 ) appeared on the stainless steel plate fired at 150 ° C.
A peak is also seen in the stainless steel plate fired at 030 ° C., but almost no peak is seen in the stainless steel plate fired at 925 ° C. From this, it is considered that aluminum oxide precipitates at about 1,000 ° C. or higher.

【0010】上記アルミニウムを含有するステンレス板
を焼成して作成したプレート型触媒の基板に塗布する本
発明のコーティング用組成物は、触媒、バインダー、お
よび増粘剤を含有する。上記触媒は、通常、水蒸気改
質、水素化、脱硫、燃焼、CO変成、部分酸化など、ど
のような反応に使用されるものでもよい。水蒸気改質触
媒としては、白金、ルテニウム(Ru)、ニッケル(N
i)、銅(Cu)、ロジウム(Rh)などの元素を、シ
リカ、アルミナ、ジルコニア(ZrO2)などの担体に
担持したものなどが挙げられる。好ましくは、ルテニウ
ム(Ru)/ジルコニア(ZrO2)、ロジウム(R
h)/ジルコニア(ZrO2)、ルテニウム(Ru)/
アルミナ(Al23)、ロジウム(Rh)/アルミナ
(Al23)である。
[0010] The coating composition of the present invention, which is applied to a plate-type catalyst substrate prepared by baking the above-described aluminum-containing stainless steel plate, contains a catalyst, a binder, and a thickener. The catalyst may be used for any reaction such as steam reforming, hydrogenation, desulfurization, combustion, CO conversion, and partial oxidation. Platinum, ruthenium (Ru), nickel (N
i), an element such as copper (Cu) and rhodium (Rh) supported on a carrier such as silica, alumina and zirconia (ZrO 2 ). Preferably, ruthenium (Ru) / zirconia (ZrO 2 ), rhodium (R
h) / zirconia (ZrO 2 ), ruthenium (Ru) /
Alumina (Al 2 O 3 ), rhodium (Rh) / alumina (Al 2 O 3 ).

【0011】水素化触媒としては、ニッケル−モリブデ
ン、コバルト−モリブデンなどの酸化物、硫化物をシリ
カやアルミナ(Al23)などの担体に担持したNiM
ox触媒、CoMox触媒などが挙げられる。脱硫触媒
としては、酸化亜鉛、酸化ニッケルなどが単独または担
体に担持したものが挙げられる。燃焼触媒としては、白
金、パラジウムなどをアルミナなどの担体に担持したも
のなどが挙げられる。CO変性触媒としては、白金、レ
ニウム、ルテニウムなどをジルコニア、アルミナなどの
担体に担持したものや、鉄−クロム、銅−亜鉛などの酸
化物などが挙げられる。部分酸化触媒としては、白金、
ニッケルなどをアルミナなどの担体に担持したものなど
が挙げられる。上記触媒は1種単独でもよく、2種以上
を併用してもよい。
Examples of the hydrogenation catalyst include NiM in which oxides such as nickel-molybdenum and cobalt-molybdenum and sulfides are supported on a carrier such as silica or alumina (Al 2 O 3 ).
ox catalyst, CoMox catalyst and the like. Examples of the desulfurization catalyst include those in which zinc oxide, nickel oxide and the like are used alone or supported on a carrier. Examples of the combustion catalyst include those in which platinum, palladium, or the like is supported on a carrier such as alumina. Examples of the CO-modified catalyst include catalysts in which platinum, rhenium, ruthenium and the like are supported on a carrier such as zirconia and alumina, and oxides such as iron-chromium and copper-zinc. As a partial oxidation catalyst, platinum,
One in which nickel or the like is supported on a carrier such as alumina may be used. The above catalysts may be used alone or in combination of two or more.

【0012】上記触媒の調製方法としては、例えば、水
蒸気改質触媒であるルテニウム触媒(Ru)/ジルコニ
ア担体(ZrO2)の場合、水酸化ジルコニウムと3価
の塩化ルテニウムn水和物を、混合物中のルテニウム
(原子)濃度が0.5重量%程度となるように混合し、
常温で10分間撹拌した後、100℃で2時間蒸発乾固
させ、空気中で100℃15時間乾燥した後、空気中で
600℃1時間焼成して、Ru/ZrO2粉末を得るこ
とができる。
As a method for preparing the above catalyst, for example, in the case of a ruthenium catalyst (Ru) / zirconia support (ZrO 2 ) which is a steam reforming catalyst, a mixture of zirconium hydroxide and trivalent ruthenium chloride n-hydrate is used. Mixing so that the ruthenium (atomic) concentration in it is about 0.5% by weight,
After stirring at room temperature for 10 minutes, the mixture is evaporated to dryness at 100 ° C. for 2 hours, dried in air at 100 ° C. for 15 hours, and then calcined in air at 600 ° C. for 1 hour to obtain a Ru / ZrO 2 powder. .

【0013】上記触媒は、下記バインダー水溶液と混合
して使用するが、その配合割合は、触媒/バインダー水
溶液で、好ましくは1/1〜1/7、さらに好ましくは
1/4〜1/7である。触媒の割合が1/7未満である
と、触媒の付着量が少なく、一方、1/1を超えると、
得られるプレート型触媒の表面に亀裂や剥離を生じる。
The above catalyst is used by being mixed with the following binder aqueous solution, and the mixing ratio thereof is catalyst / binder aqueous solution, preferably 1/1 to 1/7, more preferably 1/4 to 1/7. is there. When the ratio of the catalyst is less than 1/7, the amount of the catalyst attached is small.
Cracks and peeling occur on the surface of the obtained plate catalyst.

【0014】本発明のコーティング用組成物のバインダ
ーとしては、通常、使用されるものでよく、例えば、ア
ルミニウム、チタニウム、ジルコニウムなどの金属酸化
物を親水性有機溶媒に分散した分散体、アルミニウム、
チタニウム、ジルコニウムなどの金属アルコキシドのア
ルコール溶液を加水分解、重縮合して得られる金属
(水)酸化物ゾルなどが挙げられる。具体的には、第一
稀元素化学工業(株)製、商品名ジルコゾールHA[成
分;コロイド状ジルコニア、カルボン酸アンモニウム
塩、固形分濃度;15重量%、中性]、ジルコゾールZ
N[成分;コロイド状ジルコニア、硝酸塩、固形分濃
度;25重量%、酸性]、酢酸ジルコゾール[成分;コ
ロイド状ジルコニア、酢酸塩、固形分濃度;15重量
%、酸性]、ジルコゾールAC−7〔成分;コロイド状
ジルコニア、炭酸アンモニウム、固形分濃度;13重量
%、塩基性〕、川研ファインケミカル(株)製、商品名
アルミナクリアゾル(コロイド状アルミナ、固形分濃
度;5重量%、酸性)などが挙げられる。
As the binder of the coating composition of the present invention, those usually used may be used. For example, a dispersion in which a metal oxide such as aluminum, titanium or zirconium is dispersed in a hydrophilic organic solvent, aluminum,
A metal (hydroxide) sol obtained by hydrolyzing and polycondensing an alcohol solution of a metal alkoxide such as titanium or zirconium is exemplified. Specifically, Zircosol HA (trade name) manufactured by Daiichi Kagaku Kagaku Kogyo KK [Component: colloidal zirconia, ammonium carboxylate, solid content: 15% by weight, neutral], Zircosol Z
N [component: colloidal zirconia, nitrate, solid content concentration: 25% by weight, acidic], zircosol acetate [component: colloidal zirconia, acetate, solid content concentration: 15% by weight, acidic], zircosol AC-7 [component Colloidal zirconia, ammonium carbonate, solid content: 13% by weight, basic], manufactured by Kawaken Fine Chemical Co., Ltd., trade name: alumina clear sol (colloidal alumina, solid content: 5% by weight, acidic), etc. No.

【0015】増粘剤は、コーティングにおける厚さの増
加に効果的であり、焼成して得られるプレート型触媒表
面の亀裂、剥離の防止に効果的である。本発明のコーテ
ィング用組成物の増粘剤としては、ヒドロキシエチルセ
ルロース(HEC)、ヒドロキシメチルセルロース(H
MC)、ヒドロキシプロピルセルロース(HPC)など
のセルロース化合物などが挙げられる。このうち、ヒド
ロキシエチルセルロースが、触媒成分とゲル化してチク
ソトロピー(動的流動性)を発現できるため好ましい。
上記増粘剤は、1種単独でもよく、2種以上を組み合わ
せてもよい。増粘剤の添加量は、使用する触媒により異
なるが、コーティング用組成物中に、0.01〜10重
量%の範囲で添加するのが好ましい。0.01重量%未
満であると、充分な増粘効果が得られず、一方、10重
量%を超えると、膜厚が厚くなり、亀裂や剥離が生じ
る。
The thickener is effective in increasing the thickness of the coating, and is effective in preventing cracking and peeling of the surface of the plate-type catalyst obtained by firing. Examples of the thickener of the coating composition of the present invention include hydroxyethyl cellulose (HEC) and hydroxymethyl cellulose (H
MC) and hydroxypropyl cellulose (HPC). Among them, hydroxyethylcellulose is preferable because it can gel with the catalyst component and exhibit thixotropy (dynamic fluidity).
The thickeners may be used alone or in combination of two or more. The amount of the thickener to be added varies depending on the catalyst used, but is preferably added to the coating composition in the range of 0.01 to 10% by weight. If it is less than 0.01% by weight, a sufficient thickening effect cannot be obtained, while if it exceeds 10% by weight, the film thickness becomes large and cracks and peeling occur.

【0016】本発明のコーティング用組成物を基板に塗
布する方法としては、ディップコーティング法、スプレ
ーコーティング法、セルコーティング法、ブレードコー
ティング法、バーコーティング法、ロールコーティング
法、カーテンコーティング法、ウオッシュコート法、め
っき法(浸漬、溶解、無電解)、溶射法(プラズマ、サ
ーモ)、陽極酸化法などが挙げられる。なかでも、ディ
ップコーティング法が好ましい。
The method for applying the coating composition of the present invention to a substrate includes dip coating, spray coating, cell coating, blade coating, bar coating, roll coating, curtain coating, and wash coating. , Plating (immersion, dissolution, electroless), thermal spraying (plasma, thermo), anodic oxidation, and the like. Especially, the dip coating method is preferable.

【0017】本発明のコーティング用組成物を基板に塗
布した後の、焼成条件としては、好ましくは500〜
1,000℃で1〜3時間、さらに好ましくは500〜
800℃で1〜3時間、特に好ましくは500〜700
℃で1〜3時間である。上記範囲内で焼成を行うと、反
応活性に優れたプレート型触媒を得ることができる。
After applying the coating composition of the present invention to a substrate, the firing conditions are preferably from 500 to 500.
1,000 ° C for 1 to 3 hours, more preferably 500 to
800 ° C for 1 to 3 hours, particularly preferably 500 to 700
C. for 1-3 hours. When calcination is performed within the above range, a plate-type catalyst having excellent reaction activity can be obtained.

【0018】本発明のコーティング用組成物は、1回の
コーティングで充分な付着量を得ることができ、密着性
に優れ、優れた触媒性能を有し、装置のコンパクト化お
よびコストダウンを可能にすることのできるプレート型
触媒が製造できる。
The coating composition of the present invention can provide a sufficient amount of coating by one coating, has excellent adhesiveness, has excellent catalytic performance, and can reduce the size and cost of the apparatus. And a plate-type catalyst that can be produced.

【0019】[0019]

【実施例】以下、実施例を挙げ、本発明をさらに具体的
に説明するが、本発明は、これらの実施例により何ら限
定されるものではない。なお、実施例中の部および%
は、特に断らない限り重量部および重量%である。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, parts and%
Are by weight unless otherwise indicated.

【0020】基板表面粗面評価 理学電機(株)製、X線回折装置RINT−2500−V
HFを使用し、前処理焼成を行ったステンレス基板の薄
膜法X線回折パターンを得た。触媒付着量 触媒の付着量(mg/cm2)は、焼成後のプレート型
触媒の重量からコーティング前の重量を差し引いて算出
した。
Evaluation of substrate surface rough surface X-ray diffractometer RINT-2500-V manufactured by Rigaku Corporation
Using HF, a thin film method X-ray diffraction pattern of a pretreated and baked stainless steel substrate was obtained. The amount of catalyst attached (mg / cm 2 ) was calculated by subtracting the weight before coating from the weight of the plate type catalyst after calcination.

【0021】触媒性能(水蒸気改質性能) プレート型触媒のn−ブタンの水蒸気改質性能(転化
率、%)を、下記条件で測定した。10容量%(アルゴ
ンバランス)のn−ブタンを反応原料としてパルス注入
し、四重極質量分析計Q−MASSを使用して、生成ガ
ス量を測定した。パルス注入量は0.5ml、水はバブ
ラーで圧力15.1kPaで供給し、反応温度500
℃、触媒量5mm×30mm×5枚(見かけ表面積15
cm2)、キャリアーガス(ヘリウムガス)の流量40
ml/min。
The catalytic performance (steam reforming performance) of the plate type catalytic n- butane steam reforming performance (conversion,%) was measured under the following conditions. Pulse-injection of 10% by volume (argon balance) of n-butane as a reaction raw material was performed, and the amount of generated gas was measured using a quadrupole mass spectrometer Q-MASS. The pulse injection volume is 0.5 ml, water is supplied by a bubbler at a pressure of 15.1 kPa, and the reaction temperature is 500.
° C, catalyst amount 5mm × 30mm × 5 sheets (apparent surface area 15
cm 2 ), carrier gas (helium gas) flow rate 40
ml / min.

【0022】参考例1(水蒸気改質触媒Ru/ZrO2
の調製) 水酸化ジルコニウムと3価の塩化ルテニウム3水和物
を、混合物中のルテニウム濃度が0.5重量%となるよ
うに混合し、常温で10分間撹拌した後、100℃で2
時間蒸発乾固させ、空気中で100℃で15時間乾燥し
た後、空気中で600℃1時間焼成して、Ru/ZrO
2粉末を得た。
Reference Example 1 (Steam reforming catalyst Ru / ZrO 2
Preparation of zirconium hydroxide and trivalent ruthenium chloride trihydrate were mixed such that the ruthenium concentration in the mixture was 0.5% by weight, and the mixture was stirred at room temperature for 10 minutes.
After evaporating to dryness over time and drying in air at 100 ° C. for 15 hours, baking in air at 600 ° C. for 1 hour, Ru / ZrO
Two powders were obtained.

【0023】参考例2(バインダー水溶液の調製) バインダーとして第一稀元素化学工業(株)製、商品名
ジルコゾールHA(b1)を、イオン交換水と、バイン
ダー/水=1/7(重量比)となるように混合し、バイ
ンダー水溶液を得た。
Reference Example 2 (Preparation of Binder Aqueous Solution) Zircosol HA (b1) (trade name, manufactured by Daiichi Kagaku Kagaku Kogyo Co., Ltd.) was used as a binder, and ion-exchanged water and binder / water = 1/7 (weight ratio) And an aqueous binder solution was obtained.

【0024】参考例3(コーティング用組成物の調製) 参考例1で調製した触媒および参考例2のバインダー水
溶液、ならびにHECを、表1に示す配合割合で混合
し、コーティング用組成物B〜Dを得た。また、HEC
を添加しない以外は上記と同様に、表1に示す配合割合
で混合し、コーティング用組成物Aを得た。
Reference Example 3 (Preparation of Coating Composition) The catalyst prepared in Reference Example 1, the aqueous binder solution of Reference Example 2, and HEC were mixed at the mixing ratio shown in Table 1, and the coating compositions B to D were mixed. I got Also, HEC
Was added in the same manner as described above, except that was not added, to obtain a coating composition A.

【0025】[0025]

【表1】 [Table 1]

【0026】参考例4−1(前処理基板1の調製) カルソニック(株)製、20Cr−Al,HTステンレ
ス(アルミニウム含有量5重量%、メタハニカム用)
を、空気中、1,150℃で2時間焼成し、前処理基板
1を得た。評価結果を図1に示す。 参考例4−2(前処理基板2調製) 焼成温度を1,030℃にした以外は、参考例4−1と
同様にして前処理基板2を得た。評価結果を図1に示
す。 参考例4−3(前処理基板3の調製) 焼成温度を925℃にした以外は、参考例4−1と同様
にして前処理基板3を得た。評価結果を図1に示す。
Reference Example 4-1 (Preparation of pre-processed substrate 1) 20Cr-Al, HT stainless steel manufactured by Calsonic Corporation (aluminum content 5% by weight, for meta-honeycomb)
Was fired in air at 1,150 ° C. for 2 hours to obtain a pre-treated substrate 1. FIG. 1 shows the evaluation results. Reference Example 4-2 (Preparation of Pretreatment Substrate 2) A pretreatment substrate 2 was obtained in the same manner as in Reference Example 4-1 except that the firing temperature was 1,030 ° C. FIG. 1 shows the evaluation results. Reference Example 4-3 (Preparation of Pretreatment Substrate 3) A pretreatment substrate 3 was obtained in the same manner as in Reference Example 4-1 except that the firing temperature was 925 ° C. FIG. 1 shows the evaluation results.

【0027】実施例1 参考例3で調製したコーティング用組成物Bに、参考例
4−1で調製した前処理基板1を浸漬(ディッピング)
し、引き上げ速度1mm/secで引き上げ、空気中で
100℃15時間乾燥後に、空気中で600℃1時間焼
成し、プレート型触媒を得た。評価結果を表2に示す。 実施例2〜3、比較例1 コーティング用組成物A,C〜Dを使用した以外は、上
記と同様にして、プレート型触媒を得た。評価結果を表
2に示す。
Example 1 The pre-treated substrate 1 prepared in Reference Example 4-1 was dipped in the coating composition B prepared in Reference Example 3 (dipping).
Then, it was pulled up at a pulling rate of 1 mm / sec, dried in air at 100 ° C. for 15 hours, and calcined in air at 600 ° C. for 1 hour to obtain a plate-type catalyst. Table 2 shows the evaluation results. Examples 2-3 and Comparative Example 1 A plate-type catalyst was obtained in the same manner as described above, except that the coating compositions A and C to D were used. Table 2 shows the evaluation results.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例1〜3は、本発明の範囲内の例であ
り、増粘剤を含有しないコーティング用組成物よりも、
触媒付着量が大きかった。実施例2では、増粘剤である
HECを5重量%含むことにより、1回の浸漬により、
HECなしの比較例1の約5倍、また実施例3では、H
ECを10重量%含むことにより、比較例1の約30倍
の触媒付着量が得られた。
Examples 1 to 3 are examples within the scope of the present invention and are more effective than coating compositions containing no thickener.
The catalyst adhesion amount was large. In Example 2, by including 5% by weight of HEC which is a thickener, by one dipping,
About 5 times that of Comparative Example 1 without HEC, and in Example 3, H
By containing 10% by weight of EC, about 30 times the catalyst adhesion amount of Comparative Example 1 was obtained.

【0030】[0030]

【発明の効果】本発明のコーティング用組成物は、1回
のコーティングで充分な付着量を得ることができ、密着
性に優れ、優れた触媒性能を有し、装置のコンパクト化
およびコストダウンを可能にすることのできるプレート
型触媒が製造できる。また、本発明のプレート型触媒
に、水蒸気改質触媒を適用すると、触媒効率がよく、結
果的にエネルギー消費の少ない水蒸気改質反応が可能と
なる。
According to the coating composition of the present invention, a sufficient amount of coating can be obtained by one coating, the adhesion is excellent, the catalyst performance is excellent, the apparatus can be made compact and the cost can be reduced. A plate-type catalyst that can be made possible can be produced. Further, when a steam reforming catalyst is applied to the plate-type catalyst of the present invention, the catalyst efficiency is high, and as a result, a steam reforming reaction with low energy consumption becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例4−1〜参考例4−3で得られた前処理
基板の薄膜法X線回折図である。
FIG. 1 is a thin-film X-ray diffraction diagram of a pretreated substrate obtained in Reference Examples 4-1 to 4-3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小渕 彰 神奈川県横浜市旭区若葉台4−28−1405 (72)発明者 吉田 光弘 神奈川県横浜市鶴見区東寺尾5−2−5− 323 Fターム(参考) 4G040 EA03 EA06 EC03 EC08 4G069 AA03 AA09 BA01A BA02A BA05A BA05B BA18 BA29C BB02A BB02B BB04A BC31A BC35A BC58A BC59A BC64A BC66A BC67A BC68A BC70A BC70B BC71A BC72A BC75A CB07 CC02 CC17 CC25 CC26 CD01 EA11 FA04 FB15 FB17 FB23 FB30 FB39 FC05 FC07 4G140 EA03 EA06 EC03 EC08 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Obuchi 4-28-1405, Wakabadai, Asahi-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Mitsuhiro Yoshida 5-5-2-5, Higashiterao, Tsurumi-ku, Yokohama-shi, Kanagawa F-term (Reference) 4G040 EA03 EA06 EC03 EC08 4G069 AA03 AA09 BA01A BA02A BA05A BA05B BA18 BA29C BB02A BB02B BB04A BC31A BC35A BC58A BC59A BC64A BC66A BC67A BC68A BC70A BC70B BC71ABC07 FC04 CB07 CC02 CC03 CC04 EA06 EC03 EC08 4H029 CA00 DA00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを含有するステンレス板を
焼成してプレート型触媒の基板を作製し、この基板上
に、触媒、バインダーおよび増粘剤を含有するコーティ
ング用組成物を塗布し、次いで焼成することを特徴とす
るプレート型触媒の製造方法。
1. A stainless steel plate containing aluminum is baked to produce a plate-type catalyst substrate, and a coating composition containing a catalyst, a binder and a thickener is applied on the substrate, and then baked. A method for producing a plate-type catalyst.
【請求項2】 上記基板が、アルミニウムを含有するス
テンレス板を1,000〜1,150℃で焼成したもの
である、請求項1記載のプレート型触媒の製造方法。
2. The method for producing a plate-type catalyst according to claim 1, wherein the substrate is obtained by firing a stainless steel plate containing aluminum at 1,000 to 1,150 ° C.
【請求項3】 上記増粘剤が、ヒドロキシエチルセルロ
ースである、請求項1または2記載のプレート型触媒の
製造方法。
3. The method for producing a plate-type catalyst according to claim 1, wherein the thickener is hydroxyethylcellulose.
【請求項4】 上記コーティング用組成物の焼成温度
が、500〜600℃である、請求項1〜3いずれか1
項記載のプレート型触媒の製造方法。
4. The sintering temperature of the coating composition is 500 to 600 ° C.
The method for producing a plate-type catalyst according to the above item.
【請求項5】 請求項1〜4いずれか1項記載のプレー
ト型触媒の製造方法により製造されたプレート型触媒。
5. A plate catalyst produced by the method for producing a plate catalyst according to claim 1. Description:
JP2001052227A 2001-02-27 2001-02-27 Method for producing plate-type catalyst and plate-type catalyst Expired - Lifetime JP4650858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052227A JP4650858B2 (en) 2001-02-27 2001-02-27 Method for producing plate-type catalyst and plate-type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052227A JP4650858B2 (en) 2001-02-27 2001-02-27 Method for producing plate-type catalyst and plate-type catalyst

Publications (2)

Publication Number Publication Date
JP2002248357A true JP2002248357A (en) 2002-09-03
JP4650858B2 JP4650858B2 (en) 2011-03-16

Family

ID=18912890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052227A Expired - Lifetime JP4650858B2 (en) 2001-02-27 2001-02-27 Method for producing plate-type catalyst and plate-type catalyst

Country Status (1)

Country Link
JP (1) JP4650858B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290737A (en) * 2005-04-13 2006-10-26 Samsung Sdi Co Ltd Flat plate-type reformer and fuel cell system using the same
JP2007090342A (en) * 2005-09-05 2007-04-12 Hideki Koyanaka Catalytic material for producing hydrogen gas from hydrocarbon gas and method of producing the same, and method of producing hydrogen gas using the catalytic material
JP2008302304A (en) * 2007-06-07 2008-12-18 Cataler Corp Method and apparatus for depositing noble metal
JP2009042383A (en) * 2007-08-07 2009-02-26 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method therefor
KR101679710B1 (en) 2014-04-21 2016-11-25 주식회사 엘지화학 Hydrocarbon reforming catalyst paste composition and reformer using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623235B1 (en) 2013-05-10 2016-05-20 주식회사 엘지화학 Hydrocarbon reforming catalyst paste composition and reformer using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178343A (en) * 1993-12-24 1995-07-18 Matsushita Electric Ind Co Ltd Catalystic body using metallic base material, catalystic slurry and catalystic carrier slurry
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH11179157A (en) * 1997-12-25 1999-07-06 Nippon Steel Corp Electric heating catalytic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178343A (en) * 1993-12-24 1995-07-18 Matsushita Electric Ind Co Ltd Catalystic body using metallic base material, catalystic slurry and catalystic carrier slurry
JPH10183062A (en) * 1996-10-30 1998-07-07 Jsr Corp Coating composition
JPH11179157A (en) * 1997-12-25 1999-07-06 Nippon Steel Corp Electric heating catalytic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290737A (en) * 2005-04-13 2006-10-26 Samsung Sdi Co Ltd Flat plate-type reformer and fuel cell system using the same
US7976592B2 (en) 2005-04-13 2011-07-12 Samsung Sdi Co., Ltd. Plate type reformer and fuel cell system including the reformer
JP2007090342A (en) * 2005-09-05 2007-04-12 Hideki Koyanaka Catalytic material for producing hydrogen gas from hydrocarbon gas and method of producing the same, and method of producing hydrogen gas using the catalytic material
JP2008302304A (en) * 2007-06-07 2008-12-18 Cataler Corp Method and apparatus for depositing noble metal
JP2009042383A (en) * 2007-08-07 2009-02-26 Sumitomo Chemical Co Ltd Polarizing plate and manufacturing method therefor
KR101679710B1 (en) 2014-04-21 2016-11-25 주식회사 엘지화학 Hydrocarbon reforming catalyst paste composition and reformer using the same

Also Published As

Publication number Publication date
JP4650858B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4216067B2 (en) How to generate a gas rich in hydrogen
Meille Review on methods to deposit catalysts on structured surfaces
CN100423839C (en) Method for supporting catalyst on the metal base
US4231900A (en) Method for forming activated alumina coating on refractory article and article thereby produced
KR950003415B1 (en) Improved alumina-ceria catalyst washcoat
CN100423838C (en) Preparation method of coppor cerium catalyst coated on FeCrAl carrior
CN101830433A (en) Process for the production of hydrogen gas employing a thermally stable catalyst
KR20130014364A (en) Metal-structured catalyst and manufacturing method thereof
JPS6313729B2 (en)
US20030203813A1 (en) Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP2004512929A (en) Method for forming a catalyst layer on a metal surface of a heat exchanger
US4116883A (en) Catalyst support coating slurry and coatings
JP4650858B2 (en) Method for producing plate-type catalyst and plate-type catalyst
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP2010279911A (en) Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst
US4451580A (en) Method of preparing a supported catalyst
JP3524478B2 (en) High heat transfer catalyst and method for producing the same
CN111330570A (en) Three-way catalyst for gasoline vehicle and preparation method thereof
GB1603101A (en) Catalytic methanation of synthesis gas
JP4096549B2 (en) Shift catalyst and process for producing shift catalyst
JP2003260353A (en) Carrier carrying alumina, catalyst body and method for manufacturing carrier carrying alumina
JP3247956B2 (en) Exhaust gas purification catalyst
JPH0448931A (en) Method for forming catalyst coating layer
JPH0683787B2 (en) Catalyst for steam reforming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

R150 Certificate of patent or registration of utility model

Ref document number: 4650858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term