JP2002246051A - 燃料電池システムの制御装置 - Google Patents

燃料電池システムの制御装置

Info

Publication number
JP2002246051A
JP2002246051A JP2001045362A JP2001045362A JP2002246051A JP 2002246051 A JP2002246051 A JP 2002246051A JP 2001045362 A JP2001045362 A JP 2001045362A JP 2001045362 A JP2001045362 A JP 2001045362A JP 2002246051 A JP2002246051 A JP 2002246051A
Authority
JP
Japan
Prior art keywords
fuel cell
flow rate
target
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001045362A
Other languages
English (en)
Other versions
JP4185671B2 (ja
Inventor
Kazuma Okura
一真 大蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001045362A priority Critical patent/JP4185671B2/ja
Publication of JP2002246051A publication Critical patent/JP2002246051A/ja
Application granted granted Critical
Publication of JP4185671B2 publication Critical patent/JP4185671B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 過負荷による燃料電池の性能劣化を防ぐとと
もに、燃料電池の暖機時間を短縮できる制御装置を提供
する。 【解決手段】 燃料電池システムの制御装置1は、燃料
電池の目標発電電力に基づいて燃料ガスおよび酸化ガス
の目標流量および目標圧力を演算する目標運転点演算手
段2と、燃料ガスおよび酸化ガスの流量に関連する値を
検出する流量検出手段3と、燃料ガスおよび酸化ガスの
圧力を検出する圧力検出手段4と、検出された流量に関
連する値および圧力に基づいて燃料電池の発電可能電力
を演算する発電可能電力演算手段5と、発電可能電力に
制限されるように燃料電池の出力電力を制御する負荷制
御手段6と、を備え、検出された実際の流量及び圧力に
基づく発電可能電力以上の電力が負荷に供給されること
を防止する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は燃料電池システムの
制御装置に係り、特にスタックが低温時の燃料電池出力
の減少を抑制させることができる燃料電池システムの制
御装置に関する。
【0002】
【従来の技術】燃料電池は、水素ガスなどの燃料ガスと
酸素を有する酸化ガスとを、電解質を介して電気化学的
に反応させ、電極間から電気エネルギを直接取り出すも
のである。したがって、燃料電池の発電電力量が大きく
なるにつれてより多くのガスの供給量が必要になる。逆
に、燃料電池の発電電力量が小さい場合、ガスの供給量
は少なくても良いことになる。つまり、燃料電池の発電
電力量を変化させるに際しては、効率を考慮すれば、発
電電力量に応じてガスの供給量を可変にすることが必要
となる。
【0003】そこで、例えば特開平7−75214号公
報に記載された技術では、燃料電池の発電量によりガス
供給量の目標を決定することとしている。ここで、燃料
電池の発電量とは、燃料電池を搭載する電気自動車の場
合、アクセル開度からテーブルで検索されるのが代表的
な方法である。そして、ガス供給量の目標は、燃料電池
の発電量からテーブルで検索される。
【0004】一方、ガスの供給量の目標に対して、実際
の供給量は、アクチュエータの応答性やガス経路の管路
抵抗や容積の影響により、必ず遅れが生じてしまう。例
えば、燃料電池の目標発電量を増大させる場合、目標発
電量に応じて目標ガス供給量も速やかに増大するが、実
際のガス供給量は、燃料電池の増大した目標発電量を賄
うほどにすぐには増加しない。このとき、目標発電量に
応じた出力電力を燃料電池から負荷へ供給してしまう
と、言い換えれば、実際の発電量が目標発電量に達する
前に目標発電量に相当する出力電力を引き出してしまう
と、電圧降下を発生し、燃料電池の性能が低下あるいは
燃料電池が劣化してしまうことにつながる。
【0005】前述の公開公報には、このことを防ぐため
に、ガス流量を検出し、その値からテーブルで検索され
る燃料電池の発電可能量を検索し、発電可能量によっ
て、燃料電池の発電量を制限することも開示されてい
る。発電量の制限は、燃料電池を搭載した電気自動車の
場合、燃料電池の負荷である駆動モータの出力を制限す
ることで達成される。また、本発電量の制限に関して、
従来技術では、燃料電池の温度による制限についても言
及されている。つまり、燃料電池温度からテーブルで検
索される発電量制限値と前述した実際のガス流量から求
まる発電量制限値の小さい方の発電量制限値で、燃料電
池の発電量を制限するというものである。
【0006】
【発明が解決しようとする課題】上述した従来の技術で
は、燃料電池に対する目標発電電力の変更に伴って、燃
料電池に供給するガス流量を変更しており、また、実際
のガス流量を検出し、その値に基づいて燃料電池の発電
電力量を制限している。しかしながら、燃料電池の発電
可能電力は、流量だけでなく、その圧力にも大きく依存
する。即ち、燃料電池の電気化学反応は、燃料ガスと酸
化ガスの圧力に影響を受けるものであり、これらの圧力
が高いほど電気化学反応は促進され、発電可能電力も大
きくなるからである。
【0007】また、燃料電池の温度が低い場合、電解質
膜の抵抗が増大し、加えて電気化学反応が抑制されるた
め、発電電力を制限しなければ、燃料電池が劣化してし
まう。従来技術では、燃料電池の温度をパラメータとし
て、発電電力を制限する構成となっているため、燃料電
池が低温の場合、通常よりも発電可能な電力が低くな
り、燃料電池の温度を上昇させる発熱も抑制されること
になるため、燃料電池の暖機時間が長くなってしまうと
いう問題点があった。
【0008】さらに、燃料電池は単セルが積層されてい
るため、ガス流路の上流よりも下流側の方が燃料および
酸素の分圧が低くなりやすく、燃料電池の温度が低い場
合、電気化学反応が抑制される分、その影響が大きくな
り、その結果、電圧降下を起こしやすく、燃料電池の性
能劣化を生じる恐れがあるという問題点があった。
【0009】一方、燃料電池の温度が低い場合、発電に
伴って生成される水が凝縮しやすく、水つまりによる電
圧低下のため燃料電池の性能劣化を招きやすい。
【0010】この発明は、上記の問題点に鑑みてなされ
たものであり、燃料電池の効率を向上させ、燃料電池の
性能劣化を防ぐとともに、燃料電池の暖機時間を短縮す
る制御装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】請求項1記載の発明は、
上記目的を達成するため、燃料ガスと酸化ガスとの反応
によって電気的エネルギを負荷に供給する燃料電池に対
し、前記燃料ガスおよび前記酸化ガスの供給を制御し、
かつ、前記燃料電池の出力電力を制御する燃料電池シス
テムの制御装置において、前記燃料電池の目標発電電力
に基づいて前記燃料ガスおよび前記酸化ガスの目標流量
および目標圧力を演算する目標運転点演算手段と、前記
燃料ガスおよび前記酸化ガスの流量に関連する値を検出
する流量検出手段と、前記燃料ガスおよび前記酸化ガス
の圧力を検出する圧力検出手段と、検出された前記流量
に関連する値および前記圧力に基づいて前記燃料電池の
発電可能電力を演算する発電可能電力演算手段と、前記
発電可能電力に制限されるように前記燃料電池の出力電
力を制御する負荷制御手段と、を具備したことを要旨と
する。
【0012】請求項2記載の発明は、上記目的を達成す
るため、請求項1に記載の燃料電池システムの制御装置
において、前記燃料電池の温度に関連する値を検出する
温度検出手段と、検出された前記温度に関連する値に基
づいて前記目標流量を補正する目標流量補正手段と、検
出された前記温度に関連する値に基づいて前記目標圧力
を補正する目標圧力補正手段と、検出された前記温度に
関連する値に基づいて前記発電可能電力演算手段の入力
である前記流量に関連する値を補正する流量補正手段
と、検出された前記温度に関連する値に基づいて前記発
電可能電力演算手段の入力である前記圧力を補正する圧
力補正手段と、を具備したことを要旨とする。
【0013】請求項3記載の発明は、上記目的を達成す
るため、請求項2に記載の燃料電池システムの制御装置
において、前記目標圧力補正手段は、前記温度に関連す
る値が所定値より小さいときに前記目標圧力を増加する
ように補正するものであり、前記圧力補正手段は前記温
度に関連する値が所定値より小さいときに前記圧力を減
少するように補正するものであることを要旨とする。
【0014】請求項4記載の発明は、上記目的を達成す
るため、請求項2に記載の燃料電池システムの制御装置
において、前記目標流量補正手段は前記温度に関連する
値が所定値より小さいときに前記目標流量を増加するよ
うに補正するものであり、前記流量補正手段は前記温度
に関連する値が所定値より小さいときに前記流量に関連
する値を減少するように補正するものであることを要旨
とする。
【0015】請求項5記載の発明は、上記目的を達成す
るため、請求項3に記載の燃料電池システムの制御装置
において、前記目標圧力補正手段は、前記温度検出手段
の検出値と所定の定格温度との差に応じて前記目標圧力
を補正することを要旨とする。
【0016】請求項6記載の発明は、上記目的を達成す
るため、請求項4に記載の燃料電池システムの制御装置
において、前記目標流量補正手段は、前記温度検出手段
の検出値と所定の定格温度との差に応じて前記目標流量
を補正することを要旨とする。
【0017】
【発明の効果】請求項1の発明によれば、燃料ガスと酸
化ガスとの反応によって電気的エネルギを負荷に供給す
る燃料電池に対し、前記燃料ガスおよび前記酸化ガスの
供給を制御し、かつ、前記燃料電池の出力電力を制御す
る燃料電池システムの制御装置において、前記燃料電池
の目標発電電力に基づいて前記燃料ガスおよび前記酸化
ガスの目標流量および目標圧力を演算する目標運転点演
算手段と、前記燃料ガスおよび前記酸化ガスの流量に関
連する値を検出する流量検出手段と、前記燃料ガスおよ
び前記酸化ガスの圧力を検出する圧力検出手段と、検出
された前記流量に関連する値および前記圧力に基づいて
前記燃料電池の発電可能電力を演算する発電可能電力演
算手段と、前記発電可能電力に制限されるように前記燃
料電池の出力電力を制御する負荷制御手段と、を具備し
たことにより、燃料電池への燃料ガスおよび酸化ガスの
供給に際し、目標発電電力に応じて供給ガスの流量およ
び圧力の目標を最適に決定するため、燃料電池の発電効
率を常に最適に制御することができるという効果があ
る。また、実際の供給ガスの流量および圧力に応じて燃
料電池からの出力電力を制限するため、目標発電電力が
変化したときに供給ガスの流量および圧力が過渡的に目
標に追従しない場合であっても、燃料電池の性能劣化を
防ぐことが可能となるという効果がある。
【0018】請求項2の発明によれば、請求項1の発明
の効果に加えて、前記燃料電池の温度に関連する値を検
出する温度検出手段と、検出された前記温度に関連する
値に基づいて前記目標流量を補正する目標流量補正手段
と、検出された前記温度に関連する値に基づいて前記目
標圧力を補正する目標圧力補正手段と、検出された前記
温度に関連する値に基づいて前記発電可能電力演算手段
の入力である前記流量に関連する値を補正する流量補正
手段と、検出された前記温度に関連する値に基づいて前
記発電可能電力演算手段の入力である前記圧力を補正す
る圧力補正手段と、を具備したことにより、燃料電池の
温度特性を考慮した燃料ガスおよび酸化ガスの圧力およ
び流量の制御が可能となり、発電電力の制限を最小限に
とどめることができる。その結果、燃料電池の温度が低
い場合でも、発電による発熱で燃料電池の昇温が速やか
に行われ、通常の発電状態に移行できるという効果があ
る。また、実際の供給ガスの流量および圧力に対して燃
料電池の温度による補正を加えた上で、燃料電池の発電
可能電力を演算するため、温度によらず燃料電池の性能
劣化を防ぐことが可能となるという効果がある。
【0019】請求項3の発明によれば、請求項2の発明
の効果に加えて、前記目標圧力補正手段は、前記温度に
関連する値が所定値より小さいときに前記目標圧力を増
加するように補正するものであり、前記圧力補正手段は
前記温度に関連する値が所定値より小さいときに前記圧
力を減少するように補正するようにしたので、電気化学
反応の速度が遅い低温時に供給ガスの圧力目標を増加す
るように補正するため、燃料電池の出力電力の制限を最
小限にすることができるという効果がある。
【0020】請求項4の発明によれば、請求項2の発明
の効果に加えて、前記目標流量補正手段は前記温度に関
連する値が所定値より小さいときに前記目標流量を増加
するように補正するものであり、前記流量補正手段は前
記温度に関連する値が所定値より小さいときに前記流量
に関連する値を減少するように補正するようにしたの
で、燃料電池の温度が低い場合、供給ガスの流量目標を
増加するよう補正するため、凝縮した生成水を燃料電池
外へ排出する効果が得られ、また、ガス流路下流側の燃
料および酸素の分圧低下の影響を押さえ、発電電力の制
限を最小限にすることができる。
【0021】請求項5の発明によれば、請求項3の発明
の効果に加えて、前記目標圧力補正手段は、前記温度検
出手段の検出値と所定の定格温度との差に応じて前記目
標圧力を補正するようにしたので、燃料電池の動作温度
と定格温度との温度差に応じて、より正確な目標圧力補
正を行うことができるという効果がある。
【0022】請求項6の発明によれば、請求項4の発明
の効果に加えて、前記目標流量補正手段は、前記温度検
出手段の検出値と所定の定格温度との差に応じて前記目
標流量を補正するようにしたので、燃料電池の動作温度
と定格温度との温度差に応じて、より正確な目標流量補
正を行うことができるという効果がある。
【0023】
【発明の実施の形態】次に図面を参照して、本発明の実
施の形態を詳細に説明する。図1は、本発明に係る燃料
電池システムの制御装置の基本構成図である。図1にお
いて、燃料電池システムの制御装置1は、燃料電池スタ
ック10に供給する燃料ガスと酸化ガスを制御するとと
もに、燃料電池の出力電力を制御するものである。また
制御装置1は、燃料電池の目標発電電力に基づいて燃料
ガスおよび酸化ガスの目標流量および目標圧力を演算す
る目標運転点演算手段2と、燃料ガスおよび酸化ガスの
流量に関連する値を検出する流量検出手段3と、燃料ガ
スおよび酸化ガスの圧力を検出する圧力検出手段4と、
検出された流量に関連する値および圧力に基づいて燃料
電池の発電可能電力を演算する発電可能電力演算手段5
と、発電可能電力に制限されるように燃料電池の出力電
力を制御する負荷制御手段6と、を備えている。
【0024】〔第1実施形態〕次に、本発明に係るの燃
料電池システムの制御装置の第1実施形態について、図
2ないし図8を用いて説明する。本実施形態は、図2に
示すように、燃料電池(燃料電池本体、または燃料電池
スタックとも呼ばれる)101から供給される直流電力
を交流電力に変換するインバータ103、インバータ1
03により駆動される車両駆動用交流モータ104、交
流モータ104の発生する駆動力により差動装置105
を介して駆動される駆動輪106を備える燃料電池車両
に適用した例である。
【0025】燃料電池スタック101の図示しない水素
極には高圧水素タンク112から燃料電池車両制御装置
121により駆動される圧力調整弁134を介して水素
が、同図示しない空気極には燃料電池車両の制御装置1
21により制御されるコンプレッサ114から空気が供
給され、これら水素および空気は加湿器111で加湿さ
れる。加湿器111には、制御装置121により制御さ
れる純水供給ポンプ113により純水が供給される。燃
料電池スタック101の空気極の空気圧力は、制御装置
121により制御される空気調圧弁133により制御さ
れ、余剰空気は空気調圧弁133を介して外部へ排出さ
れる。また、燃料電池スタック101は制御装置121
により制御される冷却水供給ポンプ115により供給さ
れる冷却水によって冷却される。
【0026】制御装置121は、アクセルセンサ12
2、車速センサ123、ブレーキセンサ124およびシ
フトスイッチ125にしたがってインバータ103への
指令値を送り、車両全体を制御する。また、コンプレッ
サ114の入口には空気質量流量センサ131、燃料電
池スタック101の空気極入口には空気圧力センサ13
2、水素極入口には水素圧力センサ135、冷却水出口
には冷却水温度センサ136が設置され、それぞれ制御
装置121が値を読み込む。
【0027】図1に示した基本構成図と図2の第1実施
形態の構成図との対応は、以下の通りである。図1の燃
料電池スタック10、流量検出手段3、圧力検出手段4
は、それぞれ図2の燃料電池スタック101、空気質量
流量センサ131、空気圧力センサ132及び水素圧力
センサ135に対応する。また図1の目標運転点演算手
段2、発電可能電力演算手段5、および負荷制御手段6
は、図2のマイクロプロセッサ等を用いた制御装置12
1が実行するプログラムとして実現されている。
【0028】次に、制御装置121の動作を図3のフロ
ーチャートに基づいて説明する。まず、ステップS30
2で目標車両駆動トルクTdを演算する。この値は、ア
クセルセンサ122から入力されるアクセル開度、シフ
トスイッチ125から入力されるシフトポジションな
ど、ドライバの操作量と車速センサ123から入力され
る現在の車両速度からマップ等から演算される。
【0029】次いで、ステップS304にて目標車両駆
動仕事率Pdを演算する。この値は、目標車両駆動トル
クTdと車両速度との積にギヤ比やタイヤ半径などで定
まる定数を乗じたものである。次いで、ステップS30
6で目標発電電力Pgを演算する。この値は、目標車両
駆動電力Pdを車両駆動用交流モータ104およびイン
バータ103の効率で除したものである。次いで、ステ
ップS308にて目標運転点の演算を行う。これは別に
述べるが、燃料電池スタック101の目標発電電力に応
じて、燃料電池スタック101に供給する水素と空気の
目標流量および目標圧力を演算するものである。
【0030】次いで、ステップS310にて流量・圧力
制御の演算を行う。ここでは、空気質量流量センサ13
1と空気圧力センサ132によって検出される空気の流
量・圧力が空気の目標流量・目標圧力にそれぞれ一致す
るように、コンプレッサ114の目標回転数と空気調圧
弁133の目標開度を演算し、それぞれを制御する。ま
た、水素圧力センサ135によって検出される水素の圧
力が水素の目標圧力に一致するように、水素調圧弁13
4の目標開度を演算し、制御する。
【0031】次いで、ステップS312にて発電可能電
力Pglの演算を行う。これについても別に説明する
が、燃料電池スタック101に実際に供給されているガ
スの流量・圧力に応じて、燃料電池スタック101の発
電可能電力Pglを演算するものである。次いで、ステ
ップS314にて車両駆動可能仕事率Pdlを演算す
る。この値は、発電可能電力Pglに車両駆動用交流モ
ータ104およびインバータ103の効率を乗じたもの
である。
【0032】次いで、ステップS316にて車両駆動ト
ルク指令値Tdlを演算する。この値は、車両駆動可能
仕事率Pdlを車両速度とギヤ比やタイヤ半径などで定
まる定数の積で除したものである。車両駆動トルク指令
値Tdlはインバータ103に与えられ、車両駆動用交
流モータ104の出力トルクがこの値に制御される。
【0033】次に、ステップS308の演算について詳
細に説明する。目標ガス流量については、図4に示すよ
うな燃料電池スタック101の特性にしたがい、目標発
電電力から目標ガス流量を求める。図4に示す特性は、
発電電力の増加に応じて目標ガス流量も増加していく
が、ガス流量が少ない場合、発電時に生成される水が燃
料電池スタック101内にとどまり、燃料電池スタック
101の電圧低下を招いてしまうことを考慮して、発電
電力が小さい領域で比較的大きな流量を流すようになっ
ている。図4に示す通り、目標発電電力がWaのとき
は、目標ガス流量がQaとなる。
【0034】目標ガス圧力については、図5に示すよう
な燃料電池スタック101の特性にしたがい、目標発電
電力から目標ガス圧力を求める。図5に示すように、発
電電力の増加に応じて目標ガス圧力が増加しており、目
標発電電力がWaのときは、目標ガス圧力がPaとな
る。
【0035】次に、ステップS312の演算について詳
細に説明する。図6は、ガス流量からガス流量による発
電可能電力Pgl1を求める際に用いる燃料電池スタッ
ク101の特性であり、図4に示した特性のX軸とY軸
を入れ替えたものである。空気質量流量センサ131に
よって検出される空気流量がQbの場合、ガス流量によ
る発電可能電力Pal1は、Wb1となる。また、図7
は、ガス圧力からガス圧力による発電可能電力Pal2
を求める際に用いる燃料電池スタック101の特性であ
り、図5に示した特性のX軸とY軸を入れ替えたもので
ある。空気圧力センサ132によって検出される空気圧
力と水素圧力センサ135によって検出される水素圧力
のうち、小さい値がPbの場合、ガス圧力による発電可
能電力Pgl2は、Wb2となる。そして、ガス流量に
よる発電可能電力Wgl1とガス圧力による発電可能電
力Wgl2の小さい方を発電可能電力Wgl1とする。
【0036】図8は本実施形態における動作を示すタイ
ミングチャートである。時刻t1において、運転者がア
クセルを踏み増して、目標発電電力WcからWdへ増加
した場合を示している。ステップS308の演算によ
り、目標ガス流量はQcからWdへ、目標ガス圧力はP
cからPdへそれぞれ増加する。ステップS310の演
算により、コンプレッサ114、空気調整弁133、水
素調整弁134がそれぞれ制御され、ガス流量およびガ
ス圧力が目標値に制御されている。ただし、各アクチュ
エータの応答遅れやガス管路の容積、圧損などの影響の
ため、実際のガス流量、ガス圧力が目標値に到達するま
でに遅れが生じる。この例では、圧力の応答が流量の応
答よりも遅くなっている。そのため、ステップS312
の演算では、ガス圧力による発電可能電力Pgl2の応
答がガス流量による発展可能電力Pgl1よりも遅くな
っている。したがって、両者の内小さい値となる発電可
能電力Pglは、ガス圧力による発電可能電力Pgl2
と同じ応答となる。
【0037】また、本実施形態中では、ガス流量の検出
に空気質量流量センサ131を用いて説明したが、コン
プレッサ114の回転数に応じてガス流量を推定するこ
とも可能であり、その推定値を用いて本発明を実現する
ことも可能である。
【0038】上記により、燃料電池への燃料ガスおよび
酸化ガスの供給に際し、目標発電電力に応じて供給ガス
の流量および圧力の目標を最適に決定するため、燃料電
池の発電効率を常に最適に制御することができる。ま
た、実際の供給ガスの流量および圧力に応じて燃料電池
の発電電力を制限するため、目標発電電力が変化したと
きに供給ガスの流量および圧力が過渡的に目標に追従し
ない場合であっても、燃料電池の性能劣化を防ぐことが
可能となる。
【0039】〔第2実施形態〕次に、図9ないし図11
を参照して、本発明に係る燃料電池システムの制御装置
の第2実施形態について説明する。この実施形態では、
燃料電池スタック101の温度を考慮した、目標動作点
制御および発電制御について、車両制御装置121の動
作を図9のフローチャートに基づいて説明する。まず、
ステップS302で目標車両駆動トルクTdを演算す
る。次いで、ステップS304にて目標車両駆動仕事率
Pdを演算する。次いで、ステップS306で目標発電
電力Pgを演算する。次いで、ステップS308にて目
標運転点の演算を行う。次いで、ステップS309にて
目標運転点の補正演算を行う。これについては別に説明
するが、燃料電池スタック101出口の冷却水温度を冷
却水温度センサ136で検出し、この値に応じて目標運
転点を補正し、水素と空気の目標流量および目標圧力を
演算し直すものである。ここで、冷却水の温度は燃料電
池スタック101の温度に関連する値として用いるので
あって、当然、燃料電池スタック101の温度を直接検
出しても構わない。次いで、ステップS310にて流量
・圧力制御の演算を行う。次いで、ステップS311に
て流量・圧力の補正演算を行う。これについては別に説
明するが、冷却水温度センサ136の検出値に応じて実
際に供給されているガスの流量・圧力を補正するもので
ある。次いで、ステップS312にて発電可能電力Pg
lの演算を行う。ここでは、補正されたガスの流量・圧
力に応じて、燃料電池スタック101の発電可能電力P
glを演算する。次いで、ステップS314にて車両駆
動可能仕事率Pdlを演算する。次いで、ステップS3
16にて車両駆動トルク指令値Tdlを演算する。車両
駆動トルク指令値Tdlはインパータ103に与えら
れ、車両駆動用交流モータ104の出力トルクがこの値
に制御される。
【0040】次に、ステップS309の目標運転点の補
正演算について説明する。図10、図11は燃料電池ス
タック101の目標発電電力に対する目標運転点を示し
たものである。目標流量、目標圧力とも通常運転温度
(t0)より、低温時(t1〜t3、ここでt0>t1
>t2>t3とする)の方が高い値が必要であり、低温
になればなるほど高い値が必要である。
【0041】これは、燃料電池の温度が通常運転温度よ
り低ければ、発電の際の電気化学反応が低下するため、
ガス圧力を高めないと目標発電電力を達成できないため
である。加えて、燃料電池スタック101のガス下流に
あるセルは、発電によって消費されるガス量が少なくな
り、低温時は、電気化学反応の低下の影響が現れやす
い。したがって、ガス流量を増やして、その影響を小さ
くする必要がある。また、発電によって生成される水が
凝縮しやすく、ガス流量の増加をしないと、燃料電池内
部に生成水が溜まってしまうためである。
【0042】そこで、ステップS308で演算される通
常運転温度での目標ガス流量および目標ガス圧力に対し
て、燃料電池スタック101の温度またはそれに関連す
る値をパラメータとして補正をかける。例えば、所定の
係数をステップS308で演算された目標ガス流量およ
び目標ガス圧力に乗じる、あるいは、所定の定数をステ
ップS308で演算された目標ガス流量および目標ガス
圧力に加える処理を行う。ここで、所定の係数、所定の
定数は、空気流量、水素圧力毎に設定され、それぞれは
冷却水温度でテーブル検索される値である。このように
演算された値を、改めて目標ガス流量、目標ガス圧力と
する。
【0043】次に、ステップS311について説明す
る。ここでは、検出されたガス流量およびガス圧力を通
常運転温度でのガス流量およびガス圧力に補正する。す
なわち、検出された空気流量、空気圧力、水素圧力を、
ステップS309で用いた所定の係数で除す、あるい
は、検出された空気流量、空気圧力、水素圧力からステ
ップS309で用いた所定の定数を減じる。これによ
り、低温時の電気化学反応の低下、水溜りなど、発電可
能電力に影響を及ぼすものを打ち消すために必要なガス
流量、ガス圧力分を排除した場合のガス流量、ガス圧力
が求められる。この補正されたガス流量、ガス圧力を改
めてガス流量およびガス圧力とすれば、ステップS31
2の通常運転温度での発電可能電力の演算結果が、燃料
電池スタック101の温度の影響を考慮した発電可能電
力Pglとなる。
【0044】上記により、燃料電池への燃料ガスおよび
酸化ガスの供給に際し、目標発電電力と燃料電池の温度
に応じて供給ガスの流量および圧力の目標を最適に決定
するため、燃料電池の発電効率を燃料電池温度にかかわ
らず最適に制御することができる。また、実際の供給ガ
スの流量および圧力と燃料電池温度に応じて燃料電池の
発電電力を制限するため、目標発電電力が変化したとき
に供給ガスの流量および圧力が過渡的に目標に追従しな
い場合であっても、燃料電池の性能劣化を燃料電池の温
度にかかわらず防ぐことが可能となる。加えて、燃料電
池の温度に応じて、供給ガスの流量および圧力の目標を
最適に決定するため、燃料電池が低温にあっても、発電
電力の制限を最小限に終えることが可能となり、燃料電
池の昇温時間が短縮され、高効率の通常運転に速やかに
移行できる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの制御装置の基
本構成を説明する基本構成図である。
【図2】本発明に係る燃料電池システムの制御装置の第
1実施形態の構成を示すシステム構成図である。
【図3】第1実施形態における燃料電池制御動作を示す
フローチャートである。
【図4】第1実施形態におけるガス目標流量特性を示す
グラフである。
【図5】第1実施形態におけるガス目標圧力特性を示す
グラフである。
【図6】第1実施形態におけるガス流量による発電可能
電力特性を示すグラフである。
【図7】第1実施形態におけるガス圧力による発電可能
電力特性を示すグラフである。
【図8】第1実施形態の動作を示すタイミングチャート
である。
【図9】第2実施形態における燃料電池制御動作を示す
フローチャートである。
【図10】第2実施形態におけるガス目標流量特性を示
すグラフである。
【図11】第2実施形態におけるガス目標圧力特性を示
すグラフである。
【符号の説明】
1 制御装置 2 目標運転点演算手段 3 流量検出手段 4 圧力検出手段 5 発電可能電力演算手段 6 負荷制御手段 101 燃料電池スタック 103 インバータ 104 車両駆動用交流モータ 111 加湿器 113 純水供給ポンプ 114 コンプレッサ 115 冷却水供給ポンプ 121 制御装置

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 燃料ガスと酸化ガスとの反応によって電
    気的エネルギを負荷に供給する燃料電池に対し、前記燃
    料ガスおよび前記酸化ガスの供給を制御し、かつ、前記
    燃料電池の出力電力を制御する燃料電池システムの制御
    装置において、 前記燃料電池の目標発電電力に基づいて前記燃料ガスお
    よび前記酸化ガスの目標流量および目標圧力を演算する
    目標運転点演算手段と、 前記燃料ガスおよび前記酸化ガスの流量に関連する値を
    検出する流量検出手段と、 前記燃料ガスおよび前記酸化ガスの圧力を検出する圧力
    検出手段と、 検出された前記流量に関連する値および前記圧力に基づ
    いて前記燃料電池の発電可能電力を演算する発電可能電
    力演算手段と、 前記発電可能電力に制限されるように前記燃料電池の出
    力電力を制御する負荷制御手段と、 を具備したことを特徴とする燃料電池システムの制御装
    置。
  2. 【請求項2】 前記燃料電池の温度に関連する値を検出
    する温度検出手段と、 検出された前記温度に関連する値に基づいて前記目標流
    量を補正する目標流量補正手段と、 検出された前記温度に関連する値に基づいて前記目標圧
    力を補正する目標圧力補正手段と、 検出された前記温度に関連する値に基づいて前記発電可
    能電力演算手段の入力である前記流量に関連する値を補
    正する流量補正手段と、 検出された前記温度に関連する値に基づいて前記発電可
    能電力演算手段の入力である前記圧力を補正する圧力補
    正手段と、 を具備したことを特徴とする請求項1に記載の燃料電池
    システムの制御装置。
  3. 【請求項3】 前記目標圧力補正手段は、前記温度に関
    連する値が所定値より小さいときに前記目標圧力を増加
    するように補正するものであり、前記圧力補正手段は前
    記温度に関連する値が所定値より小さいときに前記圧力
    を減少するように補正するものであることを特徴とする
    請求項2に記載の燃料電池システムの制御装置。
  4. 【請求項4】 前記目標流量補正手段は、前記温度に関
    連する値が所定値より小さいときに前記目標流量を増加
    するように補正するものであり、前記流量補正手段は前
    記温度に関連する値が所定値より小さいときに前記流量
    に関連する値を減少するように補正するものであること
    を特徴とする請求項2に記載の燃料電池システムの制御
    装置。
  5. 【請求項5】 前記目標圧力補正手段は、前記温度検出
    手段の検出値と所定の定格温度との差に応じて前記目標
    圧力を補正することを特徴とする請求項3に記載の燃料
    電池システムの制御装置。
  6. 【請求項6】 前記目標流量補正手段は、前記温度検出
    手段の検出値と所定の定格温度との差に応じて前記目標
    流量を補正することを特徴とする請求項4に記載の燃料
    電池システムの制御装置。
JP2001045362A 2001-02-21 2001-02-21 燃料電池システムの制御装置 Expired - Fee Related JP4185671B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045362A JP4185671B2 (ja) 2001-02-21 2001-02-21 燃料電池システムの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045362A JP4185671B2 (ja) 2001-02-21 2001-02-21 燃料電池システムの制御装置

Publications (2)

Publication Number Publication Date
JP2002246051A true JP2002246051A (ja) 2002-08-30
JP4185671B2 JP4185671B2 (ja) 2008-11-26

Family

ID=18907168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045362A Expired - Fee Related JP4185671B2 (ja) 2001-02-21 2001-02-21 燃料電池システムの制御装置

Country Status (1)

Country Link
JP (1) JP4185671B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038691A (ja) * 2003-07-14 2005-02-10 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2005332652A (ja) * 2004-05-19 2005-12-02 Toyota Motor Corp 温度推定装置、燃料電池制御装置、燃料電池システム及び温度推定方法
WO2006006222A1 (ja) * 2004-07-09 2006-01-19 Kajima Corporation システム全体の電力消費の変動が小さくなる燃料電池システム、燃料電池システム制御方法および建造物
WO2006006221A1 (ja) * 2004-07-09 2006-01-19 Yokogawa Electric Corporation システム全体の電力消費の変動が小さくなる燃料電池システム、燃料電池システム制御方法および建造物
WO2006006224A1 (ja) * 2004-07-09 2006-01-19 Crc Solutions Corporation 電力消費量のピークを最大発電電力以下に抑える燃料電池システム、燃料電池システム制御方法および建造物
JP2006216367A (ja) * 2005-02-03 2006-08-17 Denso Corp 燃料電池および燃料電池システム
JP2006310103A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 燃料電池システムとその運転方法
JP2007012548A (ja) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd 燃料電池システム
JP2007134168A (ja) * 2005-11-10 2007-05-31 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの水素漏れ検知方法
WO2008013065A1 (en) * 2006-07-26 2008-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
JP2008071597A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 燃料電池システム
JP2008108666A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 燃料電池システム
US7842428B2 (en) 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control
US7887958B2 (en) 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
CN102280652A (zh) * 2004-08-06 2011-12-14 松下电器产业株式会社 燃料电池发电***的运行控制方法
US8277997B2 (en) 2004-07-29 2012-10-02 Idatech, Llc Shared variable-based fuel cell system control
JP2014082115A (ja) * 2012-10-17 2014-05-08 Toyota Motor Corp 燃料電池システムおよびその制御方法
KR20170000991A (ko) * 2015-06-25 2017-01-04 현대자동차주식회사 연료전지 시스템의 비상 운전 방법

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038691A (ja) * 2003-07-14 2005-02-10 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP4590836B2 (ja) * 2003-07-14 2010-12-01 日産自動車株式会社 燃料電池システムの制御装置
JP2005332652A (ja) * 2004-05-19 2005-12-02 Toyota Motor Corp 温度推定装置、燃料電池制御装置、燃料電池システム及び温度推定方法
US7842428B2 (en) 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control
US9515334B2 (en) 2004-05-28 2016-12-06 Dcns Utilization-based fuel cell monitoring and control
US7985510B2 (en) 2004-05-28 2011-07-26 Idatech, Llc Utilization-based fuel cell monitoring and control
WO2006006222A1 (ja) * 2004-07-09 2006-01-19 Kajima Corporation システム全体の電力消費の変動が小さくなる燃料電池システム、燃料電池システム制御方法および建造物
WO2006006221A1 (ja) * 2004-07-09 2006-01-19 Yokogawa Electric Corporation システム全体の電力消費の変動が小さくなる燃料電池システム、燃料電池システム制御方法および建造物
WO2006006224A1 (ja) * 2004-07-09 2006-01-19 Crc Solutions Corporation 電力消費量のピークを最大発電電力以下に抑える燃料電池システム、燃料電池システム制御方法および建造物
US8277997B2 (en) 2004-07-29 2012-10-02 Idatech, Llc Shared variable-based fuel cell system control
CN102280652A (zh) * 2004-08-06 2011-12-14 松下电器产业株式会社 燃料电池发电***的运行控制方法
JP2006216367A (ja) * 2005-02-03 2006-08-17 Denso Corp 燃料電池および燃料電池システム
JP2006310103A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 燃料電池システムとその運転方法
JP2007012548A (ja) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd 燃料電池システム
JP2007134168A (ja) * 2005-11-10 2007-05-31 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの水素漏れ検知方法
US7887958B2 (en) 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
JP2008034126A (ja) * 2006-07-26 2008-02-14 Toyota Motor Corp 燃料電池システムおよびその制御方法
WO2008013065A1 (en) * 2006-07-26 2008-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
US8815463B2 (en) 2006-07-26 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method
JP2008071597A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 燃料電池システム
JP2008108666A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 燃料電池システム
JP2014082115A (ja) * 2012-10-17 2014-05-08 Toyota Motor Corp 燃料電池システムおよびその制御方法
CN104508887A (zh) * 2012-10-17 2015-04-08 丰田自动车株式会社 燃料电池***及其控制方法
US10158134B2 (en) 2012-10-17 2018-12-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method thereof
US11283089B2 (en) 2012-10-17 2022-03-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method thereof
KR20170000991A (ko) * 2015-06-25 2017-01-04 현대자동차주식회사 연료전지 시스템의 비상 운전 방법
KR102274110B1 (ko) 2015-06-25 2021-07-06 현대자동차주식회사 연료전지 시스템의 비상 운전 방법

Also Published As

Publication number Publication date
JP4185671B2 (ja) 2008-11-26

Similar Documents

Publication Publication Date Title
JP2002246051A (ja) 燃料電池システムの制御装置
WO2006109756A1 (ja) 燃料電池システム
JP2004179149A (ja) 燃料電池システム
JP2002110213A (ja) 燃料電池システム
JP3580283B2 (ja) 車両用燃料電池システムの制御装置
JP4525112B2 (ja) 燃料電池車両の制御装置
JP2002280027A (ja) 燃料電池システム
JP5358947B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2002343397A (ja) 燃料電池システムの制御装置
JP4876502B2 (ja) 燃料電池システム
JP4375208B2 (ja) 燃料電池の出力制限装置
JP2007115460A (ja) 燃料電池システム
JP2008047329A (ja) 燃料電池システム
JP2006269196A (ja) 燃料電池システム
JP4372523B2 (ja) 燃料電池の制御装置
JP2007172888A (ja) 燃料電池システムの制御装置
JP4682572B2 (ja) 燃料電池の発電量制御装置
JP2007059348A (ja) 燃料電池システムおよび燃料電池システムの起動方法
JP2007250272A (ja) 流体制御システム
JP2006344401A (ja) 燃料電池システム
JP2003317765A (ja) 燃料電池制御システム
JP2006134806A (ja) 燃料電池システム
JP4701664B2 (ja) 燃料電池システム
JP4747495B2 (ja) 燃料電池システム
JP4561048B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060828

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4185671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees