JP2002237304A - Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery - Google Patents

Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery

Info

Publication number
JP2002237304A
JP2002237304A JP2001034815A JP2001034815A JP2002237304A JP 2002237304 A JP2002237304 A JP 2002237304A JP 2001034815 A JP2001034815 A JP 2001034815A JP 2001034815 A JP2001034815 A JP 2001034815A JP 2002237304 A JP2002237304 A JP 2002237304A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite particles
diameter
coating film
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001034815A
Other languages
Japanese (ja)
Inventor
Katsutomo Ozeki
克知 大関
Toyoki Horizumi
豊樹 堀澄
Minoru Shirohige
稔 白髭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001034815A priority Critical patent/JP2002237304A/en
Publication of JP2002237304A publication Critical patent/JP2002237304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide graphite particles and a negative electrode coating film for a negative electrode for the purpose of enhancing rapid charge-discharge characteristics and cycle characteristics of a lithium ion secondary battery and reducing an irreversible capacity in the first cycle. SOLUTION: On a surface of aggregated graphite particles constituted from natural graphite particles of scale state or scale piece state, a specific amount of amino acid and/or its salt is adsorbed or coated. Further, the negative electrode coating film is used which is based on graphite material and binder, and in which a specific amount of amino acid and/or its salt is contained for the graphite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、非水系二次電池
の負極に使用する黒鉛粒子および同電池の負極塗膜に関
するものであり、特に充放電効率および放電負荷特性を
向上させることが可能な負極用黒鉛粒子と負極塗膜に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite particle used for a negative electrode of a non-aqueous secondary battery and a negative electrode coating film of the battery, and more particularly to a charge / discharge efficiency and discharge load characteristic which can be improved. The present invention relates to graphite particles for a negative electrode and a negative electrode coating film.

【0002】[0002]

【従来の技術】非水系二次電池、例えばリチウムイオン
二次電池の負極活物質としては、炭素粒子のメソフェー
ズカーボンマイクロビーズ(MCMB)や難黒鉛化炭素
が主として用いられている。また、結着剤としてはポリ
フッ化ビニリデン(PVDF)樹脂に代表されるフッ素
系樹脂が主として用いられ、これらの樹脂をN−メチル
−2−ピロリドン(NMP)などの有機溶剤を溶媒とし
て負極活物質と共に混練し、スラリー化することにより
リチウムイオン二次電池の負極塗膜形成用スラリーとし
ている。リチウムイオン二次電池はノート形パソコンや
携帯電話などの充電可能な電源として普及しているが、
さらにその適用範囲を拡大するために電池の高容量化や
高電圧化を図ることが望まれている。このような二次電
池の高容量化に対する要求を満たすためには、負極材料
を高容量化することが必須である。しかしながら、従来
から負極活物質として使用されているMCMBは黒鉛化
が不十分であるために、得られる放電容量は320mA
h/g程度にとどまっている。そのため、電池(負極材
料)の高容量化の要求を充足する方策として、負極活物
質として黒鉛粒子を用いる検討が進められている。これ
は、黒鉛粒子は結晶性が高く、理論的な充放電容量であ
る372mAh/gに近い値のものを得ることができ、
また電池の高電圧化にも適しているからである。
2. Description of the Related Art Mesophase carbon microbeads (MCMB) of carbon particles and non-graphitizable carbon are mainly used as a negative electrode active material of a non-aqueous secondary battery such as a lithium ion secondary battery. As the binder, a fluorine-based resin typified by polyvinylidene fluoride (PVDF) resin is mainly used, and these resins are used as a negative electrode active material by using an organic solvent such as N-methyl-2-pyrrolidone (NMP) as a solvent. And a slurry for forming a negative electrode coating film of a lithium ion secondary battery. Lithium-ion secondary batteries are widely used as rechargeable power sources for notebook PCs and mobile phones,
Further, it is desired to increase the capacity and voltage of the battery in order to expand its application range. In order to satisfy the demand for higher capacity of such a secondary battery, it is essential to increase the capacity of the negative electrode material. However, since MCMB conventionally used as a negative electrode active material is insufficiently graphitized, the obtained discharge capacity is 320 mA.
h / g. Therefore, as a measure to satisfy the demand for higher capacity of a battery (negative electrode material), use of graphite particles as a negative electrode active material is being studied. This is because graphite particles have high crystallinity and can obtain a value close to the theoretical charge / discharge capacity of 372 mAh / g.
It is also suitable for increasing the voltage of the battery.

【0003】[0003]

【発明が解決しようとする課題】黒鉛結晶が発達してい
る天然黒鉛粒子は、c軸方向の結晶の層間結合力が結晶
の面方向の結合に比べて弱いため、粉砕により黒鉛層間
の結合が切れ、アスペクト比が大きい、いわゆるリン状
またはリン片状の黒鉛粒子となる。このリン状またはリ
ン片状の黒鉛粒子を、前述のようにスラリー化して、集
電体である銅箔上に塗布して電極を作製すると、リン状
またはリン片状の黒鉛粒子は集電体の面方向に配向する
ようになる。その結果、黒鉛結晶に対するリチウムイオ
ンの吸蔵・放出の繰り返しによって発生するc軸方向の
歪みにより電極内部の破壊が生じ、サイクル特性が低下
するという問題が生ずると共に、急速充放電特性が劣化
する傾向がある。さらに、アスペクト比が大きいリン状
またはリン片状の黒鉛粒子は比表面積が大きいため、場
合によっては得られるリチウムイオン二次電池の第一サ
イクルにおける不可逆容量が大きいばかりでなく、集電
体である銅箔との密着性が悪く、結着剤を多量に必要と
するという問題点がある。銅箔との密着性が悪いと集電
効果が低下し、放電容量、急速充放電特性、サイクル特
性などが低下する問題がある。したがって、リチウムイ
オン二次電池の急速充放電特性およびサイクル特性を向
上させ、また、第一サイクルにおける不可逆容量を小さ
くするための、負極用黒鉛粒子が求められている。
The natural graphite particles in which graphite crystals have been developed have a weaker interlayer bonding force in the c-axis direction than in the plane direction of the crystals. It becomes a so-called phosphorus-like or flake-like graphite particle that is cut and has a large aspect ratio. When the phosphorous or flaky graphite particles are slurried as described above and coated on a copper foil as a current collector to produce an electrode, the phosphorous or flaky graphite particles are turned into a current collector. In the plane direction. As a result, distortion in the c-axis direction caused by repeated occlusion and release of lithium ions with respect to the graphite crystal causes destruction of the inside of the electrode, causing a problem that cycle characteristics are deteriorated, and rapid charge / discharge characteristics are likely to be deteriorated. is there. Furthermore, since the phosphorus-like or flake-like graphite particles having a large aspect ratio have a large specific surface area, in some cases, the irreversible capacity in the first cycle of the obtained lithium ion secondary battery is not only large, but also a current collector. There is a problem that adhesion to the copper foil is poor and a large amount of binder is required. If the adhesion to the copper foil is poor, there is a problem that the current collecting effect is reduced and the discharge capacity, rapid charge / discharge characteristics, cycle characteristics and the like are reduced. Therefore, graphite particles for a negative electrode for improving the rapid charge / discharge characteristics and cycle characteristics of a lithium ion secondary battery and for reducing the irreversible capacity in the first cycle are required.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明のリチウムイオン二次電池の負極用黒鉛
粒子は、その粒子表面にアミノ酸および/またはその塩
が0.01〜3質量%吸着または被覆されていることが
特徴である。また、この黒鉛粒子は、リン状またはリン
片状天然黒鉛粒子から構成される塊状黒鉛粒子群であっ
て、この塊状黒鉛粒子群は、レーザー光回折法による累
積50%径(D50径)が10〜25μm、窒素ガス吸
着法による比表面積が2.5〜5m2/g、静置法による
見掛け密度が0.45g/cm以上、タップ法による
見掛け密度が0.70g/cm以上であり、さらに、
タップ法による見掛け密度は静置法による見掛け密度の
1.3倍〜2.0倍の範囲である。さらに、この塊状黒鉛
粒子群は、レーザー光回折法による累積50%径(D5
0径)の値が同法による累積10%径(D10径)の値
の1.5倍〜2.5倍の範囲であり、同法による累積90
%径(D90径)の値が累積50%径(D50径)の値
の1.5倍〜2.5倍の範囲である。また、この発明に関
する第二の発明は、黒鉛材料と結着剤を基本構成とする
非水系二次電池の負極塗膜において、その塗膜内にアミ
ノ酸及び/またはその塩が、黒鉛材料100質量部に対
して0.01〜3質量部含まれることを特徴とする非水
系二次電池の負極塗膜である。
In order to solve the above-mentioned problems, graphite particles for a negative electrode of a lithium ion secondary battery according to the present invention have an amino acid and / or a salt thereof on the particle surface in an amount of 0.01 to 3 mass%. % Is characterized by being adsorbed or coated. The graphite particles are a group of massive graphite particles composed of phosphorous or flaky natural graphite particles, and the massive graphite particles have a cumulative 50% diameter (D50 diameter) of 10 according to the laser diffraction method. ~25Myuemu, specific surface area measured by the nitrogen gas adsorption method 2.5~5m 2 / g, apparent density by the stationary method is 0.45 g / cm 3 or more, the apparent density by tapping method be 0.70 g / cm 3 or more ,further,
The apparent density by the tap method is 1.3 to 2.0 times the apparent density by the stationary method. Further, this massive graphite particle group has a cumulative 50% diameter (D5
0) is in the range of 1.5 times to 2.5 times the value of the cumulative 10% diameter (D10 diameter) by the same method, and the cumulative 90% by the same method.
The value of the% diameter (D90 diameter) is in the range of 1.5 times to 2.5 times the value of the cumulative 50% diameter (D50 diameter). Further, a second invention according to the present invention relates to a negative electrode coating film of a non-aqueous secondary battery comprising a graphite material and a binder as a basic composition, wherein the amino acid and / or a salt thereof is contained in the coating film in an amount of 100 mass% of the graphite material. It is a negative electrode coating film of a non-aqueous secondary battery characterized in that it is contained in an amount of 0.01 to 3 parts by mass per part.

【0005】[0005]

【発明の実施の態様】この発明の第一の特徴は、非水系
二次電池の黒鉛粒子表面にアミノ酸および/またはその
塩が吸着または被覆されていることである。また、非水
系二次電池の負極塗膜にアミノ酸および/またはその塩
が含まれていることである。アミノ酸およびその塩とし
ては、グリシン、アラニン、バリン、ロイシン、イソロ
イシン、セリン、トレオニン、システイン、シスチン、
メチオニン、アスパラギン酸、グルタミン酸、リシン、
アルギニン、フェニルアラニン、チロシン、ヒスチジ
ン、トリプトファン、プロリン、オキシプロリン、アミ
ノ酪酸、アミノ安息香酸、アスパラギン酸ナトリウム、
グルタミン酸ナトリウムが挙げられ、これらから選ばれ
る少なくとも1種を用いる。充電時に、黒鉛表面に本来
存在するカルボキシル基や水酸基の水素原子とリチウム
イオンが置換し、そのリチウムイオンは不可逆となるの
で不可逆容量の増大を引き起こす。また、黒鉛表面の官
能基や不対電子によって電解液の電気的な分解、即ち不
可逆容量が生じる。アミノ酸およびその塩は、黒鉛表面
のカルボキシル基や水酸基等の官能基や不対電子に化学
的に吸着すると考えられ、不可逆なリチウムの生成を抑
制すると共に、電解液の分解を抑制するものと考えられ
る。なお、黒鉛表面へのアミノ酸の吸着または被覆量
は、黒鉛100質量部に対して0.01〜3質量部であ
る。黒鉛100質量部に対して0.01重量部未満では
黒鉛表面の官能基や不対電子への吸着が不十分であり、
不可逆容量の改善効果が得られない。一方、黒鉛100
質量部に対して3質量部を超えると黒鉛表面の被覆過剰
となりリチウムイオンの透過性が悪くなり、放電容量お
よび急速充放電特性が劣化するので好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first feature of the present invention is that an amino acid and / or a salt thereof is adsorbed or coated on the surface of graphite particles of a non-aqueous secondary battery. In addition, the negative electrode coating film of the nonaqueous secondary battery contains an amino acid and / or a salt thereof. Amino acids and salts thereof include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine,
Methionine, aspartic acid, glutamic acid, lysine,
Arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, oxyproline, aminobutyric acid, aminobenzoic acid, sodium aspartate,
And sodium glutamate. At least one selected from these is used. At the time of charging, hydrogen atoms of carboxyl groups or hydroxyl groups originally present on the graphite surface are replaced with lithium ions, and the lithium ions are irreversible, so that the irreversible capacity increases. Further, the electrolytic solution of the electrolytic solution, that is, irreversible capacity occurs due to the functional groups and unpaired electrons on the graphite surface. Amino acids and their salts are considered to chemically adsorb to functional groups such as carboxyl groups and hydroxyl groups and unpaired electrons on the graphite surface, which suppresses the generation of irreversible lithium and suppresses the decomposition of electrolyte. Can be The amount of the amino acid adsorbed or coated on the graphite surface is 0.01 to 3 parts by mass with respect to 100 parts by mass of the graphite. If the amount is less than 0.01 part by weight with respect to 100 parts by weight of graphite, adsorption to functional groups and unpaired electrons on the graphite surface is insufficient,
The effect of improving the irreversible capacity cannot be obtained. On the other hand, graphite 100
If the amount is more than 3 parts by mass with respect to the parts by mass, the graphite surface is excessively coated, the permeability of lithium ions deteriorates, and the discharge capacity and rapid charge / discharge characteristics deteriorate.

【0006】また、黒鉛粒子を結着剤とともに集電体に
塗布して得られる塗膜が、アミノ酸および/またはその
塩が、該黒鉛材料100質量部に対して0.01〜3質
量部含まれるものは非水系二次電池の負極用として好適
なものである。負極塗膜として含まれるアミノ酸および
/またはその塩の存在に限っては、前述した負極用黒鉛
粒子のように黒鉛粒子表面に吸着または被覆している形
態の他、負極塗膜形成用スラリーとしての結着剤と共に
スラリーの添加剤として使用することも可能である。ま
た、結着剤としては、アミノ酸および/またはその塩を
溶解できる水溶性樹脂または水分散型樹脂が好ましく、
この樹脂としては、カルボキシメチルセルロース、ヒド
ロキシプロピルセルロース、アクリルスチレンエマルジ
ョン、SBRエマルジョンなどが挙げられる。
Further, a coating film obtained by applying graphite particles to a current collector together with a binder contains 0.01 to 3 parts by mass of an amino acid and / or a salt thereof with respect to 100 parts by mass of the graphite material. This is suitable for a negative electrode of a non-aqueous secondary battery. As far as the presence of the amino acid and / or its salt contained in the negative electrode coating film is not limited to the above-described form of being adsorbed or coated on the graphite particle surface like the above-described negative electrode graphite particles, the negative electrode coating film forming slurry It is also possible to use it as an additive of a slurry together with a binder. Further, as the binder, a water-soluble resin or a water-dispersible resin capable of dissolving an amino acid and / or a salt thereof is preferable,
Examples of the resin include carboxymethyl cellulose, hydroxypropyl cellulose, acrylic styrene emulsion, SBR emulsion and the like.

【0007】この発明の第二の特徴は、リン状またはリ
ン片状の天然黒鉛粒子から構成される塊状の黒鉛粒子群
であり、この塊状黒鉛粒子群は、レーザー光回折法によ
るD50径、すなわち平均粒子径の値が10〜25μm
であり、窒素ガス吸着法による比表面積が2.5〜5m2
/g、静置法による見掛け密度が0.45g/cm
上、タップ法による見掛け密度が0.70g/cm
上であり、さらに、タップ法による見掛け密度は静置法
による見掛け密度の1.3倍〜2.0倍となっていること
である。D50径(平均粒子径)の値が10μm未満で
は、塊状黒鉛粒子群の粒子径としては小さすぎるため、
黒鉛粒子間の接触抵抗が増加して形成した塗膜の導電性
が劣化する傾向がある。したがって、得られる電池特性
としては充放電容量や充放電負荷特性が低下すると共
に、電解液の分解に伴う充放電効率が低下する。逆に、
D50径の値が25μmを超えると、黒鉛粒子群の粒子
径としては大きすぎ、充放電時のリチウムイオンの黒鉛
内部および外部への拡散に時間を要し、充放電負荷特性
が低下すると共に、形成した塗膜の平滑性が悪くなり、
充電時に局部的にリチウムが析出する恐れがある。
A second feature of the present invention is a mass of graphite particles composed of phosphorous or flaky natural graphite particles. The mass of the mass of graphite particles has a D50 diameter determined by a laser light diffraction method, ie, Average particle size is 10 to 25 μm
Has a specific surface area of 2.5 to 5 m 2 by a nitrogen gas adsorption method.
/ G, apparent density by the stationary method is 0.45 g / cm 3 or more, an apparent density by tapping method 0.70 g / cm 3 or more, further 1 apparent density by apparent density stationary method by tapping method That is, it is 0.3 times to 2.0 times. When the value of the D50 diameter (average particle diameter) is less than 10 μm, the particle diameter of the massive graphite particles is too small.
The contact resistance between the graphite particles increases, and the conductivity of the formed coating film tends to deteriorate. Therefore, as the battery characteristics obtained, the charge / discharge capacity and the charge / discharge load characteristics are reduced, and the charge / discharge efficiency accompanying the decomposition of the electrolyte is reduced. vice versa,
When the value of the D50 diameter exceeds 25 μm, the particle diameter of the graphite particle group is too large, and it takes time for lithium ions to diffuse into and outside the graphite at the time of charge and discharge, and the charge / discharge load characteristics decrease, The smoothness of the formed coating film deteriorates,
Lithium may be locally deposited during charging.

【0008】また、このD50径(平均粒子径)の値と
相関性があるが、窒素ガス吸着法による比表面積が2.
5m2/g未満では、黒鉛粒子群としては比表面積の値
が低く、粗大な粒子群となる。したがって、充放電時の
リチウムイオンの黒鉛内部および外部への拡散に時間を
要し、充放電負荷特性が低下すると共に、形成した塗膜
の平滑性が悪くなり、充電時に局部的にリチウムが析出
する恐れがある。逆に、窒素ガス吸着法による比表面積
が5m2/gを超えると、黒鉛粒子は微細な粒子群とな
り、黒鉛粒子間の接触抵抗が増加して形成した塗膜の導
電性が劣化し、充放電容量や充放電負荷特性が低下する
と共に、電解液の分解に伴う充放電効率が低下し、凝集
が進んで嵩密度の低い粒子群になるので、比表面積がこ
の値より大きいと好ましくない。
Further, there is a correlation with the value of the D50 diameter (average particle diameter).
If it is less than 5 m 2 / g, the specific surface area of the graphite particles is low and the graphite particles are coarse. Therefore, it takes time for lithium ions to diffuse into and out of graphite at the time of charge and discharge, and the charge and discharge load characteristics are reduced, the smoothness of the formed coating film is deteriorated, and lithium is locally deposited during charge. Might be. Conversely, if the specific surface area measured by the nitrogen gas adsorption method exceeds 5 m 2 / g, the graphite particles become a fine particle group, the contact resistance between the graphite particles increases, and the conductivity of the formed coating film deteriorates. The discharge capacity and charge / discharge load characteristics are reduced, and the charge / discharge efficiency accompanying the decomposition of the electrolytic solution is reduced, and aggregation proceeds to form particles having a low bulk density. Therefore, it is not preferable that the specific surface area is larger than this value.

【0009】さらに、この発明における塊状黒鉛粒子群
の静置法による見掛け密度は0.45g/cm以上、
タップ法による見掛け密度が0.70g/cm以上が
好ましい。静置法による見掛け密度およびタップ法によ
る見掛け密度の測定方法は、顔料試験方法(JIS K
5101)に記載されている。この発明における静置法
およびタップ法による見掛け密度は、ホソカワミクロン
製パウダーテスターPT−R型を用いて測定したもので
ある。静置法による見掛け密度の測定方法は、篩網を通
して受器に試料を入れて、容積が100cmになった
ときの質量を測定することにより評価する。これに対し
て、タップ法による見掛け密度の測定方法は、試料を受
器に投入しながら受器を180回タッピングした後の容
積100cm当たりの質量を測定することにより評価
する。静置法による見掛け密度の0.45g/cm
よびタップ法による見掛け密度の0.70g/cm
値は、この発明に適用される黒鉛粒子群の下限値であ
る。リチウムイオン電池の高エネルギー密度化の要求に
対しては、活物質の充填密度を高めること、言い換えれ
ば塗膜の高密度化が必須であり、そのためには、できる
だけ厚い塗膜を形成することが必要である。発明者らが
検討した結果、塗膜を形成するためのスラリー固形分が
45質量%以上であれば良好な塗膜を形成できることを
見出した。その固形分含量を達成するためには、静置法
による見掛け密度が0.45g/cm以上、タップ法
による見掛け密度が0.70g/cm 以上の値が好ま
しいことが分かった。また、これらの見掛け密度未満で
は、塗工時の膜厚の変動が大きくなり、十分な密着強度
を得るために必要な結着剤の配合量も多くなり、実効容
量の低下を引き起こす懸念がある。
Further, the massive graphite particles according to the present invention.
Apparent density by static method of 0.45 g / cm3that's all,
Apparent density by tap method is 0.70 g / cm3More than
preferable. Apparent density by static method and tap method
The method of measuring the apparent density is based on the pigment test method (JIS K
5101). The stationary method in the present invention
And tapping method, apparent density by Hosokawa Micron
Measured using a powder tester PT-R
is there. The method for measuring the apparent density by the static method is
And put the sample in the receiver, the volume is 100cm3Became
It is evaluated by measuring the mass at the time. In contrast
The method for measuring the apparent density by the tap method is
After tapping the receiver 180 times while putting it in the container
Product 100cm3Evaluation by measuring the mass per
I do. 0.45 g / cm of apparent density by static method3You
And 0.70 g / cm of apparent density by tap method3of
The value is the lower limit of the graphite particle group applied to the present invention.
You. To meet demands for higher energy density in lithium-ion batteries
In contrast, increasing the packing density of the active material, in other words,
If it is necessary to increase the density of the coating film, it can be done
It is necessary to form only a thick coating film. The inventors
As a result of the investigation, the solid content of the slurry for forming the coating film was
A good coating film can be formed if the content is 45% by mass or more.
I found it. In order to achieve that solid content,
Apparent density is 0.45 g / cm3The tap method
Apparent density of 0.70 g / cm 3Values above are preferred
It turned out to be good. Also, below these apparent densities
Has a large variation in film thickness during coating, and has sufficient adhesion strength
The amount of binder required to obtain
There is a concern that the amount may be reduced.

【0010】上記測定方法のとおり、タップ法による見
掛け密度は受器に振動を与える分、受器内の試料は充填
が進むため、静置法による見掛け密度と比べるとその値
は高くなる。この発明のさらに他の特徴は、タップ法に
よる見掛け密度は静置法による見掛け密度の1.3倍〜
2.0倍の範囲にあるという点である。すなわち、タッ
ピングにより受器内の黒鉛粒子群の充填が進まないも
の、および進みすぎるものは、この発明の範囲外とな
る。また、前記密度の比が1.3未満では、タッピング
による充填が進まない材料となり、実際の負極塗膜形成
工程では、塗膜のプレスによる密度制御が困難になる。
逆に、密度の比が2.0を超えるものは、タッピングに
よる充填が進みすぎる材料であり、乾燥条件等により塗
膜厚さが変動し易く、プレスによる塗膜密度上昇時にも
変動が生じ易く、更に、プレスによる残留応力が大きい
ために、銅箔界面から剥離し易くなる。
As described in the above measuring method, the apparent density by the tap method is higher than the apparent density by the stationary method because the sample in the receiver proceeds to fill because the vibration is applied to the receiver. Still another feature of the present invention is that the apparent density by the tap method is 1.3 times or more the apparent density by the stationary method.
This is in the range of 2.0 times. That is, those in which the filling of the graphite particles in the receiver does not progress due to tapping, and those in which the progress is too high are outside the scope of the present invention. On the other hand, if the density ratio is less than 1.3, the material will not be filled by tapping, and it will be difficult to control the density by pressing the coating film in the actual negative electrode coating film forming step.
Conversely, a material having a density ratio of more than 2.0 is a material that is excessively filled by tapping, and the thickness of the coating film tends to fluctuate due to drying conditions and the like. Further, since the residual stress due to the pressing is large, it is easy to peel off from the copper foil interface.

【0011】この発明の非水系二次電池の負極用黒鉛粒
子における第二の特徴は、塊状黒鉛粒子群のレーザー光
回折法によるD50径の値は同法による累積10%径の
値D10径の1.5倍〜2.5倍の範囲であり、同法によ
る累積90%径の値D90径はD50径の値の1.5倍
〜2.5倍の範囲にすることである。D50径の値がD
10径の値の1.5倍未満の場合には、形成した塗膜中
の粒子の充填性が悪く、得られる塗膜の電気抵抗値が高
くなり、充放電負荷特性が劣化すると共に密着性も低下
する。一方、D50径の値がD10径の値の2.5倍を
越える場合、粒子の充填性が過度に高まり電解液の浸透
性が悪くなり、また充放電サイクルにおいて初回から高
い容量を得ることができず、さらに最大容量に達するま
でのサイクル数が多くなる。また、D90径の値がD5
0径の値の1.5倍未満の場合も、前述の理由と同様
に、形成した塗膜中の粒子の充填性が悪く、得られる塗
膜の電気抵抗値が高くなり、充放電負荷特性が劣化する
と共に密着性も低下する。さらに、D90径の値がD5
0径の値の2.5倍を越える場合には、粗大粒子が多く
なり、平滑な塗膜を形成し難く、局部的なリチウムの析
出を起こし易くなると共に密着性の低下を引き起こすの
で好ましくない。
The second feature of the graphite particles for a negative electrode of the non-aqueous secondary battery of the present invention is that the value of the D50 diameter of the massive graphite particles as determined by the laser beam diffraction method is 10% of the cumulative D10 diameter according to the method. It is in the range of 1.5 times to 2.5 times, and the value of the 90% cumulative diameter D90 by the same method is to be in the range of 1.5 times to 2.5 times the value of the D50 diameter. D50 diameter value is D
When the diameter is less than 1.5 times the value of 10 diameter, the filling property of the particles in the formed coating film is poor, the electric resistance value of the obtained coating film is increased, the charge / discharge load characteristics are deteriorated, and the adhesion is reduced. Also decrease. On the other hand, when the value of the D50 diameter exceeds 2.5 times the value of the D10 diameter, the packing property of the particles is excessively increased, the permeability of the electrolyte is deteriorated, and a high capacity is obtained from the first time in the charge / discharge cycle. No, and the number of cycles to reach the maximum capacity increases. In addition, the value of D90 diameter is D5
When the diameter is less than 1.5 times the value of the 0 diameter, the filling property of the particles in the formed coating film is poor, the electric resistance value of the obtained coating film is high, and the charge / discharge load characteristics are also high. Is deteriorated, and the adhesion is also reduced. Further, when the value of the D90 diameter is D5
When the value exceeds 2.5 times the value of 0 diameter, coarse particles increase, it is difficult to form a smooth coating film, local lithium is easily precipitated, and the adhesion is lowered. .

【0012】[0012]

【実施例】<実施例1〜6> (試料の調製)表1に示すアミノ酸およびアミノ酸塩の
所定量を水に溶解し、天然リン状および天然リン片状の
黒鉛から構成される塊状黒鉛粒子を加えて混練後、15
0℃で乾燥し、解砕してアミノ酸およびアミノ酸塩が表
面に吸着被覆した黒鉛試料を調製した。この黒鉛試料9
0質量部に対して、10質量部のポリフッ化ビニリデン
(PVDF、呉羽化学工業(株)製、商品名:KF100
0)を結着剤とし、120質量部のN−メチル−2−ピ
ロリドン(NMP、試薬特級)を溶媒として用い、スラ
リーを調製した。
EXAMPLES <Examples 1 to 6> (Preparation of Samples) Predetermined amounts of amino acids and amino acid salts shown in Table 1 are dissolved in water, and massive graphite particles composed of natural phosphorus-like and scaly graphite are obtained. After adding and kneading, 15
It was dried at 0 ° C. and crushed to prepare a graphite sample having an amino acid and an amino acid salt adsorbed and coated on the surface. This graphite sample 9
10 parts by mass of polyvinylidene fluoride (PVDF, manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF100 with respect to 0 parts by mass)
Using 0) as a binder and 120 parts by mass of N-methyl-2-pyrrolidone (NMP, reagent grade) as a solvent, a slurry was prepared.

【0013】[0013]

【表1】 [Table 1]

【0014】これらのスラリーを集電体となる圧延銅箔
の上に、ギャップ200μmのドクターブレードを用い
て塗布し、120℃で10分間乾燥し、1ton/cm
2の圧力でプレスを行い負極塗膜とした。 (密着性)負極塗膜上に幅18mmのセロファンテープ
を貼って2kgの荷重で圧着した後、セロファンテープ
を引き剥がすために必要な荷重をプッシュプルゲージで
測定した。また、負極塗膜の剥離(破壊)状態を観察し
た。 (電極特性)負極塗膜を銅箔と共にポンチで打ち抜いて
電極を作製した。対極として金属リチウムを用い、電解
液として1mol/l−LiPF6/EC(エチレンカ
ーボネート)+DMC(ジメチルカーボネート)を用い
たコイン形モデルセルを作製し、0.5mA/cm2の電
流密度で0.01V(vs.Li/Li)まで定電流
でリチウムを負極内に吸蔵(充電)させ充電容量を求め
た。また、初回の放電容量は、0.5mA/cm2の定電
流で1.1V(vs.Li/Li)まで放電させて求
めた。さらに、0.5mA/cm2で充電を行った後、6
mA/cm2の電流密度で1.1V(vs.Li/L
)まで放電させたときの放電容量を求め、0.5m
A/cm2で放電したときの容量との比率を求め、放電
負荷特性を評価した。各黒鉛試料における、上記の各種
評価の結果を表2に示す。
These slurries are coated on a rolled copper foil as a current collector using a doctor blade having a gap of 200 μm, dried at 120 ° C. for 10 minutes, and dried at 1 ton / cm 2.
Pressing was performed at a pressure of 2 to obtain a negative electrode coating film. (Adhesion) After a cellophane tape having a width of 18 mm was stuck on the negative electrode coating film and pressure-bonded with a load of 2 kg, a load necessary for peeling off the cellophane tape was measured with a push-pull gauge. Further, the state of peeling (breaking) of the negative electrode coating film was observed. (Electrode characteristics) The negative electrode coating film was punched out together with a copper foil with a punch to produce an electrode. A coin-shaped model cell using metallic lithium as a counter electrode and 1 mol / l-LiPF 6 / EC (ethylene carbonate) + DMC (dimethyl carbonate) as an electrolytic solution was prepared, and a current density of 0.5 mA / cm 2 was obtained at a current density of 0.5 mA / cm 2 . Lithium was occluded (charged) in the negative electrode at a constant current up to 01 V (vs. Li / Li + ) to determine the charge capacity. The initial discharge capacity was determined by discharging the battery to 1.1 V (vs. Li / Li + ) at a constant current of 0.5 mA / cm 2 . After charging at 0.5 mA / cm 2 ,
1.1 V (vs. Li / L) at a current density of mA / cm 2
i + ), the discharge capacity at the time of discharging to 0.5 m
The ratio to the capacity at the time of discharging at A / cm 2 was determined, and the discharge load characteristics were evaluated. Table 2 shows the results of the various evaluations described above for each graphite sample.

【0015】[0015]

【表2】 [Table 2]

【0016】見掛け密度が静置法で0.45g/cm
以上、タップ法で0.70g/cm以上であれば、固
形分45質量%以上のスラリーを調製することができ
る。その結果得られる乾燥塗膜の厚さは120μm〜1
30μmであり、塗膜密度は0.8g/cm程度であ
った。なお、得られた塗膜をプレスした際の塗膜密度の
変化は、静置法およびタップ法による見掛け密度の比率
が大きいものほど変化し易いことが分かる。なお、表中
に記した本発明の範囲となる実施例の各試料では、得ら
れる塗膜強度および塗膜密度、また電極特性はいずれも
良好であった。
The apparent density is 0.45 g / cm 3 by the static method.
If the tap method is 0.70 g / cm 3 or more, a slurry having a solid content of 45% by mass or more can be prepared. The thickness of the resulting dry coating is between 120 μm and 1 μm.
The coating density was about 0.8 g / cm 3 . In addition, it turns out that the change of the coating film density when pressing the obtained coating film is so easy that it changes, so that the ratio of the apparent density by a stationary method and the tap method is large. In addition, in each of the samples of the examples that fall within the scope of the present invention described in the table, the obtained coating film strength, coating film density, and electrode characteristics were all good.

【0017】<比較例1〜7>表3に記した材料を比較
試料として実施例と同様の測定方法で評価を行った。な
お、評価の結果を表4に示す。
<Comparative Examples 1 to 7> Using the materials shown in Table 3 as comparative samples, evaluation was performed in the same manner as in the examples. Table 4 shows the results of the evaluation.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】試料番号11を用いた比較例1において
は、アミノ酸の吸着被覆量が0.01質量%未満であ
り、不可逆容量の値が大きくその低減効果が少ない。試
料番号12を用いた比較例2は、アミノ酸の吸着被覆量
が3質量%を超えており、不可逆容量の低減効果は高い
が、導電性やリチウムイオンの透過性が低下しており放
電負荷特性が悪い。試料番号13を用いた比較例3は、
比表面積が本願発明の請求項2の範囲外であり、アミノ
酸を吸着被覆させても不可逆容量の大幅な改善は認めら
れない。試料番号14を用いた比較例4は、静置法およ
びタップ法による見掛け密度が本願発明の請求項2の範
囲から外れており、銅箔との密着性が悪く、放電負荷特
性も悪い。試料番号15を用いた比較例5は、静置法お
よびタップ法の見掛け密度の比率が本願発明の請求項2
の範囲から外れており、プレスによる密度制御が困難で
あった。試料番号16を用いた比較例6は、D10粒子
径とD50粒子径の比率が本願の発明の請求項3の範囲
外であり塗膜の密着強度が低く、また放電負荷特性も低
い。また、試料番号17を用いた比較例7はD90粒子
径とD50粒子径の比率が本願の発明の請求項3の範囲
外であり塗膜の密着強度が低く、また放電負荷特性も低
い。
In Comparative Example 1 using Sample No. 11, the amount of amino acid adsorbed on the surface was less than 0.01% by mass, the irreversible capacity was large, and the reduction effect was small. In Comparative Example 2 using sample No. 12, the amino acid adsorption coating amount exceeded 3% by mass, and although the effect of reducing the irreversible capacity was high, the conductivity and the permeability of lithium ions were reduced, and the discharge load characteristics were low. Is bad. Comparative Example 3 using Sample No. 13
The specific surface area is out of the range of claim 2 of the present invention, and no significant improvement in the irreversible capacity is recognized even when the amino acid is coated by adsorption. In Comparative Example 4 using Sample No. 14, the apparent density by the standing method and the tap method was out of the range of Claim 2 of the present invention, the adhesion to the copper foil was poor, and the discharge load characteristics were poor. In Comparative Example 5 using Sample No. 15, the ratio of the apparent densities of the stationary method and the tap method is defined as Claim 2 of the present invention.
, And it was difficult to control the density by pressing. In Comparative Example 6 using Sample No. 16, the ratio of the D10 particle size to the D50 particle size was outside the range of Claim 3 of the present invention, and the adhesion strength of the coating film was low and the discharge load characteristics were low. In Comparative Example 7 using Sample No. 17, the ratio between the D90 particle size and the D50 particle size was outside the range of Claim 3 of the present invention, and the adhesion strength of the coating film was low and the discharge load characteristics were low.

【0021】<実施例7〜11、比較例8、9> (試料の調製)比表面積3.2m/g、D50粒子径
19.3μm、タップ法による見掛け密度0.85g/c
のリン片状天然黒鉛から構成される塊状黒鉛粒子1
00質量部に対し、アクリルスチレンエマルジョン(サ
イデン化学製EC−121)を2.3質量%加え、表5
に示すように比較例8を除き、アミノ酸またはその塩を
所定量加えて混練して水系スラリーを調製した。これら
のスラリーを集電体となる圧延銅箔の上に、ギャップ2
00μmのドクターブレードを用いて塗布し、120℃
で10分間乾燥し、1ton/cm2の圧力でプレスを
行い負極塗膜とした。電極特性は前記した実施例1〜6
と同様の評価とした。評価の結果を表5に示す。
<Examples 7 to 11, Comparative Examples 8 and 9> (Preparation of Samples) Specific surface area 3.2 m 2 / g, D50 particle diameter 19.3 μm, apparent density 0.85 g / c by tap method
m massive graphite particles 1 composed of three scaly natural graphite
2.3 parts by mass of an acrylic styrene emulsion (EC-121 manufactured by Seiden Chemical Co.) was added to 00 parts by mass.
As shown in Comparative Example 8, a predetermined amount of an amino acid or a salt thereof was added thereto and kneaded to prepare an aqueous slurry. These slurries were placed on a rolled copper foil serving as a current collector with a gap 2
Apply using a 00 μm doctor blade, 120 ° C
For 10 minutes, and pressed at a pressure of 1 ton / cm 2 to obtain a negative electrode coating film. The electrode characteristics were as described in Examples 1 to 6 above.
The same evaluation was made. Table 5 shows the results of the evaluation.

【0022】[0022]

【表5】 [Table 5]

【0023】試料番号21〜25を用いた実施例7〜1
1はアミノ酸またはその塩が本願発明の範囲内であり、
不可逆容量の低減が図れている。試料番号26を用いた
比較例8はアミノ酸を添加していないため、不可逆容量
が大きい。試料番号27を用いた比較例9はアミノ酸添
加量が本願発明の範囲を超えているため、導電性および
リチウムイオンの透過性が劣化して放電負荷特性が悪
い。
Examples 7-1 using sample numbers 21 to 25
1 is that an amino acid or a salt thereof is within the scope of the present invention;
The irreversible capacity has been reduced. In Comparative Example 8 using Sample No. 26, since no amino acid was added, the irreversible capacity was large. In Comparative Example 9 using Sample No. 27, since the amount of amino acid added exceeded the range of the present invention, the conductivity and the permeability of lithium ions were deteriorated, and the discharge load characteristics were poor.

【0024】[0024]

【発明の効果】本発明の負極用黒鉛粒子を用いることに
より、第一サイクルにおける不可逆容量を低減でき、高
容量で安全性の高い電池負極を得ることができる。さら
に、電池の塗膜強度および塗膜密度が良好となり、かつ
各種電極特性に優れた非水系二次電池の負極を得ること
ができる。
By using the graphite particles for a negative electrode of the present invention, the irreversible capacity in the first cycle can be reduced, and a high capacity and highly safe battery negative electrode can be obtained. Further, the negative electrode of a non-aqueous secondary battery having excellent battery coating strength and coating density and excellent in various electrode characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 EB06 EC02 EC05 EC06 5H050 AA02 AA07 AA08 BA17 CB08 DA03 EA22 EA23 FA17 FA18 GA22 HA01 HA05 HA07 HA08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 EB06 EC02 EC05 EC06 5H050 AA02 AA07 AA08 BA17 CB08 DA03 EA22 EA23 FA17 FA18 GA22 HA01 HA05 HA07 HA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛粒子100質量部に対して0.01
〜3質量部のアミノ酸および/またはその塩を吸着また
は被覆させたことを特徴とする非水系二次電池の負極用
黒鉛粒子。
1. 0.01 parts by weight of 100 parts by weight of graphite particles.
Graphite particles for a negative electrode of a non-aqueous secondary battery, characterized by adsorbing or covering up to 3 parts by mass of an amino acid and / or a salt thereof.
【請求項2】 前記黒鉛粒子がリン状またはリン片状天
然黒鉛粒子から構成される塊状黒鉛粒子群であって、 該塊状黒鉛粒子群は、レーザー光回折法による累積50
%径(D50径)が10〜25μm、窒素ガス吸着法に
よる比表面積が2.5〜5m2/g、静置法による見掛け
密度が0.45g/cm以上、タップ法による見掛け
密度が0.70g/cm以上であり、 さらに、タップ法による見掛け密度が静置法による見掛
け密度の1.3倍〜2.0倍の範囲である請求項1に記載
の非水系二次電池の負極用黒鉛粒子。
2. The mass of graphite particles, wherein the mass of graphite particles is composed of phosphorous or flaky natural graphite particles, wherein the mass of the massive graphite particles is a cumulative 50% by laser light diffraction.
% Diameter (D50 diameter) is 10 to 25 μm, specific surface area is 2.5 to 5 m 2 / g by nitrogen gas adsorption method, apparent density by static method is 0.45 g / cm 3 or more, and apparent density by tap method is 0. .70g / cm 3 or more, further, the negative electrode of the nonaqueous secondary battery of claim 1 an apparent density of 1.3 to 2.0 times the range of the apparent density by stationary method by tapping method For graphite particles.
【請求項3】 前記塊状黒鉛粒子群のレーザー光回折法
による累積50%径(D50径)の値が同法による累積
10%径(D10径)の値の1.5倍〜2.5倍の範囲で
あり、同法による累積90%径(D90径)の値が累積
50%径(D50径)の値の1.5倍〜2.5倍の範囲で
ある請求項2に記載の非水系二次電池の負極用黒鉛粒
子。
3. The value of the cumulative 50% diameter (D50 diameter) of the massive graphite particles by laser light diffraction is 1.5 to 2.5 times the value of the cumulative 10% diameter (D10 diameter) by the same method. 3. The non-dispersing method according to claim 2, wherein the value of the 90% cumulative diameter (D90 diameter) according to the method is 1.5 to 2.5 times the value of the 50% cumulative diameter (D50 diameter). Graphite particles for negative electrode of aqueous secondary battery.
【請求項4】 黒鉛材料と結着剤を基本構成とする、非
水系二次電池の負極塗膜において、 塗膜内にアミノ酸および/またはその塩が、該黒鉛材料
100質量部に対して0.01〜3質量部含まれること
を特徴とする非水系二次電池の負極塗膜。
4. A negative electrode coating film for a non-aqueous secondary battery comprising a graphite material and a binder as basic components, wherein an amino acid and / or a salt thereof is contained in the coating film in an amount of 0 to 100 parts by mass of the graphite material. 0.1 to 3 parts by mass of a negative electrode coating film for a non-aqueous secondary battery.
JP2001034815A 2001-02-13 2001-02-13 Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery Pending JP2002237304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034815A JP2002237304A (en) 2001-02-13 2001-02-13 Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034815A JP2002237304A (en) 2001-02-13 2001-02-13 Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2002237304A true JP2002237304A (en) 2002-08-23

Family

ID=18898355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034815A Pending JP2002237304A (en) 2001-02-13 2001-02-13 Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2002237304A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078832A1 (en) 2004-02-16 2005-08-25 Lg Chem, Ltd. Electrode for lithium secondary battery
JP2010177062A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Lithium secondary battery
US7871721B2 (en) 2005-02-02 2011-01-18 Lg Chem, Ltd. Electrochemical device comprising aliphatic mono-nitrile compound
JP2011134572A (en) * 2009-12-24 2011-07-07 Hitachi Powdered Metals Co Ltd Anode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2012523098A (en) * 2009-04-06 2012-09-27 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Composite electrode
US8445143B2 (en) 2004-02-16 2013-05-21 Lg Chem, Ltd. Electrode for lithium secondary battery
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates
JP2016225135A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery
DE102016008918A1 (en) * 2016-07-21 2018-01-25 Daimler Ag Electrode, electrochemical energy store with an electrode and method for producing an electrode
KR101878336B1 (en) * 2016-03-17 2018-07-13 울산과학기술원 Method for manufacturing negative electrode active material for rechareable batteries
CN113497231A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery provided with same
CN114373988A (en) * 2020-11-20 2022-04-19 扬州大学 Lithium metal battery electrolyte containing amino acid additive and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568922B1 (en) 2004-02-16 2013-10-29 Lg Chem, Ltd. Electrode for lithium secondary battery
WO2005078832A1 (en) 2004-02-16 2005-08-25 Lg Chem, Ltd. Electrode for lithium secondary battery
US8445143B2 (en) 2004-02-16 2013-05-21 Lg Chem, Ltd. Electrode for lithium secondary battery
US8568923B1 (en) 2004-02-16 2013-10-29 Lg Chem, Ltd. Electrode for lithium secondary battery
US7871721B2 (en) 2005-02-02 2011-01-18 Lg Chem, Ltd. Electrochemical device comprising aliphatic mono-nitrile compound
US7883794B2 (en) 2005-02-02 2011-02-08 Lg Chem, Ltd. Electrochemical device comprising aliphatic mono-nitrile compound
JP2010177062A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Lithium secondary battery
JP2012523098A (en) * 2009-04-06 2012-09-27 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Composite electrode
JP2011134572A (en) * 2009-12-24 2011-07-07 Hitachi Powdered Metals Co Ltd Anode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates
JP2016225135A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery
KR101878336B1 (en) * 2016-03-17 2018-07-13 울산과학기술원 Method for manufacturing negative electrode active material for rechareable batteries
DE102016008918A1 (en) * 2016-07-21 2018-01-25 Daimler Ag Electrode, electrochemical energy store with an electrode and method for producing an electrode
CN109478637A (en) * 2016-07-21 2019-03-15 戴姆勒股份公司 Electrode, the manufacturing method of electrochemical energy accumulator with electrode and electrode
US10897041B2 (en) 2016-07-21 2021-01-19 Daimler Ag Electrode, electrochemical energy accumulator with an electrode, and method for producing an electrode
DE102016008918B4 (en) 2016-07-21 2023-08-03 Mercedes-Benz Group AG Electrode, electrochemical energy store with an electrode and method for producing an electrode
CN113497231A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery provided with same
CN114373988A (en) * 2020-11-20 2022-04-19 扬州大学 Lithium metal battery electrolyte containing amino acid additive and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3902611B2 (en) Negative electrode composition for lithium battery and negative electrode and lithium battery employing the same
TWI416780B (en) Non-aqueous battery separator, method for manufacturing the same, and nonaqueous electrolyte battery
JP6523609B2 (en) Electrode for non-aqueous electrolyte battery, non-aqueous electrolyte secondary battery and battery pack
TWI587562B (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
WO2011115247A1 (en) Lithium ion secondary battery
JP2004095426A (en) Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery
JP2002237304A (en) Graphite particles for negative electrode and negative electrode coating film of non-aqueous secondary battery
JP2000294230A (en) Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
JP2003308841A (en) Slurry for forming negative electrode coating film of nonaqueous secondary battery
JP3849769B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
JP3841611B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
JP2005150102A (en) Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3615472B2 (en) Non-aqueous electrolyte battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
Fu et al. Synthesis and electrochemical properties of Mg-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials for Li-ion battery
JP2003272619A (en) Slurry for forming negative electrode coating for nonaqueous secondary battery and adjustment method of slurry
JP2011071064A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
JP2003168433A (en) Graphite particle for negative electrode of nonaqueous secondary battery
JP2023553144A (en) Electrochemical equipment and electronic devices
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
WO2014068905A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and manufacturing method for same
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP2014026824A (en) Nonaqueous electrolyte secondary battery
JP2001319651A (en) Graphite material for negative electrode of non-aqueous secondary battery