JP2002231799A - Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same - Google Patents

Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same

Info

Publication number
JP2002231799A
JP2002231799A JP2001029817A JP2001029817A JP2002231799A JP 2002231799 A JP2002231799 A JP 2002231799A JP 2001029817 A JP2001029817 A JP 2001029817A JP 2001029817 A JP2001029817 A JP 2001029817A JP 2002231799 A JP2002231799 A JP 2002231799A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
substrate
concave portion
conductive film
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001029817A
Other languages
Japanese (ja)
Inventor
Hiroaki Hori
裕明 堀
Noriaki Tateno
範昭 建野
Tetsuo Kitabayashi
徹夫 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001029817A priority Critical patent/JP2002231799A/en
Publication of JP2002231799A publication Critical patent/JP2002231799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck wherein a discharge phenomenon is not generated when heat conducting gas is made to flow in recessed parts formed on an attracting surface for attracting a substrate. SOLUTION: In the electrostatic chuck wherein the recessed parts are formed on the attracting surface for attracting the substrate, conductive films are arranged in the recessed parts. Furthermore, a conductive film is arranged inside a hole which penetrates the electrostatic chuck and interconnects the recessed parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はSiウエハ、GaA
sウエハやSiGeウエハ等の半導体製造装置や、FP
D(フラットパネルディスプレー)製造装置、DVD
(デジタルビデオディスク)製造装置、HDD(ハード
ディスクドライブ)製造プロセスに使用される、CV
D、エッチング装置やスパッタリング装置等の基板処理
装置に搭載される静電チャック、静電チャックの吸着表
面に形成された凹部への放電防止方法、及び基板固定加
熱冷却装置に関するものである。
The present invention relates to a Si wafer, GaAs
Semiconductor manufacturing equipment such as s wafer and SiGe wafer, FP
D (flat panel display) manufacturing equipment, DVD
(Digital video disk) manufacturing equipment, CV used in HDD (hard disk drive) manufacturing process
D, an electrostatic chuck mounted on a substrate processing apparatus such as an etching apparatus or a sputtering apparatus, a method for preventing discharge to a concave portion formed on a suction surface of the electrostatic chuck, and a substrate fixing heating / cooling apparatus.

【0002】[0002]

【従来の技術】半導体製造装置やFPD製造装置は、基
板上に形成される素子等の製造プロセスの高度化、高集
積化に伴い、プロセスの温度管理が非常に重要になって
きた。上記製造プロセスでは真空中で行われるものが多
い為、真空中で基板の保持が可能な静電チャックが用い
られている。また、基板の温度管理、すなわちプロセス
での基板面内温度分布を均一化するために、静電チャッ
クの吸着面に凹部を設け、基板を静電チャックで保持し
た状態で、基板と静電チャック吸着面凹部との間に熱伝
達ガスを流入させ、ガス圧を制御する事により基板と静
電チャックとの間の熱伝達率を均一化し、面内温度分布
の向上を図る手段が使用されている。
2. Description of the Related Art In a semiconductor manufacturing apparatus and an FPD manufacturing apparatus, as the manufacturing process of elements and the like formed on a substrate is advanced and highly integrated, temperature control of the process has become very important. Since many of the above manufacturing processes are performed in a vacuum, an electrostatic chuck capable of holding a substrate in a vacuum is used. Also, in order to control the temperature of the substrate, that is, to make the temperature distribution within the substrate surface uniform in the process, a concave portion is provided on the suction surface of the electrostatic chuck, and the substrate and the electrostatic chuck are held while the substrate is held by the electrostatic chuck. Means are used to make the heat transfer gas flow between the suction surface concave portion and the gas pressure, thereby making the heat transfer coefficient between the substrate and the electrostatic chuck uniform and improving the in-plane temperature distribution. I have.

【0003】[0003]

【発明が解決しようとする課題】しかし従来の静電チャ
ックでは、ガス圧制御範囲において静電チャック吸着面
凹部内部で放電現象が発生する事が多かった。静電チャ
ックに基板を静電吸着させると静電チャックの絶縁体基
板上に電極の電位が溜まり、この電位がある条件下で放
電により導通するためである。すなわち、静電チャック
に吸着電圧が印加された状態で基板と静電チャック吸着
面凹部との間に熱伝達ガスを満たすと、パッシェンの法
則により規定される、電極を用いた直流定常電流におけ
る火花電圧以下に、熱伝達ガスの圧力と放電距離との積
が低下してしまうためである。例えば空気の場合、最低
火花電圧は約300Vで、その時の圧力×電極間距離は
約0.8Pa・mである。
However, in the conventional electrostatic chuck, a discharge phenomenon often occurs inside the concave portion of the electrostatic chuck suction surface in the gas pressure control range. This is because when the substrate is electrostatically attracted to the electrostatic chuck, the potential of the electrodes accumulates on the insulator substrate of the electrostatic chuck, and this potential is conducted by a discharge under certain conditions. That is, when a heat transfer gas is filled between the substrate and the concave portion of the chuck surface of the electrostatic chuck while a chucking voltage is applied to the electrostatic chuck, a spark in a DC steady-state current using electrodes defined by Paschen's law is obtained. This is because the product of the pressure of the heat transfer gas and the discharge distance decreases below the voltage. For example, in the case of air, the minimum spark voltage is about 300 V, and the pressure × distance between electrodes at that time is about 0.8 Pa · m.

【0004】この放電は、基板上に形成された素子等へ
の悪影響が懸念されている。特にジョンセンラーベック
力型静電チャックを用いる場合、同じ印加電圧を与えて
もシリコンウエハ等の半導体基板に比べ絶縁体基板の方
が吸着力が小さくなる。よって、プロセスに必要な吸着
力を得る為に絶縁体基板の吸着電圧は数kVと高くな
り、放電現象もより生じやすくなり、基板上の素子に与
える影響もより深刻となってくる。そこで、熱伝達ガス
を流入させても、基板と静電チャック吸着面凹部との間
に放電現象の起こらない静電チャックが要望されてい
る。
[0004] There is a concern that this discharge may have an adverse effect on elements and the like formed on the substrate. In particular, when a Johnsen-Rahbek force type electrostatic chuck is used, even if the same applied voltage is applied, the attraction force of the insulator substrate is smaller than that of the semiconductor substrate such as a silicon wafer. Therefore, in order to obtain the attraction force required for the process, the attraction voltage of the insulating substrate is increased to several kV, the discharge phenomenon is more likely to occur, and the influence on the elements on the substrate becomes more serious. Therefore, there is a demand for an electrostatic chuck in which a discharge phenomenon does not occur between the substrate and the concave portion of the electrostatic chuck suction surface even when the heat transfer gas flows.

【0005】本発明は、上記課題を解決するためになさ
れたもので、本発明の目的は、熱伝達ガスを流入させて
も放電現象の起こらない静電チャックを提供する事であ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electrostatic chuck in which a discharge phenomenon does not occur even when a heat transfer gas flows.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明は、基板を吸着する吸着面に凹部を形成してな
る静電チャックにおいて、前記凹部内部に導電性膜を設
けてある事を特徴とする。
In order to achieve the above object, the present invention provides an electrostatic chuck having a concave portion formed on a suction surface for sucking a substrate, wherein a conductive film is provided inside the concave portion. It is characterized by.

【0007】吸着面に形成した凹部内部に導電性膜を設
ける事で、今まで放電に供されてきた、静電チャックの
内部に発生した電荷は、基板と静電チャック吸着面凹部
との間に満たされた熱伝達ガス内部を導通せず導電性膜
内部を導通するようになる。その為、放電が生じない静
電チャックが提供できる。
[0007] By providing a conductive film inside the concave portion formed on the suction surface, the electric charge generated inside the electrostatic chuck, which has been subjected to the discharge so far, is transferred between the substrate and the concave portion of the electrostatic chuck suction surface. The inside of the conductive film is not conducted through the inside of the heat transfer gas filled with, but is conducted through the inside of the conductive film. Therefore, it is possible to provide an electrostatic chuck that does not generate discharge.

【0008】本発明の好ましい様態として、前記静電チ
ャックにおいて、前記凹部と、前記静電チャックを貫通
し前記凹部と連通する穴の内部に導電性膜を設けてある
事を特徴とする。
According to a preferred aspect of the present invention, in the electrostatic chuck, a conductive film is provided inside the concave portion and a hole penetrating the electrostatic chuck and communicating with the concave portion.

【0009】静電チャック吸着面凹部へ熱伝達ガスを流
入する場合、ガス導入装置と連通する穴を通じて行われ
るが、この穴の内部に導電性膜を設ける事で、穴内部で
の放電を押さえる事ができる。特に、ガス流入途中での
凹部内圧力上昇過程において、凹部、例えば溝部形状及
びドット部形状のコンダクタンスによる、穴部から離れ
た凹部への圧力伝播に時間がかかる場合、穴部周辺の凹
部の方が他の凹部の場所に比べて圧力が高い状態が生じ
やすく、放電も穴部周辺から発生する場合が多い為、こ
の構成は特に効果的である。
When the heat transfer gas flows into the concave portion of the electrostatic chuck suction surface, it is performed through a hole communicating with the gas introduction device. By providing a conductive film inside the hole, discharge inside the hole is suppressed. Can do things. In particular, in the process of increasing the pressure in the concave portion during the gas inflow, when it takes time for the pressure to propagate to the concave portion away from the hole portion due to the conductance of the concave portion, for example, the groove portion and the dot portion shape, the concave portion around the hole portion is more likely to be used. However, this configuration is particularly effective because a state in which the pressure is higher than that of the other concave portions is likely to occur, and the discharge often occurs from around the hole.

【0010】また、穴内部への導電膜施工範囲は、穴内
部全てに導電膜を付け、静電チャック下部のプレート等
の金属部品と導通を取れるようにしたり、穴内部全てに
導電膜を設けずに、プレート等の金属部品との間に一部
間隔を開け、静電チャック下部金属部品と電気的に絶縁
を取るような構造としたり、同じく穴内部全てに導電膜
を設けずに、静電チャック内部を貫通するビアホールを
介して内部電極に導通を取った導電性端子とは独立した
導電性端子に導通を取り、外部から導電膜へ任意の交流
電圧または直流電圧の印加もしくは接地ができるような
構造とすることが好ましい。
[0010] The conductive film is applied to the inside of the hole so that the conductive film is attached to the entire inside of the hole so as to be able to conduct with the metal parts such as the plate below the electrostatic chuck, or the conductive film is provided to the entire inside of the hole. A space between the metal parts such as plates, etc. to provide electrical insulation from the metal parts under the electrostatic chuck. Conductivity is provided to the conductive terminal independent of the conductive terminal that has conducted to the internal electrode through the via hole penetrating the inside of the electro-chuck, and any AC voltage or DC voltage can be applied to the conductive film from outside or grounded. Such a structure is preferable.

【0011】本発明の好ましい様態として、請求項1ま
たは2のいずれか1つの静電チャックを用い、該静電チ
ャックに吸着電圧を印加して基板を吸着し、かつ、前記
凹部に熱伝達ガスを流入させて基板の温度を制御すると
ともに、前記導電膜にて吸着に不要な電荷を流す事を特
徴とする静電チャックの吸着表面に形成された凹部への
放電防止方法である。
According to a preferred aspect of the present invention, the electrostatic chuck according to any one of claims 1 and 2 is used, a chucking voltage is applied to the electrostatic chuck to suck a substrate, and a heat transfer gas is held in the recess. A method for preventing discharge to a concave portion formed on a suction surface of an electrostatic chuck, characterized in that the temperature of the substrate is controlled by flowing the electric charge, and an unnecessary charge is caused to flow by the conductive film.

【0012】吸着面に形成した凹部内部に導電性膜を設
ける事で、今まで放電に供されてきた、静電チャックの
内部に発生した電荷は、基板と静電チャック吸着面凹部
との間に満たされた熱伝達ガス内部を導通せず導電性膜
内部を導通するようになる。その為、放電が生じない静
電チャックが提供できる。
By providing a conductive film inside the concave portion formed on the attracting surface, the electric charge generated inside the electrostatic chuck, which has been subjected to the discharge so far, is transferred between the substrate and the concave portion of the electrostatic chuck attracting surface. The inside of the conductive film does not conduct through the inside of the heat transfer gas filled with the gas. Therefore, it is possible to provide an electrostatic chuck that does not generate discharge.

【0013】本発明の好ましい様態として、請求項1ま
たは2の静電チャックと、該静電チャックを支持し該静
電チャックを冷却または加熱する媒体流路を持つプレー
トと、該静電チャックと該プレートとを接着する手段
と、からなる事を特徴とする基板固定加熱冷却装置であ
る。この構成により、基板固定加熱冷却装置として各種
基板処理装置への搭載が可能となる。
According to a preferred aspect of the present invention, there is provided an electrostatic chuck according to claim 1 or 2, a plate having a medium flow path for supporting the electrostatic chuck and cooling or heating the electrostatic chuck; And a means for adhering the plate to the substrate. With this configuration, it is possible to mount the apparatus as a substrate fixing heating / cooling apparatus on various substrate processing apparatuses.

【0014】[0014]

【発明の実施の形態】以下に、本発明の一実施例につい
て具体的に説明する。図1は、静電チャック100の断
面図である。静電チャック100は、基板を吸着する事
が可能で凹部表面加工が設けられた吸着面110と、も
う一方の面に1対の電極103a及び103bが設けられ
た誘電体基板101と、該誘電体基板を固定する絶縁性
支持基板102と、該絶縁性基板に設けられた1対の導
電性端子104a及び104bと、前記誘電体基板に設
けられた電極103a及び103bと、前記導電性端子
を電気的に接続する手段(たとえばビアホール105a
及び105b)と、から構成されている。また、この静
電チャックには、前記凹部と、静電チャック裏面120
から吸着面110へ静電チャック100を貫通し前記凹
部と連通する穴106が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below. FIG. 1 is a sectional view of the electrostatic chuck 100. The electrostatic chuck 100 has a suction surface 110 capable of sucking a substrate and provided with a concave surface processing, a dielectric substrate 101 having a pair of electrodes 103a and 103b provided on the other surface, and An insulating support substrate 102 for fixing the body substrate, a pair of conductive terminals 104a and 104b provided on the insulating substrate, electrodes 103a and 103b provided on the dielectric substrate, and the conductive terminal. Means for electrical connection (for example, via hole 105a
And 105b). The electrostatic chuck has the concave portion and the electrostatic chuck back surface 120.
A hole 106 penetrating through the electrostatic chuck 100 to the suction surface 110 and communicating with the concave portion is provided.

【0015】なお、図1では、静電チャックの吸着面に
設けられた凹部はその高さが例えば0.01mm単位と小さ
い為、図面上表記されていない。また、この凹部は、例
えば溝状加工またはドット状加工もしくはその両者等を
設けることで、吸着面に形成することができる。この吸
着面に形成された凹部の内部には、導電性膜を設けてい
る。そして、静電チャックの絶縁体基板上に発生した電
荷は、基板と静電チャック吸着面凹部との間に満たされ
た熱伝達ガス内部を導通せず導電性膜内部を導通するよ
うになる。
In FIG. 1, the concave portion provided on the suction surface of the electrostatic chuck is not shown in the drawing because its height is as small as, for example, 0.01 mm. In addition, this concave portion can be formed on the suction surface by providing, for example, groove-shaped processing and / or dot-shaped processing. A conductive film is provided inside the concave portion formed on the suction surface. The charge generated on the insulator substrate of the electrostatic chuck does not conduct inside the heat transfer gas filled between the substrate and the concave portion of the electrostatic chuck suction surface, but conducts inside the conductive film.

【0016】ここで、静電チャックに基板を静電吸着
し、静電チャックと基板凹部との間に熱伝達ガスを流入
させ、熱伝達率を制御するためには、基板上に設けられ
た凹部、ここでは溝深さ及びドット高さを適切に設定
し、ガス圧の制御範囲内で熱伝達ガスが分子流領域にな
るようにする。分子流領域では、ガス圧と熱伝達率とが
比例関係となり、ガス圧の制御により基板と静電チャッ
クの間の熱伝達率を制御する事が可能となる。例えばH
eガスの場合、0〜10torrの範囲内で分子流にな
るように溝深さ及びドット高さを決定している。
Here, the substrate is electrostatically attracted to the electrostatic chuck, a heat transfer gas is caused to flow between the electrostatic chuck and the substrate recess, and the heat transfer coefficient is controlled on the substrate. The recesses, here the groove depth and the dot height, are appropriately set so that the heat transfer gas is in the molecular flow region within the control range of the gas pressure. In the molecular flow region, the gas pressure and the heat transfer coefficient are in a proportional relationship, and it is possible to control the heat transfer coefficient between the substrate and the electrostatic chuck by controlling the gas pressure. For example, H
In the case of e gas, the groove depth and the dot height are determined so that the molecular flow is in the range of 0 to 10 torr.

【0017】ここで、静電チャックの材質の一例を挙げ
ると、誘電体基板にはAlやSiC、ALN等の
体積抵抗率を制御したセラミック、電極及びビアホール
にはW等の金属、絶縁性支持基盤には誘電体基板と同じ
材質、または絶縁性を高めたセラミック、ガラス等、導
電性端子にはコバール等の金属を用いる。誘電体基板及
び絶縁性基板に有機物、例えば耐熱性樹脂、電極をアル
ミニウム等の金属等を用いても良い。
Here, as an example of the material of the electrostatic chuck, ceramics whose volume resistivity is controlled such as Al 2 O 3 , SiC and ALN are used for the dielectric substrate, metals such as W are used for the electrodes and via holes, The insulating support base is made of the same material as the dielectric substrate, or ceramic or glass with enhanced insulation, and the conductive terminal is made of metal such as Kovar. An organic substance, for example, a heat-resistant resin, and a metal such as aluminum may be used for the electrodes for the dielectric substrate and the insulating substrate.

【0018】図2は、静電チャックを吸着面上側から見
た図である。吸着面110には凹部、すなわち溝111
と、ドット112が複数配置されている。なお、このド
ット112は、図では一部のみ表記しているが、実際に
は表面全体に設けられている。
FIG. 2 is a view of the electrostatic chuck viewed from above the suction surface. The suction surface 110 has a concave portion, that is, a groove 111.
And a plurality of dots 112 are arranged. Although the dots 112 are only partially shown in the drawing, they are actually provided on the entire surface.

【0019】図3は、図2の矢印方向に見た静電チャッ
ク吸着面の貫通穴付近断面の拡大図である。静電チャッ
クの凹部、すなわち溝111及びドット112と、静電
チャックを貫通し凹部と連通する穴106の内部に導電
性膜を設けてある。吸着面110は、ドット112上面
が基板130と接触するように構成されている。また、
溝111は、ドット112より更に一段深い位置まで配
置されている。
FIG. 3 is an enlarged view of a section near the through hole of the electrostatic chuck suction surface viewed in the direction of the arrow in FIG. A conductive film is provided in the concave portion of the electrostatic chuck, that is, the groove 111 and the dot 112, and the inside of the hole 106 penetrating the electrostatic chuck and communicating with the concave portion. The suction surface 110 is configured such that the upper surface of the dot 112 contacts the substrate 130. Also,
The groove 111 is arranged to a position one step deeper than the dot 112.

【0020】このような状態で、吸着面110上に基板
130が吸着され、貫通穴106を通じて熱伝達ガスが
基板裏面と静電チャック吸着面との間に形成された隙間
140に満たされる事で、熱伝達の制御が行なわれる。
In this state, the substrate 130 is sucked on the suction surface 110, and the heat transfer gas fills the gap 140 formed between the back surface of the substrate and the electrostatic chuck suction surface through the through hole 106. , And heat transfer is controlled.

【0021】放電現象は、隙間140に熱伝達ガスが流
入した際に発生する。そこで、静電チャックにおいて、
電極に吸着電圧を印加し基板を吸着する吸着面(接触す
る面)以外である凹部の内部、すなわち基板と溝部11
1内部とドット部112の外周及び底面部に導電性膜1
13を設ける。さらに、穴106の内部に導電性膜11
3を設ける。これより、導電性膜113中を電極103
a及び103bから漏れた電流の一部が流れる為に、隙
間140に電流が流れる事はなくなり、放電が防止でき
る。
The discharge phenomenon occurs when the heat transfer gas flows into the gap 140. Therefore, in the electrostatic chuck,
The inside of the concave portion other than the suction surface (contact surface) for applying the suction voltage to the electrode and sucking the substrate, that is, the substrate and the groove 11
1 and the conductive film 1 on the outer periphery and bottom surface of the dot portion 112.
13 are provided. Further, the conductive film 11 is provided inside the hole 106.
3 is provided. Thus, the electrode 103 is formed in the conductive film 113.
Since a part of the current leaked from a and 103b flows, no current flows in gap 140, and discharge can be prevented.

【0022】ここで、導電性膜の材質は、TiCやTi
AlN等の薄膜等を用いる。誘電体基板と密着性が高い
ものが良い。また、熱伝達ガス種として、He、Ar、
等があげられる。
Here, the material of the conductive film is TiC or Ti
A thin film of AlN or the like is used. Those having high adhesion to the dielectric substrate are preferred. In addition, He, Ar,
N 2, and the like.

【0023】また、図では電極が1対の双極タイプの電
極を示したが、電極が1個、すなわち単極電極の場合
は、表面電位も単極となり、放電は回路を形成する吸着
した基板に向かって発生する。そこで、電極と独立し導
電性膜と導通した導電性端子を設けここを接地する事に
より、放電は発生しなくなる。
Although the figure shows a bipolar type electrode having a pair of electrodes, a single electrode, that is, a monopolar electrode, has a monopolar surface potential, and discharge is performed by an adsorbed substrate forming a circuit. Fired towards. Therefore, by providing a conductive terminal independent of the electrode and electrically connected to the conductive film and grounding the conductive terminal, no discharge occurs.

【0024】なお、吸着面に吸着される基板は、シリコ
ンウエハーなどの半導体基板、及びガラス、フィルムな
どの絶縁性基板等である。また、前述のように絶縁体基
板を静電チャックに吸着する際は数kVの高電圧で駆動
する必要 があり、放電する可能性が高くなるが、本件
発明のように導電性膜を形成し、この導電性膜により電
荷を逃がすことができるため、従来のように放電するこ
とによる吸着基板への悪影響を心配する必要もない。
The substrate adsorbed on the adsorption surface is a semiconductor substrate such as a silicon wafer and an insulating substrate such as glass and film. In addition, as described above, when the insulator substrate is attracted to the electrostatic chuck, it is necessary to drive the substrate at a high voltage of several kV, which increases the possibility of discharging. However, as in the present invention, a conductive film is formed. Since the electric charge can be released by the conductive film, there is no need to worry about the adverse effect on the adsorption substrate due to the discharge as in the conventional case.

【0025】なお、上述した静電チャックは、該静電チ
ャックを支持し、必要に応じ静電チャックを冷却または
加熱する媒体流路を持つプレートと、該静電チャックと
該プレートとを接着する手段とからなる基板固定加熱冷
却装置として、基板処理装置に搭載される。これによ
り、従来の静電チャックでは放電が開始するような熱伝
導ガス圧力領域においても放電を発生させずに安定した
静電吸着が可能な静電チャックを用い、必要に応じ加熱
冷却機構を加えた基板固定加熱冷却装置を持つ基盤処理
装置が提供できる。
The above-mentioned electrostatic chuck supports the electrostatic chuck, and adheres the plate having a medium flow path for cooling or heating the electrostatic chuck as necessary, and the electrostatic chuck and the plate. It is mounted on a substrate processing apparatus as a substrate fixing heating / cooling apparatus comprising means. As a result, the conventional electrostatic chuck uses an electrostatic chuck capable of stable electrostatic attraction without generating a discharge even in the heat conduction gas pressure region where discharge starts, and a heating / cooling mechanism is added as necessary. A substrate processing apparatus having a fixed substrate heating / cooling apparatus can be provided.

【0026】[0026]

【発明の効果】本発明は上記構成により次の効果を発揮
する。基板を吸着する吸着面に凹部を形成した静電チャ
ックにおいて、前記凹部の内部に導電性膜を設けてある
ため、基板吸着時に基板と静電チャックの間の隙間に熱
伝達ガスを流入させた場合においても隙間で放電を起こ
さない、静電チャックを提供できる。また、前記静電チ
ャックにおいて、前記凹部と連通し、前記静電チャック
を貫通する穴の内部に導電性膜を設けてあるため、基板
吸着時に基板と静電チャックの隙間に熱伝達ガスを流入
させた場合においても穴内部で放電を起こさない静電チ
ャックを提供できる。
According to the present invention, the following effects are exhibited by the above configuration. In the electrostatic chuck in which the concave portion is formed on the suction surface for sucking the substrate, since the conductive film is provided inside the concave portion, the heat transfer gas flows into the gap between the substrate and the electrostatic chuck when the substrate is sucked. Even in such a case, it is possible to provide an electrostatic chuck that does not cause discharge in a gap. Further, in the electrostatic chuck, since a conductive film is provided inside a hole communicating with the concave portion and penetrating the electrostatic chuck, a heat transfer gas flows into a gap between the substrate and the electrostatic chuck when the substrate is attracted. It is possible to provide an electrostatic chuck that does not cause a discharge inside the hole even when it is made to work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電チャックの一形態を示す概略図で
ある。
FIG. 1 is a schematic view showing one embodiment of the electrostatic chuck of the present invention.

【図2】図1の静電チャックの吸着面を現す図である。FIG. 2 is a view showing a suction surface of the electrostatic chuck of FIG. 1;

【図3】図1の静電チャックの拡大断面を現す概略図で
ある。
FIG. 3 is a schematic view showing an enlarged cross section of the electrostatic chuck of FIG. 1;

【符号の説明】[Explanation of symbols]

100 静電チャック 101 誘電体基板 102 絶縁体基板 103a,103b 電極 104a、104b 導電性端子 105a、105b ビアホール 106 穴 110 吸着面 111 溝 112 ドット 113 導電性膜 120 静電チャック裏面 130 基板 140 隙間 REFERENCE SIGNS LIST 100 electrostatic chuck 101 dielectric substrate 102 insulating substrate 103 a, 103 b electrode 104 a, 104 b conductive terminal 105 a, 105 b via hole 106 hole 110 suction surface 111 groove 112 dot 113 conductive film 120 electrostatic chuck back surface 130 substrate 140 gap

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C016 GA10 5F031 CA02 CA05 HA08 HA16 HA37 HA38 HA39 HA40 MA28 MA29 MA32 PA21  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C016 GA10 5F031 CA02 CA05 HA08 HA16 HA37 HA38 HA39 HA40 MA28 MA29 MA32 PA21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板を吸着する吸着面に凹部を形成して
なる静電チャックにおいて、前記凹部内部に導電性膜を
設けてある事を特徴とする静電チャック。
1. An electrostatic chuck having a concave portion formed on an adsorbing surface for adsorbing a substrate, wherein a conductive film is provided inside the concave portion.
【請求項2】 前記静電チャックにおいて、前記凹部
と、前記静電チャックを貫通し前記凹部とを連通する穴
の内部に導電性膜を設けてある事を特徴とする請求項1
に記載の静電チャック。
2. The electrostatic chuck according to claim 1, wherein a conductive film is provided inside the concave portion and a hole penetrating the electrostatic chuck and communicating with the concave portion.
2. The electrostatic chuck according to 1.
【請求項3】 請求項1または2のいずれか1つの静電
チャックを用い、該静電チャックに吸着電圧を印加して
基板を吸着し、かつ、前記凹部に熱伝達ガスを流入させ
て基板の温度を制御するとともに、前記導電膜にて吸着
に不要な電荷を流す事を特徴とする静電チャックの吸着
表面に形成された凹部への放電防止方法。
3. A substrate using the electrostatic chuck according to claim 1 or 2, wherein a chucking voltage is applied to the electrostatic chuck to suck the substrate, and a heat transfer gas flows into the recess. Controlling the temperature of the electrostatic chuck and causing an unnecessary charge to flow through the conductive film to prevent discharge to a concave portion formed on a suction surface of the electrostatic chuck.
【請求項4】 請求項1または2の静電チャックと、該
静電チャックを支持し該静電チャックを冷却または加熱
する媒体流路を持つプレートと、該静電チャックと該プ
レートとを接着する手段と、からなる事を特徴とする基
板固定加熱冷却装置。
4. The electrostatic chuck according to claim 1 or 2, a plate supporting the electrostatic chuck and having a medium flow path for cooling or heating the electrostatic chuck, and bonding the electrostatic chuck to the plate. Means for heating and cooling the substrate.
JP2001029817A 2001-02-06 2001-02-06 Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same Pending JP2002231799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029817A JP2002231799A (en) 2001-02-06 2001-02-06 Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029817A JP2002231799A (en) 2001-02-06 2001-02-06 Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same

Publications (1)

Publication Number Publication Date
JP2002231799A true JP2002231799A (en) 2002-08-16

Family

ID=18894121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029817A Pending JP2002231799A (en) 2001-02-06 2001-02-06 Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same

Country Status (1)

Country Link
JP (1) JP2002231799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088431B2 (en) * 2003-12-17 2006-08-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011222977A (en) * 2010-03-26 2011-11-04 Toto Ltd Electrostatic chuck
US20140268478A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Methods and apparatus for electrostatic chuck repair and refurbishment
EP2764408B1 (en) * 2011-10-06 2019-08-21 ASML Netherlands B.V. Chuck, lithography apparatus and method of using a chuck

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088431B2 (en) * 2003-12-17 2006-08-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8848335B2 (en) 2010-03-26 2014-09-30 Toto Ltd. Electrostatic chuck
TWI471974B (en) * 2010-03-26 2015-02-01 Toto Ltd Electrostatic sucker
KR101429591B1 (en) * 2010-03-26 2014-08-12 토토 가부시키가이샤 Electrostatic chuck
CN102782831A (en) * 2010-03-26 2012-11-14 Toto株式会社 Electrostatic chuck
JP2011222977A (en) * 2010-03-26 2011-11-04 Toto Ltd Electrostatic chuck
EP2764408B1 (en) * 2011-10-06 2019-08-21 ASML Netherlands B.V. Chuck, lithography apparatus and method of using a chuck
JP2016513947A (en) * 2013-03-15 2016-05-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and apparatus for repair and refurbishment of an electrostatic chuck
WO2014149182A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. Methods and apparatus for electrostatic chuck repair and refurbishment
US9349630B2 (en) 2013-03-15 2016-05-24 Applied Materials, Inc. Methods and apparatus for electrostatic chuck repair and refurbishment
TWI588933B (en) * 2013-03-15 2017-06-21 應用材料股份有限公司 Methods and apparatus for electrostatic chuck repair and refurbishment
KR20170116197A (en) * 2013-03-15 2017-10-18 어플라이드 머티어리얼스, 인코포레이티드 Methods and apparatus for electrostatic chuck repair and refurbishment
US10049908B2 (en) 2013-03-15 2018-08-14 Applied Materials, Inc. Methods and apparatus for electrostatic chuck repair and refurbishment
US20140268478A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Methods and apparatus for electrostatic chuck repair and refurbishment
KR102042083B1 (en) * 2013-03-15 2019-11-27 어플라이드 머티어리얼스, 인코포레이티드 Methods and apparatus for electrostatic chuck repair and refurbishment

Similar Documents

Publication Publication Date Title
KR100933727B1 (en) An electrostatic chuck for attracting an insulative substrate, and apparatus for heating/cooling and processing an insulative substrate
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
TWI233658B (en) Electrostatic absorbing apparatus
US6781812B2 (en) Chuck equipment
US20060175772A1 (en) Substrate holding mechanism using electrostaic chuck and method of manufacturing the same
JP4010541B2 (en) Electrostatic adsorption device
KR19990063844A (en) Method and device for electrostatic holding of dielectric material in vacuum processor
JP2001189378A (en) Wafer-chucking heating apparatus
JP2521471B2 (en) Electrostatic suction device
JP2002368069A (en) Electrostatic chucking device
JP4407793B2 (en) Electrostatic chuck and equipment equipped with electrostatic chuck
JP2951903B2 (en) Processing equipment
JP2002231799A (en) Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same
JP4033508B2 (en) Electrostatic chuck
JPH01200625A (en) Semiconductor wafer processing equipment
JP2836986B2 (en) Electrostatic chuck and method of manufacturing the same
JP2002345273A (en) Electrostatic chuck
JP2000021962A (en) Electrostatic chuck device
JPH06275708A (en) Electrostatic chuck
JP2006253703A (en) Electrostatic chuck and insulating substrate electrostatic attraction treatment method
JP4602528B2 (en) Plasma processing equipment
JP4837189B2 (en) Substrate holding mechanism and substrate processing apparatus
JP2006157032A (en) Electrostatic chuck, electrostatic attraction method, heating/cooling treatment device and electrostatic attraction treatment device
JP2001077185A (en) Electrostatic chuck and its manufacture
JP4879771B2 (en) Electrostatic chuck