JP2002227066A - Reinforcing multiaxial stitched fabric and method for molding frp - Google Patents

Reinforcing multiaxial stitched fabric and method for molding frp

Info

Publication number
JP2002227066A
JP2002227066A JP2001020030A JP2001020030A JP2002227066A JP 2002227066 A JP2002227066 A JP 2002227066A JP 2001020030 A JP2001020030 A JP 2001020030A JP 2001020030 A JP2001020030 A JP 2001020030A JP 2002227066 A JP2002227066 A JP 2002227066A
Authority
JP
Japan
Prior art keywords
fabric
multiaxial
yarn
frp
stitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020030A
Other languages
Japanese (ja)
Other versions
JP4599718B2 (en
JP2002227066A5 (en
Inventor
Akira Nishimura
明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001020030A priority Critical patent/JP4599718B2/en
Publication of JP2002227066A publication Critical patent/JP2002227066A/en
Publication of JP2002227066A5 publication Critical patent/JP2002227066A5/ja
Application granted granted Critical
Publication of JP4599718B2 publication Critical patent/JP4599718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a multiaxial stitched fabric having a smooth surface and capable of providing an inexpensive FRP, to provide a method for molding the FRP and to obtain an automotive outside sheet. SOLUTION: This reinforcing multiaxial stitched fabric is characterized by arranging a plurality of reinforcing fiber yarns parallel in the form of a sheet, composing layers, crossing and laminating at least two or more layers of the layers, forming a laminate, stitching the resultant laminate with low- melting polymer yarns and integrating the laminate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はFRPの補強繊維基
材として使用する多軸ステッチ布帛およびその多軸ステ
ッチ布帛を用いてなるFRPの成形方法ならびに自動車
外板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiaxial stitch fabric used as a reinforcing fiber base material of an FRP, a method of forming an FRP using the multiaxial stitch fabric, and an automobile outer panel.

【0002】[0002]

【従来の技術】連続補強繊維からなる繊維強化プラスチ
ックは、繊維軸方向の機械的特性には優れるが、繊維軸
から離れるに従い、その方向の機械的特性は急激に低下
する。この対策として、たとえば、機械的特性が疑似等
方性基材となるように繊維軸方向がFRP成形体の長さ
(0゜)方向、幅(90゜)方向や斜め(±α゜)方向
となるよう積層され、成形されている。
2. Description of the Related Art Fiber reinforced plastics made of continuous reinforcing fibers have excellent mechanical properties in the direction of the fiber axis, but the mechanical properties in that direction rapidly decrease as the distance from the fiber axis increases. As a countermeasure, for example, the fiber axis direction is the length (0 °) direction, the width (90 °) direction, or the oblique (± α °) direction of the FRP molded body so that the mechanical properties become a pseudo-isotropic base material. Laminated and molded.

【0003】しかしながら、通常の織物を使用すると、
繊維の配列方向は織物の長さ(0゜)方向と幅(90
゜)方向であるから、斜め(±α゜)方向の補強ができ
なくなる。この対策として、織物を斜め方向に裁断し、
裁断された織物の端部が0゜方向と90゜方向に配列す
る織物と平行になるように積層し、斜め方向に裁断した
繊維の配列方向が±45゜になるようにしている。しか
しながら、このような方法では織物の裁断や積層に手間
が掛かるし、また積層の際、(0゜/90゜)配列織物
と(+45゜/−45゜)配列織物がずれ、正確な繊維
配向が困難となる。
[0003] However, when using ordinary fabrics,
The fiber arrangement direction is the length (0 °) direction and width (90 °) of the fabric.
゜) direction, the reinforcement in the oblique (± α 斜 め) direction cannot be performed. As a countermeasure, the fabric is cut diagonally,
The cut fabrics are laminated so that the end portions thereof are parallel to the fabrics arranged in the 0 ° direction and the 90 ° direction, and the arrangement direction of the diagonally cut fibers is ± 45 °. However, in such a method, it takes time and effort to cut and laminate the woven fabric, and at the time of lamination, the (0 ° / 90 °) aligned woven fabric and the (+ 45 ° / −45 °) aligned woven fabric are displaced from each other, resulting in accurate fiber orientation. Becomes difficult.

【0004】一方、上記課題に対して、最近、よこ入れ
トリコット装置で、布帛の長さ方向に対して+α゜、−
α゜やこれに0゜および/または90゜方向に、すなわ
ち、2方向以上の多軸の各々の方向で層状に補強繊維が
並行に配列し、これらが積層した状態で、ポリエステル
繊維糸などのステッチで縫合一体化した、いわゆる多軸
ステッチ布帛が注目を浴びている。この布帛は+α゜、
−α゜、0゜や90゜配列繊維がステッチ糸で一体とな
っているから、わざわざ裁断によって、所定の方向に配
列するような準備作業が必要なくなり、1枚の布帛で疑
似等方性の特性が得られるので、積層作業が大幅に省力
化され、安価なFRP成形体が得られるという利点はあ
る。また、ステッチ糸のステッチ密度を最適化すること
によって、深絞り賦形が可能となり、成形のプリフォー
ムを容易に作製することもできる利点がある。
On the other hand, in order to solve the above problem, recently, a weft insertion tricot device has been used to add + α ゜, −
The reinforcing fibers are arranged in parallel in α ゜ and 0 ° and / or 90 ° directions, that is, in layers in each of two or more multiaxial directions. A so-called multi-axis stitched fabric stitched and integrated with a stitch has attracted attention. This fabric is + α ゜,
-Α ゜, 0 ゜ and 90 ゜ arrangement fibers are united with stitch yarns, so cutting is not necessary, and preparation work for arranging in a predetermined direction is not required, so that a single piece of cloth can be made Since the characteristics can be obtained, there is an advantage that the laminating operation can be largely saved and an inexpensive FRP molded body can be obtained. Further, by optimizing the stitch density of the stitch yarn, deep drawing can be performed, and there is an advantage that a preform for molding can be easily manufactured.

【0005】しかしながら、ステッチ布帛は、ステッチ
糸によって補強繊維を拘束する布帛構造となっているか
ら、各層内では補強繊維の拘束部分と補強繊維がまった
く存在しない部分が存在している。したがって、樹脂が
含浸され、樹脂が硬化すると樹脂が硬化収縮するので、
FRPの状態では補強繊維の拘束部部分の厚さ方向の収
縮量は補強繊維が存在するので小さく、補強繊維がまっ
たく存在しない部分の収縮量が大きくなって、FRPの
表面の凹凸が大きくなり、表面が平滑なFRPが得られ
なかった。
[0005] However, the stitched fabric has a fabric structure in which the reinforcing fibers are restrained by the stitch yarns. Therefore, in each layer, there are portions where the reinforcing fibers are restrained and portions where no reinforcing fibers are present. Therefore, when the resin is impregnated and cured, the resin cures and contracts,
In the state of FRP, the amount of shrinkage in the thickness direction of the constrained portion of the reinforcing fiber is small because the reinforcing fiber is present, the amount of shrinkage in the portion where no reinforcing fiber is present increases, and the unevenness of the surface of the FRP increases, FRP with a smooth surface could not be obtained.

【0006】とくに、自動車の外板に要求される表面平
滑性はクラスAの厳しいグレードが求められるので、F
RP表面をサンデングして塗装するか、FRPの表面に
よほど厚いゲルコート層を設けないと、クラスAには到
達しなかった。
In particular, since the surface smoothness required for the outer panel of an automobile is required to be a strict class A class,
Class A was not reached unless the RP surface was sanded and painted or the FRP surface was not provided with a thicker gel coat layer.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、表面平滑で、しかも安価なFRPが
得られる多軸ステッチ布帛およびその成形方法、ならび
に自動車の外板を提供せんとするものである。
SUMMARY OF THE INVENTION In view of the background of the prior art, an object of the present invention is to provide a multiaxial stitched fabric capable of obtaining an inexpensive FRP with a smooth surface, a method of forming the same, and an automobile outer panel. Is what you do.

【0008】[0008]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次の手段を採用するものである。すな
わち、本発明の多軸ステッチ布帛は、 (1)多数本の強化繊維糸条が並行にシート状に配列し
て層構成をなし、前記層の少なくとも2層以上が交差積
層されて積層体をなし、該積層体が低融点ポリマー糸で
ステッチされて一体化されていることを特徴とする補強
用多軸ステッチ布帛。
The present invention employs the following means in order to solve the above problems. That is, the multiaxial stitched fabric of the present invention comprises: (1) a multilayer structure in which a large number of reinforcing fiber yarns are arranged in parallel in a sheet form to form a layer structure, and at least two or more of the layers are cross-laminated to form a laminate. A multiaxial stitching fabric for reinforcement, wherein the laminate is stitched with a low-melting polymer yarn and integrated.

【0009】(2)前記交差角度が布帛の長さ方向に対
して+α゜、−α゜の2方向を少なくとも含むものであ
ることを特徴とする前記(1)に記載の補強用多軸ステ
ッチ布帛。
(2) The reinforcing multiaxial stitched fabric according to (1), wherein the crossing angle includes at least two directions of + α + and -α− with respect to the length direction of the fabric.

【0010】(3)前記交差角度が布帛の長さ方向に対
して0゜、90゜の2方向を少なくとも含むものである
ことを特徴とする前記(1)に記載の補強用多軸ステッ
チ布帛。
(3) The multiaxial stitching fabric for reinforcement according to (1), wherein the crossing angle includes at least two directions of 0 ° and 90 ° with respect to the length direction of the fabric.

【0011】(4)前記交差角度が布帛の長さ方向に対
して0゜、+α゜、−α゜の3方向を少なくとも含むも
のであることを特徴とする前記(1)に記載の補強用多
軸ステッチ布帛。
(4) The multiaxial reinforcing member according to (1), wherein the crossing angle includes at least three directions of 0 °, + α °, and −α ° with respect to the length direction of the fabric. Stitched fabric.

【0012】(5)前記交差角度が布帛の長さ方向に対
して+α゜、−α゜、90゜の3方向を少なくとも含む
ものであることを特徴とする前記(1)に記載の補強用
多軸ステッチ布帛。
(5) The multi-axis for reinforcement according to (1), wherein the crossing angle includes at least three directions of + α +, -α ゜, and 90 ° with respect to the length direction of the cloth. Stitched fabric.

【0013】(6)前記交差角度が布帛の長さ方向に対
して0゜、+α゜、−α゜、90゜の4方向を少なくと
も含むものであることを特徴とする前記(1)に記載の
補強用多軸ステッチ布帛。
(6) The reinforcement according to the above (1), wherein the intersection angle includes at least four directions of 0 °, + α °, −α °, and 90 ° with respect to the length direction of the cloth. For multi-axis stitch fabric.

【0014】(7)前記角度α゜が45゜であることを
特徴とする前記(2)、または前記(4)ないし(6)
のいずれかに記載の補強用多軸ステッチ布帛。
(7) The above (2) or (4) to (6), wherein the angle α ゜ is 45 °.
A multiaxial stitch fabric for reinforcement according to any one of the above.

【0015】(8)前記低融点ポリマー糸が共重合ナイ
ロン糸であることを特徴とする前記(1)ないし(7)
のいずれかに記載の補強用多軸ステッチ布帛。
(8) The above (1) to (7), wherein the low-melting polymer yarn is a copolymerized nylon yarn.
A multiaxial stitch fabric for reinforcement according to any one of the above.

【0016】(9)前記低融点ポリマー糸が変成ポリエ
ステル糸であることを特徴とする前記(1)ないし
(7)のいずれかに記載の補強用多軸ステッチ布帛。
(9) The multiaxial stitching fabric for reinforcement according to any one of (1) to (7), wherein the low-melting polymer yarn is a modified polyester yarn.

【0017】(10)前記強化繊維が炭素繊維であるこ
とを特徴とする前記(1)ないし(9)のいずれかに記
載の補強用多軸ステッチ布帛。
(10) The multiaxial stitching fabric for reinforcement according to any one of (1) to (9), wherein the reinforcing fibers are carbon fibers.

【0018】(11)前記(1)ないし(10)のいず
れかに記載の補強用多軸ステッチ布帛に樹脂を含浸し、
低融点ポリマー糸の融点以上に加熱成形することを特徴
とするFRPの成形方法。
(11) Impregnating a resin into the reinforcing multiaxial stitched fabric according to any of (1) to (10),
A method for forming an FRP, comprising heating and forming the polymer at a temperature higher than the melting point of the low-melting polymer yarn.

【0019】(12)前記(11)に記載の成形方法に
よって得られるFRPを用いてなることを特徴とする自
動車外板。
(12) An automobile outer panel using the FRP obtained by the molding method according to (11).

【0020】[0020]

【発明の実施の形態】以下、図面に示す実施例に基づい
て本発明をさらに詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.

【0021】図1は、本発明に係る多軸ステッチ布帛の
一実施例を示す一部切り欠き概略斜視図である。図1に
示すように、布帛1の下面から、まず第一層が長さ方向
イに対して斜め方向に多数本の強化繊維糸条2が並行に
配列して+α゜層6を構成し、次いで第二層が布帛の幅
方向に多数本の強化繊維糸条3が並行に配列して90゜
層7を構成し、次いで第三層が斜め方向に多数本の強化
繊維糸条4が並行に配列して−α゜層8を構成し、次い
で第四層が布帛の長さ方向に多数本の強化繊維糸条5が
並行に配列して0゜層9を構成し、互いに配列方向が異
なる第一〜第4層が積層された状態で、ステッチ糸10
でこれら4層が縫合一体化されている。縫合一体化にあ
たってのステッチ糸が形成する縫い組織としては、単環
縫い、1/1のトリコット編みなどが挙げられる。
FIG. 1 is a partially cut-away schematic perspective view showing one embodiment of a multiaxial stitch fabric according to the present invention. As shown in FIG. 1, from the lower surface of the fabric 1, a first layer is composed of a number of reinforcing fiber yarns 2 arranged in parallel in a direction oblique to the length direction A to form a + α ゜ layer 6. Next, the second layer has a large number of reinforcing fiber yarns 3 arranged in parallel in the width direction of the fabric to form a 90 ° layer 7, and the third layer has a large number of reinforcing fiber yarns 4 arranged diagonally in parallel. To form the -α layer 8, and the fourth layer constitutes the 0 layer 9 by arranging a large number of reinforcing fiber yarns 5 in parallel in the length direction of the fabric. In a state where the different first to fourth layers are stacked, the stitch yarn 10
The four layers are stitched together. Examples of the sewing structure formed by the stitch thread for stitching integration include single-ring sewing and 1/1 tricot knitting.

【0022】図2は、図1に示した多軸ステッチ布帛の
A−A´断面の拡大概略図である。図2に示すように、
−α゜層6、90゜層7、+α゜層8、0゜層9の4層
にステッチ糸10が形成するトリコット編み組織で一体
化されている。なお、各層の糸条は層内において並行に
配列し、これら糸条に対してランダムにニードルが突き
刺さりステッチ糸が縫い組織を形成する。この時、ステ
ッチ糸の張力によりステッチ糸10とステッチ糸10の
間には、強化繊維11が存在せず、大きな空隙部Bが形
成される。
FIG. 2 is an enlarged schematic view of an AA 'cross section of the multiaxial stitched fabric shown in FIG. As shown in FIG.
The stitch yarn 10 is integrated with four layers of the -α layer 6, the 90 ° layer 7, the + α layer 8, and the 0 ° layer 9 by a tricot knitting structure. The yarns of each layer are arranged in parallel in the layer, and the needles pierce the yarns at random, and the stitch yarns form a sewing structure. At this time, the reinforcing fiber 11 does not exist between the stitch yarns 10 due to the tension of the stitch yarns, and a large gap B is formed.

【0023】図3に従来の図2に示した多軸ステッチ布
帛を使用したFRP成形体の断面概略図を示したが、ス
テッチ糸10とステッチ糸10の間の空隙部Bには強化
繊維が存在しないので、多軸ステッチ布帛に含浸された
樹脂が硬化する際体積収縮し、その箇所の表面は凹む。
また、ステッチ糸10は強化繊維層の外側に位置する部
分があるから、成形型に布帛が充填されて成形されて
も、ステッチ糸10の部分はステッチ糸10の存在しな
い箇所に比べて凸状態となり、FRP表面が凸凹し、表
面平滑性はクラスAにはとても到達しないのである。
FIG. 3 is a schematic cross-sectional view of a conventional FRP molded article using the multiaxial stitched fabric shown in FIG. 2. In the void B between the stitch yarns 10, reinforcing fibers are provided. Since the resin does not exist, the volume of the resin impregnated in the multiaxial stitch fabric shrinks when the resin is cured, and the surface of the portion is dented.
Further, since the stitch yarn 10 has a portion located outside the reinforcing fiber layer, even if the forming die is filled with the fabric, the stitch yarn 10 is in a more protruding state than a portion where the stitch yarn 10 does not exist. Thus, the FRP surface is uneven, and the surface smoothness does not reach class A at all.

【0024】本発明の多軸ステッチ布帛の布帛構造は、
従来の多軸ステッチ布帛となんら変わりはないが、本発
明ではステッチ糸として低融点ポリマー糸を使用するこ
とを特徴とする。
The fabric structure of the multiaxial stitch fabric of the present invention is as follows:
Although not different from the conventional multiaxial stitch fabric, the present invention is characterized in that a low-melting polymer yarn is used as a stitch yarn.

【0025】本発明に使用する低融点ポリマー糸は、融
点が80〜200℃のポリマーを溶融紡糸したもので、
成形時に溶融し、成形後ステッチ糸が形成しているステ
ッチ糸の組織が消滅してポリマーの状態となるものが好
ましい。融点が80℃未満であると、繊維強化プラスチ
ック(以下FRPと呼称)に成形した時に、わずかな面
積、体積ではあるがFRP成形体が屋外暴露などによる
昇温により低融点ポリマーの存在箇所が溶融状態となる
ので好ましくない。また、融点が200℃を越えると、
成形の際マトリックス樹脂の硬化のための成形型の昇温
および成形型の冷却に時間がかかり、成形サイクルが長
くなるので好ましくない。より好ましくは、低融点ポリ
マー糸の融点は120〜160℃である。
The low-melting polymer yarn used in the present invention is obtained by melt-spinning a polymer having a melting point of 80 to 200 ° C.
It is preferable that the stitch yarn is melted at the time of molding and the structure of the stitch yarn formed by the stitch yarn disappears after the molding to be in a polymer state. If the melting point is less than 80 ° C., when molded into a fiber reinforced plastic (hereinafter referred to as FRP), the FRP molded body has a small area and volume, but the location of the low melting point polymer melts due to temperature rise due to outdoor exposure etc. It is not preferable because it becomes a state. When the melting point exceeds 200 ° C.,
In molding, it takes time to raise the temperature of the mold and to cool the mold for curing the matrix resin, which is not preferable because the molding cycle becomes longer. More preferably, the melting point of the low melting polymer yarn is from 120 to 160C.

【0026】本発明に用いる低融点ポリマーは、通常、
ナイロン、共重合ナイロン、ポリエステル、変成ポリエ
ステル、塩化ビニリデン、塩化ビニル、ポリウレタン、
ポリプロピレン、ポリウレタンなどから選ばれたもので
ある。なかでも低温でポリマーを溶融でき、かつFRP
のマトリックス樹脂との接着性が良好な共重合ナイロン
が好ましい。
The low melting point polymer used in the present invention is usually
Nylon, copolymerized nylon, polyester, denatured polyester, vinylidene chloride, vinyl chloride, polyurethane,
It is selected from polypropylene, polyurethane and the like. Above all, polymer can be melted at low temperature and FRP
Copolymer nylon having good adhesion to the matrix resin is preferred.

【0027】また、低温でポリマーを溶融でき、マトリ
ックス樹脂との接着性が良好で、吸水率の小さな変成ポ
リエステルが好ましい。
A modified polyester which can melt a polymer at a low temperature, has good adhesion to a matrix resin, and has a small water absorption is preferable.

【0028】ステッチ糸の太さは、細いとステッチ操作
の際糸切れし、また太いとFRPにした時ステッチ糸が
溶融して形成される低融点ポリマー部分が大きくなり、
塗装の際に色斑などになるので50〜400デシテック
スが好ましい。より好ましくは70〜300デシテック
スである。
When the thickness of the stitch yarn is small, the thread breaks during the stitch operation, and when the thickness is large, the low melting point polymer portion formed by melting the stitch yarn when FRP is formed increases.
50 to 400 decitex is preferable because color unevenness or the like occurs at the time of coating. More preferably, it is 70 to 300 dtex.

【0029】本発明に使用する強化繊維としては、ガラ
ス繊維、ポリアラミド繊維や炭素繊維が挙げられるが、
なかでも炭素繊維はマトリックス樹脂との接着性が良
く、引張強度や引張弾性率も高いのでFRP成形体の軽
量化が図られるので好ましく用いられる。
The reinforcing fibers used in the present invention include glass fibers, polyaramid fibers and carbon fibers.
Among them, carbon fibers are preferably used because they have good adhesiveness to the matrix resin and high tensile strength and tensile modulus, so that the weight of the FRP molded article can be reduced.

【0030】本発明に使用する強化繊維の太さは、3,
000〜50,000デシテックス程度であることが好
ましい。とくに、太い強化繊維糸条を用いると、強化繊
維が安くなるので安価な布帛が得られ好ましい。しか
し、一層当たりの強化繊維の目付が小さいと、層内の糸
条と糸条の間に隙間ができ、ステッチ糸で一体化すると
繊維密度が部分的に不均一となり、成形すると繊維密度
が大きなところはFRPが厚くなり、また繊維密度が小
さなところはFRPが薄くなり、表面が凸凹したFRP
となる。さらに7,000〜50,000デシテックス
の太い強化繊維糸条を用いる場合は、ステッチ糸による
一体化加工前に強化繊維糸条をローラの揺動操作やエア
ー・ジェット噴射で薄く拡げると、布帛の全面にわたり
強化繊維の密度が均一となり、表面が平滑なFRPが得
られるので好ましい。
The thickness of the reinforcing fiber used in the present invention is 3,
It is preferably about 000 to 50,000 decitex. In particular, it is preferable to use a thick reinforcing fiber yarn because the reinforcing fiber becomes cheaper and an inexpensive cloth can be obtained. However, if the basis weight of the reinforcing fiber per layer is small, there is a gap between the yarns in the layer, the fiber density becomes partially uneven when integrated with stitch yarn, and the fiber density becomes large when molded. Where the FRP is thicker, and where the fiber density is lower, the FRP is thinner and the surface is uneven.
Becomes Further, when a thick reinforcing fiber yarn of 7,000 to 50,000 decitex is used, if the reinforcing fiber yarn is spread thinly by a swinging operation of a roller or an air jet injection before the integration processing by the stitch yarn, the fabric is formed. This is preferable because the density of the reinforcing fibers becomes uniform over the entire surface and an FRP with a smooth surface can be obtained.

【0031】もともとステッチ糸の役割は、布帛になっ
た状態で繊維配向が乱れないように、また並行に配列し
た多数本の強化繊維糸条がほつれないようにするもので
あり、布帛の層方向にステッチ糸が配列しているとはい
え、層方向に対する補強効果はさほど大きくはない。
Originally, the role of the stitch yarn is to prevent the fiber orientation from being disturbed in the fabric state and to prevent a large number of reinforcing fiber yarns arranged in parallel from fraying. Although the stitch yarns are arranged in the same direction, the reinforcing effect in the layer direction is not so large.

【0032】なお、図1に示した布帛の強化繊維の構成
は+α゜層/90゜層/−α゜層/0゜層の4層構成に
ついて説明したが、これに限定するものではなく、少な
くとも、布帛の長さ方向に対して−α゜層と+α゜層の
バイアス(±α゜)の方向に層構成をなしておればよ
い。また、層構成の順番も−α゜/90゜/+α゜/0
゜の順番に限定するものではなく、0゜/−α゜/90
゜/+α゜や0゜/−α゜/+α゜/90゜など適宜設
計することができる。また、−α゜層と+α゜層のバイ
アス方向のみに強化繊維が配列した布帛にすると、布帛
の長さ方向に引っ張ると簡単に強化繊維の方向がずれ、
布帛の幅方向が狭くなるなど、形態が不安定である。こ
のような時には、たとえば0゜方向やまたは90゜方向
に細いガラス繊維、炭素繊維やポリアラミド繊維などの
補助糸を20〜100g/m2 程度配列し、−α゜層、
+α゜層とステッチ糸で一体化すると形態を安定させる
ことができる。
Although the structure of the reinforcing fibers of the fabric shown in FIG. 1 has been described as a four-layer structure of + α ゜ layer / 90 ゜ layer / −α ゜ layer / 0 ゜ layer, the present invention is not limited to this. At least the layer structure may be formed in the direction of the bias (± α ゜) between the −α ゜ layer and the + α ゜ layer with respect to the length direction of the fabric. Also, the order of the layer configuration is -α ゜ / 90 ° / + α ゜ / 0.
The order of ゜ is not limited, and 0 ゜ / −α ゜ / 90
゜ / + α ゜ or 0 ゜ / −α ゜ / + α ゜ / 90 ゜ can be appropriately designed. Further, when the fabric has reinforcing fibers arranged only in the bias direction of the -α ゜ layer and the + α ゜ layer, the direction of the reinforcing fibers easily shifts when the fabric is pulled in the length direction thereof,
The form is unstable, for example, the width direction of the fabric becomes narrow. In such a case, for example, auxiliary yarns such as glass fiber, carbon fiber, and polyaramid fiber which are thin in the 0 ° direction or the 90 ° direction are arranged in an amount of about 20 to 100 g / m 2 , and the -α ゜ layer,
When the + α ゜ layer and the stitch yarn are integrated, the form can be stabilized.

【0033】なお、バイアス角α゜は、多軸ステッチ布
帛をFRP成形体の長さ方向に積層し、強化繊維による
剪断補強を効果的に行う観点から45゜が好ましい。
The bias angle α ゜ is preferably 45 ° from the viewpoint that the multiaxial stitch fabric is laminated in the longitudinal direction of the FRP molded body and the shear reinforcement by the reinforcing fibers is effectively performed.

【0034】本発明の多軸ステッチ布帛を使用したFR
Pは、たとえば次のように成形することができる。
FR using the multiaxial stitch fabric of the present invention
P can be formed, for example, as follows.

【0035】RTM成形型の雌型に、本発明の多軸ステ
ッチ布帛を所定の方向に、所定の枚数積層し、この上に
雄型を乗せ、型の周囲をパテでシーリングする。つい
で、真空ポンプで型内を真空状態となるよう吸引し、そ
の後樹脂を注入する。次いで、成形型を低融点ポリマー
糸の融点以上になるよう十分に加熱して、注入した樹脂
を硬化させる。成形型を冷却し、脱型する。
A predetermined number of the multiaxial stitch fabrics of the present invention are laminated in a predetermined direction on a female die of an RTM molding die, a male die is placed thereon, and the periphery of the die is sealed with a putty. Next, the inside of the mold is sucked by a vacuum pump so as to be in a vacuum state, and then the resin is injected. Next, the mold is sufficiently heated so as to have a temperature equal to or higher than the melting point of the low-melting polymer thread, and the injected resin is cured. Cool the mold and remove it.

【0036】なお、本発明の成形方法は、上記のRTM
成形法に限定するものではなく、たとえば多軸ステッチ
布帛を、乾式法では低融点ポリマー糸の融点以下の温度
で加熱含浸、または、湿式法では融点以下の温度で加熱
乾燥することによってプリプレグ化し、これを成形型に
積層し、低融点ポリマー糸の融点以上の温度で加熱、加
圧して成形する方法でもよい。
The molding method of the present invention is based on the above RTM.
The method is not limited to the molding method.For example, the multiaxial stitched fabric is prepreg by heating and impregnating at a temperature lower than the melting point of the low-melting polymer yarn in the dry method, or by heating and drying at a temperature lower than the melting point in the wet method, A method in which this is laminated on a mold and heated and pressed at a temperature equal to or higher than the melting point of the low-melting polymer yarn to form it may be used.

【0037】本発明に用いる樹脂は、エポキシ樹脂、不
飽和ポリエステル樹脂、ビニルエステル樹脂やフェノー
ル樹脂などの熱硬化性樹脂やナイロン樹脂、PBT樹
脂、ポリエチレン樹脂、ポリプロピレン樹脂などの熱可
塑性樹脂であってもよい。
The resin used in the present invention is a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin or a phenol resin, or a thermoplastic resin such as a nylon resin, a PBT resin, a polyethylene resin or a polypropylene resin. Is also good.

【0038】図4に、本発明の成形法によって得られる
FRP成形体の断面概略図を示したが、型の加熱と同時
に多軸ステッチ布帛も低融点ポリマー糸の融点以上に加
熱されるから、低融点ポリマー糸が溶融し、FRP中に
ポリマー糸が存在していた箇所に低融点ポリマー12が
点在するようになる。また、低融点ポリマーからなるス
テッチ糸が形成していた縫い組織は、ステッチ糸の溶融
によって消滅するので、ステッチ糸による強化繊維の拘
束は解かれ、空隙部Bの箇所にも強化繊維が分散し、得
られるFRPの表面は平滑となる。
FIG. 4 shows a schematic cross-sectional view of the FRP molded product obtained by the molding method of the present invention. The multiaxial stitched fabric is heated to the melting point of the low-melting polymer yarn simultaneously with heating of the mold. The low-melting-point polymer yarn is melted, and the low-melting-point polymer 12 is scattered in the portion where the polymer yarn was present in the FRP. In addition, the stitched structure formed by the low-melting-point polymer stitch thread disappears due to the melting of the stitch thread, so that the binding of the reinforcing fiber by the stitch thread is released, and the reinforcing fiber is dispersed also in the space B. The surface of the obtained FRP becomes smooth.

【0039】図5は自動車外板を説明する概略図で、フ
−ド13、フェンダ−14、ドア15、ル−フ16、ト
ランク・カバー17などの外板に、本発明の補強用多軸
ステッチ布帛を使用し、樹脂を含浸し、低融点ポリマー
糸の融点以上に加熱成形することによって得られるFR
P成形体を使用すると、表面が平滑で意匠性に優れ、安
価な自動車外板となる。
FIG. 5 is a schematic diagram for explaining an automobile outer panel. The reinforcing multi-axle of the present invention is mounted on outer panels such as a hood 13, a fender 14, a door 15, a roof 16 and a trunk cover 17. FR obtained by using a stitch fabric, impregnating a resin, and heat-molding to a temperature equal to or higher than the melting point of the low-melting polymer yarn.
The use of the P molded body results in an inexpensive automobile outer panel having a smooth surface and excellent design.

【0040】[0040]

【発明の効果】本発明の補強用多軸ステッチ布帛は低融
点ポリマー糸でステッチ一体化されているから、樹脂を
含浸し、低融点ポリマー糸の融点以上に加熱成形するこ
とによって表面が平滑なFRP成形体が得られる。
As described above, the multiaxial stitching fabric for reinforcement of the present invention is stitch-integrated with a low-melting polymer yarn, so that it is impregnated with a resin and heat-molded to a temperature equal to or higher than the melting point of the low-melting polymer yarn. An FRP molded body is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多軸ステッチ布帛の一例を示す一部切
り欠き概略斜視図である。
FIG. 1 is a partially cut-away schematic perspective view showing an example of a multiaxial stitched fabric of the present invention.

【図2】図1のA−A´断面拡大概略図である。FIG. 2 is an enlarged schematic cross-sectional view taken along line AA ′ of FIG.

【図3】従来の多軸ステッチ布帛のFRP成形体の断面
概略図である。
FIG. 3 is a schematic cross-sectional view of a conventional FRP molded product of a multiaxial stitch fabric.

【図4】本発明の多軸ステッチ布帛のFRP成形体の一
例を示す断面概略図である。
FIG. 4 is a schematic cross-sectional view showing an example of an FRP molded product of the multiaxial stitched fabric of the present invention.

【図5】自動車外板を説明する概略図である。FIG. 5 is a schematic diagram illustrating an automobile outer panel.

【符号の説明】 1:多軸ステッチ布帛 2:+α゜層の強化繊維糸条 3:90゜層の強化繊維糸条 4:−α゜層の強化繊維糸条 5:0゜層の強化繊維糸条 6:布帛を形成する+α゜の強化繊維層 7:布帛を形成する90゜の強化繊維層 8:布帛を形成する−α゜の強化繊維層 9:布帛を形成する0゜の強化繊維層 10:ステッチ糸 11:強化繊維 12:低融点ポリマー 13:自動車のフ−ド 14:自動車のフェンダ− 15:自動車のドア 16:自動車のル−フ 17:自動車のトランク・カバー イ:布帛の長手方向 A−A´:断面の基準線 B:空隙部[Description of Signs] 1: Multiaxial stitch fabric 2: Reinforcement fiber yarn of + α ゜ layer 3: Reinforcement fiber yarn of 90 ° layer 4: Reinforcement fiber yarn of -α ゜ layer 5: 0 Reinforcement fiber of 0 layer Thread 6: Reinforcing fiber layer of + α : forming fabric 7: Reinforcing fiber layer of 90 ° forming fabric 8: Reinforcing fiber layer of -α ゜ forming fabric 9: Reinforcing fiber of 0 ° forming fabric Layer 10: Stitch yarn 11: Reinforcing fiber 12: Low melting point polymer 13: Car hood 14: Car fender 15: Car door 16: Car roof 17: Car trunk cover A: Fabric Longitudinal direction AA ': Reference line of cross section B: Void

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F204 AA39 AA41 AD16 AH18 FA01 FB01 FB12 FG02 FN12 FN15 4F205 AA04 AA11 AA25 AA29 AA36 AD16 AH18 HA06 HA08 HA14 HA25 HA33 HA34 HB01 HC05 HC07 HG02 HL16 4L002 AA05 AA06 AA07 AC00 CA01 DA00 EA05 FA06 4L047 AA03 AA21 AA23 AB10 BA24 BD02 CA03 CB09 CC13  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4F204 AA39 AA41 AD16 AH18 FA01 FB01 FB12 FG02 FN12 FN15 4F205 AA04 AA11 AA25 AA29 AA36 AD16 AH18 HA06 HA08 HA14 HA25 HA33 HA34 HB01 HC05 HC07 HG02 HL16 A05A05 A05 A05 AC05 FA06 4L047 AA03 AA21 AA23 AB10 BA24 BD02 CA03 CB09 CC13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】多数本の強化繊維糸条が並行にシート状に
配列して層構成をなし、前記層の少なくとも2層以上が
交差積層されて積層体をなし、該積層体が低融点ポリマ
ー糸でステッチされて一体化されていることを特徴とす
る補強用多軸ステッチ布帛。
1. A layer structure in which a number of reinforcing fiber yarns are arranged in parallel in a sheet form to form a layer structure, and at least two or more of the layers are cross-laminated to form a laminate, wherein the laminate is a low-melting polymer. A multiaxial stitching fabric for reinforcement, which is stitched and integrated with a yarn.
【請求項2】前記交差角度が布帛の長さ方向に対して+
α゜、−α゜の2方向を少なくとも含むものであること
を特徴とする請求項1に記載の補強用多軸ステッチ布
帛。
2. The method according to claim 1, wherein the crossing angle is +
2. The multiaxial stitching fabric for reinforcement according to claim 1, including at least two directions of α ゜ and −α ゜. 3.
【請求項3】前記交差角度が布帛の長さ方向に対して0
゜、90゜の2方向を少なくとも含むものであることを
特徴とする請求項1に記載の補強用多軸ステッチ布帛。
3. The crossing angle is 0 with respect to the length direction of the cloth.
The multiaxial stitching fabric for reinforcement according to claim 1, wherein the fabric includes at least two directions of {, 90}.
【請求項4】前記交差角度が布帛の長さ方向に対して0
゜、+α゜、−α゜の3方向を少なくとも含むものであ
ることを特徴とする請求項1に記載の補強用多軸ステッ
チ布帛。
4. The method according to claim 1, wherein the intersection angle is 0 with respect to the length direction of the cloth.
2. The multiaxial stitching fabric for reinforcement according to claim 1, which includes at least three directions of ゜, + α ゜, and −α ゜. 3.
【請求項5】前記交差角度が布帛の長さ方向に対して+
α゜、−α゜、90゜の3方向を少なくとも含むもので
あることを特徴とする請求項1に記載の補強用多軸ステ
ッチ布帛。
5. The method according to claim 1, wherein said crossing angle is +
The multiaxial stitching fabric for reinforcement according to claim 1, wherein the fabric includes at least three directions of α ゜, -α ゜, and 90 °.
【請求項6】前記交差角度が布帛の長さ方向に対して0
゜、+α゜、−α゜、90゜の4方向を少なくとも含む
ものであることを特徴とする請求項1に記載の補強用多
軸ステッチ布帛。
6. The crossing angle is 0 with respect to the length direction of the cloth.
2. The multiaxial stitching fabric for reinforcement according to claim 1, comprising at least four directions of ゜, + α ゜, −α ゜, and 90 °. 3.
【請求項7】前記角度α゜が45゜であることを特徴と
する請求項2、または請求項4ないし6のいずれかに記
載の補強用多軸ステッチ布帛。
7. The multiaxial stitching fabric for reinforcement according to claim 2, wherein said angle α ゜ is 45 °.
【請求項8】前記低融点ポリマー糸が共重合ナイロン糸
であることを特徴とする請求項1ないし7のいずれかに
記載の補強用多軸ステッチ布帛。
8. The multiaxial stitching fabric for reinforcement according to claim 1, wherein said low melting point polymer yarn is a copolymerized nylon yarn.
【請求項9】前記低融点ポリマー糸が変成ポリエステル
糸であることを特徴とする請求項1ないし7のいずれか
に記載の補強用多軸ステッチ布帛。
9. The reinforcing multiaxial stitched fabric according to claim 1, wherein said low-melting polymer yarn is a modified polyester yarn.
【請求項10】前記強化繊維が炭素繊維であることを特
徴とする請求項1ないし9のいずれかに記載の補強用多
軸ステッチ布帛。
10. The multiaxial stitching fabric for reinforcement according to claim 1, wherein said reinforcing fibers are carbon fibers.
【請求項11】請求項1ないし10のいずれかに記載の
補強用多軸ステッチ布帛に樹脂を含浸し、低融点ポリマ
ー糸の融点以上に加熱成形することを特徴とするFRP
の成形方法。
11. An FRP comprising impregnating a resin into the multiaxial stitching fabric for reinforcement according to any one of claims 1 to 10, and heat-molding the cloth to a temperature equal to or higher than the melting point of the low-melting polymer yarn.
Molding method.
【請求項12】請求項11に記載の成形方法によって得
られるFRPを用いてなることを特徴とする自動車外
板。
12. An automobile outer panel using the FRP obtained by the molding method according to claim 11.
JP2001020030A 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP Expired - Fee Related JP4599718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020030A JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020030A JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Publications (3)

Publication Number Publication Date
JP2002227066A true JP2002227066A (en) 2002-08-14
JP2002227066A5 JP2002227066A5 (en) 2008-03-13
JP4599718B2 JP4599718B2 (en) 2010-12-15

Family

ID=18885807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020030A Expired - Fee Related JP4599718B2 (en) 2001-01-29 2001-01-29 Multiaxial stitch fabric for reinforcement and method for forming FRP

Country Status (1)

Country Link
JP (1) JP4599718B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052633A (en) * 2004-07-15 2006-02-23 Mitsubishi Kagaku Sanshi Corp Structure and its reinforcing member and method
JP2007504029A (en) * 2003-05-26 2007-03-01 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2007092232A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Preform and method for producing preform
WO2008062818A1 (en) 2006-11-22 2008-05-29 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP2008265108A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Fiber-reinforced plastic
JP2009000933A (en) * 2007-06-22 2009-01-08 Jamco Corp Sandwich panel
KR20150109253A (en) * 2014-03-19 2015-10-01 더 보잉 컴파니 Fabrication of composite laminates using temporarily stitched preforms
EP2537881A4 (en) * 2010-02-15 2016-02-10 Kurashiki Boseki Kk Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using same
WO2017104481A1 (en) * 2015-12-14 2017-06-22 三菱レイヨン株式会社 Multiaxial-inlay knitted fabric base material production method, multiaxial-inlay knitted fabric base material, and fiber-reinforced composite material
US20170173861A1 (en) * 2015-12-16 2017-06-22 Hyundai Motor Company Thermoplastic resin composite and preparation method of thermoplastic resin composite
JP2017213817A (en) * 2016-06-02 2017-12-07 株式会社Subaru Fabric laminate
KR101861046B1 (en) 2017-11-08 2018-05-24 주식회사 유엠에스 Low Weight Flame Retardant Nonwoven Fabric and Seat-Cover using the same and Manufacturing Method thereof
JP2018165045A (en) * 2017-03-29 2018-10-25 東レ株式会社 Reinforced fiber laminate sheet and method of producing resin molding
CN109968699A (en) * 2019-04-11 2019-07-05 北京匀乐科技有限公司 Inclined-plane sewing and bundling machine and its rigid joint binding net of production knit enhancing insulation board
WO2020031834A1 (en) * 2018-08-07 2020-02-13 東レ株式会社 Multiaxial textile resin base material and method for production thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892555A (en) * 1981-11-30 1983-06-01 東レ株式会社 Laminate for resin reinforcement
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH03505615A (en) * 1989-04-18 1991-12-05 ブロシエール・ソシエテ・アノニム Deformable textile structure
JPH0813305A (en) * 1994-06-24 1996-01-16 Dynic Corp Wear-resistant automotive trim facing material
JPH08199441A (en) * 1995-01-17 1996-08-06 Teijin Ltd Yarn used in sewing machine and its production
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892555A (en) * 1981-11-30 1983-06-01 東レ株式会社 Laminate for resin reinforcement
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH03505615A (en) * 1989-04-18 1991-12-05 ブロシエール・ソシエテ・アノニム Deformable textile structure
JPH0813305A (en) * 1994-06-24 1996-01-16 Dynic Corp Wear-resistant automotive trim facing material
JPH08199441A (en) * 1995-01-17 1996-08-06 Teijin Ltd Yarn used in sewing machine and its production
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838719B2 (en) * 2003-05-26 2011-12-14 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2007504029A (en) * 2003-05-26 2007-03-01 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Manufacturing method for fiber composite parts and intermediate product for the manufacturing method
JP2006052633A (en) * 2004-07-15 2006-02-23 Mitsubishi Kagaku Sanshi Corp Structure and its reinforcing member and method
JP2007092232A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Preform and method for producing preform
WO2008062818A1 (en) 2006-11-22 2008-05-29 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP2008265108A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Fiber-reinforced plastic
US8334042B2 (en) 2007-06-22 2012-12-18 Jamco Corporation Sandwich panel
JP4699425B2 (en) * 2007-06-22 2011-06-08 株式会社ジャムコ Sandwich panel
JP2009000933A (en) * 2007-06-22 2009-01-08 Jamco Corp Sandwich panel
EP2537881A4 (en) * 2010-02-15 2016-02-10 Kurashiki Boseki Kk Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using same
KR20150109253A (en) * 2014-03-19 2015-10-01 더 보잉 컴파니 Fabrication of composite laminates using temporarily stitched preforms
JP2015183186A (en) * 2014-03-19 2015-10-22 ザ・ボーイング・カンパニーTheBoeing Company Fabrication of composite laminates using temporarily stitched preforms
KR102332550B1 (en) * 2014-03-19 2021-11-29 더 보잉 컴파니 Fabrication of composite laminates using temporarily stitched preforms
US11046049B2 (en) 2014-03-19 2021-06-29 The Boeing Company Fabrication of composite laminates using temporarily stitched preforms
US11046050B2 (en) 2014-03-19 2021-06-29 The Boeing Company Fabrication of composite laminates using temporarily stitched preforms
CN108368657A (en) * 2015-12-14 2018-08-03 三菱化学株式会社 Polyaxial manufacturing method, polyaxial insertion braided fabric base material and the fibre reinforced composites for being inserted into braided fabric base material
WO2017104481A1 (en) * 2015-12-14 2017-06-22 三菱レイヨン株式会社 Multiaxial-inlay knitted fabric base material production method, multiaxial-inlay knitted fabric base material, and fiber-reinforced composite material
JPWO2017104481A1 (en) * 2015-12-14 2017-12-21 三菱ケミカル株式会社 Multi-axis insertion knitted base material manufacturing method, multi-axis insertion knitted base material, and fiber-reinforced composite material
CN106881931B (en) * 2015-12-16 2021-02-02 现代自动车株式会社 Thermoplastic resin composite material and preparation method thereof
CN106881931A (en) * 2015-12-16 2017-06-23 现代自动车株式会社 Thermoplas tic resin composite and the preparation method of thermoplas tic resin composite
US20170173861A1 (en) * 2015-12-16 2017-06-22 Hyundai Motor Company Thermoplastic resin composite and preparation method of thermoplastic resin composite
US10384400B2 (en) * 2015-12-16 2019-08-20 Hyundai Motor Company Thermoplastic resin composite and preparation method of thermoplastic resin composite
JP2017109473A (en) * 2015-12-16 2017-06-22 現代自動車株式会社Hyundai Motor Company Thermoplastic resin composite and method for producing the same
JP2017213817A (en) * 2016-06-02 2017-12-07 株式会社Subaru Fabric laminate
JP2018165045A (en) * 2017-03-29 2018-10-25 東レ株式会社 Reinforced fiber laminate sheet and method of producing resin molding
KR101861046B1 (en) 2017-11-08 2018-05-24 주식회사 유엠에스 Low Weight Flame Retardant Nonwoven Fabric and Seat-Cover using the same and Manufacturing Method thereof
CN112424266A (en) * 2018-08-07 2021-02-26 东丽株式会社 Multiaxial fabric resin substrate and method for producing same
WO2020031834A1 (en) * 2018-08-07 2020-02-13 東レ株式会社 Multiaxial textile resin base material and method for production thereof
JPWO2020031834A1 (en) * 2018-08-07 2021-08-02 東レ株式会社 Multi-axis woven resin base material and its manufacturing method
US11692306B2 (en) 2018-08-07 2023-07-04 Toray Industries, Inc. Multiaxial textile resin base material and method of production thereof
JP7419818B2 (en) 2018-08-07 2024-01-23 東レ株式会社 Multiaxial woven resin base material
CN109968699A (en) * 2019-04-11 2019-07-05 北京匀乐科技有限公司 Inclined-plane sewing and bundling machine and its rigid joint binding net of production knit enhancing insulation board

Also Published As

Publication number Publication date
JP4599718B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP2002227066A (en) Reinforcing multiaxial stitched fabric and method for molding frp
EP1125728B1 (en) Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2002227067A (en) Reinforcing multiaxial stitched fabric and preform
EP0289860B1 (en) Assembly of several layers comprising one or more reinforcing layers and process for producing a fiber reinforced material
ES2391828T3 (en) Preform, PRF and processes to produce them
KR101858429B1 (en) Stitched multiaxial non-crimp fabrics
JP5011613B2 (en) Preform and molding method
US7168272B2 (en) Crimp-free infusible reinforcement fabric
BR112013011577B1 (en) fiber preform and composite component
CA2580751A1 (en) Textile core sandwich structures
JP6946666B2 (en) Reinforced fiber laminated sheet and fiber reinforced resin molded product
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
JP2002227068A (en) Reinforcing multiaxial stitched fabric
JP2003020542A (en) Carbon fiber fabric, method for molding using the same, carbon fiber-reinforced plastic and aircraft structural member
JP4613298B2 (en) Composite sheet and composite material having smooth surface using the same
CN113573875A (en) Stitched multiaxial reinforcement
JP2002321215A (en) Preform and molding thereof
JP2001246686A (en) Composite material structure
JP2000238139A (en) Manufacture of frp structure
JP4558398B2 (en) Composite material with smooth surface
JP6746973B2 (en) Base material for preform, reinforced fiber preform, fiber reinforced resin molding and method for manufacturing fiber reinforced resin molding
JP2002264235A (en) Reinforcing multishaft stitch cloth and fiber reinforced plastic
JP5415320B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
JPH068971Y2 (en) Helmet
JPH0539876Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees