JP2002225127A - Biaxially oriented copolystyrene sheet and container thereof - Google Patents

Biaxially oriented copolystyrene sheet and container thereof

Info

Publication number
JP2002225127A
JP2002225127A JP2001092026A JP2001092026A JP2002225127A JP 2002225127 A JP2002225127 A JP 2002225127A JP 2001092026 A JP2001092026 A JP 2001092026A JP 2001092026 A JP2001092026 A JP 2001092026A JP 2002225127 A JP2002225127 A JP 2002225127A
Authority
JP
Japan
Prior art keywords
sheet
polystyrene
styrene
copolystyrene
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001092026A
Other languages
Japanese (ja)
Inventor
Yosuke Goto
陽介 後藤
Takayuki Ando
孝行 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001092026A priority Critical patent/JP2002225127A/en
Publication of JP2002225127A publication Critical patent/JP2002225127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant biaxially oriented copolystyrene sheet which is superior to a biaxially oriented polystyrene sheet in terms of heat resistance, has practical strength and the features that the sheet keeps transparency when mixed with polystyrene, and can replace polystyrene in a short time in the production process of a biaxially oriented sheet and an article molded from the sheet. SOLUTION: The copolystyrene is obtained from a monomer mixture of styrene and at least one of acrylic acid, methacrylic acid, and maleic anhydride. The amount of the comonomer is below 4.0 mass%. The Vicat softening point of the copolystyrene is at least 105 deg.C. The biaxially oriented copolystyrene sheet meets specified relaxation stress conditions. A container formed from the sheet is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の単量体種と
特定量比を有したスチレン系共重合体を用いて、十分な
透明性と実用強度と耐熱性を具備した二軸延伸ポリスチ
レン系シート及びその容器に関するものである。
TECHNICAL FIELD The present invention relates to a biaxially oriented polystyrene having sufficient transparency, practical strength and heat resistance using a styrene copolymer having a specific monomer type and a specific quantitative ratio. The present invention relates to a system sheet and its container.

【0002】[0002]

【従来の技術】ポリスチレンの二軸延伸シートは、その
透明性、剛性に優れることから、型成型されて主に軽量
容器等の成型品に大量に使用されている。しかしなが
ら、これらの容器は、耐熱性に劣ることから、沸騰水に
直接接触する用途や、近年急速に普及した電子レンジ加
熱用途には全く使用されていない。
2. Description of the Related Art A biaxially stretched sheet of polystyrene is molded and used in large quantities mainly for molded articles such as lightweight containers because of its excellent transparency and rigidity. However, these containers are inferior in heat resistance and are therefore not used at all in applications that come into direct contact with boiling water or in applications for heating microwave ovens, which have rapidly spread in recent years.

【0003】原料であるポリスチレンの耐熱性を向上さ
せた物としては、米国特許第3035033号公報明細
書に示されているスチレン−アクリル酸共重合体(SA
A樹脂)、スチレン−メタクリル酸共重合体(SMAA
樹脂)、及び例えば特公昭59−15133号公報に記
載されているスチレン−無水マレイン酸共重合体(SM
A樹脂)が挙げられる。これらは一般的にスチレン系耐
熱樹脂として知られており、透明性、剛性を損なわずに
耐熱性を向上させている。
As a raw material having improved heat resistance of polystyrene, styrene-acrylic acid copolymer (SA) disclosed in US Pat.
A resin), styrene-methacrylic acid copolymer (SMAA)
Resin), and a styrene-maleic anhydride copolymer (SM) described in, for example, JP-B-59-15133.
A resin). These are generally known as styrene-based heat-resistant resins, and have improved heat resistance without impairing transparency and rigidity.

【0004】上記に挙げたようなスチレン系耐熱樹脂を
二軸延伸してシート化することにより、耐熱性に優れた
シートを用いた成型品を得る技術が検討されてきた。例
えば特開昭55−71530号公報では、スチレン−無
水マレイン酸共重合体(SMA樹脂)を二軸延伸シート
に用いることにより耐熱性が向上したシートを用いた成
型品が得られることが示唆されている。
[0004] Techniques have been studied for obtaining a molded article using a sheet having excellent heat resistance by biaxially stretching the above-mentioned styrene-based heat-resistant resin into a sheet. For example, JP-A-55-71530 suggests that a molded article using a sheet having improved heat resistance can be obtained by using a styrene-maleic anhydride copolymer (SMA resin) for a biaxially stretched sheet. ing.

【0005】しかし、上記スチレン系耐熱樹脂シートを
用いた場合でも、十分な市場要求物性を有しているとは
言えなかった。例えば、成型品の角部を押し込んだら割
れてしまう、内容物を入れて落とすと0.5m程度の高
さからでも割れる等、実用強度に劣っている部分があっ
た。そこで近年は特公平3−67608号公報に見られ
るように、用いる樹脂だけでなく、シート成型時の条件
等を制御することで強度を改良することが提案されてき
ている。
However, even when the above-mentioned styrene-based heat-resistant resin sheet is used, it cannot be said that it has sufficient physical properties required in the market. For example, there were some portions that were inferior in practical strength, such as being cracked when the corners of the molded product were pushed in, and being broken down from a height of about 0.5 m when the contents were dropped in. In recent years, as disclosed in Japanese Patent Publication No. 3-67608, it has been proposed to improve the strength by controlling not only the resin used but also the conditions during sheet molding.

【0006】また、スチレン系耐熱樹脂はスチレンと他
の単量体の共重合体であり、一般的にポリスチレンとの
相溶性は低い。そのため、スチレン系耐熱樹脂はポリス
チレンと混ぜ合わせると透明性が損なわれるので、スチ
レン系耐熱樹脂が混合されたポリスチレン樹脂(組成
物)の二軸延伸ポリスチレン系シートも透明性が損なわ
れる。従って、耐熱シート製造時に発生するシートの不
要物、成型品打ち抜き時などに発生する裁断時の不要物
等をリサイクルするときはポリスチレンに混在しないよ
うにポリスチレンの二軸延伸シート製造時に完全に区別
する必要があり、管理が煩雑であった。また、二軸延伸
シート製造ラインは高価であるので、異なった樹脂及び
樹脂組成物の二軸延伸シートは押出機を含め同一の製造
ラインで製造されるのが一般的である。その場合樹脂間
の切り替え時間の短縮が要求される。そこで、耐熱性を
有していてポリスチレンと混ざっても透明性を損なわな
いという特性を有すること、或いはポリスチレンとの樹
脂間の切り替え時間が短縮される樹脂乃至はその樹脂組
成物が要求されていた。
[0006] Styrene-based heat-resistant resins are copolymers of styrene and other monomers, and generally have low compatibility with polystyrene. Therefore, when the styrene-based heat-resistant resin is mixed with polystyrene, the transparency is impaired. Therefore, the transparency of the biaxially stretched polystyrene-based sheet of the polystyrene resin (composition) mixed with the styrene-based heat-resistant resin is also impaired. Therefore, when recycling unnecessary materials generated during the production of heat-resistant sheets, unnecessary materials at the time of cutting generated at the time of punching a molded product, and the like, completely discriminate the biaxially stretched sheet of polystyrene so as not to be mixed with polystyrene. Required, and the management was complicated. Further, since a biaxially stretched sheet production line is expensive, biaxially stretched sheets of different resins and resin compositions are generally produced on the same production line including an extruder. In that case, it is required to reduce the switching time between the resins. Therefore, a resin or a resin composition having a heat resistance and a property of not impairing transparency even when mixed with polystyrene, or a resin or a resin composition in which the switching time between the resin and polystyrene is reduced is required. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に述べ
たようにポリスチレンとの混在時の透明性及びポリスチ
レン二軸延伸シート製造時との樹脂間の切り替え時間が
短縮される特性を有する樹脂を供し、ポリスチレンの二
軸延伸シートよりも優れた耐熱性を有し、かつ必要な実
用強度を有する二軸延伸ポリスチレン系耐熱性シート及
びその成型品を供することである。
SUMMARY OF THE INVENTION As described above, the present invention relates to a resin having a property of being transparent when mixed with polystyrene and having a property of shortening the switching time between resins when a biaxially stretched polystyrene sheet is produced. To provide a biaxially stretched polystyrene-based heat-resistant sheet having better heat resistance than a biaxially stretched polystyrene sheet and having a necessary practical strength, and a molded product thereof.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべくポリスチレンと良好な相溶性を示し、同時
に二軸延伸シートを用いて成型品としたときに良好な強
度、耐熱性を有するような樹脂及び加工条件について鋭
意検討を重ねた結果、使用する原料樹脂を選定し、最大
配向緩和応力を調整することでその目的が達せられるこ
とを見いだし本発明に至った。
In order to solve the above-mentioned problems, the present inventors have shown good compatibility with polystyrene, and at the same time, good strength and heat resistance when formed into a molded product using a biaxially stretched sheet. As a result of intensive studies on the resin having the above and the processing conditions, it has been found that the object can be achieved by selecting the raw material resin to be used and adjusting the maximum orientation relaxation stress, and have reached the present invention.

【0009】即ち本発明は、 アクリル酸、メタクリ
ル酸、及び無水マレイン酸のうちの少なくとも一種の単
量体と、スチレンとの共重合体であり、上記スチレン以
外の単量体の和が4.0質量%未満で、かつ該共重合
体のビカット軟化点が105[℃]以上であるスチレン系
共重合体で、そのスチレン系共重合体を用いて得たシ
ートが下記の数2式の条件を満足する二軸延伸ポリスチ
レン系シート及びそのシートを用いて成型して得た容器
である。
That is, the present invention relates to a copolymer of styrene with at least one monomer selected from acrylic acid, methacrylic acid and maleic anhydride, wherein the sum of the monomers other than styrene is 4. A styrene-based copolymer having a Vicat softening point of less than 0% by mass and a Vicat softening point of 105 ° C. or more, and a sheet obtained using the styrene-based copolymer has a condition represented by the following equation (2). And a container obtained by molding using the sheet.

【数2】 (Equation 2)

【0010】更に、好ましくはスチレン系共重合体の重
量平均分子量(Mw)が15万〜40万であるものを用
いた二軸延伸ポリスチレン系シート及びそのシートを用
いて成型した容器である。
Further, a biaxially stretched polystyrene sheet using a styrene copolymer having a weight average molecular weight (Mw) of 150,000 to 400,000, and a container molded using the sheet are preferred.

【0011】以下本発明について詳述する。要件は、
シートが耐熱性を有し、かつポリスチレンと良好な相溶
性を保つのに必須な条件である。共重合体に用いられる
単量体の種類は、スチレンの透明性を保持したまま耐熱
性を向上させるという観点から、アクリル酸、メタクリ
ル酸、及び無水マレイン酸の少なくとも1種が選定され
る。そしてそれらの含有量として、スチレン以外の単量
体の和は4.0質量%未満、好ましくは2.0質量%以
上4.0質量%未満、更に好ましくは3.0質量%以上
4.0質量%未満が望ましい。この含有量は多くなるに
つれ耐熱性が付与されることになるが、4.0質量%以
上になると、ポリスチレンとの相溶性が良好で無くなっ
てしまうので、含量を4.0質量%未満とすることが重
要となる。その結果、ポリスチレンとの混在時の分別に
伴う作業の繁雑さが解消され、またポリスチレンと同じ
製造ラインでシート製造する場合、ポリスチレンと混ざ
っても透明性を保つ事が出来ることから切り替え時間を
短縮できるなどのメリットが生まれてくる。
Hereinafter, the present invention will be described in detail. Requirements,
This is an essential condition for the sheet to have heat resistance and to maintain good compatibility with polystyrene. From the viewpoint of improving the heat resistance while maintaining the transparency of styrene, at least one of acrylic acid, methacrylic acid, and maleic anhydride is selected as the type of monomer used for the copolymer. As the content thereof, the sum of monomers other than styrene is less than 4.0% by mass, preferably 2.0% by mass or more and less than 4.0% by mass, more preferably 3.0% by mass or more and 4.0% by mass. It is desirably less than mass%. As the content increases, the heat resistance is imparted. However, when the content is 4.0% by mass or more, the compatibility with polystyrene is poor, and the content is set to less than 4.0% by mass. It becomes important. As a result, the complexity of work involved in separation when mixed with polystyrene is eliminated, and when sheets are manufactured on the same production line as polystyrene, the transparency can be maintained even when mixed with polystyrene, reducing the switching time. Benefits such as being able to be born.

【0012】更に、の要件は、成型品の耐熱性を確保
するのに必要な条件である。ビカット軟化点が105
[℃]を下回ると、成型後の容器の耐熱性が著しく低下し
てしまう。例えば勘合容器で110[℃]に設定した熱風
乾燥式のオーブンに15分入れておくテストをした場
合、ビカット軟化点が105[℃]以上のものは大変形が
ないのにたいして、105[℃]未満では変形が大きく、
勘合部が外れてしまう。なお、本発明で言うビカット
(Vicat)軟化点とは、ASTM D1525に従
い、荷重9.8N、昇温速度2[℃/min]で測定され
る値である。
Further, the requirement (1) is a condition necessary for ensuring the heat resistance of the molded product. Vicat softening point is 105
When the temperature is lower than [° C.], the heat resistance of the molded container is significantly reduced. For example, when a test is performed in a hot-air drying oven set at 110 ° C. for 15 minutes in a fitting container, a sample having a Vicat softening point of 105 ° C. or more has a large deformation of 105 ° C. Less than, large deformation,
The fitting part comes off. In addition, the Vicat softening point referred to in the present invention is a value measured at a load of 9.8 N and a heating rate of 2 [° C./min] in accordance with ASTM D1525.

【0013】以上の要件、を同時に満たす共重合体
を用いることで、所望の耐熱性を得、ポリスチレンとの
混在時の問題を解決し、また切り替え時間を短縮できる
などのメリットが生まれてくる。更に、の要件は、シ
ート及び成型品の強度を確保するのに必要な項目であ
る。縦、及び横方向の配向緩和応力は、0.3[MPa]
未満だと耐衝撃性が低下し、逆に2.0[MPa]を越え
ると固く脆くなる傾向にあり、引き裂き強度が落ちてし
まう。更には、縦と横の最大配向緩和応力は同程度であ
ることが強度確保には必要である。縦と横の配向緩和率
の差の絶対値が0.5[MPa]より大きいと、シートの
方向性が強く存在し一方向の裂けに対する強度が弱くな
る傾向が見られる。これはクラック発生時に応力が配向
の低い方向に集中して割れが成長しやすく、配向の低い
方向に沿って破断しやすくなるためと考えられる。従っ
て配向差は、0.5[MPa]以下であることが必要であ
り、好ましくは0.3[MPa]以下、更に好ましくは
0.1[MPa]以下である。なお、縦方向最大配向緩和
応力及び横方向最大配向緩和応力とはシート押出方向
(縦方向)とそれに垂直な方向(横方向)での配向緩和
応力の最大値であり、ASTM D1504に準じて測
定出来る。
The use of a copolymer that satisfies the above requirements at the same time provides advantages such as obtaining desired heat resistance, solving the problem of coexistence with polystyrene, and shortening the switching time. Further, the requirement is an item necessary for securing the strength of the sheet and the molded product. The vertical and horizontal orientation relaxation stress is 0.3 [MPa]
If it is less than 2.0, the impact resistance is reduced. On the contrary, if it exceeds 2.0 [MPa], it tends to be hard and brittle, and the tear strength is lowered. Further, it is necessary for ensuring the strength that the vertical and horizontal maximum orientation relaxation stresses are substantially the same. When the absolute value of the difference between the vertical and horizontal orientation relaxation rates is larger than 0.5 [MPa], the sheet has strong directionality and tends to have low strength against tearing in one direction. It is considered that this is because stress is concentrated in the direction of low orientation when cracks occur and cracks are likely to grow and break easily along the direction of low orientation. Therefore, the orientation difference needs to be 0.5 [MPa] or less, preferably 0.3 [MPa] or less, and more preferably 0.1 [MPa] or less. The maximum longitudinal relaxation stress and the maximum transverse relaxation stress are the maximum values of the relaxation stress in the sheet extrusion direction (longitudinal direction) and the direction perpendicular thereto (lateral direction), and are measured according to ASTM D1504. I can do it.

【0014】本発明の二軸延伸ポリスチレン系シートに
は、シート化の為の溶融混練時あるいは原料製造時に必
要に応じて酸化防止剤、滑剤、離型剤、可塑剤、顔料、
染料、発泡剤、発泡核剤、無機フィラー、帯電防止剤、
摺動剤等公知の添加剤を含有することも本来の目的を逸
脱しない範囲で添加することが出来る。
The biaxially oriented polystyrene-based sheet of the present invention may contain an antioxidant, a lubricant, a release agent, a plasticizer, a pigment, if necessary, during melt kneading for forming a sheet or during raw material production.
Dyes, foaming agents, foam nucleating agents, inorganic fillers, antistatic agents,
A well-known additive such as a sliding agent can be added without departing from the original purpose.

【0015】また、スチレン系共重合体の重量平均分子
量(Mw)は、特に限定されるものではないが15万〜
45万の範囲が好ましく、更に好ましくは15万〜40
万である。Mwは、光散乱法、GPC法、超遠心法等に
よって測定することが出来る。Mwが15万未満となる
と分子の絡み合いが不十分になり、延伸配向効果が充分
に得られ難くなりやすい。また、45万を越えると延伸
加工性が低下し、強度も低下傾向が見られ易い。
The weight average molecular weight (Mw) of the styrenic copolymer is not particularly limited, but may be from 150,000 to 150,000.
The range of 450,000 is preferable, and 150,000 to 40 is more preferable.
It is ten thousand. Mw can be measured by a light scattering method, a GPC method, an ultracentrifugation method, or the like. When Mw is less than 150,000, the entanglement of the molecules becomes insufficient, and it becomes difficult to obtain a sufficient stretching orientation effect. On the other hand, if it exceeds 450,000, the stretchability tends to decrease, and the strength tends to decrease.

【0016】[0016]

【実施例】以下、実施例、比較例を用いて本発明を具体
的に説明する。なお、本発明はこれら実施例に限定され
るものではない。初めに、本発明における測定法、評価
法を以下に説明する。 (1)ビカット軟化点(Vicat軟化点) ASTM D1525に従い、試験片として厚み3.2
mmの射出成型品を用い、荷重9.8N、昇温速度2
[℃/min]で測定される値である。 (2)Haze値の測定 後記する実施例の共重合体のペレットを、押出機(池貝
製、池貝FS−40押出機、吐出押出温度250℃)に
て溶融混練してペレット化した。その後、プレート成型
機(日精2oz成型機 FS−55、シリンダー温度設
定220[℃])にて厚さ2[mm]のプレートに成型し、
Haze(n=5:以下n=Xは測定の数Xを示す)を
測定した。
The present invention will be specifically described below with reference to examples and comparative examples. Note that the present invention is not limited to these examples. First, measurement methods and evaluation methods in the present invention will be described below. (1) Vicat softening point (Vicat softening point) According to ASTM D1525, the test piece had a thickness of 3.2.
mm, injection load of 9.8N, temperature rise rate 2
It is a value measured in [° C / min]. (2) Measurement of Haze Value Pellets of the copolymer of the examples described later were melt-kneaded with an extruder (Ikegai FS-40 extruder, discharge extrusion temperature: 250 ° C.) to form pellets. Then, it is molded into a 2 mm thick plate by a plate molding machine (Nissei 2oz molding machine FS-55, cylinder temperature setting 220 [° C]).
Haze (n = 5; hereinafter, n = X indicates the number X of measurement) was measured.

【0017】(3)最大配向緩和応力 後記する実施例の共重合体の二軸延伸シートを用いAS
TM D1504に準じてシート押出方向(縦方向)と
それに垂直な方向(横方向)での配向緩和応力の最大値
を測定した。 (4)重量平均分子量(Mw)の測定 上記(2)に記載の溶融混練してペレット化した試料を
用い、下記記載のGPC測定条件にて測定した。 装置名:SYSTEM−21 Shodex(昭和電工
社製) カラム:PL gel MIXED−Bを3本直列 温度 :40[℃] 検出 :示差屈折率 溶媒 :テトラヒドロフラン 濃度 :2質量% 検量線:標準PS(PL社製)に準拠(分子量はPS換
算値)
(3) Maximum orientation relaxation stress AS was determined using a biaxially stretched sheet of the copolymer of the examples described later.
According to TM D1504, the maximum value of the orientation relaxation stress in the sheet extrusion direction (longitudinal direction) and the direction perpendicular thereto (lateral direction) was measured. (4) Measurement of weight average molecular weight (Mw) The sample was melt-kneaded and pelletized as described in (2) above and was measured under the following GPC measurement conditions. Apparatus name: SYSTEM-21 Shodex (manufactured by Showa Denko KK) Column: 3 PL gel MIXED-Bs in series Temperature: 40 [° C] Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass Calibration curve: Standard PS (PL) (Molecular weight is converted to PS)

【0018】(5)耐熱性の評価 試験評価用の勘合容器の成型条件 後記する実施例の共重合体の二軸延伸シートを用い、下
記の条件の金型及び成型条件等で勘合容器を得た。 (イ)金型: 天面 :80×150[mm]、 高さ :30[mm] 勘合面:120×200[mm] 深さ :25[mm] 底面 :100×170[mm] なお、皿部側面には深さ5[mm]、幅15[mm]のリブ
有り (ロ)成型条件: 成型機:関西自動成型機社製、真空成型機 ヒーター温度:145[℃] 金型温度 :145[℃] 成型時間 :15[sec] 圧接圧空遅れ:0.5[sec] 圧接真空遅れ:0.5[sec] 圧接時間 :6.0[sec] 成型圧空時間:5.0[sec]
(5) Evaluation of heat resistance Molding condition of mating container for test evaluation Using the biaxially stretched sheet of the copolymer of the following example, a mating container was obtained under the following mold and molding conditions. Was. (A) Mold: Top surface: 80 × 150 [mm], Height: 30 [mm] Mating surface: 120 × 200 [mm] Depth: 25 [mm] Bottom surface: 100 × 170 [mm] There is a rib with a depth of 5 [mm] and a width of 15 [mm] on the side of the part. (B) Molding conditions: Molding machine: manufactured by Kansai Automatic Molding Machine Co., Ltd. [° C] Molding time: 15 [sec] Pressure contact air pressure delay: 0.5 [sec] Pressure contact vacuum delay: 0.5 [sec] Pressure contact time: 6.0 [sec] Molding pressure air time: 5.0 [sec]

【0019】オーブン試験 上記条件で勘合容器に成型したサンプルを、110[℃]
に設定した熱風乾燥機に10[分]入れた後の容器の変形
をn=5にて目視にて評価した。 ◎:変形が微少であるか、判らない ○:変形があるが勘合部は外れていない △:変形して勘合部も外れている。寸法はあまり変わら
ない ×:大きく変形し、寸法も変わっている
Oven test A sample molded into a mating container under the above conditions was heated at 110 ° C.
The deformation of the container after 10 minutes in a hot-air drier set as described above was visually evaluated at n = 5. :: The deformation is minute or not known. 変 形: Deformation is observed but the fitting part is not detached. Δ: Deformed and the fitting part is also removed. Dimensions do not change much ×: Large deformation, dimensions have changed

【0020】(6)強度の評価 成型品の落錘強度 実用的な衝撃強度を評価する為に勘合容器の天面中央に
錘を落下させ、割れが発生するエネルギー([J]=錘高
さ[m]×錘重さ[kg])をn=20で測定した。錘は、
サンプルに接触する部分は同じで、重量を変化させるこ
とが出来、サンプルに接触する先端部は、直径15[m
m]の半球状となっている。 ◎◎:60[J]以上 ◎ :40[J]以上60[J]未満 ○ :30[J]以上40[J]未満 △ :20[J]以上30[J]未満 × :20[J]未満
(6) Evaluation of Strength Drop Weight Strength of Molded Product In order to evaluate practical impact strength, a weight is dropped at the center of the top surface of the fitting container, and energy at which cracks occur ([J] = weight height) [m] × weight of the weight [kg]) was measured at n = 20. The weight is
The part that contacts the sample is the same, the weight can be changed, and the tip that contacts the sample has a diameter of 15 [m
m]. ◎: 60 [J] or more ◎: 40 [J] or more and less than 60 [J] ○: 30 [J] or more and less than 40 [J] Δ: 20 [J] or more and less than 30 [J] ×: 20 [J] Less than

【0021】引き裂き強度 JIS K7128C法に準拠した。ただし試験片は勘
合容器の天面中央より採取した。n=5とし、縦、横の
最大引き裂き荷重を求めた。 ○:1500[N/cm]以上 △:1300[N/cm]以上1500[N/cm]未満 ×:1300[N/cm]未満
Tear strength Based on JIS K7128C method. However, the test piece was collected from the top center of the fitting container. With n = 5, the maximum vertical and horizontal tear loads were determined. ○: 1500 [N / cm] or more △: 1300 [N / cm] or more and less than 1500 [N / cm] ×: less than 1300 [N / cm]

【0022】(7)混在時の透明性(二軸延伸ポリスチ
レン系シートのリサイクル品とポリスチレンペレットの
混在) 二軸延伸ポリスチレン系シートの成型品を粉砕し、リペ
レットを行った後、ポリスチレンペレットに10質量%
混ぜ込んで2[mm]のシートにした場合のHazeを場
所を変えn=5の平均として測定した。 ◎:Haze値が1.0[%]未満 ○:Haze値が1.0以上2.0[%]未満 △:Haze値が2.0以上3.0[%]未満 ×:Haze値が3.0[%]以上
(7) Transparency when mixed (mixed recycled biaxially oriented polystyrene sheet and polystyrene pellets) A molded biaxially oriented polystyrene sheet is pulverized, re-pelleted, and then mixed with polystyrene pellets. mass%
The Haze when mixed into a 2 mm sheet was measured at an average of n = 5 at different locations. ◎: Haze value is less than 1.0 [%] :: Haze value is 1.0 or more and less than 2.0 [%] Δ: Haze value is 2.0 or more and less than 3.0 [%] ×: Haze value is 3 0.0% or more

【0023】(8)切り替え効率 ポリスチレンと同じ製造ラインを使用して製造すること
を想定して、原料の切り替えにかかる時間を切り替え効
率としてφ40[mm]単軸押出機を用いて評価した。ホ
ッパーを並列に2系列用意し、瞬時に押出機への原料供
給を切り替えることが出来るようになっている。一方
(ホッパー1)にはポリスチレンペレット、もう一方
(ホッパー2)には対象サンプルペレット(本発明の実
施例、比較例のサンプル)を仕込む。初めにホッパー1
を押出機に繋ぎポリスチレンを供給する。押出が安定し
た(吐出量:15[kg/h])のを確認の後、押出機を
運転したまま供給ホッパーをホッパー2に切り替え、サ
ンプルを供給する。切り替え時間をゼロタイムとして、
1分毎に押出後のペレットをサンプリング、2[mm]厚
のシートに成型後、Hazeを測定する(n=5の平
均)。Hazeが3.0[%]を越えている時間を切り替
えロス時間として評価した。 ◎:1.0[分]未満、もしくはHazeが3.0[%]を
越えない ○:1.0〜3.0[分] △:3.0〜10.0[分] ×:10.0[分]以上
(8) Switching Efficiency Assuming that the same production line as for polystyrene was used for the production, the time required for switching the raw materials was evaluated as the switching efficiency using a φ40 [mm] single screw extruder. Two lines of hoppers are prepared in parallel, and the supply of raw materials to the extruder can be switched instantaneously. One (hopper 1) is charged with polystyrene pellets, and the other (hopper 2) is charged with target sample pellets (samples of examples of the present invention and comparative examples). First hopper 1
To an extruder to supply polystyrene. After confirming that the extrusion is stable (discharge amount: 15 [kg / h]), the supply hopper is switched to the hopper 2 while the extruder is operating, and the sample is supplied. With the switching time as zero time,
The extruded pellets are sampled every minute, molded into a sheet having a thickness of 2 mm, and the haze is measured (average of n = 5). The time during which the haze exceeded 3.0 [%] was evaluated as the switching loss time. ◎: Less than 1.0 [minute] or Haze does not exceed 3.0 [%] ○: 1.0 to 3.0 [minute] Δ: 3.0 to 10.0 [minute] ×: 10. 0 minutes or more

【0024】実施例1 メタクリル酸含有量が3.0質量%のスチレン−メタク
リル酸共重合体(Mw20万)を用いた。この共重合体
を二軸延伸装置(東洋精機社製、二軸延伸試験装置)に
て表1に示す延伸条件にて最大配向緩和応力が縦1.7
[MPa]、横1.9[MPa]であるシートを得、前述の
勘合容器に成型した。なお、使用した原料のビカット軟
化点は107[℃]、Haze値は0.6[%]であった。
Example 1 A styrene-methacrylic acid copolymer (Mw 200,000) having a methacrylic acid content of 3.0% by mass was used. The maximum orientation relaxation stress of this copolymer was 1.7 in the longitudinal direction under the stretching conditions shown in Table 1 using a biaxial stretching apparatus (manufactured by Toyo Seiki Co., Ltd., biaxial stretching test apparatus).
[MPa], a sheet having a width of 1.9 [MPa] was obtained and molded into the above-mentioned fitting container. The raw material used had a Vicat softening point of 107 ° C. and a Haze value of 0.6%.

【0025】実施例2 メタクリル酸含有量が1.5質量%のスチレン−メタク
リル酸共重合体(Mw27万)を用い、表1に示す延伸
条件にて最大配向緩和応力が縦0.9[MPa]、横1.
0[MPa]であるシートを得、前述の勘合容器に成型し
た。なお、使用した原料のビカット軟化点は105
[℃]、Haze値は0.4[%]であった。
Example 2 A styrene-methacrylic acid copolymer (Mw 270,000) having a methacrylic acid content of 1.5% by mass was used, and the maximum orientation relaxation stress was 0.9 [MPa] under the stretching conditions shown in Table 1. ], Horizontal 1.
A sheet having a pressure of 0 [MPa] was obtained and molded into the above-described fitting container. The raw material used had a Vicat softening point of 105
[° C.] and the Haze value were 0.4 [%].

【0026】実施例3 メタクリル酸含有量が3.0質量%のスチレン−メタク
リル酸共重合体(Mw33万)を用い、表1に示す延伸
条件にて最大配向緩和応力が縦1.8[MPa]、横1.
9[MPa]であるシートを得、前述の勘合容器に成型し
た。なお、使用した原料のビカット軟化点は107
[℃]、Haze値は0.6[%]であった。
Example 3 Using a styrene-methacrylic acid copolymer (Mw 330,000) having a methacrylic acid content of 3.0% by mass, the maximum orientation relaxation stress was 1.8 [MPa] under the stretching conditions shown in Table 1. ], Horizontal 1.
A sheet having a pressure of 9 [MPa] was obtained and molded into the above-described fitting container. The raw material used had a Vicat softening point of 107.
[° C.] and the Haze value were 0.6 [%].

【0027】実施例4 メタクリル酸含有量が3.0質量%のスチレン−メタク
リル酸共重合体(Mw45万)を用い、表1に示す延伸
条件にて最大配向緩和応力が縦1.9[MPa]、横1.
9[MPa]であるシートを得、前述の勘合容器に成型し
た。なお、使用した原料のビカット軟化点は107
[℃]、Haze値は0.6[%]であった。
Example 4 Using a styrene-methacrylic acid copolymer (Mw 450,000) having a methacrylic acid content of 3.0% by mass and a maximum orientation relaxation stress of 1.9 [MPa] under the stretching conditions shown in Table 1. ], Horizontal 1.
A sheet having a pressure of 9 [MPa] was obtained and molded into the above-described fitting container. The raw material used had a Vicat softening point of 107.
[° C.] and the Haze value were 0.6 [%].

【0028】実施例1〜4の評価結果を表2に示す。い
ずれのサンプルにおいても実用耐久性のある物性を具備
している。実施例1と3を比較すると、同様の組成、同
等の最大配向緩和応力でも、分子量を調節することで更
に強度が発現することが判る。また、実施例4では分子
量が高すぎても強度が劣る傾向にあることがわかる。
Table 2 shows the evaluation results of Examples 1 to 4. Each sample has physical properties with practical durability. Comparing Examples 1 and 3, it can be seen that even with the same composition and the same maximum orientation relaxation stress, the strength is further developed by adjusting the molecular weight. In addition, in Example 4, it is found that the strength tends to be inferior even if the molecular weight is too high.

【0029】比較例1 メタクリル酸含有量が10.0質量%のスチレン−メタ
クリル酸共重合体(Mw20万)を用い、表1に示す延
伸条件にて最大配向緩和応力が縦1.6[MPa]、横
1.5[MPa]であるシートを得、前述の勘合容器に成
型した。なお、使用した原料のビカット軟化点は120
[℃]、Haze値は1.0[%]であった。
Comparative Example 1 A styrene-methacrylic acid copolymer (Mw 200,000) having a methacrylic acid content of 10.0% by mass was used, and the maximum orientation relaxation stress was 1.6 [MPa] under the stretching conditions shown in Table 1. ], And a sheet having a width of 1.5 [MPa] were obtained and molded into the above-described fitting container. The raw material used had a Vicat softening point of 120.
[° C.] and Haze value were 1.0 [%].

【0030】比較例2 メタクリル酸含有量が20.0質量%のスチレン−メタ
クリル酸共重合体(Mw22万)を用い、表1に示す延
伸条件にて最大配向緩和応力が縦1.4[MPa]、横
1.6[MPa]であるシートを得、前述の勘合容器に成
型した。なお、使用した原料のビカット軟化点は129
[℃]、Haze値は1.8[%]であった。
Comparative Example 2 A styrene-methacrylic acid copolymer (Mw 220,000) having a methacrylic acid content of 20.0% by mass was used, and the maximum orientation relaxation stress was 1.4 [MPa] under the stretching conditions shown in Table 1. ], And a sheet having a width of 1.6 [MPa] was obtained and molded into the above-described fitting container. The raw material used had a Vicat softening point of 129.
[° C.] and the Haze value were 1.8 [%].

【0031】表2の比較例1,2の評価結果を見ると、
比較例1、2ともに強度、耐熱性は良好であった。しか
し、ポリスチレンとの相溶性が悪く、ポリスチレンとの
混在時の透明性が劣ることがわかる。更に実施例と比較
するとポリスチレンとの原料切り替え時のロスが大きく
好ましくなかった。
Looking at the evaluation results of Comparative Examples 1 and 2 in Table 2,
Both Comparative Examples 1 and 2 had good strength and heat resistance. However, it is understood that the compatibility with polystyrene is poor, and the transparency when mixed with polystyrene is poor. Furthermore, compared to the examples, the loss at the time of switching the raw materials to polystyrene was large, which was not preferable.

【0032】比較例3 メタクリル酸含有量が0.05質量%のスチレン−メタ
クリル酸共重合体(Mw30万)を用い、表1に示す延
伸条件にて最大配向緩和応力が縦1.6[MPa]、横
1.9[MPa]であるシートを得、前述の勘合容器に成
型した。なお、使用した原料のビカット軟化点は103
[℃]、Haze値は0.2[%]であった。評価結果を表
2に示す。比較例3のサンプルは、強度は良好であるも
のの、オーブン試験の結果変形し、実用に供せないもの
であった。
Comparative Example 3 Using a styrene-methacrylic acid copolymer (Mw 300,000) having a methacrylic acid content of 0.05% by mass, the maximum orientation relaxation stress was 1.6 [MPa] under the stretching conditions shown in Table 1. ], And a sheet having a width of 1.9 [MPa] were obtained and molded into the above-mentioned fitting container. The raw material used had a Vicat softening point of 103
[° C.] and Haze value were 0.2 [%]. Table 2 shows the evaluation results. Although the sample of Comparative Example 3 had good strength, it was deformed as a result of the oven test and could not be put to practical use.

【0033】比較例4 実施例3と同じ樹脂を用い、表1に示す延伸条件にて二
軸延伸装置にて最大配向緩和応力が縦0.2[MPa]、
横0.3[MPa]としたシートを得、勘合容器に成型し
た。
Comparative Example 4 Using the same resin as in Example 3, under the stretching conditions shown in Table 1, the maximum orientation relaxation stress was 0.2 [MPa] in a biaxial stretching apparatus.
A sheet having a width of 0.3 [MPa] was obtained and molded into a fitting container.

【0034】比較例5 実施例3と同じ樹脂を用い、表1に示す延伸条件にて最
大配向緩和応力が縦3.0[MPa]、横2.9[MPa]
としたシートを得、勘合容器に成型した。
Comparative Example 5 Using the same resin as in Example 3, under the stretching conditions shown in Table 1, the maximum orientation relaxation stress was 3.0 [MPa] in length and 2.9 [MPa] in width.
Was obtained and molded into a fitting container.

【0035】比較例6 実施例3と同じ樹脂を用い、表1に示す延伸条件にて最
大配向緩和応力が縦1.9[MPa]、横2.9[MPa]
としたシートを得、勘合容器に成型した。
Comparative Example 6 Using the same resin as in Example 3, the maximum orientation relaxation stress was 1.9 [MPa] in length and 2.9 [MPa] in width under the stretching conditions shown in Table 1.
Was obtained and molded into a fitting container.

【0036】比較例4〜6の評価結果を表2に示す。比
較例4は落錘強度、引き裂き強度共に不十分、比較例
5、6は引き裂きが不十分で実用に耐えないものとなっ
た。
Table 2 shows the evaluation results of Comparative Examples 4 to 6. In Comparative Example 4, both the falling weight strength and the tear strength were insufficient, and in Comparative Examples 5 and 6, the tearing was insufficient and the product was not practical.

【0037】なお、表1には実施例1〜4及び比較例1
〜6で用いたスチレン系共重合体の単量体種の量及び該
共重合体の物性値、並びにこれらのスチレン系共重合体
を二軸延伸した条件、更に得られたシートの最大配向緩
和応力を示す。
Table 1 shows Examples 1 to 4 and Comparative Example 1.
And the physical property values of the styrene-based copolymers used in Examples 1 to 6, the conditions under which these styrene-based copolymers were biaxially stretched, and the maximum orientation relaxation of the obtained sheet Indicates stress.

【0038】[0038]

【表1】 [Table 1]

【0039】また、表2には二軸延伸シートを用いて得
られた勘合容器の実用試験の結果並びに二軸延伸ポリス
チレン系シートのリサイクル品とポリスチレンペレット
の混合後の透明性評価及び切り替え効率の結果を示し
た。
Table 2 shows the results of practical tests of the fitting container obtained by using the biaxially stretched sheet, the evaluation of the transparency after mixing the recycled product of the biaxially stretched polystyrene-based sheet with the polystyrene pellets, and the switching efficiency. The results are shown.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明は、特定の単量体種と量比を有す
るスチレン系共重合体を用いることによって耐熱性にも
実用強度にも優れた二軸延伸ポリスチレン系シート及び
その成型品が得られる。更に、ポリスチレンへの二軸延
伸ポリスチレン系シートのリサイクル品との混在時の透
明性及びポリスチレ二軸延伸シート製造時との樹脂間の
切り替え時間が短縮される特性を有する共重合体でもあ
る。本発明の二軸延伸ポリスチレン系シート及びその成
型品は、食品包装用に用いられ、特にテイクアウト用等
のフードバック類に用いられる。
According to the present invention, a biaxially stretched polystyrene sheet having excellent heat resistance and practical strength and a molded product thereof are obtained by using a styrene copolymer having a specific monomer type and a quantitative ratio. can get. Further, it is a copolymer having characteristics of transparency when mixed with a recycled product of a biaxially stretched polystyrene-based sheet into polystyrene and a property of shortening a switching time between resins when a polystyrene biaxially stretched sheet is manufactured. INDUSTRIAL APPLICABILITY The biaxially stretched polystyrene-based sheet and the molded product of the present invention are used for food packaging, and particularly for food bags for takeout and the like.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 7:00 B29L 22:00 22:00 C08L 25:06 C08L 25:06 B65D 1/00 A Fターム(参考) 3E033 BA22 BB04 CA03 CA07 3E086 AB01 AD30 BA02 BA15 BB22 BB41 BB85 4F071 AA22X AA31X AA32X AA76 AA81 AA85 AF16 AF23 AF30 AH05 BB08 BC01 4F210 AA13A AA13C AA13E AA21E AG01 AG07 QC05 QG01 QG18Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B29L 7:00 B29L 22:00 22:00 C08L 25:06 C08L 25:06 B65D 1/00 A F-term (reference) 3E033 BA22 BB04 CA03 CA07 3E086 AB01 AD30 BA02 BA15 BB22 BB41 BB85 4F071 AA22X AA31X AA32X AA76 AA81 AA85 AF16 AF23 AF30 AH05 BB08 BC01 4F210 AA13A AA13C AA13E AA21E AG01 AG07 QC05 Q01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アクリル酸、メタクリル酸、及び無水
マレイン酸のうちの少なくとも一種の単量体と、スチレ
ンとの共重合体であり、上記スチレン以外の単量体の和
が4.0質量%未満で、かつ該共重合体のビカット軟
化点が105[℃]以上であるスチレン系共重合体で、
そのスチレン系共重合体を用いて得たシートが下記の数
1式の条件を満足することを特徴とする二軸延伸ポリス
チレン系シート。 【数1】
1. A copolymer of styrene with at least one monomer of acrylic acid, methacrylic acid, and maleic anhydride, wherein the sum of the monomers other than styrene is 4.0% by mass. A styrene-based copolymer having a Vicat softening point of less than or equal to 105 [° C.]
A biaxially stretched polystyrene-based sheet, characterized in that a sheet obtained using the styrene-based copolymer satisfies the following equation (1). (Equation 1)
【請求項2】 スチレン系共重合体の重量平均分子量
(Mw)が15万〜40万であることを特徴とする請求
項1記載の二軸延伸ポリスチレン系シート。
2. The biaxially stretched polystyrene sheet according to claim 1, wherein the styrene copolymer has a weight average molecular weight (Mw) of 150,000 to 400,000.
【請求項3】 請求項1又は請求項2で得られた二軸
延伸ポリスチレン系シートを用いて成型してなる容器。
3. A container formed by using the biaxially stretched polystyrene sheet obtained in claim 1 or 2.
【請求項4】 二軸延伸ポリスチレン系シートを用いて
成型してなる容器が勘合フードバック用容器であること
を特徴とする請求項3で得られた容器。
4. The container obtained in claim 3, wherein the container formed by using a biaxially stretched polystyrene sheet is a mating food bag container.
JP2001092026A 2000-11-29 2001-03-28 Biaxially oriented copolystyrene sheet and container thereof Pending JP2002225127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092026A JP2002225127A (en) 2000-11-29 2001-03-28 Biaxially oriented copolystyrene sheet and container thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000362452 2000-11-29
JP2000-362452 2000-11-29
JP2001092026A JP2002225127A (en) 2000-11-29 2001-03-28 Biaxially oriented copolystyrene sheet and container thereof

Publications (1)

Publication Number Publication Date
JP2002225127A true JP2002225127A (en) 2002-08-14

Family

ID=26604784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092026A Pending JP2002225127A (en) 2000-11-29 2001-03-28 Biaxially oriented copolystyrene sheet and container thereof

Country Status (1)

Country Link
JP (1) JP2002225127A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144829A (en) * 2005-11-29 2007-06-14 Denki Kagaku Kogyo Kk Method for producing polystyrene resin sheet
WO2008093432A1 (en) * 2007-01-29 2008-08-07 Asahi Kasei Chemicals Corporation Anisotropic styrene resin film
JP2016030817A (en) * 2014-07-30 2016-03-07 Dic株式会社 Styrene-based resin sheet and molded article using the same
JP2016030818A (en) * 2014-07-30 2016-03-07 Dic株式会社 Polystyrene-based resin composition, biaxially stretched styrenic resin sheet and molded product
JP2018012530A (en) * 2016-07-21 2018-01-25 デンカ株式会社 Biaxially stretched sheet and package
JPWO2017029936A1 (en) * 2015-08-17 2018-06-28 Dic株式会社 Styrene resin composition, biaxially stretched styrene resin sheet and molded article
JP2019157048A (en) * 2018-03-15 2019-09-19 三菱ケミカル株式会社 Biaxially oriented polystyrene resin sheet and molded article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144829A (en) * 2005-11-29 2007-06-14 Denki Kagaku Kogyo Kk Method for producing polystyrene resin sheet
JP4489692B2 (en) * 2005-11-29 2010-06-23 電気化学工業株式会社 Method for producing biaxially stretched polystyrene resin sheet
WO2008093432A1 (en) * 2007-01-29 2008-08-07 Asahi Kasei Chemicals Corporation Anisotropic styrene resin film
JP2016030817A (en) * 2014-07-30 2016-03-07 Dic株式会社 Styrene-based resin sheet and molded article using the same
JP2016030818A (en) * 2014-07-30 2016-03-07 Dic株式会社 Polystyrene-based resin composition, biaxially stretched styrenic resin sheet and molded product
JPWO2017029936A1 (en) * 2015-08-17 2018-06-28 Dic株式会社 Styrene resin composition, biaxially stretched styrene resin sheet and molded article
JP2018012530A (en) * 2016-07-21 2018-01-25 デンカ株式会社 Biaxially stretched sheet and package
JP2019157048A (en) * 2018-03-15 2019-09-19 三菱ケミカル株式会社 Biaxially oriented polystyrene resin sheet and molded article

Similar Documents

Publication Publication Date Title
TW202219155A (en) Maleimide copolymer, and chlorine-containing polymer resin composition including maleimide copolymer and chlorine-containing polymer
JP6444539B2 (en) Biaxially stretched sheet and molded product thereof
JP2003012734A (en) Styrenic copolymer and its biaxially oriented sheet and container
JP2002225127A (en) Biaxially oriented copolystyrene sheet and container thereof
US10059791B2 (en) ABS product with improved fire retardancy
KR102185634B1 (en) Rubber modified styrene resin, and sheet, food container, and food container lid member produced using same
JPH09136917A (en) Styrenic random copolymer and its preparation
JP2001031046A (en) Poly(meta)acrylstyrene resin, its production method, and food packaging container
EP3960814B1 (en) Thermoplastic resin composition and molded article thereof
KR100186672B1 (en) Styrenic resin sheet and molding
JP7333218B2 (en) Resin composition and molding
JP4582765B2 (en) Polystyrene-based biaxially stretched sheet and method for producing the same
JP2005225960A (en) Rubber-modified styrenic resin composition and molded article obtained by using the same
JP2018012530A (en) Biaxially stretched sheet and package
TWI302538B (en)
JP4489692B2 (en) Method for producing biaxially stretched polystyrene resin sheet
JP4689793B2 (en) Rubber-modified styrenic resin composition
JP4458931B2 (en) Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition
JP7200613B2 (en) Impact-resistant polystyrene resin sheet and its molded product
EP1123347A1 (en) Monovinylidene aromatic resins
JP3947419B2 (en) Aromatic vinyl compound resin composition
JPH06145445A (en) Production of styrenic resin composition
JP2019196415A (en) Biaxially oriented sheet and molded article thereof
JP4776148B2 (en) Rubber-modified copolymer resin and molded article thereof
JP2004123965A (en) Transparent styrenic biaxially oriented sheet and container therefrom

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122