JP2002224869A - Method of joining titanium molding to gold alloy molding and joined material - Google Patents

Method of joining titanium molding to gold alloy molding and joined material

Info

Publication number
JP2002224869A
JP2002224869A JP2001028864A JP2001028864A JP2002224869A JP 2002224869 A JP2002224869 A JP 2002224869A JP 2001028864 A JP2001028864 A JP 2001028864A JP 2001028864 A JP2001028864 A JP 2001028864A JP 2002224869 A JP2002224869 A JP 2002224869A
Authority
JP
Japan
Prior art keywords
gold
titanium
alloy
compact
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001028864A
Other languages
Japanese (ja)
Inventor
Toki Fujiwara
原 晨 藤
Osamu Okuno
野 攻 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOBENTO KENKYUSHO KK
Original Assignee
ADOBENTO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADOBENTO KENKYUSHO KK filed Critical ADOBENTO KENKYUSHO KK
Priority to JP2001028864A priority Critical patent/JP2002224869A/en
Publication of JP2002224869A publication Critical patent/JP2002224869A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily joining a titanium molding to a gold alloy molding in an exact position and a joined material. SOLUTION: The titanium molding 10 molded by using a titanium material consisting of pure titanium or titanium alloy essentially consisting of the titanium and the gold alloy molding 12 consisting of a gold-base alloy material of a gold content >=65% are butted against each other at their respective joint surfaces and are joined by irradiating the joint surfaces with at least a laser beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン材からなる
成形体と金基合金材からなる成形体とを突合せ接合する
接合方法並びに接合物に関し、特に医療用あるいは歯科
用器具、貴金属装飾用具などのような複雑且つ微細な形
状の精密成形体を突合せ鑞接により接合を行うための接
合方法並びに接合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method and a joint for joining a molded article made of titanium material and a molded article made of a gold-based alloy material, and more particularly to a medical or dental instrument, a precious metal decoration tool, and the like. The present invention relates to a joining method and a joint for joining precision molded bodies having complicated and fine shapes such as described above by butt brazing.

【0002】[0002]

【従来の技術】耐食性および生体適合性に優れたチタン
材は、歯科用インプラントなど、とくに粘膜に接触する
部分に適用される器具として好適な性質を有している。
しかし、チタンは、鋳造方法や鋳型材などの諸条件の影
響を受けやすく、とくに細い部分の鋳造は、鋳型内に溶
湯を行き渡らせることが困難であるために、微細な鋳巣
などの欠陥が発生しやすい。また鋳巣部に脆弱な酸化層
が生成するために、細い部分で破損が生じる恐れがあ
り、微細な構造で、しかも十分な強度を持つチタン材の
鋳造品を得ることは困難である。
2. Description of the Related Art Titanium, which is excellent in corrosion resistance and biocompatibility, has properties suitable for use as a device applied particularly to a portion which comes into contact with a mucous membrane such as a dental implant.
However, titanium is susceptible to various conditions such as the casting method and mold material, and especially in the casting of thin parts, it is difficult to spread the molten metal in the mold, so defects such as fine cavities Likely to happen. In addition, since a brittle oxide layer is formed in the cavity, there is a possibility that the thin portion may be damaged, and it is difficult to obtain a titanium product having a fine structure and sufficient strength.

【0003】上記のような問題は、比較的大きい部分を
チタン材の鋳造で作成し、微細な部分は他の金属、例え
ば金合金材で作成してこれらを鑞材を用いて鑞接する方
法が試みられている。チタン材と金基合金材との鑞接に
おける鑞材として、銀基鑞など種々の鑞材を使用するこ
とによりある程度の成果を得ていたが、高度な精度が要
求される場合には、金を主成分とする金合金を鑞材に適
用したり、チタン材と金合金とを鑞材を使用せずに直接
鑞接(融接)することが望ましい。このような接合方法
としては、特に金含量の高い金合金の場合には、赤外線
加熱により両者を溶融して鑞接する赤外線加熱融接法が
唯一の手段であった。
[0003] The above-mentioned problem is caused by a method in which a relatively large portion is made by casting a titanium material, and a fine portion is made of another metal, for example, a gold alloy material, and these are brazed using a brazing material. Attempted. Although some results have been obtained by using various soldering materials such as silver-based soldering in the brazing of titanium materials and gold-based alloy materials, when high precision is required, gold is used. It is desirable to apply a gold alloy mainly composed of (a) to a brazing material, or to directly braze (fuse) a titanium material and a gold alloy without using a brazing material. As such a joining method, particularly in the case of a gold alloy having a high gold content, an infrared heating fusion method in which both are melted by infrared heating and brazed is the only means.

【0004】この赤外線加熱融接法を採用することによ
り、純チタン又はTi−6Al−4Vのチタン材と、金
含量73.8重量%又は68重量%の金基合金材とを融
接接合が可能であり、純チタンと金基合金材では250
MPaを超える接合強度で接合され、Ti−6Al−4
Vと金合金では、350MPaを超える充分な強度でそ
れぞれ接合可能であった。
[0004] By adopting this infrared heat fusion method, fusion welding of pure titanium or a titanium material of Ti-6Al-4V and a gold-based alloy material having a gold content of 73.8% by weight or 68% by weight can be performed. It is possible to use pure titanium and
Bonded with a bonding strength exceeding MPa, Ti-6Al-4
V and the gold alloy could be joined with sufficient strength exceeding 350 MPa.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、チタン
材からなるチタン成形体と、金基合金材からなる金合金
成形体とを赤外線加熱により接合する際には、アルゴン
ガス雰囲気中で被接合部材を気密容器内に収容した状態
で行う必要があり、複雑微細な形態の精密部材からなる
成形体の場合には、被接合部材(成形体)どうしを高温
下で、手作業で互いに正しい位置に突き合せて正確に保
持しておくことが困難であるという問題が伴う。また、
チタン成形体と金を主成分とする金基合金材からなる金
合金成形体との接合物、とりわけ微細且つ複雑な構造を
有する精密部材どうしの突合せ接合物についての実現が
望まれていた。
However, when a titanium molded body made of a titanium material and a gold alloy molded body made of a gold-based alloy material are joined by infrared heating, the members to be joined are bonded in an argon gas atmosphere. It is necessary to carry out the process in a state of being housed in an airtight container, and in the case of a molded body composed of precision members of complicated and minute form, the members to be joined (molded bodies) are manually pushed to each other at a high temperature to the correct position. There is a problem that it is difficult to accurately hold the information together. Also,
It has been desired to realize a joint between a titanium molded body and a gold alloy molded body made of a gold-based alloy material containing gold as a main component, especially a butt joint between precision members having a fine and complicated structure.

【0006】したがって本発明の目的は、チタン成形体
と金合金成形体とを手作業により正確な位置で容易に接
合することができる接合方法並びに精密な形態を有する
チタン成形体と金合金成形体との突合せ接合物を提供す
ることである。
Accordingly, an object of the present invention is to provide a joining method capable of easily joining a titanium molded body and a gold alloy molded body at an accurate position by manual operation, and a titanium molded body and a gold alloy molded body having precise shapes. And to provide a butt joint.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明によるチタン成形体と金合金成形体との接合
方法は、純チタンもしくはチタンを主成分とするチタン
合金からなるチタン材を用いて成形されたチタン成形体
と、金含量65重量%以上の金基合金材からなる金合金
成形体とを各々の接合面で突き合せ、この接合面に少な
くともレーザービームを照射することにより接合するこ
とを特徴とする。この接合方法によれば、不活性ガス雰
囲気としたグローブボックスなどを介して手作業により
接合面を正確な位置に突き合せた状態で精密部材どうし
を接合できる。
In order to achieve the above object, a method of joining a titanium compact and a gold alloy compact according to the present invention uses a titanium material made of pure titanium or a titanium alloy containing titanium as a main component. The formed titanium body and a gold alloy formed body made of a gold-based alloy material having a gold content of 65% by weight or more are butted on each joint surface, and the joint surface is irradiated with at least a laser beam to be joined. It is characterized by the following. According to this joining method, the precision members can be joined together in a state where the joining surfaces are brought to the correct positions by hand through a glove box or the like in an inert gas atmosphere.

【0008】上述の接合方法において、チタン成形体
と、金含量65重量%以上の金基合金材からなる金合金
成形体との接合面にレーザービームを照射した後、タン
グステンアーク放電によるティグアーク鑞接によって接
合することも良く、また同様に、チタン成形体と、金含
量65重量%以上の金基合金材からなる金合金成形体と
の接合面にレーザービームを照射した後、赤外線加熱に
より溶融鑞接する赤外線加熱融接によって接合すること
も好適である。これらの接合方法では、レーザービーム
照射によって接合面を一旦正確な位置に仮接合されるた
め、本接合においては位置合わせが困難なティグアーク
接合又は赤外線加熱融接であっても、微細且つ複雑な構
造のチタン成形体と金合金成形体を精密に接合すること
が可能である。
In the above-mentioned joining method, a laser beam is applied to a joint surface between a titanium compact and a gold alloy compact made of a gold-based alloy material having a gold content of 65% by weight or more, and then TIG arc soldering is performed by tungsten arc discharge. Similarly, the joint surface between the titanium molded body and the gold alloy molded body made of a gold-based alloy material having a gold content of 65% by weight or more is irradiated with a laser beam, and then the molten solder is heated by infrared heating. It is also preferable to join by infrared heating fusion welding. In these bonding methods, the bonding surface is temporarily bonded to an accurate position once by laser beam irradiation. Therefore, even in the case of TIG arc bonding or infrared heating fusion where positioning is difficult in the main bonding, a fine and complicated structure is required. It is possible to precisely join the titanium compact and the gold alloy compact.

【0009】また、以上の接合方法においては、チタン
成形体と金合金成形体との接合面に存在する隙間が0.
1mm以下であることが好ましく、これによって、より
高い接合強度で接合することができる。
In the above joining method, the gap existing at the joining surface between the titanium compact and the gold alloy compact is 0.1 mm.
It is preferable that it is 1 mm or less, so that bonding can be performed with higher bonding strength.

【0010】また、上記目的を達成するため、本発明に
よるチタン成形体と金合金成形体との突合せ接合物は、
純チタンもしくはチタンを主成分とするチタン合金から
なるチタン材を用いて成形されたチタン成形体と、金含
量65〜95重量%の金基合金材からなる金合金成形体
との突合せ接合物であって、チタン成形体および金合金
成形体が、平板状、曲板状、直棒状、曲棒状、直線ワイ
ヤー状、曲線ワイヤー状、直管状、曲管状、リング状、
箔状、もしくはこれらの形状の1または複数を組合せた
形状であることを特徴とする。
[0010] In order to achieve the above object, a butt joint between a titanium compact and a gold alloy compact according to the present invention comprises:
A butt joint of a titanium compact formed using a titanium material composed of pure titanium or a titanium alloy containing titanium as a main component and a gold alloy compact composed of a gold-based alloy having a gold content of 65 to 95% by weight. Titanium compacts and gold alloy compacts are flat, curved, straight, curved, straight wire, curved wire, straight, curved, ring,
It is a foil shape or a shape obtained by combining one or more of these shapes.

【0011】この接合物において、金基合金材が、少な
くとも銅を含有する金基合金材、又は、少なくとも銀を
含有する金基合金材、又は、少なくとも白金を含有する
金基合金材であることが好適であり、医療用あるいは歯
科用器具や、装飾具をはじめとする貴金属製品などとし
て又はその一部として適用可能である。
In this joint, the gold-based alloy material is a gold-based alloy material containing at least copper, a gold-based alloy material containing at least silver, or a gold-based alloy material containing at least platinum. Is suitable, and can be applied as a medical or dental device, a precious metal product such as an ornament, or a part thereof.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0013】本発明によるチタン成形体と金合金成形体
との接合方法並びに接合物に適用されるチタン材として
は、純チタンまたはチタンを主成分とするチタンα合
金、チタンニアα合金、チタンα−β合金、チタンニア
β合金、チタンβ合金など全てのチタン合金である。す
なわち、同一のチタン材どうしを溶接又は鑞接したり、
異なるチタン材どうしを鑞接により接合する場合におい
て最も溶接性に優れる純チタンをはじめ、α安定化元素
としてAlを含有するTi−5Al−2.5Snなどす
べてのチタンα合金、α安定化元素とMo、Fe、V、
Cr、Mn等のβ安定化元素を少量含有するTi−8A
l−1Mo−1V、Ti−6Al−2Sn−4Zr−2
Moなど全てのチタンニアα合金、Ti−6Al−4
V、Ti−6Al−6V−2Sn、Ti−7Al−4M
oなど全てのチタンα−β合金、Ti−8Mnのような
チタンニアβ合金、Ti−13V−11Cr−3Al、
Ti−11.5Mo−6Zr−4.5Snなどのような
全てのチタンβ合金等が適用可能である。また、酸素、
窒素のような不純物を低減したELI材を用いても良
い。
[0013] The method of joining the titanium compact and the gold alloy compact according to the present invention and the titanium material applied to the joint include pure titanium or a titanium α alloy containing titanium as a main component, a titanium near α alloy, a titanium α All titanium alloys such as β alloy, titanium near β alloy, and titanium β alloy. That is, the same titanium material is welded or brazed,
In the case where different titanium materials are joined by soldering, all titanium α alloys such as pure titanium which has the best weldability, Ti-5Al-2.5Sn containing Al as α stabilizing element, α stabilizing element and Mo, Fe, V,
Ti-8A containing a small amount of a β-stabilizing element such as Cr and Mn
1-1Mo-1V, Ti-6Al-2Sn-4Zr-2
All titanium alloys such as Mo, Ti-6Al-4
V, Ti-6Al-6V-2Sn, Ti-7Al-4M
o, all titanium α-β alloys, titanium-near β alloys such as Ti-8Mn, Ti-13V-11Cr-3Al,
All titanium β alloys such as Ti-11.5Mo-6Zr-4.5Sn can be applied. Also, oxygen,
An ELI material in which impurities such as nitrogen are reduced may be used.

【0014】なお、特に医療用又は歯科用のインプラン
ト、補綴具や、直接肌に触れるような貴金属装飾具に適
用する場合には、生体為害性を認めないことが確認され
ている点で、上記チタン材の内で純チタンとTi−6A
l−4Vのチタン合金がより好ましい。
In particular, it has been confirmed that when applied to medical or dental implants, prosthetic devices, and precious metal ornaments that directly touch the skin, no harm to living organisms is recognized. Pure titanium and Ti-6A among titanium materials
A 1-4V titanium alloy is more preferred.

【0015】一方、金合金成形体を成形するための金基
合金材としては、金を主成分とする金基合金材であれば
金基合金における金と他の金属との比率にとくに制限は
なく、チタン材−金基合金材成形体の用途等により適宜
選択することが可能であるが、金含量65重量%以上9
5重量%以下の金基合金材がより好ましい。金含量65
%未満の金合金の場合、一般的にチタン材との鑞接接合
は容易となるが、配合される他の金属による影響が大き
く、場合によっては接合条件設定の検討が必要となる。
また、金含量95%を超える金合金乃至純金について
は、チタン材と鑞接した場合に接合物として引張り強度
差が大き過ぎる点で望ましくない。
On the other hand, as a gold-based alloy material for forming a gold-alloy molded body, the ratio of gold to other metals in the gold-based alloy is not particularly limited as long as it is a gold-based alloy material containing gold as a main component. And it can be appropriately selected according to the use of the titanium material-gold-based alloy material molded article, but the gold content is 65% by weight or more and 9% or more.
A gold-based alloy material of 5% by weight or less is more preferable. Gold content 65
In the case of a gold alloy having a content of less than 10%, soldering with a titanium material is generally easy, but the effect of other metals to be blended is large, and in some cases it is necessary to study the setting of joining conditions.
Further, a gold alloy or pure gold having a gold content of more than 95% is not desirable because a difference in tensile strength as a joint when soldered to a titanium material is too large.

【0016】さらに、このような金含量65〜95重量
%の金基合金材の中では、少なくとも銅を含有する金基
合金材、少なくとも銀を含有する金基合金材、少なくと
も白金を含有する金基合金材が好適に使用できる。例え
ば、金・銅合金、金・銀合金、金・白金合金の他、金・
銅・銀合金、金・銅・白金合金、金・銀・白金合金、金
・銅・銀・白金合金などの金基合金材、さらに、インジ
ウム、パラジウムなどが配合された金金基合金材を用い
ることも可能である。特に医療用又は歯科用のインプラ
ント、補綴具などの器具、貴金属装飾具に適用する場合
には、少なくとも銅を含有する金基合金材、少なくとも
銀を含有する金基合金、少なくとも白金を含有する金基
合金材が好適に使用できる。また、イヤリング、ピア
ス、ペンダントなどの貴金属装飾具に一般的に用いられ
る金70.5±3.5重量%、銅13±1重量%、銀
6.5±0.5重量%、インジウム5.5±0.5重量
%、パラジウム1.5±0.2重量%の金基合金材やこ
こでパラジウムの代わりに白金を含有する金基合金材な
ども適用できる。
Further, among such gold-based alloy materials having a gold content of 65 to 95% by weight, a gold-based alloy material containing at least copper, a gold-based alloy material containing at least silver, and a gold containing at least platinum. A base alloy material can be suitably used. For example, gold / copper alloy, gold / silver alloy, gold / platinum alloy,
Gold-base alloy materials such as copper-silver alloy, gold-copper-platinum alloy, gold-silver-platinum alloy, gold-copper-silver-platinum alloy, and gold-gold-base alloy material containing indium, palladium, etc. It is also possible to use. In particular, when applied to medical or dental implants, instruments such as prostheses, and precious metal ornaments, gold-based alloy materials containing at least copper, gold-based alloys containing at least silver, and gold containing at least platinum A base alloy material can be suitably used. In addition, gold 70.5 ± 3.5% by weight, copper 13 ± 1% by weight, silver 6.5 ± 0.5% by weight, indium 5.5.5% are generally used for noble metal ornaments such as earrings, earrings and pendants. A gold-base alloy material of 5 ± 0.5% by weight and 1.5 ± 0.2% by weight of palladium or a gold-base alloy material containing platinum instead of palladium can be used.

【0017】上述のチタン材と金基合金材とからなるチ
タン成形体と金合金成形体との接合方法における一実施
の形態について次に説明する。本実施の形態による接合
方法では、チタン材を用いて任意形状のチタン成形体を
成形するチタン成形体成形工程と;金基合金材を用いて
任意形状の金合金成形体を成形する金合金成形体成形工
程と;チタン成形体と金合金成形体とを各々の接合面で
突合せ、この接合面にレーザーパルスを照射してチタン
成形体と金合金成形体とを正確な位置に仮接合するレー
ザー仮接合工程と;このレーザー仮接合工程の後段にお
いて、レーザーパルスの照射、又はタングステンアーク
放電によるティグアーク接合、又は赤外線加熱融接によ
って本接合する本接合工程と;を備える。
One embodiment of the above-described method for joining a titanium molded body made of a titanium material and a gold-based alloy material to a gold alloy molded body will be described below. In the joining method according to the present embodiment, a titanium molded body forming step of forming an arbitrary shaped titanium molded body using a titanium material; and a gold alloy molding forming an arbitrary shaped gold alloy molded body using a gold base alloy material A body forming step; a laser for butt-joining a titanium compact and a gold alloy compact at each joint surface and irradiating a laser pulse to the joint surface to temporarily join the titanium compact and the gold alloy compact at an accurate position A temporary joining step; and a final joining step of performing a final joining step by laser pulse irradiation, TIG arc joining by tungsten arc discharge, or infrared heat fusion at a later stage of the laser temporary joining step.

【0018】チタン成形体成形工程又は金合金成形体成
形工程における任意の形状は、平板状、曲板状、直棒
状、曲棒状、直線ワイヤー状、曲線ワイヤー状、直管
状、曲管状、リング状、箔状、もしくはこれらの形状の
1または複数を組合せた形状であり、個々のサイズとし
ては、それぞれ1/10mmから400mmスケールの
微細なサイズの形態に成形される。ここで、成形加工の
方法としては、鋳造、鍛造、圧延、切削加工、旋削加
工、プレス加工などいずれの成形加工法も適用可能であ
り、それぞれ材質、用途等に応じて適宜選択すれば良
い。ただし、互いに接合しようとする接合面について
は、0.1mmを超える凹凸を残すことのないようにア
ルミナ粉末を用いた研磨法、酸化ケイ素などを加えた懸
濁液とポリウレタン製のバフを用いたバフ研磨法等の各
種研磨法によって研磨処理を行う。この研磨処理によっ
て、接合時の接合強度が向上し、突合せ接合において破
折に至るようなクラックを生じるなどの接合不良を未然
に防止できる。
The arbitrary shape in the step of forming a titanium compact or the step of forming a gold alloy compact may be a flat plate, a curved plate, a straight rod, a curved rod, a straight wire, a curved wire, a straight tube, a straight tube, a curved tube, or a ring. , Foil, or a combination of one or more of these shapes, each of which is formed into a fine size of 1/10 mm to 400 mm scale. Here, as a forming method, any forming method such as casting, forging, rolling, cutting, turning, and pressing can be applied, and each method may be appropriately selected according to the material, use, and the like. However, for the joining surfaces to be joined to each other, a polishing method using alumina powder, a suspension containing silicon oxide and the like and a polyurethane buff were used so as not to leave irregularities exceeding 0.1 mm. Polishing is performed by various polishing methods such as a buff polishing method. By this polishing treatment, the joining strength at the time of joining is improved, and joining failures such as generation of cracks leading to breakage in butt joining can be prevented beforehand.

【0019】レーザー仮接合工程におけるレーザービー
ム照射では、チタン成形体と金合金成形体との接合面部
分にレーザー溶接機によりレーザーパルスを照射する。
ここで用いるレーザー溶接機としては、炭酸ガスレーザ
ー、イットリウム−アルミニウム−ガーネット(YA
G)レーザーなど如何なるレーザー発振方式のレーザー
溶接機を用いても良く、本実施の形態ではネオジム(N
d):YAG結晶を用いた波長1064nmのYAGレ
ーザー発振式のレーザー溶接機を使用した。また、レー
ザーパルスを単発で照射する単発式、より安定して強力
に溶接が可能な連発式があるが、レーザービームのパル
ス照射をコントロール可能であればいずれの方式でも良
く、本実施の形態においては単発式を用いた。レーザー
パルスの照射条件としては、照射個所、照射角、照射回
数等を含めて特に限定されず接合対象により適宜設定す
れば良いが、パルス幅:0.5〜30ms、照射エネル
ギー:0.3〜60J/パルス、焦点深度直径及びスポ
ット径:0.2〜2mm、連発式の場合のパルス周波
数:0.5〜10Hzが好適である。このレーザー仮接
合工程により、微細且つ複雑な形態の成形体どうしを手
作業で正確な位置に突合せ必要な接合部分のみにレーザ
ー照射が可能であり、レーザー鑞接によって正確な位置
に仮接合することができる。
In the laser beam irradiation in the laser temporary joining step, a laser pulse is applied to the joint surface between the titanium compact and the gold alloy compact by a laser welding machine.
As the laser welding machine used here, a carbon dioxide laser, yttrium-aluminum-garnet (YA)
G) Any laser oscillation type laser welding machine such as a laser may be used. In this embodiment, neodymium (N
d): A YAG laser oscillation type laser welding machine using a YAG crystal and having a wavelength of 1064 nm was used. In addition, there is a single shot type that irradiates a laser pulse in a single shot, and a continuous shot type that enables more stable and strong welding, but any method may be used as long as the laser beam pulse irradiation can be controlled. Used a one-shot type. The irradiation conditions of the laser pulse are not particularly limited, including the irradiation location, the irradiation angle, the number of irradiations, and the like, and may be appropriately set depending on the joining target. The pulse width: 0.5 to 30 ms, the irradiation energy: 0.3 to Preferably, 60 J / pulse, depth of focus diameter and spot diameter: 0.2 to 2 mm, and pulse frequency: 0.5 to 10 Hz in the case of continuous firing. By this laser temporary joining process, it is possible to butt the compacts of fine and complicated forms to the exact position by hand and irradiate the laser only to the necessary joints, and to temporarily join the precise position by laser brazing Can be.

【0020】本接合工程における接合方法としては、レ
ーザー仮接合工程で用いたレーザービーム照射法の他、
タングステンアーク放電によるティグアーク接合、又は
赤外線加熱融接を採用できる。レーザービーム照射法に
ついては仮接合工程と同様のレーザー溶接機が適用で
き、照射条件は仮接合工程の条件に準じて適宜設定すれ
ば良い。また、仮接合工程と本接合工程とに工程を分離
せずに一連の接合工程として接合することも可能であ
る。ティグアーク接合法については、接合部を不活性ガ
スで置換されたチャンバー内、アーク放電端子の直下で
1〜数mmに固定でき、通電電流と放電時間をコントロ
ール可能な装置であれば、一般的に使用されているティ
グアーク溶接機が適用でき、接合条件は適宜設定すれば
良い。赤外線加熱融接法については、仮接合された被接
合物がセットでき、不活性ガスの流量を調節する流量調
節器を装備した気密チャンバーと、気密チャンバー内の
被接合物を赤外線によって加熱可能な赤外線加熱手段と
を備えた赤外線加熱鑞着器が適用可能であり、加熱接合
条件は適宜設定すれば良い。
As the bonding method in the main bonding step, in addition to the laser beam irradiation method used in the laser temporary bonding step,
TIG arc joining by tungsten arc discharge or infrared heat fusion can be adopted. For the laser beam irradiation method, the same laser welding machine as in the temporary joining step can be applied, and the irradiation conditions may be set as appropriate according to the conditions of the temporary joining step. It is also possible to perform joining as a series of joining steps without separating the steps into a temporary joining step and a main joining step. For the TIG arc joining method, generally, if the joining portion can be fixed to 1 to several mm immediately below the arc discharge terminal in a chamber replaced with an inert gas and an apparatus capable of controlling a current flow and a discharge time, generally, The TIG arc welding machine used can be applied, and the joining conditions may be set as appropriate. For the infrared heating and fusion welding method, the objects to be temporarily bonded can be set, and an airtight chamber equipped with a flow controller that controls the flow rate of the inert gas, and the objects to be bonded in the airtight chamber can be heated by infrared rays. An infrared heating brazing device provided with an infrared heating means can be applied, and the heating and joining conditions may be set as appropriate.

【0021】以上説明したチタン材と金基合金材とから
なるチタン成形体と金合金成形体との接合方法によっ
て、微細精密成形体どうしが破折に至るようなクラック
を生じることなく接合可能となる。溶接性に優れる純チ
タン成形体と金合金成形体との接合の場合は、多少接合
強度が低下することもあるが、代表的なチタン合金であ
るTi−6Al−4Vと金合金成形体との接合では20
0MPa以上の引張強度となる。したがって、従来実現
されていなかった微細且つ複雑な形態のチタン成形体と
金合金成形体との突合せ鑞接による接合物が供給可能と
なり、本発明による接合物は、医療用あるいは歯科用器
具や、装飾具をはじめとする貴金属製品などとして又は
その一部として用いることができる。
According to the method of joining a titanium compact and a gold alloy compact comprising a titanium material and a gold-base alloy material as described above, it is possible to join fine precision compacts without causing cracks such as breaking. Become. In the case of joining a pure titanium compact and a gold alloy compact having excellent weldability, the joining strength may be reduced to some extent. However, a typical titanium alloy, Ti-6Al-4V, and a gold alloy compact are used. 20 for bonding
The tensile strength becomes 0 MPa or more. Therefore, it is possible to supply a joint by butt brazing of a titanium molded body and a gold alloy molded body in a fine and complicated form, which has not been realized conventionally, and the joint according to the present invention can be used for medical or dental instruments, It can be used as a precious metal product such as an ornament or as a part thereof.

【0022】以下、実施例を示して具体的に説明する
が、本発明が実施例に限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the examples.

【0023】[0023]

【実施例】[実施例1] 1.実験材料 1)Ti‐6Al‐4V合金のダンベル型棒状試片の製
作(チタン成形体)所望の型腔を形成した割型式金型を
使用し、ダンベル型棒状のワックスパターンを製作し
た。各割型上面には直径2mmのロッド線を収容するた
めの溝状部を設け、両端にストッパー相当部の形状を付
与し、その外側にワックスを注入するための漏斗状部を
設けた。ステンレスロッド線を溝状部に挿入し、割型を
符合させたのち、インレーワックスバイオレットを加熱
溶解して漏斗上部に注入し、ワックスパターンを製作し
た。これらのワックスパターンをクルーシブル・フオー
マーに植立し、チタン専用埋没材で埋没した。埋没材硬
化後、ステンレスロッドを抜去した。ついで鋳型を昇温
後、室温まで炉内にて徐冷し、チタン鋳造機を用いて、
高さ30mm、φ13mmのTi‐6Al‐4V 合金
インゴットを溶融し鋳造した。
[Embodiment 1] 1. First Embodiment Experimental materials 1) Production of a dumbbell-shaped rod-shaped specimen of Ti-6Al-4V alloy (titanium molded body) A dumbbell-shaped rod-shaped wax pattern was produced using a split mold having a desired mold cavity. A groove-shaped portion for accommodating a rod wire having a diameter of 2 mm was provided on the upper surface of each split mold, a shape corresponding to a stopper was provided at both ends, and a funnel-shaped portion for injecting wax was provided outside the groove. After inserting a stainless steel rod wire into the groove and matching the split mold, the inlay wax violet was heated and melted and injected into the upper part of the funnel to produce a wax pattern. These wax patterns were planted in a crucible former and buried with a dedicated investment material for titanium. After the investment material hardened, the stainless steel rod was removed. Then, after raising the temperature of the mold, gradually cooled in a furnace to room temperature, using a titanium casting machine,
A Ti-6Al-4V alloy ingot having a height of 30 mm and a diameter of 13 mm was melted and cast.

【0024】2)鋳造後の試片処理 鋳造後、鋳型からダンベル型鋳造試片を割り出し、試片
を次の手順で処理した。 (1)鋳造したままの試片を肉眼視下で精査し、気泡、
鋳造欠陥等のないことを確認した。 (2)X線検査に供し、鋳巣のないことを確認した。鋳
巣の認められた試片は除外した。 (3)レジンジスクファインを用いて、試片表面が金属
光沢を呈するまで、試片表面に付着した埋没材および汚
染層を除去した。除去中は試験用試片にはワイヤーゲー
ジを、対象用試片には板厚測定用ゲージを用いて試片直
径測定を繰り返して、直径1.95mm〜2.00mm
の範囲にとどまるように留意した。 (4)酸化アルミニウムを用いてサンドブラスト処理を
行った。 (5)試片切断後、チタン専用化学研磨液に約30秒間
浸漬して試片の表面を化学研磨処理した。
2) Treatment of specimen after casting After casting, a dumbbell-type specimen was determined from the mold, and the specimen was processed in the following procedure. (1) Scrutinize the as-cast sample under the naked eye and check for bubbles,
It was confirmed that there were no casting defects. (2) It was subjected to X-ray inspection, and it was confirmed that there were no cavities. Specimens with cavities were excluded. (3) The investment material and the contaminant layer adhered to the surface of the specimen were removed using resin disc fine until the surface of the specimen exhibited metallic luster. During the removal, the diameter of the test specimen was repeatedly measured using a wire gauge for the test specimen and a gauge for measuring the thickness of the target specimen, and the diameter was 1.95 mm to 2.00 mm.
Care was taken to stay within the range. (4) Sand blasting was performed using aluminum oxide. (5) After cutting the sample, the surface of the sample was chemically polished by immersing it in a chemical polishing solution exclusively for titanium for about 30 seconds.

【0025】この鋳造試片は、図1に示すように、長さ
25mm、直径2mmのロッド部1と、その両端に連な
る幅5mm、長さ20mmのストッパー部2aおよび2
bからなり、ロッド部1をその長さ方向の中央で切断し
て、図2に示すように、ロッド部1およびストッパー部
2aからなる第1の棒状試片3aと、ロッド部1および
ストッパー部2bからなる第2の棒状試片3bとする。
ストッパー部2a、2bは、接合後の引張試験における
引張試験機への装着ストッパーとなる。
As shown in FIG. 1, this cast specimen has a rod portion 1 having a length of 25 mm and a diameter of 2 mm, and stopper portions 2a and 2 having a width of 5 mm and a length of 20 mm connected to both ends thereof.
b, the rod part 1 is cut at the center in the longitudinal direction, and as shown in FIG. 2, a first rod-shaped specimen 3a composed of the rod part 1 and the stopper part 2a, the rod part 1 and the stopper part This is a second rod-shaped specimen 3b made of 2b.
The stopper portions 2a and 2b serve as mounting stoppers for a tensile tester in a tensile test after joining.

【0026】3)金合金成形体の成形 純度99.99%の金(Au)に対し純度99.98%
の銅(Cu)9.7重量%を配合して圧延によって、厚
さ0.25mm、幅5mmの板状に成形した。
3) Molding of Gold Alloy Molded Body Purity: 99.98% for gold (Au) having a purity of 99.99%
Of 9.7% by weight of copper (Cu) was rolled and formed into a plate having a thickness of 0.25 mm and a width of 5 mm.

【0027】2.試片の固定(仮接合) 1)各試片についてロッド部1を切断して得た棒状試片
対3a、3bについて、各々の切断端面同士を治具を用
いて、接合面に存在する隙間が0.1mm以下になるよ
うに突き合わせ固定した:実験群1(チタン成形体同士
の突合せ溶接)。実験群1につきスポット状仮り付け接
合を行った。仮り止め接合はレーザー溶接機(Dent
aurum製、商品名「DL2000」)を用いた。な
お、同溶接機は、パルス発振波長:1064μm、パル
ス幅:0.5〜30.0ms,電圧:270〜400
V、また波形は単発型で、焦点深度直径:0.6mm、
照射エネルギー出力は、1パルスあたり0.8〜60.
9Jの性能を有する。不活性ガスは市販のアルゴンガス
を用いた。この時のスポット径は0.6mmであった。
レーザーによる仮り止め接合時の電圧は270V、パル
ス長は4.0ms(3〜5.9J)とした。実験群1の
レーザー溶接時の照射個所は試片の円周に沿って4点、
4回照射とした。また、実験群2及び実験群3(チタン
成形体と金合金成形体との突合せ鑞接)について、チタ
ン合金の第1の棒状試片3aと第2の棒状試片3bの各
切断端面の間に金合金成形体を挟んで突合せ、実験群1
の場合と同様にして固定した後、板状の金合金成形体の
各辺の両側8点につきそれぞれ2回、計16回の照射と
した。各実験群はそれぞれ8個ずつ仮接合した。
2. Fixing of specimens (temporary joining) 1) For a pair of rod-like specimens 3a and 3b obtained by cutting the rod portion 1 for each specimen, a gap existing on the joining surface using a jig for each cut end face. Was fixed so as to be 0.1 mm or less: Experimental group 1 (butt welding between titanium compacts). The spot-shaped temporary bonding was performed for the experimental group 1. Temporary bonding is performed by laser welding machine (Dent
aurum, trade name “DL2000”). The welding machine has a pulse oscillation wavelength of 1064 μm, a pulse width of 0.5 to 30.0 ms, and a voltage of 270 to 400.
V, the waveform is a single shot, and the depth of focus is 0.6 mm.
Irradiation energy output is 0.8-60.
It has a performance of 9J. As the inert gas, a commercially available argon gas was used. The spot diameter at this time was 0.6 mm.
The voltage at the time of the temporary bonding by the laser was 270 V, and the pulse length was 4.0 ms (3 to 5.9 J). The irradiation spots during laser welding of experimental group 1 were four points along the circumference of the specimen,
The irradiation was performed four times. In addition, with respect to the experimental group 2 and the experimental group 3 (butt brazing of the titanium molded body and the gold alloy molded body), the distance between each cut end surface of the first rod-shaped specimen 3a and the second rod-shaped specimen 3b of the titanium alloy. Experiment group 1
After fixing in the same manner as in the case of the above, irradiation was performed twice at each of 8 points on both sides of each side of the plate-like gold alloy molded article, that is, 16 times in total. In each experimental group, eight pieces were temporarily joined.

【0028】2)試片の本溶接ならびに本鑞接(本接
合) 実験群1の試片は、レーザー仮り止め接合後、第1の棒
状試片3aと第2の棒状試片3bとを各々のロッド部の
突合せ接合面でレーザー溶接法により溶接したものであ
り、対照群は、同様な方法で製作した同型のTi‐6A
u‐4V合金棒状鋳造試片を切断することなく用いた。
実験群1の試片接合時のレーザー照射条件は以下の通り
とした。レーザー照射時は電圧:300V、パルス長:
6ms(8.1〜12.4J)に設定した。接合面の一
点から照射を開始し、ビート痕跡の2/3が順次重複す
るよう試片を回転させながら接合面全周から照射した。
照射角は溶接、実験群1では試片長軸に対して垂直断面
方向から、実験群2では試片長軸の垂直断面左右10〜
20度内の方向から照射した。照射後接合部表面に肉痩
せが認められ、肉痩せ部には、実験群1の場合はワイヤ
ー状のチタン溶接補助材を、実験群2の場合には仮接合
においてチタン棒状試片と突合せた金合金成形体と同一
の板状金合金成形体をそれぞれ用いて余盛修正を行っ
た。余盛修正時のレーザー照射条件としては、電圧:2
70V、パルス長:4ms(3〜5.9J)にて、各試
片とも接合部周囲の周径とほぼ一致し余盛部分が等高平
坦となるまで10回〜20回照射し、又は削合修整を行
った。実験群3についてはティグアーク鑞接により本接
合を実施した。ティグアーク鑞接の装置としては、チタ
ン鋳造機に装備された不活性ガスシールド、タングステ
ン棒、インバータ(3000NS−2日立)を利用し、
純チタンインゴットにより試片受け台を作製して用い
た。受け台は、インゴットの中心部に空間を確保して、
ティグアーク放電に伴う試片接合部の汚染を防止し、受
け台上面に板ばねによって試片を装着するように設計製
作した。このように装着した仮接合試片の接合部が、ア
ルゴンガスシールドしたシールド室内に設置され、放電
端子の直下1〜2mmに位置するように調整固定して本
接合を行った。ティグアーク放電の条件としては、ティ
グインバータの通電電流を10〜15A、放電時間は2
〜3秒とした。
2) Main Welding of Test Specimen and Main Soldering (Main Bonding) The test specimens of the experimental group 1 were prepared by joining the first rod-shaped specimen 3a and the second rod-shaped specimen 3b after the laser temporary bonding. Are welded by the laser welding method at the butt joint surface of the rod portions of the above. The control group is the same type Ti-6A manufactured by the same method.
A u-4V alloy rod-shaped casting specimen was used without cutting.
The laser irradiation conditions at the time of joining the test pieces of the experimental group 1 were as follows. During laser irradiation, voltage: 300 V, pulse length:
It was set to 6 ms (8.1 to 12.4 J). Irradiation was started from one point of the joint surface, and irradiation was performed from the entire periphery of the joint surface while rotating the test piece so that 2/3 of the beat traces were sequentially overlapped.
Irradiation angle is welding. In experimental group 1, the cross section perpendicular to the long axis of the specimen was used.
Irradiation was performed from a direction within 20 degrees. After the irradiation, thinning was observed on the surface of the joined portion. The thinned portion was butted with a titanium-like titanium welding aid in the case of the experimental group 1 and with the titanium rod-shaped specimen in the temporary joining in the case of the experimental group 2. Excessive correction was performed using the same plate-shaped gold alloy compact as the gold alloy compact. The laser irradiation conditions at the time of the correction are as follows:
Irradiate or cut 10 to 20 times at 70 V, pulse length: 4 ms (3 to 5.9 J) until each specimen almost coincides with the circumference of the joint and the surplus portion becomes flat at the same height. Rehabilitation was performed. For the experimental group 3, the main joining was performed by TIG arc brazing. Tig-arc soldering equipment uses an inert gas shield, a tungsten rod, and an inverter (3000NS-2 Hitachi) equipped on a titanium casting machine.
A specimen holder was prepared from a pure titanium ingot and used. The cradle secures space in the center of the ingot,
The specimen was designed and manufactured so that the specimen joint was prevented from being contaminated by the TIG arc discharge, and the specimen was mounted on the upper surface of the pedestal using a leaf spring. The joint portion of the thus-prepared temporary joint specimen was placed in a shielded room with an argon gas shield, and adjusted and fixed so as to be located 1 to 2 mm immediately below the discharge terminal, and the actual joining was performed. The conditions for the TIG arc discharge are as follows: the current flowing through the TIG inverter is 10 to 15 A;
33 seconds.

【0029】3.引張試験 各接合試片を治具に装着したのち、万能試験機オートグ
ラフ(島津製、商品名「AG2000B」)を用いて行
った。すなわちクロスヘッドスピードの条件は5mm/
min.とし、標的部すなわち接合部における破断荷重
を測定した。なお、対象群における測定では、試片中央
部すなわち直径2.0mmの棒状部の範囲に標的部を設
定した。対象群、実験群とも標的間外の被断例は統計か
ら除外することとした。
3. Tensile test After attaching each joining specimen to a jig, it was performed using a universal testing machine Autograph (manufactured by Shimadzu, trade name “AG2000B”). That is, the condition of the crosshead speed is 5 mm /
min. And the breaking load at the target part, that is, the joint part, was measured. In the measurement in the target group, the target part was set in the center of the specimen, that is, in the range of a 2.0 mm diameter rod-shaped part. In both the control group and the experimental group, cases that were outside the target range were excluded from the statistics.

【0030】4.試験結果 実験群1〜3の全ての接合試片において、本接合後破折
に至るようなクラックやブローホールの発生は認められ
なかった。各接合試片の引張り試験の結果、対象群にお
ける試片は標的間外の破断例はみられず、また、実験群
1〜3の全ての試片は、いずれも接合部分において破断
した。対象群の引張強さは1132.8MPaであり、
実験群1(チタン成形体同士の突合せ溶接)の引張強さ
は344.6MPaであった。チタン成形体と金合金成
形体との突合せ鑞接群である実験群2および実験群3の
引っ張り強度は、それぞれ229.5MPa及び38
1.4MPaであり、共に実用上では十分な接合強度を
示している。
4. Test Results In all the joint specimens of Experimental Groups 1 to 3, no cracks or blowholes were found that would lead to fracture after the actual joining. As a result of the tensile test of each joint specimen, the specimen in the target group did not show any breakage outside the target, and all the specimens in Experimental Groups 1 to 3 broke at the joint. The tensile strength of the target group is 112.8 MPa,
The tensile strength of Experimental Group 1 (butt welding between titanium compacts) was 344.6 MPa. The tensile strengths of Experimental Group 2 and Experimental Group 3, which are the butt-brazing group of the titanium compact and the gold alloy compact, were 229.5 MPa and 38, respectively.
1.4 MPa, both of which show sufficient bonding strength in practical use.

【0031】[実施例2] 1.実験材料 1)チタン成形体の成形 実施例1におけるチタン成形体としてのTi−6Al−
4V合金試片と同一の材料、鋳造方法、鋳造後の処理方
法によって図3に示す形状の試片を作製した。すなわ
ち、本実施例におけるチタン成形体試片10は、半円形
の曲面形状の溝11を有する板状に成形した。チタン成
形体試片10のサイズは幅10mm、長さ20mmであ
り、溝11は直径2.0mmの半円形で、チタン成形体
試片10の長さ方向一方側側端から10mm直線的に延
びるようにチタン成形体試片10の幅方向ほぼ中央で板
状試片10の上面に設けたものである。
Embodiment 2 Experimental materials 1) Forming of titanium molded body Ti-6Al- as titanium molded body in Example 1
A specimen having the shape shown in FIG. 3 was produced by the same material, casting method, and post-casting processing method as the 4V alloy specimen. That is, the titanium molded body sample 10 in this example was formed into a plate shape having a semicircular groove 11 having a curved surface. The size of the titanium molded article 10 is 10 mm in width and 20 mm in length, and the groove 11 is a semicircle having a diameter of 2.0 mm, and linearly extends 10 mm from one longitudinal end of the titanium molded article 10. As described above, the titanium molded article 10 is provided on the upper surface of the plate-shaped specimen 10 substantially at the center in the width direction.

【0032】2)金合金成形体の成形 純度99.99%の金に対し純度99.98%の銅3
3.3重量%を配合(Au−33.3Cu)し、鋳造に
よって、図3に示すように直径2.0mm、長さ20m
mの棒状に金合金棒状部12を成形した。なお、接合後
の引張り試験に供するため、パラジウム合金を用いて直
径2.0mmの棒状部13aと金合金棒状部12の一方
側側端面に接合するための曲折部13bとからなる引張
り試験用把持部13を鋳造によって作製した。金合金棒
状部12と引張り試験用把持部13とを鋳接法により接
合して金合金成形体試片15を作製した。また、Au−
33.3Cuの代わりに、金70.5±3.5重量%、
銅13±1重量%、銀6.5±0.5重量%、インジウ
ム5.5±0.5重量%、パラジウム1.5±0.2重
量%の組成(Au−13Cu−6.5Ag−5.5In
−1.5Pd)の金基合金材を用いて、Au−33.3
Cuの場合と同様の鋳造方法、形態により金合金成形体
試片15を作製した。
2) Molding of gold alloy molded body Copper having a purity of 99.99% with respect to gold having a purity of 99.99%
3.3% by weight (Au-33.3Cu) was mixed and cast to a diameter of 2.0 mm and a length of 20 m as shown in FIG.
The gold alloy rod-shaped portion 12 was formed into a rod shape of m. In order to provide a tensile test after the joining, a grip for a tensile test comprising a rod-shaped portion 13a having a diameter of 2.0 mm using a palladium alloy and a bent portion 13b for joining to one end surface of the gold alloy rod-shaped portion 12 is used. The part 13 was produced by casting. The gold alloy rod 12 and the gripping portion 13 for tensile test were joined by a casting method to produce a gold alloy molded product specimen 15. Also, Au-
70.5 ± 3.5% by weight of gold instead of 33.3Cu,
Composition of 13 ± 1% by weight of copper, 6.5 ± 0.5% by weight of silver, 5.5 ± 0.5% by weight of indium, 1.5 ± 0.2% by weight of palladium (Au-13Cu-6.5Ag- 5.5In
Au-33.3 using a gold-base alloy material of -1.5 Pd).
A gold alloy compact 15 was prepared by the same casting method and form as in the case of Cu.

【0033】2.試片の固定、接合 チタン成形体試片10と金合金成形体試片15を図3の
ように突合せ、実施例1の場合と同様のレーザー溶接
機、レーザービーム照射方法によって、金合金成形体が
Au−33.3Cuの場合は7個、Au−13Cu−
6.5Ag−5.5In−1.5Pdの場合は4個の試
片について突合せ鑞接を行った。ただし、レーザービー
ム照射条件の内、電圧は320V、パルス長は4msと
し、仮接合と本接合とに分離することなく一連の接合工
程にて鑞接して、それぞれ接合試片を得た。
2. Fixing and joining of specimens The titanium molded body specimen 10 and the gold alloy molded body specimen 15 were butted as shown in FIG. 3, and the gold alloy molded body was produced by the same laser welding machine and laser beam irradiation method as in Example 1. Are Au-33.3Cu, 7 Au-13Cu-
In the case of 6.5 Ag-5.5In-1.5Pd, butt brazing was performed on four specimens. However, among the laser beam irradiation conditions, the voltage was 320 V, the pulse length was 4 ms, and soldering was performed in a series of joining steps without separating into temporary joining and main joining, to obtain joint specimens.

【0034】3.引張り試験 各接合試片について、引張り試験用把持部13に治具を
チャッキングし試験機に装着したのち、実施例1の場合
と同様にして引張り試験を行った。ただし、接合部のみ
を標的部分とし、標的部外の破断例は統計から除外する
こととした。
3. Tensile Test For each of the joint specimens, a jig was chucked to the grip portion 13 for a tensile test, and the jig was attached to a tester. Thereafter, a tensile test was performed in the same manner as in Example 1. However, only the joint portion was set as the target portion, and a fracture example outside the target portion was excluded from the statistics.

【0035】4.試験結果 引張り試験の結果は、Au−33.3Cuの金合金成形
体試片を用いた7個の接合試片のうち2個は接合部以外
で破断し、接合試片5個についての測定値は、261.
7MPa〜637.0MPa、平均値409.3MPa
であった。接合強度のばらつきが認められるものの、実
施例1の場合に比してより高強度で接合されていること
が判った。また、Au−13Cu−6.5Ag−5.5
In−1.5Pdの金合金成形体試片を用いた4個の接
合試片は、引張り試験により全て接合部で破断し、測定
値は246.2MPa〜340.3MPa、平均値29
3.2MPaであった。
4. Test Results The results of the tensile test are the measured values of five joint specimens in which two of the seven joint specimens using the Au-33.3Cu gold alloy molded specimen fractured except at the joint. Is 261.
7MPa-637.0MPa, average value 409.3MPa
Met. Although a variation in bonding strength was observed, it was found that bonding was performed with higher strength than in the case of Example 1. Also, Au-13Cu-6.5Ag-5.5
All four joint specimens using the In-1.5Pd gold alloy molded specimen were broken at the joint by a tensile test, and the measured values were 246.2 MPa to 340.3 MPa, and the average value was 29.
It was 3.2 MPa.

【0036】[実施例3] 1.実験材料 1)チタン成形体の成形 実施例1におけるチタン成形体としてのTi−6Al−
4V合金試片と同一の材料、鋳造方法、鋳造後の処理方
法によって図4に示す2種のチタン成形体試片20及び
30を作製した。すなわち、本実施例におけるチタン成
形体試片20は、半円形の曲面形状の溝21を有する板
状として、実施例2におけるチタン成形体10と同一の
形状に成形した。また、チタン成形体試片30は直径
2.0mmで、長さ12mmの直棒状部30aと長さ1
0mmの棒状部30bと曲折部30cとを有する形状に
成形した。棒状部30bと曲折部30cとは、接合後の
引張り試験において、試験機の把持用治具に装着するた
めの引張り試験用把持部となる。
Embodiment 3 Experimental materials 1) Forming of titanium molded body Ti-6Al- as titanium molded body in Example 1
Two types of titanium molded body specimens 20 and 30 shown in FIG. 4 were produced by the same material, casting method, and post-casting processing method as the 4V alloy specimen. That is, the titanium molded article sample 20 in the present example was formed into a plate shape having a semicircular curved groove 21 and was formed into the same shape as the titanium molded article 10 in Example 2. The titanium molded body specimen 30 has a diameter of 2.0 mm, a straight rod-shaped portion 30 a having a length of 12 mm, and a length of 1 mm.
It was formed into a shape having a rod-shaped portion 30b of 0 mm and a bent portion 30c. The rod-shaped portion 30b and the bent portion 30c serve as a grip portion for a tensile test to be mounted on a gripping jig of a testing machine in a tensile test after joining.

【0037】2)金合金成形体の成形 純度99.99%の金に対し純度99.98%の銅3
3.3重量%を配合(Au−33.3Cu)し、鋳造に
よって、図4に示すように直径2.0mmの半円形の断
面を有し、厚さ0.25mm、長さ11mmの曲板状に
金合金成形体試片25を成形した。
2) Molding of Gold Alloy Molded Body Copper of 99.98% purity against gold of 99.99% purity
3.3% by weight (Au-33.3Cu), and by casting, a curved plate having a semicircular cross section with a diameter of 2.0 mm, a thickness of 0.25 mm and a length of 11 mm as shown in FIG. A gold alloy molded product specimen 25 was formed into a shape.

【0038】2.試片の固定、接合 図4に示すように、チタン成形体試片20の溝21に金
合金成形体試片25を嵌め込んで突合せ、さらに金合金
成形体試片25の曲面内周側にチタン成形体試片30の
直棒状部30aを突合せて固定した。実施例1の場合と
同様のレーザー溶接機、レーザービーム照射方法によっ
て、突合せ鑞接を行った。ただし、レーザービーム照射
条件の内、電圧は320V、パルス長は4msとし、仮
接合と本接合とに分離することなく一連の接合工程にて
鑞接して、6個の接合試片を得た。
2. Fixing and Joining of Specimen As shown in FIG. 4, a gold alloy molded body specimen 25 is fitted into the groove 21 of the titanium molded body specimen 20 and butted. The straight rod-shaped portion 30a of the titanium molded product specimen 30 was butted and fixed. Butt brazing was performed by the same laser welding machine and laser beam irradiation method as in Example 1. However, among the laser beam irradiation conditions, the voltage was 320 V, the pulse length was 4 ms, and soldering was performed in a series of bonding steps without separating into temporary bonding and main bonding to obtain six bonding samples.

【0039】3.引張り試験 各接合試片について、棒状部30bと曲折部30cとか
らなる引張り試験用把持部に治具をチャッキングし試験
機に装着したのち、実施例2の場合と同様にして引張り
試験を行った。
3. Tensile test For each of the joint specimens, a jig was chucked to a gripper for a tensile test composed of a rod-shaped portion 30b and a bent portion 30c, and the jig was mounted on a tester. Was.

【0040】4.試験結果 6個の接合試片は、引張り試験により全て接合部で破断
し、測定値は450.1MPa〜999.3MPa、平
均値744.4MPaであった。
4. Test Results All six joint specimens broke at the joints by the tensile test, and the measured values were 450.1 MPa to 999.3 MPa, with an average value of 744.4 MPa.

【0041】[0041]

【発明の効果】以上に説明したように本発明によるチタ
ン成形体と金合金成形体との接合方法によれば、チタン
成形体と、金合金成形体とを各々の接合面で衝き合わ
せ、この接合面に少なくともレーザービームを照射する
ことにより接合するので、赤外線加熱により接合する場
合のように、不活性ガス雰囲気の気密容器内で行う必要
がなく、手作業で正確な位置合わせが可能であり、微細
且つ複雑な形態の成形体どうしも突合せ接合できるとい
う効果を奏する。また、本発明の接合方法によって、実
現が望まれていた必要な接合強度を有する精密突合せ接
合物が供給でき、本発明によるチタン成形体と金合金成
形体との接合物は、医療用あるいは歯科用器具や、装飾
具をはじめとする貴金属製品など又はその一部として適
用することができる。
As described above, according to the method for joining a titanium molded body and a gold alloy molded body according to the present invention, the titanium molded body and the gold alloy molded body are brought into contact with each other at their joint surfaces. Since bonding is performed by irradiating the bonding surface with at least a laser beam, it is not necessary to perform bonding in an airtight container in an inert gas atmosphere as in the case of bonding by infrared heating, and accurate positioning can be performed manually. In addition, there is an effect that a compact having a fine and complicated shape can be butt-joined. Further, the joining method of the present invention can provide a precision butt joint having a required joining strength that has been desired to be realized, and the joint between the titanium molded body and the gold alloy molded body according to the present invention can be used for medical or dental purposes. It can be applied as a tool or a precious metal product such as a decoration, or a part thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1において使用された試片の平
面図である。
FIG. 1 is a plan view of a test piece used in Example 1 of the present invention.

【図2】図1の試片をロッド部の中央で切断した2つの
棒状試片を示す平面図である。
FIG. 2 is a plan view showing two rod-shaped test pieces obtained by cutting the test piece of FIG. 1 at the center of a rod portion.

【図3】本発明の実施例2に用いた試片の正面側と側面
側からの概略図である。
FIG. 3 is a schematic view of a test piece used in Example 2 of the present invention as viewed from the front side and the side.

【図4】本発明の実施例3に用いた試片の正面側と側面
側からの概略図である。
FIG. 4 is a schematic view of a test piece used in Example 3 of the present invention as viewed from the front side and the side.

【符号の説明】[Explanation of symbols]

1 ロッド部 2a、2b ストッパー部 3a 第1の棒状試片 3b 第2の棒状試片 10、20、30 チタン成形体試片 11、21 溝 12 金合金棒状部 13a、30b 棒状部 13b、30c 曲折部 15、25 金合金成形体試片 30a 直棒状部 DESCRIPTION OF SYMBOLS 1 Rod part 2a, 2b Stopper part 3a 1st rod-shaped specimen 3b 2nd rod-shaped specimen 10, 20, 30 Titanium molded body specimen 11, 21 groove 12 Gold alloy rod-shaped part 13a, 30b Rod-shaped part 13b, 30c Bending Part 15, 25 Gold alloy molded product specimen 30a Straight rod-shaped part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 1/19 B23K 1/19 Z 9/167 9/167 A 9/23 9/23 C 9/235 9/235 B // C22C 5/02 C22C 5/02 14/00 14/00 Z B23K 103:08 B23K 103:08 103:14 103:14 Fターム(参考) 4E001 AA03 BB07 CB04 CB05 DG02 4E068 BA04 BA05 BC01 DB05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 1/19 B23K 1/19 Z 9/167 9/167 A 9/23 9/23 C 9/235 9 / 235 B // C22C 5/02 C22C 5/02 14/00 14/00 Z B23K 103: 08 B23K 103: 08 103: 14 103: 14 F term (reference) 4E001 AA03 BB07 CB04 CB05 DG02 4E068 BA04 BA05 BC01 DB05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 純チタンもしくはチタンを主成分とする
チタン合金からなるチタン材を用いて成形されたチタン
成形体と、金含量65重量%以上の金基合金材からなる
金合金成形体とを各々の接合面で突き合せ、この接合面
に少なくともレーザービームを照射することにより接合
することを特徴とするチタン成形体と金合金成形体との
接合方法。
1. A titanium compact formed using a titanium material composed of pure titanium or a titanium alloy containing titanium as a main component, and a gold alloy molded body composed of a gold-based alloy material having a gold content of 65% by weight or more. A method for joining a titanium molded body and a gold alloy molded body, wherein the titanium molded body and the gold alloy molded body are joined by buttping each joint surface and irradiating the joint surface with at least a laser beam.
【請求項2】 前記チタン成形体と、金含量65重量%
以上の金基合金材からなる金合金成形体との接合面にレ
ーザービームを照射した後、タングステンアーク放電に
よるティグアーク鑞接によって接合することを特徴とす
る請求項1に記載のチタン成形体と金合金成形体との接
合方法。
2. The titanium compact and a gold content of 65% by weight
2. The titanium molded body according to claim 1, wherein the laser beam is applied to the joint surface with the gold alloy molded body made of a gold-based alloy material, and then the titanium molded body and the gold molded body are joined by TIG arc soldering by tungsten arc discharge. A method for joining with an alloy compact.
【請求項3】 前記チタン成形体と、金含量65重量%
以上の金基合金材からなる金合金成形体との接合面にレ
ーザービームを照射した後、赤外線加熱により溶融鑞接
する赤外線加熱融接によって接合することを特徴とする
請求項1に記載のチタン成形体と金合金成形体との接合
方法。
3. The titanium compact and a gold content of 65% by weight.
2. The titanium molding according to claim 1, wherein after the laser beam is applied to the bonding surface with the gold alloy formed body made of the gold-based alloy material, the bonding is performed by infrared heating and fusion bonding by melting and brazing by infrared heating. Method of joining a metal body and a gold alloy compact.
【請求項4】 前記チタン成形体と前記金合金成形体と
の接合面に存在する隙間が0.1mm以下であることを
特徴とする請求項1乃至3のいずれかに記載のチタン成
形体と金合金成形体との接合方法。
4. The titanium compact according to claim 1, wherein a gap existing at a joining surface between the titanium compact and the gold alloy compact is 0.1 mm or less. A method of joining with a gold alloy compact.
【請求項5】 純チタンもしくはチタンを主成分とする
チタン合金からなるチタン材を用いて成形されたチタン
成形体と、金含量65〜95重量%の金基合金材からな
る金合金成形体との突合せ鑞接による接合物であって、
前記チタン成形体および前記金合金成形体が、平板状、
曲板状、直棒状、曲棒状、直線ワイヤー状、曲線ワイヤ
ー状、直管状、曲管状、リング状、箔状、もしくはこれ
らの形状の1または複数を組合せた形状であることを特
徴とするチタン成形体と金合金成形体との接合物。
5. A titanium compact formed using a titanium material comprising pure titanium or a titanium alloy containing titanium as a main component, and a gold alloy compact comprising a gold-base alloy material having a gold content of 65 to 95% by weight. Joint by butt brazing,
The titanium compact and the gold alloy compact are flat,
Titanium having a shape of a curved plate, a straight rod, a curved rod, a straight wire, a curved wire, a straight tube, a curved tube, a ring, a foil, or a combination of one or more of these shapes A joined product of a compact and a gold alloy compact.
【請求項6】 前記金基合金材が、少なくとも銅を含有
する金基合金材であることを特徴とする請求項5に記載
のチタン成形体と金合金成形体との接合物。
6. The joined product of a titanium compact and a gold alloy compact according to claim 5, wherein the gold-base alloy material is a gold-base alloy material containing at least copper.
【請求項7】 前記金基合金材が、少なくとも銀を含有
する金基合金材であることを特徴とする請求項5に記載
のチタン成形体と金合金成形体との接合物。
7. The joined product of a titanium molded product and a gold alloy molded product according to claim 5, wherein the gold-based alloy material is a gold-based alloy material containing at least silver.
【請求項8】 前記金基合金材が、少なくとも白金を含
有する金基合金材であることを特徴とする請求項5に記
載のチタン成形体と金合金成形体との接合物。
8. The joined product of a titanium molded product and a gold alloy molded product according to claim 5, wherein the gold-based alloy material is a gold-based alloy material containing at least platinum.
JP2001028864A 2001-02-05 2001-02-05 Method of joining titanium molding to gold alloy molding and joined material Pending JP2002224869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028864A JP2002224869A (en) 2001-02-05 2001-02-05 Method of joining titanium molding to gold alloy molding and joined material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028864A JP2002224869A (en) 2001-02-05 2001-02-05 Method of joining titanium molding to gold alloy molding and joined material

Publications (1)

Publication Number Publication Date
JP2002224869A true JP2002224869A (en) 2002-08-13

Family

ID=18893285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028864A Pending JP2002224869A (en) 2001-02-05 2001-02-05 Method of joining titanium molding to gold alloy molding and joined material

Country Status (1)

Country Link
JP (1) JP2002224869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532441A (en) * 2012-11-06 2015-11-09 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Welded bimetal watch external components
US11130197B2 (en) 2017-11-03 2021-09-28 Greatbatch Ltd. Laser brazed component and method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532441A (en) * 2012-11-06 2015-11-09 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Welded bimetal watch external components
US11130197B2 (en) 2017-11-03 2021-09-28 Greatbatch Ltd. Laser brazed component and method therefor
US11878371B2 (en) 2017-11-03 2024-01-23 Greatbatch Ltd. Laser brazed component and method therefor

Similar Documents

Publication Publication Date Title
Sjögren et al. Laser welding of titanium in dentistry
Wang et al. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing
US4829152A (en) Method of resistance welding a porous body to a substrate
Wiskott et al. Microstructures of brazings and welds using grade 2 commercially pure titanium
Zavanelli et al. Corrosion‐fatigue of laser‐repaired commercially pure titanium and Ti‐6Al‐4V alloy under different test environments
Taylor et al. Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon
Murray et al. The effects of XeCl laser etching of Ni–Cr alloy on bond strengths to composite resin: a comparison with sandblasting procedures
US5944517A (en) Dental appliance to be worn in the mouth, in particular in the form of a bracket
Nomoto et al. Non-destructive three-dimensional evaluation of pores at different welded joints and their effects on joints strength
Donovan et al. Weldability of beta titanium arch wires
JP2002224869A (en) Method of joining titanium molding to gold alloy molding and joined material
Kramár et al. Welding of nitinol by selected technologies
Takayama et al. Effects of argon gas flow rate on laser-welding
Iijima et al. Joining characteristics of orthodontic wires with laser welding
JPH06199580A (en) Method for joining cemented carbide to stainless steel and medical appliance consisting of cemented carbide and stainless steel
CN103251460B (en) A kind of have pure titanium removable denture support tieing up his smart card ring and preparation method thereof
Piveta et al. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding
Iwasaki et al. Laser welding of titanium and dental precious alloys
Negrutiu et al. Repairing method of fixed partial prostheses in dentistry: laser welding
da Silveira-Júnior et al. Welding techniques in dentistry
Varghese et al. Laser welding of dental alloys: A systematic overview
Dominici et al. A Comparison of Infrared‐and Torch‐Soldering of Au‐Pd and Co‐Cr Metal‐Ceramic Alloys Using a High‐Fusing Solder
Fraga et al. A comparative study of TIG and laser welded joints using commercial purity titanium used in prostheses supported by implants
Jania et al. CORROSION RESISTANCE OF A GOLD-TITANIUM ALLOY TI6AL4V WELD PRODUCED IN A DENTAL LASER WELDING MACHINE.
Watanabe et al. Effect of welding parameters on penetration of Nd: YAG laser into cast Ti and Au-and Ag-based alloys.