JP2002222974A - Solar battery with translucent photodiffusion layer - Google Patents

Solar battery with translucent photodiffusion layer

Info

Publication number
JP2002222974A
JP2002222974A JP2001020473A JP2001020473A JP2002222974A JP 2002222974 A JP2002222974 A JP 2002222974A JP 2001020473 A JP2001020473 A JP 2001020473A JP 2001020473 A JP2001020473 A JP 2001020473A JP 2002222974 A JP2002222974 A JP 2002222974A
Authority
JP
Japan
Prior art keywords
light
solar cell
diffusion layer
layer
light diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001020473A
Other languages
Japanese (ja)
Inventor
Hideki Nukui
秀樹 温井
Noboru Kinoshita
暢 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2001020473A priority Critical patent/JP2002222974A/en
Publication of JP2002222974A publication Critical patent/JP2002222974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery capable of reducing a cost per generating amount of the battery by efficiently capturing a light incident to a photodetecting surface of a solar battery cell without complicate treatment to increase a light quantity contributing to a photoelectric conversion. SOLUTION: The solar battery comprises a translucent photodiffusion layer 1 having a total light transmittance of 70% or more and a diffusion transmittance of 60% or more and provided on the photodetecting surface 1a of the solar battery cell 1, and a fluorescent substance-containing transparent layer 8 laminated on an upper layer and/or a lower layer of the photodiffusion layer 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池に関し、
特に太陽電池の光電変換効率を高め、これにより発電量
あたりの太陽電池の製造コストを引き下げることが可能
な太陽電池に関する。
The present invention relates to a solar cell,
In particular, the present invention relates to a solar cell that can increase the photoelectric conversion efficiency of the solar cell and thereby reduce the manufacturing cost of the solar cell per power generation amount.

【0002】[0002]

【従来の技術】近年、クリーンな石油代替エネルギーと
して地球環境問題への対応、省エネルギーの推進などと
いった観点から太陽電池への期待がますます高くなって
きている。しかしながら従来の太陽電池の光電変換効率
は、アモルファスシリコンを用いた太陽電池で8%程
度、多結晶Siを用いた太陽電池で16%程度であり、ま
た、太陽電池は火力、原子力などの既存電源に比較して
高コストであり、このことが太陽電池の普及を阻害する
大きな要因の1つになっている。このため、太陽電池素
子を始め構成機器のいっそうの低コスト化、光電変換効
率の向上化を目指した技術開発が盛んに行われている。
2. Description of the Related Art In recent years, there has been an increasing expectation for solar cells as a clean alternative to petroleum from the viewpoints of addressing global environmental problems and promoting energy saving. However, the photoelectric conversion efficiency of conventional solar cells is about 8% for solar cells using amorphous silicon and about 16% for solar cells using polycrystalline Si. This is one of the major factors that hinder the spread of solar cells. For this reason, technology development aiming at further lowering the cost of components such as solar cell elements and improving photoelectric conversion efficiency has been actively conducted.

【0003】太陽電池の光電変換効率を高める手段とし
ては、太陽電池素子の受光面形状を改良して反射損失を
低減する方法が考えられており、中でも太陽電池素子の
受光面における反射損失を低減する方法として、テクス
チャー構造と呼ばれるピラミッド形の凹凸を太陽電池素
子の受光面に形成して反射防止構造とする方法等が広く
研究されている。
As a means for improving the photoelectric conversion efficiency of a solar cell, a method of improving the shape of the light receiving surface of the solar cell element to reduce the reflection loss has been considered, and in particular, reducing the reflection loss on the light receiving surface of the solar cell element. As a method of forming the antireflection structure, a method of forming pyramid-shaped irregularities called a texture structure on a light receiving surface of a solar cell element to form an antireflection structure has been widely studied.

【0004】この反射防止構造を形成する従来の方法と
しては、単結晶Siを用いた太陽電池の場合ではアルカ
リエッチング液で処理して均一な凹凸を太陽電池の受光
面に形成する方法が採られ、多結晶Siを用いた太陽電
池の場合では機械的グルーブを形成する方法や反応性イ
オンエッチング法により凹凸を形成する方法が採られて
いる。
[0004] As a conventional method of forming the antireflection structure, in the case of a solar cell using single crystal Si, a method of forming uniform irregularities on the light receiving surface of the solar cell by treating with an alkaline etching solution has been adopted. In the case of a solar cell using polycrystalline Si, a method of forming a mechanical groove or a method of forming irregularities by a reactive ion etching method has been adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の反
射防止構造を形成する方法は、複雑な加工処理が必要と
なり太陽電池の製造コストが高くなる等の問題があり、
汎用太陽電池に採用されるに至っていないのが実状であ
った。
However, the conventional method of forming an anti-reflection structure has a problem that complicated processing is required and the manufacturing cost of a solar cell is increased.
In fact, it has not been adopted for general-purpose solar cells.

【0006】本発明は、上記従来の技術が有する問題点
に鑑みてなされたものであり、複雑な加工処理をするこ
となく、太陽電池素子の受光面に入射した光を効率良く
捕捉し、光電変換に寄与する光量を増加せしめて、太陽
電池の発電量あたりのコストを引き下げることが可能な
太陽電池を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and efficiently captures light incident on a light receiving surface of a solar cell element without performing complicated processing. An object of the present invention is to provide a solar cell capable of increasing the amount of light contributing to conversion and reducing the cost per power generation amount of the solar cell.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決するため鋭意検討及び実験を重ねた結果、太陽電
池素子の受光面に、透光性、光拡散性に優れた薄膜層を
設けることにより、これを上記課題を解決できる太陽電
池を実現し得ることを知見し、本発明を完成するに至っ
た。
The present inventors have conducted intensive studies and experiments to solve the above-mentioned problems, and as a result, have found that a thin-film layer having excellent light-transmitting and light-diffusing properties is formed on the light-receiving surface of a solar cell element. It has been found that the provision of the above can realize a solar cell that can solve the above-mentioned problems, and has completed the present invention.

【0008】即ち、本発明に係る透光性光拡散層付き太
陽電池は、全光線透過率が70%以上、かつ拡散透過率
が60%以上である透光性光拡散層を太陽電池素子の受
光面に備えたことを特徴としている。本発明の透光性光
拡散層付き太陽電池は、透光性光拡散層が、全光線透過
率が70%以上、かつ拡散透過率が60%以上という光
学的特性を有するようにし、この透光性光拡散層を受光
面に設けたことにより、透過光量をある程度維持しつ
つ、入射光のほとんどを拡散光に変える性質を有するこ
とができる。上記透光性光拡散層の全光線透過率が70
%未満であると、太陽電池の光電変換効率が逆に低下
し、また拡散透過率が60%未満であると、光拡散によ
る光電変換効率の増大が期待できない。上記構成の本発
明の透光性光拡散層付き太陽電池によれば、アルカリエ
ッチング液で処理して均一な凹凸を受光面に形成する方
法や機械的グルーブを形成する方法や反応性イオンエッ
チング法により凹凸を形成する方法等のような従来の反
射防止構造を形成する方法を採用した場合に比べて、簡
易かつ安価な方法で太陽電池の光電変換効率が高めら
れ、太陽電池の発電量あたりのコストを引き下げること
ができる。
That is, the solar cell with a light-transmitting light diffusion layer according to the present invention comprises a light-transmitting light diffusion layer having a total light transmittance of 70% or more and a diffusion transmittance of 60% or more for a solar cell element. The light receiving surface is provided. In the solar cell with a light-transmitting light diffusion layer of the present invention, the light-transmitting light diffusion layer has an optical property such that the total light transmittance is 70% or more and the diffusion transmittance is 60% or more. By providing the light-diffusing layer on the light-receiving surface, it is possible to maintain the amount of transmitted light to some extent and to have a property of converting most of incident light into diffused light. The total light transmittance of the translucent light diffusion layer is 70.
%, The photoelectric conversion efficiency of the solar cell is conversely reduced, and if the diffusion transmittance is less than 60%, an increase in photoelectric conversion efficiency due to light diffusion cannot be expected. According to the solar cell with a light-transmitting light diffusion layer of the present invention having the above-described structure, a method for forming uniform irregularities on a light-receiving surface by treating with an alkaline etching solution, a method for forming a mechanical groove, and a reactive ion etching method Compared to the case where a conventional method for forming an anti-reflection structure such as a method for forming unevenness is adopted, the photoelectric conversion efficiency of the solar cell is increased by a simple and inexpensive method, and the power generation per solar cell Costs can be reduced.

【0009】また、本発明の透光性光拡散層付き太陽電
池にあっては、上記透光性光拡散層の上層及び/又は下
層に蛍光性物質含有透明層が積層されてなるか、また
は、上記透光性光拡散層に蛍光性物質を含有させること
が好ましい。ここでの蛍光性物質とは、光電変換に有効
に利用されていない波長の光を、光電変換に有効に利用
される波長の光、即ち太陽電池の感度の高い波長の光に
変換する特性を有する物質のことをいう。このような蛍
光性物質の作用により、太陽電池の光電変換効率がより
いっそう高められ、太陽電池の発電量あたりのコストを
より一層引き下げることができる。また、本発明の透光
性光拡散層付き太陽電池にあっては、上記透光性光拡散
層は、屈折率の異なる複相が相分離状態で、これらの相
の屈折率の差が0.01以上のものからなるものであっ
てもよい。上記複相の分離相幅が30nmから20μm
の範囲内であることが透光性に優れる透光性光拡散層、
即ち、全光線透過率が70%以上、かつ拡散透過率が6
0%以上である透光性光拡散層を効果的に得ることがで
きる点で好ましい。分離相幅が30nmより小さい場合
は光拡散の効果が小さくなり、分離相幅が20μmより
大きいと透光性が低下する。
In the solar cell with a light-transmitting light diffusion layer of the present invention, a transparent layer containing a fluorescent substance is laminated on the upper and / or lower layer of the light-transmitting light diffusion layer, or Preferably, a fluorescent substance is contained in the translucent light diffusion layer. The fluorescent substance here has a property of converting light of a wavelength not effectively used for photoelectric conversion into light of a wavelength effectively used for photoelectric conversion, that is, light of a wavelength with high sensitivity of a solar cell. Substance. By the action of such a fluorescent substance, the photoelectric conversion efficiency of the solar cell can be further increased, and the cost per power generation amount of the solar cell can be further reduced. In the solar cell with a light-transmitting light diffusing layer of the present invention, the light-transmitting light diffusing layer has a state in which a double phase having a different refractive index is in a phase-separated state and a difference in the refractive index between these phases is 0. .01 or more. The separated phase width of the above-mentioned double phase is 30 nm to 20 μm
A light-transmitting light-diffusing layer excellent in light-transmitting property to be within the range of
That is, the total light transmittance is 70% or more and the diffuse transmittance is 6%.
It is preferable in that a light-transmitting light diffusion layer of 0% or more can be effectively obtained. When the separation phase width is smaller than 30 nm, the effect of light diffusion is reduced, and when the separation phase width is larger than 20 μm, the light transmittance is reduced.

【0010】[0010]

【発明の実施の形態】以下、本発明の透光性光拡散層付
き太陽電池の実施の形態例を掲げ、本発明を説明する。
なお、この実施の形態は本発明の趣旨をより良く理解さ
せるためのものであり、特に制限がない限り発明内容を
制限するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments of a solar cell with a translucent light diffusion layer of the present invention.
The embodiments are for better understanding of the gist of the present invention, and do not limit the contents of the invention unless otherwise limited.

【0011】この実施の形態に係る透光性光拡散層付き
太陽電池は、図1に示されるように、太陽電池素子1
と、該太陽電池素子1の一方の面に複数点在するように
形成された表面電極2、2、……と、上記太陽電池素子
1の他の面に積層形成された裏面電極3と、上記表面電
極2、2、……上に離間して設けられた保護ガラス5
と、上記裏面電極3の下部に離間して設けられた裏面保
護材6と、上記表面電極2、2、……と上記太陽電池素
子1と上記裏面電極3とを、上記保護ガラス5と上記裏
面保護材6との間に封止する封止材4と、上記保護ガラ
ス5上に積層された透光性光拡散層7、上記透光性光拡
散層7上に積層された蛍光性物質含有透明層8とから構
成されている。
As shown in FIG. 1, a solar cell with a translucent light diffusion layer according to this embodiment
A plurality of front electrodes 2, 2,... Formed on one surface of the solar cell element 1 and a back electrode 3 formed on another surface of the solar cell element 1; Protective glass 5 provided separately on the surface electrodes 2, 2,...
.., The front surface electrodes 2,..., The solar cell element 1, and the back electrode 3, A sealing material 4 for sealing between the back surface protective material 6, a light transmitting light diffusion layer 7 laminated on the protective glass 5, and a fluorescent substance laminated on the light transmitting light diffusion layer 7 And a transparent layer 8.

【0012】そして、上記の透光性光拡散層7は、全光
線透過率が70%以上、好ましくは80%以上であり、
且つ、拡散透過率が60%以上、好ましくは70%以上
であるという光学的特性を有しており、このようにする
ことにより透過光量をある程度維持しつつ、入射光のほ
とんどを拡散光に変える性質を有している。ここでの拡
散透過率とは、次の式(1)で表される光透過率であ
る。 拡散透過率=全光線透過率−平行光線透過率 ………… (式1) 透光性光拡散層7の全光線透過率が70%未満である
と、太陽電池の光電変換効率が逆に低下し、また拡散透
過率が60%未満であると、光拡散による光電変換効率
の増大が期待できない。
The light-transmitting light diffusion layer 7 has a total light transmittance of 70% or more, preferably 80% or more.
In addition, it has an optical characteristic that the diffuse transmittance is 60% or more, preferably 70% or more. By doing so, most of the incident light is converted to diffused light while maintaining a certain amount of transmitted light. Has properties. The diffuse transmittance here is a light transmittance represented by the following equation (1). Diffuse transmittance = total light transmittance−parallel light transmittance (Equation 1) When the total light transmittance of the translucent light diffusion layer 7 is less than 70%, the photoelectric conversion efficiency of the solar cell is reversed. If it is lowered and the diffusion transmittance is less than 60%, an increase in photoelectric conversion efficiency due to light diffusion cannot be expected.

【0013】上記の透光性光拡散層7の厚さは、上記光
学的特性を有していれば特に制限はないが、通常100
nm〜10mm程度が好ましく、より好ましくは100
nm〜1mm程度である。
The thickness of the light-transmitting light diffusion layer 7 is not particularly limited as long as it has the above-mentioned optical characteristics.
about 10 nm, more preferably about 100 nm.
It is about nm to 1 mm.

【0014】上記の光学特性を有する透光性光拡散層7
を太陽電池の受光面(本実施形態では太陽電池素子1の
表面電極2が設けられた側の面)1aの上方に積層する
と光電変換効果が向上する理由は、必ずしも明確ではな
いが、概略次のとおり考えられる。即ち、太陽電池素子
1の受光面1aに透光性光拡散層7を備えた太陽電池で
は、ある角度で入射した光は透光性光拡散層7で拡散さ
れ、あらゆる角度を持つ光に変換されるので、太陽電池
素子1の表面全体にほぼ均質に光を入射させることがで
きる。これにより、表面電極2などの影となり有効に活
用されていない太陽電池素子部分へも光が到達し、太陽
電池素子1の表面全体がより有効に使われることとな
る。また、太陽電池素子1の表面で反射して散逸する光
の一部を、多重散乱により再度、太陽電池素子1表面の
受光面1aに戻すことができ、光電変換効率がより一層
向上する。
The translucent light diffusion layer 7 having the above optical characteristics
The reason why the photoelectric conversion effect is improved by laminating the above on the light receiving surface of the solar cell (the surface on the side where the surface electrode 2 of the solar cell element 1 is provided in the present embodiment) 1a is not necessarily clear, but It is considered as follows. That is, in a solar cell having the light-transmitting light diffusion layer 7 on the light-receiving surface 1a of the solar cell element 1, light incident at a certain angle is diffused by the light-transmitting light diffusion layer 7 and converted into light having any angle. Therefore, light can be made to enter the entire surface of the solar cell element 1 almost uniformly. As a result, the light reaches the part of the solar cell element which is shadowed by the surface electrode 2 and the like and is not effectively used, and the entire surface of the solar cell element 1 is used more effectively. In addition, part of the light reflected and scattered on the surface of the solar cell element 1 can be returned to the light receiving surface 1a on the surface of the solar cell element 1 again by multiple scattering, and the photoelectric conversion efficiency is further improved.

【0015】上記の蛍光性物質含有透明層8は、光電変
換に有効に利用されていない波長の光を、光電変換に有
効に利用される波長の光、即ち太陽電池の感度の高い波
長の光に変換し、光電変換効率をより一層高めるための
透明層である。即ち、例えば、アモルファスシリコン太
陽電池であれば600nmの波長の光には感度が高いも
のの、400nm以下の波長の光には感度が低い。従っ
て、400nm以下の波長の光を550nm付近の波長
の光に変換してやれば、400nm以下の高エネルギー
な短波長の光を効率良く光電変換に寄与させることがで
きる。従って、太陽電池の種類によって光波長に対する
高感度領域が異なるので、使用する太陽電池の種類によ
って波長変換される光波長を適切に制御することによ
り、太陽電池の光電変換効率を高めることができる。
The fluorescent substance-containing transparent layer 8 converts light having a wavelength not effectively used for photoelectric conversion into light having a wavelength effectively used for photoelectric conversion, that is, light having a wavelength which is high in the sensitivity of a solar cell. It is a transparent layer for further converting the photoelectric conversion efficiency to a higher photoelectric conversion efficiency. That is, for example, an amorphous silicon solar cell has high sensitivity to light having a wavelength of 600 nm, but has low sensitivity to light having a wavelength of 400 nm or less. Therefore, if light having a wavelength of 400 nm or less is converted into light having a wavelength of around 550 nm, high-energy short-wavelength light having a wavelength of 400 nm or less can be efficiently contributed to photoelectric conversion. Therefore, since the high sensitivity region for the light wavelength differs depending on the type of the solar cell, the photoelectric conversion efficiency of the solar cell can be increased by appropriately controlling the light wavelength to be wavelength-converted depending on the type of the solar cell used.

【0016】また、このような蛍光性物質含有透明層8
が透光性光拡散層7に積層されるか、または透光性光拡
散層7中に蛍光性物質が含有されていると、入射した光
が多重散乱されることにより経路長が増大して蛍光性物
質に光が到達する確率が増大するため、光電変換効率が
より一層増大する。上記の蛍光性物質含有透明層8の厚
さは、蛍光作用が有効に発揮される限り特に制限は無い
が、通常100nm〜10mm程度、より好ましくは1
00nm〜1mm程度である。
Also, such a fluorescent substance-containing transparent layer 8
Is laminated on the light-transmitting light diffusion layer 7 or when the light-transmitting light diffusion layer 7 contains a fluorescent substance, the path length increases due to multiple scattering of incident light. Since the probability of light reaching the fluorescent substance increases, the photoelectric conversion efficiency further increases. The thickness of the fluorescent substance-containing transparent layer 8 is not particularly limited as long as the fluorescent action is effectively exerted, but is usually about 100 nm to 10 mm, and more preferably about 1 nm.
It is about 00 nm to 1 mm.

【0017】上記の透光性光拡散層7は、屈折率の異な
る2以上の相をミクロ相分離させることにより得ること
ができ、相としては固相同士、固相と気相、固相と液
相、液相同士、液相と気相、またはこれらの複合形態な
どが考えられ、これらを構成する材料は有機物、無機物
のいずれでも良い。相分離による光拡散層7の具体的な
形成方法としては、例えば、(1)相溶性のない材料同
士を混合する方法、(2)溶解状態から粒子を析出させ
る方法、を例示することができる。
The translucent light diffusing layer 7 can be obtained by microphase separation of two or more phases having different refractive indices. The phases include solid phases, a solid phase and a gas phase, and a solid phase. A liquid phase, liquid phases, a liquid phase and a gas phase, or a composite form thereof are conceivable. The material constituting these may be either an organic substance or an inorganic substance. As a specific method for forming the light diffusion layer 7 by phase separation, for example, (1) a method of mixing incompatible materials, and (2) a method of depositing particles from a dissolved state can be exemplified. .

【0018】上記(1)の相溶性のない材料同士を混合
して相分離を形成する方法の具体例としては、 相溶性のないポリマー同士を溶融状態でせん断力を加
えながら混合し、これを冷却することにより相分離状態
を固定して形成する方法、 相溶性のないポリマー同士を、溶媒中に溶解し、混合
しながら徐々に溶媒を蒸発させ粘度を高めることで相分
離状態を維持し、これを所定の成形をした後に溶媒を完
全に蒸発させ相分離状態を形成する方法、 溶融したポリマー中に無機粒子を加え、せん断力を加
えながら混合し、冷却することにより相分離状態を形成
する方法、 溶媒に溶解したポリマー中に、無機粒子を添加分散
し、これを所定の成形をした後に溶媒を完全に蒸発さ
せ、相分離状態を形成する方法、 有機無機複合体から有機成分を溶出または蒸発させる
ことにより無機マトリックス中に気泡を含んだ相分離状
態を形成する方法、 溶融状態のポリマー中に気泡を取り込みながら、せん
断力を加えながら混合し、これを冷却する事により相分
離状態を形成する方法、 溶媒に溶解したポリマー中に気泡を取り込みながら、
せん断力を加えながら混合し、溶媒を完全に蒸発させる
ことにより相分離状態を形成する方法、 等を例示することができる。
As a specific example of the method (1) for forming a phase separation by mixing the incompatible materials, the incompatible polymers are mixed in a molten state while applying a shearing force, and this is mixed. A method in which the phase separation state is fixed by cooling, the incompatible polymers are dissolved in a solvent, and the solvent is gradually evaporated while mixing to maintain the phase separation state by increasing the viscosity. A method of forming a phase-separated state by completely evaporating the solvent after performing predetermined molding, adding inorganic particles to a molten polymer, mixing while applying a shearing force, and cooling to form a phase-separated state. A method for adding and dispersing inorganic particles in a polymer dissolved in a solvent, forming the mixture into a predetermined shape, and then completely evaporating the solvent to form a phase-separated state. Dissolving the organic component from the organic-inorganic composite Alternatively, a method of forming a phase-separated state containing bubbles in the inorganic matrix by evaporating it. Mixing while applying a shear force while taking in bubbles in the polymer in the molten state, and cooling it to change the phase-separated state. How to form, while taking bubbles in the polymer dissolved in the solvent,
A method of forming a phase-separated state by mixing while applying a shearing force and completely evaporating the solvent can be exemplified.

【0019】透光性光拡散層7を形成するために使用さ
れる材料は、透光性に優れ、光の吸収が少ない材料から
選択され、それらが完全に相溶することなく相分離した
状態もしくはそれに準ずる状態となる組み合わせとなる
ように選択され、更に両者の屈折率が異なる、好ましく
は両者の屈折率の差が0.01以上となるように選択さ
れなければならない。
The material used to form the light-transmitting light diffusion layer 7 is selected from materials having excellent light-transmitting properties and low light absorption. Alternatively, they must be selected so as to be in a combination corresponding thereto, and further selected so that the refractive indices thereof are different, preferably the difference between the two refractive indices is 0.01 or more.

【0020】屈折率の異なる複相の相分離状態として
は、一方の相中に他方の相が球形粒子状、棒状粒子状、
多角体粒子状など複雑な状態が形成可能であるが、その
分離相幅(分離粒子径または析出粒子径)が30nm〜
20μmの範囲内が好ましく、さらに好ましくは100
nm〜10μmの範囲であることが重要である。分離相
幅がこの範囲であれば透光性に優れる透光性光拡散層
7、即ち、全光線透過率が70%以上、かつ拡散透過率
が60%以上である透光性光拡散層を効果的に得ること
ができるが、分離相幅が30nmより小さい場合は光拡
散の効果が小さくなり、分離相幅が20μmより大きい
と透光性が低下する。なお、他方の相が棒状粒子状であ
る場合の分離相幅は、短軸径のことをいい、多角体粒子
状である場合の分離相幅は、内接円相当径又は投影面積
相当径のことをいう。
As the phase separation state of the multiple phases having different refractive indices, one phase contains spherical particles, rod particles,
Complex states such as polygonal particles can be formed, but the separation phase width (separated particle diameter or precipitated particle diameter) is 30 nm or more.
It is preferably within a range of 20 μm, more preferably 100 μm.
It is important that it is in the range of nm to 10 μm. When the separation phase width is within this range, the light-transmitting light diffusion layer 7 having excellent light transmission, that is, the light-transmitting light diffusion layer having a total light transmittance of 70% or more and a diffuse transmittance of 60% or more, is used. Although it can be obtained effectively, when the separation phase width is smaller than 30 nm, the effect of light diffusion is reduced, and when the separation phase width is larger than 20 μm, the light transmittance is reduced. The separation phase width in the case where the other phase is rod-shaped particles refers to the minor axis diameter, and the separation phase width in the case of polygonal particles is the inscribed circle equivalent diameter or the projected area equivalent diameter. That means.

【0021】相分離を応用して透光性光拡散層7を形成
する材料としては、透明性に優れ屈折率の異なる2以上
の相溶性のない材料が有機材料、無機材料の中から選ば
れ、有機材料同士、無機材料同士、有機材料と無機材料
の組み合わせから選択して用いられる。また、透光性光
拡散層7を形成する際に空気孔が入っても上記粒径範囲
内であれば相分離状態とみなすことができる。
As the material for forming the translucent light diffusion layer 7 by applying phase separation, two or more incompatible materials having excellent transparency and different refractive indices are selected from organic and inorganic materials. And organic materials, inorganic materials, and combinations of organic and inorganic materials. In addition, even if air holes enter when the light-transmitting light diffusion layer 7 is formed, it can be regarded as a phase-separated state if it is within the above-mentioned particle size range.

【0022】上記の有機材料としては、それ自身透明性
に優れ、他の材料と相分離を形成して上記の光学特性
(全光線透過率、拡散透過率)を発現すれば特に限定さ
れるものではなく、以下のような樹脂が好適に用いられ
る。即ち、例えばポリエチレン、ポリプロピレン等のポ
リオレフィン系樹脂、ポリ塩化ビニル、ポリ酢酸ビニ
ル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリ
ビニルブチラール、ポリビニルホルマール等のポリビニ
ル系樹脂、ポリエチレングリコール等のポリエーテル系
樹脂、アクリル系樹脂、スチレン系樹脂、フェノール系
樹脂、尿素系樹脂、メラミン系樹脂、ウレタン系樹脂、
エポキシ系樹脂、フッ素系樹脂、ポリエステル系樹脂、
不飽和ポリエステル系樹脂、飽和共重合ポリエステル系
樹脂、アルキド系樹脂、ポリアミド系樹脂、天然高分子
系樹脂等を例示することができる。
The above-mentioned organic materials are particularly limited as long as they exhibit excellent transparency by themselves and form the above-mentioned optical characteristics (total light transmittance and diffuse transmittance) by forming a phase separation with other materials. Instead, the following resins are preferably used. That is, for example, polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride such as polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, and polyvinyl formal; polyether resins such as polyethylene glycol; and acrylic resins. , Styrene resin, phenol resin, urea resin, melamine resin, urethane resin,
Epoxy resin, fluorine resin, polyester resin,
Examples thereof include unsaturated polyester resins, saturated copolymer polyester resins, alkyd resins, polyamide resins, and natural polymer resins.

【0023】また、上記の無機材料としては、それ自身
透明性に優れ、他の材料と相分離を形成して上記の光学
特性(全光線透過率、拡散透過率)を発現すれば特に限
定されるものではなく、以下のような無機材料が好適に
用いられる。即ち、例えばSiO2、Ti02、Al
23、ZrO2、B23、Na20、K2O、Li2O、R
20、Cs20、Sn02、In23、ZnOなどの酸
化物、AlF3、CaF2、MnF2、BeF2、LiFな
どのフッ化物、そのほか窒化物、塩化物、硫化物等を例
示することができ、これらは結晶体でも非晶質体でも良
く、従って金属アルコキシドなどを原料としてゾルゲル
反応で形成させても良い。
The above-mentioned inorganic material is particularly limited as long as it is excellent in transparency by itself and forms the above-mentioned optical characteristics (total light transmittance and diffuse transmittance) by forming a phase separation with other materials. However, the following inorganic materials are preferably used. That is, for example, SiO 2 , TiO 2 , Al
2 O 3, ZrO 2, B 2 0 3, Na 2 0, K 2 O, Li 2 O, R
b 2 0, Cs 2 0, Sn0 2, In 2 O 3, oxides such as ZnO, AlF 3, fluorides such as CaF 2, MnF 2, BeF 2 , LiF, other nitrides, chlorides, sulfides These may be crystalline or amorphous, and may be formed by a sol-gel reaction using metal alkoxide or the like as a raw material.

【0024】更に、上記の透光性光拡散層7を形成する
際に上記有機材料を溶解する溶媒、または上記無機材料
を分散混合する溶媒としては、用いる有機材料または無
機材料の性質により適切な溶媒が選ばれ、例えば、以下
のような溶媒を単独、または、または組み合わせて用い
ることができる。即ち、このような溶媒として、例え
ば、メタノール、エタノール、1−プロパノール、2−
プロパノール、1−ブタノール、2−ブタノール、イソ
ブチルアルコール、イソペンチルアルコール、1−ヘキ
サノール、2−メチル−1−ペンタノール、4−メチル
−2−ペンタノール、2−エチル−1−ブタノール、1
−ヘプタノール、2−ヘプタノール、3−ヘプタノー
ル、1−オクタノール、2−オクタノール、シクロヘキ
サノール、エチレングリコール等のアルコール類、アセ
トン、メチルエチルケトン、2−ペンタノン、3−ペン
タノン、2−ヘキサノン、メチルイソブチルケトン、2
−ヘプタノン、4−ヘプタノン、ジイソブチルケトン、
アセトニルアセトン、メシチルオキシド、シクロヘキサ
ノン、メチルシクロヘキサノン、アセトフェノン等のケ
トン類が挙げられる。
Further, the solvent for dissolving the organic material or the solvent for dispersing and mixing the inorganic material when forming the translucent light diffusion layer 7 may be appropriate depending on the properties of the organic material or the inorganic material used. A solvent is selected, and for example, the following solvents can be used alone or in combination. That is, as such a solvent, for example, methanol, ethanol, 1-propanol, 2-
Propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethyl-1-butanol, 1
Alcohols such as heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, cyclohexanol, ethylene glycol, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone,
-Heptanone, 4-heptanone, diisobutyl ketone,
Ketones such as acetonylacetone, mesityl oxide, cyclohexanone, methylcyclohexanone, and acetophenone are exemplified.

【0025】更に、上記の溶媒として、ぎ酸メチル、ぎ
酸エチル、ぎ酸プロピル、ぎ酸ブチル、ぎ酸イソブチ
ル、ぎ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロ
ピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチ
ル、酢酸ペンチル、酢酸イソペンチル、酢酸3−メトキ
シブチル、酢酸2−エチルブチル、酢酸−エチルヘキシ
ル、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸
メチル、プロピオン酸ブチル、ステアリン酸エステル、
マレイン酸エステル、フクル酸エステル、炭酸ジエチ
ル、炭酸エチレン、炭酸プロピレン、ホウ酸エステル、
リン酸エステル等のエステル類が挙げられる。
Further, as the above-mentioned solvent, methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, acetic acid Isobutyl, pentyl acetate, isopentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, methyl propionate, butyl propionate, stearic acid ester,
Maleic acid ester, fucuric acid ester, diethyl carbonate, ethylene carbonate, propylene carbonate, borate ester,
Esters such as phosphoric acid esters are exemplified.

【0026】更に、上記の溶媒として、ニトロメタン、
ニトロエタン、1−ニトロプロパン、2−ニトロプロパ
ン、ニトロベンゼン、アセトニトリル、ジペンチルアミ
ン、エチレンジアミン、プロピレンジアミン、ジエチレ
ントリアミン、テトラエチレンペンタミン、ホルムアミ
ド、N−N−ジメチルホルムアミド、N−N−ジエチル
ホルムアミド、N−N−ジメチルアセトアミド、2−ピ
ロリドン、N−メチルピロリドン等の窒素化合物が挙げ
られる。
Further, nitromethane,
Nitroethane, 1-nitropropane, 2-nitropropane, nitrobenzene, acetonitrile, dipentylamine, ethylenediamine, propylenediamine, diethylenetriamine, tetraethylenepentamine, formamide, N-N-dimethylformamide, N-N-diethylformamide, N-N And nitrogen compounds such as -dimethylacetamide, 2-pyrrolidone and N-methylpyrrolidone.

【0027】更に、上記の溶媒として、ジメチルスルホ
キシド、チオフェン、硫化ジメチル、スルホラン、2−
メトキシエタノール、2−エトキシエタノール、2−イソ
プロポキシエタノール、2−ブトキシエタノール、フル
フリルアルコール、テトラヒドロフルフリルアルコー
ル、ジエチレングリコール、ジエチレングリコールモノ
エチルエーテル、トリエチレングリコール、1−メトキ
シ−2−プロパノール、1−エトキシ−2−プロパノー
ル、テトラヒドロフラン、ジプロピレングリコール、ジ
プロピレングリコールモノメチルエーテル、ジアセトン
アルコール、水、ベンゼン、トルエン、キシレン、ジオ
キサン、シクロヘキサン等が挙げられる。
Further, dimethyl sulfoxide, thiophene, dimethyl sulfide, sulfolane, 2-
Methoxyethanol, 2-ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monoethyl ether, triethylene glycol, 1-methoxy-2-propanol, 1-ethoxy -2-propanol, tetrahydrofuran, dipropylene glycol, dipropylene glycol monomethyl ether, diacetone alcohol, water, benzene, toluene, xylene, dioxane, cyclohexane and the like.

【0028】また、上記(2)の溶解状態から粒子を析
出させる方法の具体例としては、 常温では相溶性がなく、高温の溶融状態では相溶する
無機材料を、高温で溶融混合し、これを徐々に冷却する
ことにより一方の相中にもう一方の相を析出させ、相分
離状態を形成する方法、 相溶性のない2以上の樹脂を共通溶媒に溶かしておい
て、共通溶媒を徐々に蒸発除去する事により、一方の相
をもう一方の相に析出させ、相分離状態を形成する方
法、 等を例示することができる。
Further, as a specific example of the method of (2) for precipitating particles from the dissolved state, an inorganic material which is not compatible at room temperature but is compatible at a high temperature in a molten state is melted and mixed at a high temperature. A method of forming a phase separated state by gradually cooling the other phase in one phase by gradually cooling the resin, dissolving two or more incompatible resins in a common solvent, and gradually removing the common solvent. A method in which one phase is precipitated in the other phase by evaporation and removed to form a phase separation state, and the like can be exemplified.

【0029】上記のような粒子析出を応用して透光性光
拡散層7を形成する方法に用いる材料としては、マトリ
ックス材料としては透光性に優れる材料であればよく、
析出粒子は表面で光を反射し光吸収が少ない材料であれ
ばよく、いずれも有機材料、無機材料の中から選ぶこと
ができ、更に両者の屈折率が異なる、好ましくは両者の
屈折率の差が0.01以上となるように選択されなけれ
ばならない。
As a material used in the method of forming the light-transmitting light diffusion layer 7 by applying the above-described particle precipitation, any material having excellent light-transmitting properties may be used as a matrix material.
The deposited particles may be any material that reflects light on the surface and has low light absorption, and any of them can be selected from organic materials and inorganic materials, and furthermore, both have different refractive indices, and preferably have a difference between the two refractive indices. Must be selected to be greater than or equal to 0.01.

【0030】屈折率の異なる粒子の析出状態としては、
一方の相が他方の相中に球形粒子状、棒状粒子状、多角
体粒子状など複雑な状態が形成可能であるが、その相分
離幅(分離粒子径または析出粒子径)が30nm〜20
μmの範囲内、さらに好ましくは100nm〜10μm
の範囲であることが重要である。析出粒径がこの範囲で
あれば透光性に優れる透光性光拡散層、即ち、全光線透
過率が70%以上、かつ拡散透過率が60%以上である
透光性光拡散層を効果的に得ることができるが、析出粒
径が30nmより小さい場合は光拡散の効果が小さくな
り、析出粒径が20μmより大きいと透光性が低下す
る。なお、他方の相が棒状粒子状である場合の分離相幅
は、短軸径のことをいい、多角体粒子状である場合の分
離相幅は、内接円相当径又は投影面積相当径のことをい
う。
The precipitation state of the particles having different refractive indexes is as follows.
One phase can form a complex state such as a spherical particle, a rod-like particle, or a polygonal particle in the other phase, and the phase separation width (separated particle diameter or precipitated particle diameter) is 30 nm to 20 nm.
μm, more preferably 100 nm to 10 μm
Is important. When the precipitation particle size is in this range, a light-transmitting light-diffusing layer having excellent light-transmitting properties, that is, a light-transmitting light-diffusing layer having a total light transmittance of 70% or more and a diffuse transmittance of 60% or more is effective. However, when the precipitation particle size is smaller than 30 nm, the effect of light diffusion is reduced, and when the precipitation particle size is larger than 20 μm, the light transmittance is reduced. The separation phase width in the case where the other phase is rod-shaped particles refers to the minor axis diameter, and the separation phase width in the case of polygonal particles is the inscribed circle equivalent diameter or the projected area equivalent diameter. That means.

【0031】上記の蛍光性物質含有透明層8は、蛍光性
物質を透光性マトリックス(有機系、無機系いずれでも
よい)中に均質に分散させる方法、または透光性無機マ
トリックスに希土類イオンをドープする方法により形成
される。この蛍光性物質含有透明層8の形状は、板状、
フィルム状、塗膜状等であってよく、太陽電池素子1の
受光面に配置できる形態であればどのような形状であっ
てもよい。また、上記の蛍光物質の含有量は、蛍光作用
が有効に発揮され、透光性に支障がない限り特に制限は
ない。
The transparent layer 8 containing a fluorescent substance can be formed by uniformly dispersing the fluorescent substance in a translucent matrix (which may be an organic or inorganic type), or by adding rare earth ions to the translucent inorganic matrix. It is formed by a doping method. The shape of the fluorescent substance-containing transparent layer 8 is plate-like,
It may be in the form of a film, a coating, or the like, and may have any shape as long as it can be arranged on the light receiving surface of the solar cell element 1. The content of the above-mentioned fluorescent substance is not particularly limited as long as the fluorescent action is effectively exerted and there is no hindrance to the light transmission.

【0032】上記蛍光性物質としては、有機色素蛍光
体、希土類金属蛍光体、無機半導体微粒子を応用した無
機蛍光体などが用いられ、上記の透光性マトリックスと
しては、上記の有機材料、無機材料、又はこれらの複合
体のいずれも用いることができる。上記の有機色素蛍光
体としては、例えばローダミンB、ローダミン6G等の
ローダミン系色素、クマリン2、クマリン6、クマリン
30等のクマリン系色素、オキサシアニン系色素、オキ
サジアゾール系色素、アクリジンイエロー、アクリジン
オレンジ、フルオレセイン、ウラニン、エオシン、ロー
ズベンガル、メチレンブルー、アントラセン、ピレン、
ペリレン、フルオランテン、フルオレン、ルブレン、あ
るいはこれらの誘導体などを単独、または組み合わせて
用いることができる。
As the fluorescent substance, an organic dye fluorescent substance, a rare earth metal fluorescent substance, an inorganic fluorescent substance to which inorganic semiconductor fine particles are applied, and the like are used. Or any of these complexes can be used. Examples of the organic dye phosphor include rhodamine-based dyes such as rhodamine B and rhodamine 6G; coumarin-based dyes such as coumarin 2, coumarin 6, and coumarin 30; oxocyanine-based dyes, oxadiazole-based dyes, acridine yellow, and acridine Orange, fluorescein, uranine, eosin, rose bengal, methylene blue, anthracene, pyrene,
Perylene, fluoranthene, fluorene, rubrene, or a derivative thereof can be used alone or in combination.

【0033】上記の希土類金属蛍光体としては、希土類
金属錯体などが用いられるほか、透明無機結晶相に希土
類金属イオンをドープしたものでも良い。希土類金属錯
体としては、例えば、Ce2+、Ce3+、Eu2+、E
3+、Tb2+、Tb3+、Tb4+、Sm2+、Sm3+等の希
土類金属イオンに、ピリジン、ビピリジン、テルピリジ
ン、フェナントロリン、キノリン、β-ジケトン、ピロ
ガロール、ピロカテコール、クリプタンド、クラウンエ
ーテル、アミンポリカルボン酸、ジフェニル酸、ナフタ
ル酸、サリチル酸、安息香酸およびこれらの誘導体等の
配位子が結合したものを用いることができる。上記の無
機蛍光体としては、ZnS:Mn、CdS、Y23:T
b、Y2SiO5:Ce3+,Tb3+、Sr2Si38・2
SrC12:Eu2+、Ba3MgSi28:Eu2+、(S
r,Ba)Al2Si20:Eu2+等を例示することがで
きる。
As the rare earth metal phosphor, a rare earth metal complex or the like may be used, or a transparent inorganic crystal phase doped with rare earth metal ions may be used. Examples of the rare earth metal complex include Ce 2+ , Ce 3+ , Eu 2+ , E
Rare earth metal ions such as u 3+ , Tb 2+ , Tb 3+ , Tb 4+ , Sm 2+ , Sm 3+ , pyridine, bipyridine, terpyridine, phenanthroline, quinoline, β-diketone, pyrogallol, pyrocatechol, cryptand , Crown ether, amine polycarboxylic acid, diphenyl acid, naphthalic acid, salicylic acid, benzoic acid, or a derivative thereof, to which a ligand is bonded. Examples of the inorganic phosphor include ZnS: Mn, CdS, and Y 2 O 3 : T.
b, Y 2 SiO 5: Ce 3+, Tb 3+, Sr 2 Si 3 0 8 · 2
SrC1 2: Eu 2+, Ba 3 MgSi 2 0 8: Eu 2+, (S
r, Ba) Al 2 Si 2 0: it can be exemplified Eu 2+ and the like.

【0034】表面電極2を形成するために使用される材
料としては、ITO(インジウム錫酸化物)等の無機酸
化物が用いられる他、Al、Ag、Cu等の金属性導電
材料が用いられる。裏面電極3を形成するために使用さ
れる材料としては、表面電極2と同様の材料を用いるこ
とができる。封止材4を形成するために使用される材料
としては、ポリビニルブチラール樹脂、エチレン酢酸ビ
ニル樹脂、シリコーン樹脂等を用いることができる。裏
面保護材6を形成するために使用される材料としては、
青板ガラス、ステンレス板、アルミニウム板、FRF板
(繊維強化プラスチック)等を用いることができる。
As a material used for forming the surface electrode 2, an inorganic oxide such as ITO (indium tin oxide) is used, and a metallic conductive material such as Al, Ag, and Cu is used. As a material used for forming the back electrode 3, the same material as that of the front electrode 2 can be used. As a material used for forming the sealing material 4, a polyvinyl butyral resin, an ethylene vinyl acetate resin, a silicone resin, or the like can be used. Materials used for forming the back surface protective material 6 include:
Blue plate glass, stainless steel plate, aluminum plate, FRF plate (fiber reinforced plastic) and the like can be used.

【0035】本実施形態の透光性光拡散層付き太陽電池
は、全光線透過率が70%以上、かつ拡散透過率が60
%以上という光学的特性を有する透光性光拡散層7を太
陽電池素子1の受光面1aに備えたことにより、透過光
量をある程度維持しつつ、入射光のほとんどを拡散光に
変える性質を有することができる。かかる構成の透光性
光拡散層付き太陽電池によれば、アルカリエッチング液
で処理して均一な凹凸を受光面に形成する方法や機械的
グルーブを形成する方法や反応性イオンエッチング法に
より凹凸を形成する方法等のような従来の反射防止構造
を形成する方法を採用した場合に比べて、簡易かつ安価
な方法で太陽電池の光電変換効率が高められ、太陽電池
の発電量あたりのコストを引き下げることができる。ま
た、本実施形態の透光性光拡散層付き太陽電池は、上記
透光性光拡散層7の上層に蛍光性物質含有透明層8が積
層されてなるか、または、上記透光性光拡散層7に蛍光
性物質を含有させるものであるので、この蛍光性物質の
作用により、太陽電池の光電変換効率がよりいっそう高
められ、太陽電池の発電量あたりのコストをより一層引
き下げることができる。
The solar cell with a light-transmitting light diffusion layer of this embodiment has a total light transmittance of 70% or more and a diffuse transmittance of 60%.
By providing the light-transmitting light-diffusing layer 7 having an optical characteristic of not less than% on the light-receiving surface 1a of the solar cell element 1, it has a property of converting most of incident light into diffused light while maintaining a certain amount of transmitted light. be able to. According to the solar cell with a light-transmitting light diffusion layer having such a configuration, the unevenness is formed by a method of forming uniform unevenness on the light receiving surface by processing with an alkaline etching solution, a method of forming a mechanical groove, or a reactive ion etching method. Compared to the case where a conventional method of forming an anti-reflection structure such as a forming method is employed, the photoelectric conversion efficiency of the solar cell is increased by a simple and inexpensive method, and the cost per power generation amount of the solar cell is reduced. be able to. In addition, the solar cell with a light-transmitting light diffusion layer according to the present embodiment includes a transparent substance-containing transparent layer 8 laminated on the light-transmitting light diffusion layer 7 or the light-transmitting light diffusion layer 7. Since the fluorescent substance is contained in the layer 7, the photoelectric conversion efficiency of the solar cell is further enhanced by the action of the fluorescent substance, and the cost per power generation amount of the solar cell can be further reduced.

【0036】なお、本実施の形態においては、上記の透
光性光拡散層7が保護ガラス5上に積層され、かつこの
透光性光拡散層7上に蛍光性物質含有透明層8が積層さ
れた場合を例に採り説明したが、この例に限定されるも
のでなく、上記透光性光拡散層7は太陽電池素子1の受
光面1aに配設されればよい。ただし、太陽電池素子受
光面と蛍光性物質含有透明層の間に空気層が存在する
と、蛍光性物質含有透明層と空気層の界面において全反
射が起こるため、蛍光物質含有透明層内で発生した光を
太陽電池受光面に取り込みにくくなるため、蛍光物質に
よる光波長変換の効果が期待できなくなる。従って、空
気層を挾まない限りにおいては、その配設形態も何ら限
定されず、受光面1aの表面あるいは受光面1aの上側
に配設されていてもよく、例えば、塗膜であってもよ
く、フィルム状または板状に形成された透光性光拡散層
7を太陽電池素子1の受光面1aに只単に載置してもよ
く、太陽電池の封止材として保護ガラス5と太陽電池素
子1の間に透光性光拡散層を充填しても良い。さらにシ
ースルー型太陽電池や両面受光型の太陽電池であれば太
陽電池素子1の表面と裏面の両側あるいは太陽電池素子
1の周囲に上記透光性光拡散層7を形成してもよい。ま
た、蛍光性物質含有透明層8の積層位置は、透光性光拡
散層7の上層に限定されるものでなく、透光性光拡散層
7の上層と下層に積層されてもよく、または、保護ガラ
ス5の下層(保護ガラス5の透光性光拡散層7が設けら
れる側と反対側)、または保護ガラス5の上層と下層に
積層されてもよく、また、蛍光性物質は透光性光拡散層
7中に含有されてもよい。
In this embodiment, the light-transmitting light diffusion layer 7 is laminated on the protective glass 5 and the fluorescent substance-containing transparent layer 8 is laminated on the light-transmitting light diffusion layer 7. Although the description has been made by taking the case where the light transmission is performed as an example, the present invention is not limited to this example, and the light transmitting light diffusion layer 7 may be provided on the light receiving surface 1 a of the solar cell element 1. However, if an air layer exists between the light receiving surface of the solar cell element and the fluorescent substance-containing transparent layer, total reflection occurs at the interface between the fluorescent substance-containing transparent layer and the air layer, so that the air layer is generated in the fluorescent substance-containing transparent layer. Since it becomes difficult to take light into the light receiving surface of the solar cell, the effect of light wavelength conversion by the fluorescent substance cannot be expected. Therefore, as long as the air layer is not sandwiched, the arrangement form is not limited at all, and may be arranged on the surface of the light receiving surface 1a or above the light receiving surface 1a. Alternatively, the translucent light diffusion layer 7 formed in a film or plate shape may be simply placed on the light receiving surface 1a of the solar cell element 1, and the protective glass 5 and the solar cell A translucent light diffusion layer may be filled between the elements 1. Further, in the case of a see-through type solar cell or a double-sided light receiving type solar cell, the translucent light diffusion layer 7 may be formed on both sides of the front and back surfaces of the solar cell element 1 or around the solar cell element 1. Further, the lamination position of the fluorescent substance-containing transparent layer 8 is not limited to the upper layer of the translucent light diffusion layer 7, and may be laminated on the upper layer and the lower layer of the translucent light diffusion layer 7, or The lower layer of the protective glass 5 (the side opposite to the side on which the translucent light diffusion layer 7 of the protective glass 5 is provided) or the upper layer and the lower layer of the protective glass 5 may be laminated. May be contained in the neutral light diffusion layer 7.

【0037】また、上記のような透光性光拡散層7が積
層される太陽電池は、特に限定されるものではなく、例
えば汎用のアモルファスシリコン太陽電池、多結晶シリ
コン太陽電池、単結晶シリコン太陽電池など汎用の太陽
電池に応用できる他、これらの複合体、あるいはフレキ
シブル太陽電池、シースルー太陽電池、表面にテクスチ
ャー構造など複雑な構造を有する太陽電池、さらにはG
aAs、CdS/CdTe、CuInSe2等の化合物
半導体太陽電池や他の素子を用いた太陽電池、色素増感
型太陽電池などを例示することができる。
The solar cell on which the light-transmitting light diffusion layer 7 as described above is laminated is not particularly limited. For example, a general-purpose amorphous silicon solar cell, polycrystalline silicon solar cell, single crystal silicon solar cell, or the like. In addition to being applicable to general-purpose solar cells such as batteries, composites of these, flexible solar cells, see-through solar cells, solar cells having a complex structure such as a texture structure on the surface, and G
Examples thereof include compound semiconductor solar cells such as aAs, CdS / CdTe, and CuInSe 2 , solar cells using other elements, and dye-sensitized solar cells.

【0038】以下、実施例及び比較例を掲げ、本発明を
更に詳述する。 「実施例1」市販のポリビニルブチラール樹脂(積水化
学製、商品名エスレックB)の35重量%キシレン溶液
3重量部に、市販の飽和ポリエステル樹脂(東洋紡製、
商品名バイロン300)の35重量%キシレン溶液1重
量部を混合し、この混合液を厚さ1.1mmのガラス板
上にバーコーターを用いて塗布し、乾燥後の厚みが30
μmの半透明白色の膜(透光性光拡散層)を得た。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. "Example 1" A commercially available saturated polyester resin (manufactured by Toyobo, manufactured by Toyobo Co., Ltd.) was added to 3 parts by weight of a 35% by weight xylene solution of a commercially available polyvinyl butyral resin (manufactured by Sekisui Chemical, trade name: SREC B).
1 part by weight of a 35% by weight xylene solution of trade name Byron 300) was mixed, and the mixed solution was applied on a glass plate having a thickness of 1.1 mm using a bar coater.
A translucent white film (translucent light diffusion layer) having a thickness of μm was obtained.

【0039】この透光性光拡散層付きガラス板の光学特
性を市販の曇度計TOKYO DENSHOKU TC
−HIIIDPX(JIS規格品:JISK6718)に
より測定したところ、全光線透過率89.5%、拡散透
過率80.3%、平行光線透過率9.2%であった。ま
た、この透光性光拡散層を光学顕微鏡にて観察したとこ
ろ、一方の相中に他方の相が1〜5μmの球状粒子形に
ほぼ均一に分散していた。この透光性光拡散層付きガラ
ス板を市販のアモルファスシリコン太陽電池(三洋電機
製、商品名AM−1450)の受光面に密着させ擬似太
陽光下(AM−1.5 100mW/cm2)で短絡電
流値を測定したところ、該光拡散層付ガラス板を積載し
ない場合に比ベ10.1%の電流値の上昇が確認でき
た。
The optical properties of this glass plate with a light-transmitting light diffusing layer were measured using a commercially available haze meter TOKYO DENSHOKU TC.
When measured with -HIDPX (JIS standard product: JIS K6718), the total light transmittance was 89.5%, the diffuse transmittance was 80.3%, and the parallel light transmittance was 9.2%. When the translucent light diffusing layer was observed with an optical microscope, it was found that one of the phases was substantially uniformly dispersed in a spherical particle form of 1 to 5 μm. This glass plate with a light-transmitting light diffusion layer is brought into close contact with the light-receiving surface of a commercially available amorphous silicon solar cell (trade name: AM-1450, manufactured by Sanyo Electric Co., Ltd.) and under simulated sunlight (AM-1.5 100 mW / cm 2 ) When the short-circuit current value was measured, it was confirmed that the current value increased by 10.1% as compared with the case where the glass plate with the light diffusion layer was not mounted.

【0040】「実施例2」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液4重量部
に、実施例1で用いたものと同様の飽和ポリエステル樹
脂のキシレン溶液1重量部を混合し、この混合液を厚さ
1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが30μmの半透明白色の膜(透光性
光拡散層)を得た。この透光性光拡散層付きガラス板の
光学的特性を実施例1に準じて測定したところ、全光線
透過率90.3%、拡散透過率76.3%、平行光線透
過率14.0%であった。また、この透光性光拡散層を
光学顕微鏡にて観察したところ、一方の相中に他方の相
が1〜5μmの球状粒子形にほぼ均一に分散していた。
そして、この透光性光拡散層付きガラス板を実施例1と
同様のアモルファスシリコン太陽電池の受光面に密着さ
せ、実施例1と同様の擬似太陽光下で短絡電流値を測定
したところ該光拡散層付ガラス板を積載しない場合に比
ベ7.2%の電流値上昇が確認できた。
Example 2 1 part by weight of a xylene solution of a saturated polyester resin similar to that used in Example 1 was mixed with 4 parts by weight of a xylene solution of polyvinyl butyral resin similar to that used in Example 1. Then, this mixed solution was applied onto a glass plate having a thickness of 1.1 mm using a bar coater to obtain a translucent white film (light-transmitting light diffusion layer) having a thickness of 30 μm after drying. When the optical characteristics of this glass plate with a light-transmitting light diffusion layer were measured in accordance with Example 1, the total light transmittance was 90.3%, the diffuse transmittance was 76.3%, and the parallel light transmittance was 14.0%. Met. When the translucent light diffusing layer was observed with an optical microscope, it was found that one of the phases was substantially uniformly dispersed in a spherical particle form of 1 to 5 μm.
Then, this glass plate with a light-transmitting light diffusion layer was brought into close contact with the light-receiving surface of the amorphous silicon solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. When the glass plate with the diffusion layer was not mounted, an increase in the current value by 7.2% was confirmed.

【0041】「実施例3」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液6重量部
に、実施例1で用いたものと同様の飽和ポリエステル樹
脂のキシレン溶液1重量部を混合し、この混合液を厚さ
1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが30μmの半透明白色の膜(透光性
光拡散層)を得た。この透光性光拡散層付きガラス板の
光学特性を実施例1に準じて測定したところ、全光線透
過率91.6%、拡散透過率70.1%、平行光線透過
率21.5%であった。また、この透光性光拡散層を光
学顕微鏡にて観察したところ、一方の相中に他方の相が
1〜5μmの球状粒子形にほぼ均一に分散していた。そ
して、この透光性光拡散層付きガラス板を実施例1と同
様のアモルファスシリコン太陽電池の受光面に密着さ
せ、実施例1と同様の擬似太陽光下で短絡電流値を測定
したところ該光拡散層付ガラス板を積載しない場合に比
ベ4.3%の電流値上昇が確認できた。
Example 3 1 part by weight of a xylene solution of a saturated polyester resin similar to that used in Example 1 was mixed with 6 parts by weight of a xylene solution of polyvinyl butyral resin similar to that used in Example 1. Then, this mixed solution was applied onto a glass plate having a thickness of 1.1 mm using a bar coater to obtain a translucent white film (light-transmitting light diffusion layer) having a thickness of 30 μm after drying. When the optical characteristics of the glass plate with a light-transmitting light diffusion layer were measured in accordance with Example 1, the total light transmittance was 91.6%, the diffuse transmittance was 70.1%, and the parallel light transmittance was 21.5%. there were. When the translucent light diffusing layer was observed with an optical microscope, it was found that one of the phases was substantially uniformly dispersed in a spherical particle form of 1 to 5 μm. Then, this glass plate with a light-transmitting light diffusion layer was brought into close contact with the light-receiving surface of the amorphous silicon solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. When the glass plate with the diffusion layer was not loaded, an increase in the current value of 4.3% was confirmed.

【0042】「実施例4」市販のポリビニルブチラール
樹脂(積水化学製、商品名エスレックB)をキシレン溶
媒に5重量%溶解した溶液に、平均粒径1.9μm、粒
度分布幅0.3〜3.2μmのZrO2粒子を0.5重
量%添加し、サンドミルにて2時間分散させ、減圧下に
て溶媒を約60重量%蒸発除去することにより塗布液を
作成した。この塗布液を厚さ1.1mmのガラス板上に
バーコーターを用いて塗布し、常温にて乾燥することに
より厚さ10μmの半透明白色の膜(透光性光拡散層)
を得た。この透光性光拡散層付きガラス板の光学的特性
を実施例1と同様に測定したところ、全光線透過率9
0.1%、拡散透過率80.2%、平行光線透過率9.
9%であった。この透光性光拡散層付きガラス板を実施
例1で用いたアモルファスシリコン太陽電池の受光面に
密着させ、実施例1と同様の擬似太陽光下で短絡電流値
を測定したところ該光拡散層付ガラス板を積載しない場
合に比ベ9.9%の電流値上昇が確認できた。
Example 4 A commercially available polyvinyl butyral resin (trade name: SREC B, manufactured by Sekisui Chemical Co., Ltd.) was dissolved at 5% by weight in a xylene solvent to have an average particle size of 1.9 μm and a particle size distribution of 0.3 to 3%. 0.2 μm of ZrO 2 particles was added in an amount of 0.5% by weight, dispersed in a sand mill for 2 hours, and the solvent was evaporated and removed under reduced pressure by about 60% by weight to prepare a coating solution. This coating solution is applied on a 1.1 mm-thick glass plate using a bar coater, and dried at room temperature to obtain a 10 μm-thick translucent white film (translucent light diffusion layer).
I got When the optical characteristics of this glass plate with a light-transmitting light diffusion layer were measured in the same manner as in Example 1, the total light transmittance was 9%.
8. 0.1%, diffuse transmittance 80.2%, parallel light transmittance 9.
9%. This glass plate with a light-transmitting light diffusion layer was brought into close contact with the light-receiving surface of the amorphous silicon solar cell used in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. When the attached glass plate was not loaded, a current value increase of 9.9% was confirmed.

【0043】「実施例5」無水クエン酸1.6gと、エ
チレングリコール:1.Ogと、塩化テルビウム6水和
物:0.46gと、テルピリジン:0.095gと、
水:1.Ogと、エタノール:1.Ogとを混合し、こ
の混合溶液を100℃で5時間還流し、テルビウムにテ
ルピリジンが配位結合することにより形成された蛍光性
錯体が、エチレングリコールとクエン酸とのエステル結
合により形成されたポリマー中に分散した溶液を得た。
この蛍光性錯体を含有する溶液を厚さ1.1mmのガラ
ス板上にバーコーターを用いて塗布し、130℃で5時
間乾燥することにより厚さ約20μmの蛍光性透明層
(蛍光物質含有透明層)が積層されたガラス板を得た。
この蛍光性透明層の蛍光特性を調べたところ、400n
m以下の波長の光を吸収し、490nm、545nm、
585nm、620nmで発光することを確認した。そ
して、この蛍光性透明層付きガラス板を実施例1と同様
のアモルファスシリコン太陽電池の受光面に載置し、更
にこの上に実施例1で得た透光性光拡散層付きガラス板
を載置し、実施例1と同様の擬似太陽光下で短絡電流値
を測定したところ該光拡散層付ガラス板および蛍光性透
明層付きガラス板を積載しない場合に比ベ36.7%の
電流値上昇が確認できた。
Example 5 1.6 g of anhydrous citric acid and ethylene glycol: 1. Og, terbium chloride hexahydrate: 0.46 g, terpyridine: 0.095 g,
Water: 1. Og and ethanol: 1. Og, and the mixed solution was refluxed at 100 ° C. for 5 hours, and a fluorescent complex formed by coordinating terpyridine with terbium was converted into a polymer formed by an ester bond between ethylene glycol and citric acid. A solution dispersed therein was obtained.
The solution containing the fluorescent complex is applied to a glass plate having a thickness of 1.1 mm using a bar coater, and dried at 130 ° C. for 5 hours to form a fluorescent transparent layer having a thickness of about 20 μm (fluorescent material-containing transparent layer). Layer) was obtained.
When the fluorescent characteristics of this fluorescent transparent layer were examined,
m, and absorbs light having a wavelength of 490 nm, 545 nm,
Light emission at 585 nm and 620 nm was confirmed. Then, the glass plate with a fluorescent transparent layer is placed on the light receiving surface of the same amorphous silicon solar cell as in Example 1, and the glass plate with a translucent light diffusion layer obtained in Example 1 is further placed thereon. The short-circuit current value was measured under simulated sunlight in the same manner as in Example 1. As a result, the current value was 36.7% of that when the glass plate with the light diffusion layer and the glass plate with the fluorescent transparent layer were not mounted. The rise was confirmed.

【0044】「実施例6」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液:4gと、
実施例1で用いたものと同様の飽和ポリエステル樹脂の
キシレン溶液:1gと、塩化ユウロピウム6水和物と
1,10−フェナントロリンを反応させることにより得
た希土類金属錯体粉末:0.06gと、メタノール:
0.5gとを混合することにより得た溶液を、厚さ1.
1mmのガラス板上に塗布し、130℃で6時間乾燥す
ることにより、厚さ60μmの蛍光性と光拡散性を兼ね
備える薄膜を得た。この蛍光性と光拡散性を兼ね備える
薄膜付ガラス板の光学特性を実施例1に準じて測定した
ところ、全光線透過率89.1%、拡散透過率80.2
%、平行光線透過率8.9%であった。また、この膜を
光学顕微鏡にて観察したところ、一方の相中に他方の相
が1〜5μmの球状粒子形にほぼ均一に分散していた。
そして、この膜付ガラス板を実施例1と同様の太陽電池
受光面に密着させ、実施例1と同様の擬似太陽光下で短
絡電流値を測定したところ該蛍光性と光拡散性を兼ね備
える薄膜付ガラス板を積載しない場合に比べ33.7%
の電流値上昇が確認できた。
Example 6 Xylene solution of polyvinyl butyral resin similar to that used in Example 1: 4 g,
A rare earth metal complex powder obtained by reacting 1 g of a xylene solution of the same saturated polyester resin as used in Example 1, europium chloride hexahydrate with 1,10-phenanthroline: 0.06 g, methanol :
And 0.5 g of the resulting solution.
It was applied on a 1 mm glass plate and dried at 130 ° C. for 6 hours to obtain a 60 μm-thick thin film having both fluorescence and light diffusion properties. When the optical properties of the glass plate with a thin film having both fluorescence and light diffusivity were measured in accordance with Example 1, the total light transmittance was 89.1% and the diffuse transmittance was 80.2%.
%, And the parallel light transmittance was 8.9%. When this film was observed with an optical microscope, it was found that one of the phases was substantially uniformly dispersed in a spherical particle form of 1 to 5 μm in the other phase.
Then, the glass plate with the film was brought into close contact with the light-receiving surface of the solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. As a result, the thin film having both the fluorescence and the light diffusion properties was obtained. 33.7% compared to the case without attached glass plate
The increase in the current value was confirmed.

【0045】「実施例7」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液8重量部
と、実施例1で用いたものと同様の飽和ポリエステル樹
脂のキシレン溶液1重量部を混合し、この混合液を、厚
さ1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが約30μmの半透明白色の膜(透光
性光拡散層)を得た。この透光性光拡散層付きガラス板
の光学特性を実施例1に準じて測定したところ、全光線
透過率91.6%、拡散透過率62.3%、平行光線透
過率39.3%であった。また、この透光性光拡散層を
光学顕微鏡にて観察したところ、一方の相中に他方の相
が1〜5μmの球状粒子形にほぼ均一に分散していた。
そして、この透光性光拡散層付ガラス板を実施例1と同
様のアモルファスシリコン太陽電池の受光面に密着さ
せ、実施例1と同様の擬似太陽光下で短絡電流値を測定
したところ該透光性光拡散層付きガラス板を積載しない
場合に比べ1.2%の電流値上昇が確認できた。
Example 7 8 parts by weight of a xylene solution of a polyvinyl butyral resin similar to that used in Example 1 and 1 part by weight of a xylene solution of a saturated polyester resin similar to that used in Example 1 were mixed. Then, this mixed solution was applied on a glass plate having a thickness of 1.1 mm using a bar coater, and a translucent white film (light-transmitting light diffusion layer) having a thickness of about 30 μm after drying was obtained. When the optical characteristics of the glass plate with a light-transmitting light diffusion layer were measured in accordance with Example 1, the total light transmittance was 91.6%, the diffuse transmittance was 62.3%, and the parallel light transmittance was 39.3%. there were. When the translucent light diffusing layer was observed with an optical microscope, it was found that one of the phases was substantially uniformly dispersed in a spherical particle form of 1 to 5 μm.
Then, the glass plate with the light-transmitting light diffusion layer was brought into close contact with the light-receiving surface of the amorphous silicon solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. A 1.2% increase in the current value was confirmed, as compared with the case where the glass plate with the light diffusion layer was not mounted.

【0046】「実施例8」実施例4で用いたものと同様
のポリビニルブチラール樹脂5重量%キシレン溶液に、
実施例4と同様にZrO2粒子を10重量%添加し、サ
ンドミルにて2時間分散させ、減圧下にて溶媒を約60
重量%蒸発することによりZrO2分散液を得た。さら
にこの分散液7gに、塩化ユウロピウム6水和物と1,
10−フェナントロリンを反応させることにより得た希
土類金属錯体粉末:0.06gと、メタノール:0.5
gとを混合することにより塗布溶液を得た。この溶液を
厚さ1.1mmのガラス板上にバーコーターを用いて塗
布し、130℃で6時間乾燥することにより、厚さ約5
0μmの蛍光性と光拡散性を兼ね備える薄膜を得た。こ
の蛍光性と光拡散性を兼ね備える薄膜付ガラス板の光学
特性を実施例1に準じて測定したところ、全光線透過率
72.2%、拡散透過率65.3%、平行光線透過率
6.9%であった。そして、この蛍光性と光拡散性を兼
ね備える薄膜付ガラス板を実施例1と同様のアモルファ
スシリコン太陽電池の受光面に密着させ、実施例1と同
様の擬似太陽光下で短絡電流値を測定したところ該蛍光
性と光拡散性を兼ね備える薄膜付ガラス板を積載しない
場合に比べ1.1%の電流値上昇が確認できた。
Example 8 A 5% by weight xylene solution of a polyvinyl butyral resin similar to that used in Example 4 was
10% by weight of ZrO 2 particles were added in the same manner as in Example 4 and dispersed in a sand mill for 2 hours.
A ZrO 2 dispersion was obtained by evaporation by weight. Further, 7 g of this dispersion was mixed with europium chloride hexahydrate and 1,
Rare earth metal complex powder obtained by reacting 10-phenanthroline: 0.06 g, methanol: 0.5
g was mixed to obtain a coating solution. This solution was applied to a glass plate having a thickness of 1.1 mm using a bar coater, and dried at 130 ° C. for 6 hours to give a thickness of about 5 mm.
A thin film having both fluorescence and light diffusion of 0 μm was obtained. When the optical characteristics of the glass plate with a thin film having both fluorescence and light diffusion were measured in accordance with Example 1, the total light transmittance was 72.2%, the diffuse transmittance was 65.3%, and the parallel light transmittance was 6. 9%. Then, the glass plate with a thin film having both fluorescence and light diffusion properties was brought into close contact with the light-receiving surface of the amorphous silicon solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight as in Example 1. However, it was confirmed that the current value increased by 1.1% as compared with the case where the glass plate with the thin film having both the fluorescent property and the light diffusing property was not mounted.

【0047】「比較例1」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液1重量部
に、実施例1で用いたものと同様の飽和ポリエステル樹
脂のキシレン溶液9重量部を混合し、この混合液を厚さ
1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが30μmの半透明白色の膜を得た。
この半透明白色の膜付ガラス板の性質を実施例1に準じ
て測定したところ、全光線透過率91.8%、拡散透過
率32.7%、平行光線透過率59.1%であった。そ
して、この半透明白色の膜付ガラス板を実施例1と同様
のアモルファスシリコン太陽電池の受光面に密着させ擬
似太陽光下で短絡電流値を測定したところ、該半透明白
色の膜付ガラス板を積載しない場合(この場合は、実施
例1の光拡散層付ガラス板を積載しない場合のものと同
じ場合である)に比ベ電流値は1.21%低下した。
Comparative Example 1 9 parts by weight of a xylene solution of a saturated polyester resin similar to that used in Example 1 was mixed with 1 part by weight of a xylene solution of polyvinyl butyral resin similar to that used in Example 1. Then, the mixed solution was applied on a glass plate having a thickness of 1.1 mm using a bar coater, and a translucent white film having a thickness of 30 μm after drying was obtained.
When the properties of this glass plate with a translucent white film were measured in accordance with Example 1, the total light transmittance was 91.8%, the diffuse transmittance was 32.7%, and the parallel light transmittance was 59.1%. . Then, this translucent white film-coated glass plate was brought into close contact with the light-receiving surface of the same amorphous silicon solar cell as in Example 1 and the short-circuit current value was measured under simulated sunlight. Is not loaded (this case is the same as the case where the glass plate with the light diffusion layer of Example 1 is not loaded), the current value is reduced by 1.21%.

【0048】「比較例2」実施例1で用いたものと同様
のポリビニルブチラール樹脂のキシレン溶液を、厚さ
1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが30μmの透明な膜を得た。この透
明な膜付ガラス板の光学的特性を実施例1に準じて測定
したところ、全光線透過率92.0%、拡散透過率2.
6%、平行光線透過率89.4%であった。そして、こ
の透明な膜付ガラス板を実施例1と同様のアモルファス
シリコン太陽電池の受光面に密着させ擬似太陽光下で短
絡電流値を測定したところ、該透明な膜付ガラス板を搭
載しない場合(この場合は、実施例1の光拡散層付ガラ
ス板を積載しない場合のものと同じ場合である)に比べ
電流値は0.86%低下した。
Comparative Example 2 A xylene solution of a polyvinyl butyral resin similar to that used in Example 1 was applied to a 1.1 mm thick glass plate using a bar coater, and the thickness after drying was 30 μm. Was obtained. When the optical characteristics of the transparent glass plate were measured in accordance with Example 1, the total light transmittance was 92.0% and the diffuse transmittance was 2.
The parallel light transmittance was 69.4% and the parallel light transmittance was 89.4%. Then, when this transparent glass plate with a film was measured by placing the transparent glass plate in close contact with the light-receiving surface of the same amorphous silicon solar cell as in Example 1 under simulated sunlight, the case where the glass plate with the transparent film was not mounted was used. (This case is the same as the case where the glass plate with the light diffusion layer of Example 1 is not mounted.) The current value is reduced by 0.86%.

【0049】「比較例3」実施例1で用いたものと同様
の飽和ポリエステル樹脂のキシレン溶液を、厚さ1.1
mmのガラス板上にバーコーターを用いて塗布し、乾燥
後の厚みが30μmの透明な膜を得た。この透明な膜付
ガラス板の光学的特性を実施例1に準じて測定したとこ
ろ、全光線透過率92.0%、拡散透過率2.3%、平
行光線透過率89.7%であった。そして、この透明な
膜付ガラス板を実施例1と同様のアモルファスシリコン
太陽電池の受光面に密着させ擬似太陽光下で短絡電流値
を測定したところ、該透明な膜付ガラス板を搭載しない
場合(この場合は、実施例1の光拡散層付ガラス板を積
載しない場合のものと同じ場合である)に比べて電流値
は0.80%低下した。
Comparative Example 3 A xylene solution of the same saturated polyester resin as used in Example 1 was applied to a film having a thickness of 1.1.
It was applied on a glass plate having a thickness of 30 mm using a bar coater to obtain a transparent film having a thickness of 30 μm after drying. When the optical characteristics of this transparent glass plate with a film were measured in accordance with Example 1, the total light transmittance was 92.0%, the diffuse transmittance was 2.3%, and the parallel light transmittance was 89.7%. . Then, when this transparent glass plate with a film was measured by placing the transparent glass plate in close contact with the light-receiving surface of the same amorphous silicon solar cell as in Example 1 under simulated sunlight, the case where the glass plate with the transparent film was not mounted was used. (In this case, the current value is 0.80% lower than that in the case where the glass plate with the light diffusion layer of Example 1 is not mounted.)

【0050】「比較例4」ポリピニルアルコールの20
重量%水溶液100重量部に、平均粒子径約20nmの
SiO2粒子を40重量%含むコロイド溶液(触媒化成
工業(株)製)を6重量部加え、これを厚さ1.1mm
のガラス板上にドクタープレードを用いて塗布し、乾燥
後の厚みが20μmの透明膜を得た。この透明膜付ガラ
ス板の光学的特性を実施例1に準じて測定したところ、
全光線透過率92.1%、拡散透過率2.3%、平行光
線透過率89.8%であった。そして、この透明膜付ガ
ラス板を実施例1と同様のアモルファスシリコン太陽電
池の受光面に密着させ擬似太陽光下で短絡電流値を測定
したところ該透明膜付ガラス板を搭載しない場合(この
場合は、実施例1の光拡散層付ガラス板を積載しない場
合のものと同じ場合である)に比べて電流値は1.53
%低下した。
Comparative Example 4 Polypinyl alcohol 20
6 parts by weight of a colloidal solution containing 40% by weight of SiO 2 particles having an average particle diameter of about 20 nm (manufactured by Catalysis Chemical Industry Co., Ltd.) was added to 100 parts by weight of a 100% by weight aqueous solution, and the resultant was added to a thickness of 1.1 mm.
Was applied using a doctor blade on the glass plate of Example 1 to obtain a transparent film having a thickness of 20 μm after drying. When the optical characteristics of this glass plate with a transparent film were measured according to Example 1,
The total light transmittance was 92.1%, the diffuse transmittance was 2.3%, and the parallel light transmittance was 89.8%. Then, this glass plate with a transparent film was brought into close contact with the light receiving surface of the amorphous silicon solar cell as in Example 1, and the short-circuit current value was measured under simulated sunlight. Is the same as the case where the glass plate with the light diffusion layer of Example 1 is not mounted).
% Decreased.

【0051】「比較例5」ポリピニルブチラール30重
量%キシレン溶液100gに、粒度分布幅1〜50μ
m、平均粒子径約25μmのAl23粉末を0.3g加
え、混練機により10分間混合して得た溶液を、厚み
1.1mmのガラス板上にバーコーターを用いて塗布
し、乾燥後の厚みが約60μmの半透明白色膜を得た。
この半透明白色膜付ガラス板の光学的特性を実施例1に
準じて測定したところ、全光線透過率30.6%、拡散
透過率22.8%、平行光線透過率7.8%であった。
そして、この半透明白色膜付ガラス板を実施例1と同様
のアモルファスシリコン太陽電池の受光面に密着させ擬
似太陽光下で短絡電流値を測定したところ、該半透明白
色膜付ガラス板を搭載しない場合(この場合は、実施例
1の光拡散層付ガラス板を積載しない場合のものと同じ
場合である)と比べて電流値は約70%減少した。
Comparative Example 5 A particle size distribution width of 1 to 50 μm was added to 100 g of a 30% by weight xylene solution of polypinyl butyral.
m, a solution obtained by adding 0.3 g of Al 2 O 3 powder having an average particle diameter of about 25 μm and mixing with a kneader for 10 minutes is applied to a 1.1 mm thick glass plate using a bar coater, and dried. Thereafter, a translucent white film having a thickness of about 60 μm was obtained.
When the optical characteristics of this glass plate with a translucent white film were measured according to Example 1, the total light transmittance was 30.6%, the diffuse transmittance was 22.8%, and the parallel light transmittance was 7.8%. Was.
Then, the glass plate with the translucent white film was closely attached to the light receiving surface of the same amorphous silicon solar cell as in Example 1 and the short-circuit current value was measured under simulated sunlight. The current value was reduced by about 70% as compared with the case of not performing (in this case, the case where the glass plate with the light diffusion layer of Example 1 was not mounted).

【0052】[0052]

【発明の効果】以上詳述したように本発明に係る透光性
光拡散層付き太陽電池は、全光線透過率が70%以上、
かつ拡散透過率が60%以上である透光性光拡散層を太
陽電池素子の受光面に備えたことにより、複雑な加工処
理をすることなく、太陽電池素子表面の受光面に入射し
た光を効率良く捕捉し、光電変換に寄与する光量を増加
せしめて、太陽電池の発電量あたりのコストを引き下げ
ることができる。
As described in detail above, the solar cell with a light-transmitting light diffusion layer according to the present invention has a total light transmittance of 70% or more,
By providing a light-transmitting light diffusion layer having a diffuse transmittance of 60% or more on the light-receiving surface of the solar cell element, light incident on the light-receiving surface of the solar cell element surface can be reduced without complicated processing. By efficiently capturing and increasing the amount of light contributing to photoelectric conversion, the cost per power generation of the solar cell can be reduced.

【0053】さらに、上記透光性光拡散層の上側及び/
又は下側に蛍光性物質含有透明層を積層したものにあっ
ては、蛍光性物質が光電変換に有効に利用されていない
波長の光を、光電変換に有効に利用される波長の光、即
ち太陽電池の感度の高い波長の光に変換することができ
るので、太陽電池素子の受光面に入射した光をより一層
効率良く捕捉し、光電変換に寄与する光量をより一層増
加せしめて、太陽電池の発電量あたりのコストをより一
層引き下げることができる。また、上記透光性光拡散層
に蛍光性物質を含有させたものにあっては、この蛍光性
物質の作用により、太陽電池素子の受光面に入射した光
をより一層効率良く捕捉し、光電変換に寄与する光量を
より一層増加せしめて、太陽電池の発電量あたりのコス
トをより一層引き下げることができる。
Further, above the light transmitting light diffusion layer and / or
Or, in those in which a fluorescent substance-containing transparent layer is laminated on the lower side, light of a wavelength at which the fluorescent substance is not effectively used for photoelectric conversion, light of a wavelength effectively used for photoelectric conversion, that is, Since it can be converted into light with a wavelength that is high in the sensitivity of the solar cell, the light incident on the light-receiving surface of the solar cell element is more efficiently captured, and the amount of light contributing to the photoelectric conversion is further increased. Cost per power generation can be further reduced. Further, in the case where a fluorescent substance is contained in the translucent light diffusion layer, by the action of the fluorescent substance, light incident on the light receiving surface of the solar cell element is more efficiently captured, and By further increasing the amount of light that contributes to the conversion, the cost per power generation of the solar cell can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の透光性光拡散層付き太陽電池の実施
形態例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a solar cell with a translucent light diffusion layer of the present invention.

【符号の説明】[Explanation of symbols]

1・・・太陽電池素子、1a・・・受光面、2・・・表面電極、
3・・・裏面電極、4・・・封止材、5・・・保護ガラス、6・・・
裏面保護材、7・・・透光性光拡散層、8・・・蛍光性物質含
有透明層。
DESCRIPTION OF SYMBOLS 1 ... Solar cell element, 1a ... Light-receiving surface, 2 ... Surface electrode,
3 ... back electrode, 4 ... sealing material, 5 ... protective glass, 6 ...
Back protective material, 7: translucent light diffusion layer, 8: transparent layer containing fluorescent substance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 全光線透過率が70%以上、かつ拡散透
過率が60%以上である透光性光拡散層を太陽電池素子
の受光面に備えたことを特徴とする透光性光拡散層付き
太陽電池。
1. A translucent light diffusion, comprising a translucent light diffusion layer having a total light transmittance of 70% or more and a diffusion transmittance of 60% or more on a light receiving surface of a solar cell element. Solar cells with layers.
【請求項2】 前記透光性光拡散層の上層及び/又は下
層に蛍光性物質含有透明層が積層されたことを特徴とす
る請求項1記載の透光性光拡散層付き太陽電池。
2. The solar cell with a light-transmitting light diffusion layer according to claim 1, wherein a fluorescent substance-containing transparent layer is laminated on an upper layer and / or a lower layer of the light-transmitting light diffusion layer.
【請求項3】 前記透光性光拡散層が蛍光性物質を含有
することを特徴とする請求項1又は2記載の透光性光拡
散層付き太陽電池。
3. The solar cell with a light-transmitting light diffusion layer according to claim 1, wherein the light-transmitting light diffusion layer contains a fluorescent substance.
【請求項4】 前記透光性光拡散層は、屈折率の異なる
複相が相分離状態であり、これらの相の屈折率の差が
0.01以上のものからなることを特徴とする請求項1
乃至3のいずれか一項に記載の透光性光拡散層付き太陽
電池。
4. The light-transmitting light-diffusing layer is characterized in that multiple phases having different refractive indices are in a phase-separated state, and a difference in refractive index between these phases is 0.01 or more. Item 1
The solar cell with a translucent light diffusion layer according to any one of claims 3 to 3.
【請求項5】 前記透光性光拡散層を構成する複相の分
離相幅が30nm〜20μmの範囲内であることを特徴
とする請求項4に記載の透光性光拡散層付き太陽電池。
5. The solar cell with a light-transmitting light-diffusing layer according to claim 4, wherein the separated phase width of the multiple phases constituting the light-transmitting light-diffusing layer is in the range of 30 nm to 20 μm. .
JP2001020473A 2001-01-29 2001-01-29 Solar battery with translucent photodiffusion layer Pending JP2002222974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020473A JP2002222974A (en) 2001-01-29 2001-01-29 Solar battery with translucent photodiffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020473A JP2002222974A (en) 2001-01-29 2001-01-29 Solar battery with translucent photodiffusion layer

Publications (1)

Publication Number Publication Date
JP2002222974A true JP2002222974A (en) 2002-08-09

Family

ID=18886175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020473A Pending JP2002222974A (en) 2001-01-29 2001-01-29 Solar battery with translucent photodiffusion layer

Country Status (1)

Country Link
JP (1) JP2002222974A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027271A (en) * 2005-07-13 2007-02-01 Univ Of Electro-Communications Solar power generation module
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same
WO2011052571A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photovoltaic conversion element
WO2011155614A1 (en) * 2010-06-11 2011-12-15 旭硝子株式会社 Translucent laminate and solar cell module using same
JP2012094729A (en) * 2010-10-28 2012-05-17 Kenji Tani Solar battery forming anti reflection coat looking black
WO2012090673A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Wavelength converting sealing material sheet and solar cell module
KR101201543B1 (en) * 2011-04-14 2012-11-15 금호전기주식회사 Solar cell module and method for manufacturing the same
JP2013516778A (en) * 2010-01-08 2013-05-13 サン−ゴバン アドフォル Light collector
EP2947697A1 (en) 2013-12-23 2015-11-25 Merck Patent GmbH Antireflection films and photovoltaic devices
JP2016046350A (en) * 2014-08-21 2016-04-04 東洋アルミニウム株式会社 Light diffusion member for interconnector, interconnector for solar cell having the same, and solar cell module
JP2022518596A (en) * 2019-01-31 2022-03-15 フォトン テクノロジー (クンシャン) カンパニー リミテッド Power generation building materials and their manufacturing methods

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027271A (en) * 2005-07-13 2007-02-01 Univ Of Electro-Communications Solar power generation module
JP5361387B2 (en) * 2006-10-18 2013-12-04 サンビック株式会社 Fluorescent resin composition and solar cell module using the same
WO2008047427A1 (en) * 2006-10-18 2008-04-24 National Institute Of Advanced Industrial Science And Technology Fluorescent resin composition and solar battery module using the same
KR101096865B1 (en) 2006-10-18 2011-12-22 산빅 가부시키가이샤 Fluorescent resin composition and solar battery module using the same
US8222335B2 (en) 2006-10-18 2012-07-17 Sanvic Inc. Fluorescent resin composition and solar battery module using the same
WO2011052571A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photovoltaic conversion element
JP2013516778A (en) * 2010-01-08 2013-05-13 サン−ゴバン アドフォル Light collector
CN102939663A (en) * 2010-06-11 2013-02-20 旭硝子株式会社 Translucent laminate and solar cell module using same
WO2011155614A1 (en) * 2010-06-11 2011-12-15 旭硝子株式会社 Translucent laminate and solar cell module using same
JP2012094729A (en) * 2010-10-28 2012-05-17 Kenji Tani Solar battery forming anti reflection coat looking black
WO2012090673A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Wavelength converting sealing material sheet and solar cell module
JP2012142346A (en) * 2010-12-28 2012-07-26 Hitachi Ltd Wavelength conversion type sealing material sheet and solar battery module
KR101201543B1 (en) * 2011-04-14 2012-11-15 금호전기주식회사 Solar cell module and method for manufacturing the same
EP2947697A1 (en) 2013-12-23 2015-11-25 Merck Patent GmbH Antireflection films and photovoltaic devices
JP2016046350A (en) * 2014-08-21 2016-04-04 東洋アルミニウム株式会社 Light diffusion member for interconnector, interconnector for solar cell having the same, and solar cell module
JP2022518596A (en) * 2019-01-31 2022-03-15 フォトン テクノロジー (クンシャン) カンパニー リミテッド Power generation building materials and their manufacturing methods
JP7328341B2 (en) 2019-01-31 2023-08-16 フォトン テクノロジー (クンシャン) カンパニー リミテッド Power generation building material and its manufacturing method

Similar Documents

Publication Publication Date Title
Wang et al. High‐performance semitransparent organic solar cells with excellent infrared reflection and see‐through functions
Wang et al. Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells
US11652181B2 (en) Visibly transparent, luminescent solar concentrator
Shi et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene
Wei et al. Reverse‐graded 2D ruddlesden–popper perovskites for efficient air‐stable solar cells
Zhang et al. High‐performance, transparent, dye‐sensitized solar cells for see‐through photovoltaic windows
Bi et al. Enhancing photostability of perovskite solar cells by Eu (TTA) 2 (Phen) MAA interfacial modification
US20100139749A1 (en) Solar concentrators and materials for use therein
US20100139769A1 (en) Solar concentrators with light redirection
MX2013015438A (en) A spectrally selective panel.
JP2010537417A (en) Solar cell structure
US20100012177A1 (en) PHOTON-CONVERSION MATERIALS (PCMs) IN POLYMER SOLAR CELLS-ENHANCEMENT EFFICIENCY AND PREVENTION OF DEGRADATION
Zhu et al. Moth eye‐inspired highly efficient, robust, and neutral‐colored semitransparent perovskite solar cells for building‐integrated photovoltaics
EP3050126B1 (en) Tm2+luminescent materials for solar radiation conversion devices
JP2002222974A (en) Solar battery with translucent photodiffusion layer
CN102153292A (en) High-transmission nano silicon dioxide anti-reflection film and preparation method and application thereof
US20120080067A1 (en) Photovoltaic devices
Gu et al. Highly transparent, dual-color emission, heterophase Cs3Cu2I5/CsCu2I3 nanolayer for transparent luminescent solar concentrators
Satpute et al. Synthesis and luminescence characterization of downconversion and downshifting phosphor for efficiency enhancement of solar cells: Perspectives and challenges
US20100139748A1 (en) Solar cell having europium-doped cover glass
US20150075612A1 (en) High efficiency solar module structure
EP2492934A2 (en) Dye-sensitized solar cell
Tonezzer et al. Luminescent solar concentrators–state of the art and future perspectives
US20100108136A1 (en) Solar cell
CN105247690A (en) Light concentration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417