JP2002220644A - Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor - Google Patents

Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor

Info

Publication number
JP2002220644A
JP2002220644A JP2001021467A JP2001021467A JP2002220644A JP 2002220644 A JP2002220644 A JP 2002220644A JP 2001021467 A JP2001021467 A JP 2001021467A JP 2001021467 A JP2001021467 A JP 2001021467A JP 2002220644 A JP2002220644 A JP 2002220644A
Authority
JP
Japan
Prior art keywords
grain
iron loss
annealing
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001021467A
Other languages
Japanese (ja)
Other versions
JP3956621B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Takeshi Imamura
今村  猛
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001021467A priority Critical patent/JP3956621B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to US10/312,663 priority patent/US6942740B2/en
Priority to DE60231581T priority patent/DE60231581D1/en
Priority to PCT/JP2002/000291 priority patent/WO2002057503A1/en
Priority to CNB028007476A priority patent/CN1196801C/en
Priority to EP02715785A priority patent/EP1273673B1/en
Priority to KR1020027012307A priority patent/KR100837129B1/en
Priority to TW091100786A priority patent/TW589385B/en
Publication of JP2002220644A publication Critical patent/JP2002220644A/en
Priority to US11/145,705 priority patent/US7371291B2/en
Application granted granted Critical
Publication of JP3956621B2 publication Critical patent/JP3956621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain-oriented electromagnetic steel sheet having superior properties of high frequency iron loss, as well as an economic advantage. SOLUTION: This grain-oriented electromagnetic steel sheet comprises; a composition including 2.0-8.0% Si by mass%; a mean grain size of secondary recrystallization of 5 mm or more on the surface of the steel sheet, when measured excluding fine grains with sizes of 1 mm or less; having fine crystal grains of 10 units/cm2 or more, of which the sizes are 0.15-1.00 mm, in the secondary recrystallized grains; making an area rate of crystal grains of which the orientation difference from 110}<001> orientation is within 20 degrees, as 50% or more; and moreover generating no substrate film mainly consisting of forsterite (Mg2SiO4).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に商用周波数よ
り高い 100〜10000 Hzの周波数で使用される電源用変圧
器や制御素子の鉄心材料として好適な高周波鉄損の良好
な方向性電磁鋼板およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having good high-frequency iron loss, which is preferably used as a core material for power transformers and control elements mainly used at a frequency of 100 to 10,000 Hz higher than a commercial frequency. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】高周波用鉄損の優れた方向性電磁鋼板を
製造する方法として、高度に発達したゴス組織からなる
方向性電磁鋼板を素材として用い、60〜80%の圧下率で
冷間圧延を施したのち一次再結晶焼鈍を施すことによ
り、ゴス組織が発達し、かつ平均粒径が1mm以下の微細
結晶粒を有する板厚:0.15mm以下の製品を得る技術が、
特公平7−42556 号公報において開示されている。しか
しながら、この方法は、方向性電磁鋼板製品板のフォル
ステライト被膜を除去し、さらに圧延、再結晶焼鈍を施
すという極めてコストが高い方法であり、大量生産には
適さない。
2. Description of the Related Art As a method of manufacturing a grain-oriented electrical steel sheet having an excellent iron loss for high frequency, a grain-oriented electrical steel sheet having a highly developed goss structure is used as a material, and cold-rolled at a rolling reduction of 60 to 80%. After applying the primary recrystallization annealing, the technology of obtaining a product with a thickness of 0.15 mm or less, in which a Goss structure is developed and the average grain size has fine crystal grains of 1 mm or less,
It is disclosed in Japanese Patent Publication No. 7-42556. However, this method is a very expensive method of removing the forsterite film on the product sheet of the grain-oriented electrical steel sheet, and further performing rolling and recrystallization annealing, and is not suitable for mass production.

【0003】また、インヒビタを使用せず、表面エネル
ギーを駆動力として板厚の薄い方向性電磁鋼板を製造す
る方法が、特開昭64−55339 号、特開平2−57635 号、
特開平7−76732 号および特開平7−197126号各公報に
開示されている。しかしながら、表面エネルギーを使用
するためには、表面酸化物の生成を抑制した状態で高温
の最終仕上焼鈍を行わなければならないという問題があ
る。例えば、特開昭64−55339 号公報には、1180℃以上
の温度で、最終仕上焼鈍の雰囲気として、真空中または
不活性ガスまたは水素ガスまたは水素ガスと窒素ガスの
混合ガスを用いる必要があることが記載されている。ま
た、特開平2−57635 号公報では、950 〜1100℃の温度
で、不活性ガス雰囲気または水素ガスまたは水素ガスと
不活性ガスの混合雰囲気を用い、さらにこれらを減圧す
ることが推奨されている。さらに、特開平7−197126号
公報でも、1000〜1300℃の温度で、酸素分圧が 0.5Pa以
下の非酸化性雰囲気または真空中で最終仕上焼鈍を行う
ことが記載されている。
Further, a method of manufacturing a thin grain-oriented electrical steel sheet using surface energy as a driving force without using an inhibitor is disclosed in Japanese Patent Application Laid-Open Nos. 64-55339 and 2-57635.
These are disclosed in JP-A-7-76732 and JP-A-7-197126. However, in order to use surface energy, there is a problem that high-temperature final finish annealing must be performed in a state where generation of surface oxides is suppressed. For example, in Japanese Patent Application Laid-Open No. 64-55339, it is necessary to use a vacuum or an inert gas or a hydrogen gas or a mixed gas of a hydrogen gas and a nitrogen gas as an atmosphere for final finish annealing at a temperature of 1180 ° C. or more. It is described. In Japanese Patent Application Laid-Open No. 2-57635, it is recommended to use an inert gas atmosphere or a hydrogen gas or a mixed atmosphere of hydrogen gas and an inert gas at a temperature of 950 to 1100 ° C. and further reduce the pressure. . Further, Japanese Patent Application Laid-Open No. 7-197126 also describes that the final finish annealing is performed at a temperature of 1000 to 1300 ° C. in a non-oxidizing atmosphere or a vacuum having an oxygen partial pressure of 0.5 Pa or less.

【0004】上述したとおり、表面エネルギーを利用し
て良好な磁気特性を得ようとすると、最終仕上焼鈍の雰
囲気は不活性ガスや水素が用いられ、さらに推奨される
条件として、真空とすることが求められるが、高温と真
空の両立は設備的には極めて難しく、コスト高となる。
また、表面エネルギーを利用した場合には、原理的には
{110}面の選択のみが可能であり、圧延方向に<0
01>方向が揃ったゴス粒の成長が選択されるわけでは
ない。方向性電磁鋼板は、圧延方向に磁化容易軸<00
1>を揃えることによって磁気特性を向上させるもので
あるから、{110}面の選択のみでは原理的に良好な
磁気特性は得られない。従って、表面エネルギーを利用
する方法で良好な磁気特性を得ることのできる圧延条件
や焼鈍条件は極めて限られたものになり、それ故磁気特
性は不安定である。
As described above, in order to obtain good magnetic properties by utilizing surface energy, an inert gas or hydrogen is used as an atmosphere for final finish annealing, and a vacuum is further recommended as a recommended condition. Although required, compatibility between high temperature and vacuum is extremely difficult in terms of equipment, resulting in high costs.
In addition, when surface energy is used, only the {110} plane can be selected in principle, and <0
01> The growth of Goss grains with a uniform direction is not necessarily selected. The grain-oriented electrical steel sheet has an easy axis <00 in the rolling direction.
Since the magnetic characteristics are improved by aligning 1>, good magnetic characteristics cannot be obtained in principle only by selecting the {110} plane. Therefore, the rolling conditions and annealing conditions under which good magnetic properties can be obtained by a method utilizing surface energy are extremely limited, and the magnetic properties are unstable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の実状
に鑑み開発されたもので、ゴス方位が高度に発達し、従
って磁束密度が高く、また二次再結晶粒内に微細粒が適
度に存在し、従って高周波域での鉄損に優れる方向性電
磁鋼板を、その有利な製造方法と共に提案することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above situation, and has a highly developed Goss orientation, and therefore has a high magnetic flux density. Therefore, it is an object of the present invention to propose a grain-oriented electrical steel sheet which is excellent in iron loss in a high frequency range, together with its advantageous production method.

【0006】[0006]

【課題を解決するための手段】さて、発明者らは、先
に、インヒビタ成分を含有しない素材において、ゴス方
位結晶粒を二次再結晶により発達させる技術を提案した
(特開2000−129356号公報)が、本発明は、上記の技術
を、高周波変圧器に適用すべく鋭意研究を重ねた末に、
開発されたものである。
Means for Solving the Problems The inventors of the present invention have previously proposed a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material containing no inhibitor component (Japanese Patent Laid-Open No. 2000-129356). Gazette), however, the present invention has been carried out by the enthusiastic research to apply the above technology to a high-frequency transformer.
It was developed.

【0007】以下、本発明を成功に至らしめた実験につ
いて説明する。質量%で、C:0.0025%、Si:3.5 %お
よびMn:0.04%を含有し、かつAlを50ppm 、Nを10ppm
、その他の成分を 30ppm以下に低減し、しかもインヒ
ビタ成分を含まない組成になる鋼スラブを、連続鋳造に
て製造した。ついで、1250℃に加熱後、熱間圧延により
1.6mm厚の熱延板としたのち、窒素雰囲気中にて 850℃
で60秒間均熱したのち、急冷した。ついで、冷間圧延に
より0.20mmの最終板厚としたのち、水素:50 vol%、窒
素:50 vol%、露点:−30℃の雰囲気中にて 920℃で均
熱10秒間の再結晶焼鈍を行った。その後、焼鈍分離剤を
適用しないサンプルおよび焼鈍分離剤としてMgOを水と
混合してスラリーとして塗布したサンプルを作成し、こ
れらのサンプルに最終仕上焼鈍を施した。この最終仕上
焼鈍は、露点:−20℃の窒素雰囲気中にて常温から 850
℃まで50℃/hの速度で昇温し、この温度に50時間保定し
たのち、さらに25℃/hの速度で種々の温度まで昇温し
た。
Hereinafter, an experiment which has succeeded in the present invention will be described. % By mass, containing 0.0025% of C, 3.5% of Si and 0.04% of Mn, and 50 ppm of Al and 10 ppm of N
In addition, a steel slab having a composition not containing an inhibitor component and reducing other components to 30 ppm or less was manufactured by continuous casting. Then, after heating to 1250 ° C, hot rolling
1.6mm hot rolled sheet, then 850 ℃ in nitrogen atmosphere
And then quenched. Then, after cold rolling to a final plate thickness of 0.20 mm, recrystallization annealing was performed at 920 ° C. in an atmosphere of hydrogen: 50 vol%, nitrogen: 50 vol%, and dew point: −30 ° C. for 10 seconds. went. Thereafter, a sample to which no annealing separator was applied and a sample in which MgO was mixed with water as an annealing separator and applied as a slurry were prepared, and these samples were subjected to final finish annealing. This final annealing is carried out in a nitrogen atmosphere at a dew point of −20 ° C. from room temperature to 850 ° C.
The temperature was raised to 50 ° C./h at a rate of 50 ° C./h, kept at this temperature for 50 hours, and further raised to various temperatures at a rate of 25 ° C./h.

【0008】かくして得られた製品板の鉄損W
10/1000(周波数:1000Hzで 1.0Tまで励磁した時の鉄
損)について調べた結果を、最終仕上焼鈍到達温度との
関係を、図1に示す。また、同図には、比較のため、同
じ板厚の市販の方向性電磁鋼板および無方向性電磁鋼板
の鉄損 (W10/1000)について調べた結果も併せて示す。
なお、市販の方向性電磁鋼板および無方向性電磁鋼板の
最終仕上焼鈍到達温度は不明なので図の右縦軸上に示し
た。同図に示したように、焼鈍分離剤を適用しないサン
プルでは、最終仕上焼鈍の到達温度が 850〜950 ℃の範
囲で特に良好な鉄損が得られ、1000℃を超えると劣化す
ることが判明した。一方、焼鈍分離剤としてMgOを適用
したサンプルでは、焼鈍分離剤を適用しないサンプルに
比べて、最終仕上焼鈍到達温度の如何にかかわらず、10
00Hzにおける鉄損は劣っており、最良でも市販の方向性
電磁鋼板と同等の鉄損しか得られなかった。
[0008] The iron loss W of the product sheet thus obtained
FIG. 1 shows the results of investigation on 10/1000 (iron loss when excited to 1.0 T at a frequency of 1000 Hz) and the relationship with the final finishing annealing temperature. The figure also shows, for comparison, the results of an examination of the iron loss ( W10 / 1000 ) of commercially available grain -oriented electrical steel sheets and non-oriented electrical steel sheets of the same thickness.
In addition, since the final finishing annealing temperature of the commercial grain-oriented electrical steel sheet and the non-oriented electrical steel sheet is unknown, it is shown on the right vertical axis of the figure. As shown in the figure, it was found that the samples without the annealing separator showed particularly good iron loss when the final annealing temperature reached 850-950 ° C, and deteriorated when the temperature exceeded 1000 ° C. did. On the other hand, in the sample to which MgO was applied as the annealing separator, compared to the sample to which the annealing separator was not applied, 10% regardless of the final finishing annealing temperature.
The iron loss at 00 Hz was inferior, and at best only an iron loss equivalent to that of a commercial grain-oriented electrical steel sheet was obtained.

【0009】次に、焼鈍分離剤を適用しない場合に、良
好な高周波鉄損が得られた理由を解明するために、上記
の実験で得られた最終仕上焼鈍到達温度が 850℃である
焼鈍分離剤を適用しないサンプルとMgOを適用したサン
プルおよび市販の方向性電磁鋼板について、表面酸化被
膜をフッ酸による化学研磨によって除去すると共に表面
を平滑化して、商用周波数での鉄損W17/50 および高周
波での鉄損W10/1000を測定した結果を、それぞれ比較
して図2(a), (b)に示す。同図に示したとおり、焼鈍分
離剤を適用したサンプルでは、表面の酸化被膜を除去
し、さらに表面を平滑化することにより、1000Hzにおけ
る高周波鉄損が大幅に改善され、焼鈍分離剤を適用しな
かったサンプルの鉄損に近い良好な値になった。また、
方向性電磁鋼板についても、表面被膜の除去により若干
の高周波鉄損の改善が認められた。この点、焼鈍分離剤
を適用しなかったサンプルでは、表面被膜の除去前後
で、高周波鉄損の変化はほとんど認められなかった。
Next, in order to clarify the reason why a good high-frequency iron loss was obtained when the annealing separator was not applied, the annealing separation in which the final finish annealing temperature obtained in the above experiment was 850 ° C. Regarding the sample to which the agent was not applied, the sample to which MgO was applied, and the commercial grain- oriented electrical steel sheet, the surface oxide film was removed by chemical polishing with hydrofluoric acid and the surface was smoothed, so that iron loss W 17/50 and commercial frequency were obtained. The results of measuring the iron loss W 10/1000 at a high frequency are shown in FIGS. 2 (a) and 2 (b) for comparison. As shown in the figure, in the sample to which the annealing separator was applied, high-frequency iron loss at 1000 Hz was significantly improved by removing the oxide film on the surface and smoothing the surface. The result was a good value close to the iron loss of the sample that did not exist. Also,
With respect to the grain-oriented electrical steel sheets as well, a slight improvement in high-frequency iron loss was observed by removing the surface coating. In this respect, in the sample to which the annealing separator was not applied, almost no change in the high-frequency iron loss was observed before and after the removal of the surface coating.

【0010】図2の結果は、鋼板表面に形成される酸化
被膜が高周波鉄損を大幅に劣化させるということを示唆
している。また、被膜除去後の鉄損を比較すると、方向
性電磁鋼板よりも、本実験のサンプルの方が鉄損が良好
であった。この実験では、両者とも表面状態は電解研磨
によって鏡面化されているので、表面状態以外にも鉄損
改善因子が存在することが判明した。
The results in FIG. 2 suggest that the oxide film formed on the surface of the steel sheet significantly deteriorates high frequency iron loss. Also, comparing the iron loss after removing the coating, the iron loss of the sample of the present experiment was better than that of the grain-oriented electrical steel sheet. In this experiment, it was found that both of the surface states were mirror-finished by electrolytic polishing, and that there were iron loss improving factors other than the surface state.

【0011】そこで、次に、その因子を探るべく、良好
な高周波鉄損が得られた焼鈍分離剤を適用しないサンプ
ルについて、その結晶組織を調査した。図3に、850 ℃
で保定終了後の結晶組織について調べた結果を示す。同
図によれば、数cmもの粗大な二次再結晶粒の内部に粒径
が0.15〜1.00mm程度の微細結晶粒が散在していることが
分かる。
Then, next, in order to find out the factor, a crystal structure of a sample to which good annealing iron loss was obtained without using the annealing separator was examined. Figure 3 shows that 850 ° C
Shows the results of examining the crystal structure after completion of the retention. According to the figure, it can be seen that fine crystal grains having a grain size of about 0.15 to 1.00 mm are scattered inside coarse secondary recrystallized grains of several cm.

【0012】そして、このような粒径が0.15〜1.00mmの
範囲の微細結晶粒の存在頻度と高周波における鉄損との
相関も大きいことが判明した。図4に、微細粒の存在頻
度と高周波鉄損 (W10/1000)の関係について調べた結果
を示す。ここに、微細粒の存在頻度は、鋼板表面の3cm
角の領域内での粒径(円相当径)が0.15〜1.00mmの微細
結晶粒の数を計測して求めた。同図に示したとおり、二
次再結晶粒内部における微細結晶粒の存在頻度が高くな
るほど、特に10個/cm2 以上の頻度で高周波鉄損(W
10/1000 )が格段に向上することが新たに究明された。
It was also found that the correlation between the frequency of existence of such fine crystal grains having a particle size in the range of 0.15 to 1.00 mm and iron loss at high frequencies was large. FIG. 4 shows the results of a study on the relationship between the frequency of the presence of fine particles and the high-frequency iron loss ( W10 / 1000 ). Here, the frequency of the presence of fine grains is 3 cm
The number of fine crystal grains having a grain size (equivalent circle diameter) of 0.15 to 1.00 mm in the corner region was measured and determined. As shown in the drawing, as the frequency of presence of fine crystal grains inside the secondary recrystallized grains is increased, in particular 10 / cm 2 or more frequently in the high-frequency iron loss (W
10/1000 ) has been found to be significantly improved.

【0013】次に、高周波鉄損を改善するための製造条
件の適正化に関する知見を得るために、高周波鉄損とゴ
ス方位粒面積率との関係、さらにはゴス方位粒面積率に
及ぼす冷延前の結晶粒径の影響について調査した。な
お、冷延前の結晶粒径は、熱延板焼鈍条件を変更するこ
とにより、種々に変化させた。また、ゴス方位粒面積率
とは、ゴス方位からのずれ角が20°以内である結晶粒の
存在頻度を意味する。すなわち、質量%で、C:0.003
%、Si:3.4 %、Mn:0.06%を含有し、かつAlを 50pp
m、Nを 22ppm、その他の成分を 30ppm以下に低減し、
しかもインヒビタ成分を含まない組成になる鋼スラブ
を、連続鋳造にて製造した。ついで、1200℃に加熱後、
熱間圧延により 1.6mm厚の熱延板としたのち、この熱延
板を窒素雰囲気中にて種々の温度、均熱時間で焼鈍した
のち、急冷した。その後、最終冷延前の粒径を測定した
のち、 200℃の温度での冷間圧延を行って0.20mmの最終
板厚とした。ついで水素:50 vol%、窒素:50 vol%、
露点:−50℃の雰囲気中にて 930℃で均熱15秒の再結晶
焼鈍を行ったのち、焼鈍分離剤を適用せずに最終仕上焼
鈍を施した。この最終仕上焼鈍は、露点:−20℃の窒素
雰囲気中にて常温から 875℃まで50℃/hの速度で昇温
し、この温度に50時間保定する条件で行った。かくして
得られた製品板のゴス方位面積率および高周波鉄損(W
10/1000 )を測定した。
Next, in order to obtain knowledge on the optimization of the manufacturing conditions for improving the high frequency iron loss, the relationship between the high frequency iron loss and the goss orientation grain area ratio, and furthermore, the cold rolling effect on the goss orientation grain area rate The effect of the previous grain size was investigated. In addition, the crystal grain size before cold rolling was variously changed by changing the annealing conditions of the hot rolled sheet. Further, the Goss orientation grain area ratio means the frequency of existence of crystal grains having a deviation angle from the Goss orientation within 20 °. That is, in mass%, C: 0.003
%, Si: 3.4%, Mn: 0.06%, and 50pp of Al
m and N to 22ppm and other components to 30ppm or less,
In addition, a steel slab having a composition containing no inhibitor component was manufactured by continuous casting. Then, after heating to 1200 ° C,
After a hot-rolled sheet having a thickness of 1.6 mm was formed by hot rolling, the hot-rolled sheet was annealed in a nitrogen atmosphere at various temperatures and soaking time, and then rapidly cooled. Then, after measuring the grain size before final cold rolling, cold rolling was performed at a temperature of 200 ° C. to obtain a final thickness of 0.20 mm. Then hydrogen: 50 vol%, nitrogen: 50 vol%,
Dew point: After performing recrystallization annealing at 930 ° C. for 15 seconds in an atmosphere of −50 ° C. in an atmosphere of −50 ° C., final finishing annealing was performed without using an annealing separator. This final finish annealing was performed under the condition that the temperature was raised from room temperature to 875 ° C. at a rate of 50 ° C./h in a nitrogen atmosphere having a dew point of −20 ° C., and maintained at this temperature for 50 hours. The Goss orientation area ratio and high-frequency iron loss (W
10/1000 ).

【0014】図5に、高周波鉄損(W10/1000 )とゴス
方位粒面積率との関係を示す。同図によれば、ゴス方位
粒面積率が50%以上になると市販の方向性電磁鋼板を凌
ぐ高周波鉄損が得られている。また、図6に、冷延前粒
径とゴス方位粒面積率の関係を示したが、冷延前粒径が
150μm 未満の場合に、50%以上のゴス方位粒面積率が
確保されている。この結果、良好な高周波鉄損を得るた
めの好適製造条件として、最終冷延前の粒径を 150μm
未満にする必要があることが判明した。
FIG. 5 shows the relationship between the high-frequency iron loss ( W10 / 1000 ) and the goss orientation grain area ratio. According to the figure, when the Goss orientation grain area ratio is 50% or more, a high-frequency iron loss exceeding that of a commercial grain-oriented electrical steel sheet is obtained. FIG. 6 shows the relationship between the grain size before cold rolling and the area ratio of the Goss orientation grains.
In the case of less than 150 μm, a Goss orientation grain area ratio of 50% or more is secured. As a result, as a suitable manufacturing condition for obtaining good high-frequency iron loss, the particle size before final cold rolling was 150 μm.
It turns out that it needs to be less than.

【0015】以上の実験結果をまとめると、インヒビタ
を含有しない高純度素材を用い、かつ最終仕上焼鈍時に
おけるフォルステライト被膜の形成を抑制して平滑な表
面とし、さらに最終仕上焼鈍における到達温度を 975℃
以下に抑えて、二次再結晶粒内に微細結晶粒を残存させ
ることによって、従来の方向性電磁鋼板に比べて高周波
鉄損が大幅に改善されることが知見された。また、最終
冷延前粒径を 150μm 未満にすることが、ゴス方位粒面
積率を50%以上確保して良好な高周波鉄損を得る上で有
効であることも併せて判明した。本発明は、上記の知見
に立脚するものである。
The above experimental results can be summarized as follows: using a high-purity material containing no inhibitor, suppressing the formation of a forsterite film at the time of final finish annealing to obtain a smooth surface, and further increasing the ultimate temperature during final finish annealing to 975 mm. ° C
It has been found that the high frequency iron loss is significantly improved by keeping fine crystal grains in the secondary recrystallized grains below, as compared with the conventional grain-oriented electrical steel sheet. It was also found that setting the particle size before final cold rolling to less than 150 μm is effective in securing a Goss orientation grain area ratio of 50% or more and obtaining good high-frequency iron loss. The present invention is based on the above findings.

【0016】すなわち、本発明の要旨構成は次のとおり
である。 1.質量%で、Si:2.0 〜8.0 %を含む組成になり、粒
径が1mm以下の微細粒を除いて測定した鋼板表面におけ
る二次再結晶平均粒径が5mm以上で、かつ二次再結晶粒
の内部に粒径が0.15mm以上、1.00mm以下の微細結晶粒を
10個/cm2 以上の頻度で含み、さらに{110}<00
1>方位からの方位差が20°以内の結晶粒の面積率が50
%以上で、しかもフォルステライト(Mg2SiO4) を主体と
する下地被膜を有しないことを特徴とする、高周波鉄損
の良好な方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows. 1. % By mass, the composition containing Si: 2.0 to 8.0%, the average secondary recrystallized grain size on the steel sheet surface measured excluding fine grains having a grain size of 1 mm or less is 5 mm or more, and the secondary recrystallized grains Fine crystal grains with a particle size of 0.15 mm or more and 1.00 mm or less inside
Included at a frequency of 10 / cm 2 or more, and {110} <00
1> The area ratio of crystal grains with an orientation difference of 20 ° or less from the orientation is 50
% Or more, and not having a base coat mainly composed of forsterite (Mg 2 SiO 4 ), characterized by having good high-frequency iron loss.

【0017】2.上記1において、鋼板が、質量%で、
さらに、Ni:0.005 〜1.50%、Sn:0.01〜1.50%、Sb:
0.005 〜0.50%、Cu:0.01〜1.50%、P:0.005 〜0.50
%およびCr:0.01〜1.50%のうちから選んだ1種または
2種以上を含有する組成になることを特徴とする、高周
波鉄損の良好な方向性電磁鋼板。
2. In the above item 1, the steel sheet is expressed in mass%,
Further, Ni: 0.005 to 1.50%, Sn: 0.01 to 1.50%, Sb:
0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.005 to 0.50
% And Cr: A grain-oriented electrical steel sheet having a good high-frequency iron loss, characterized in that the composition contains one or more selected from 0.01 to 1.50%.

【0018】3.質量%で、C:0.08%以下、Si:2.0
〜8.0 %およびMn:0.005 〜3.0 %を含み、かつAlを 1
00 ppm以下、Nを 50ppm以下に低減した組成になる鋼ス
ラブを、熱間圧延し、ついで熱延板焼鈍を施したのち、
1回または中間焼鈍を挟む2回以上の冷間圧延を、最終
冷延前の粒径を 150μm 未満として施し、ついで再結晶
焼鈍を施して、該焼鈍後の粒径を30〜80μm とし、その
後焼鈍分離剤を用いず、またはMgOを含有しない焼鈍分
離剤を塗布してから、975 ℃以下の温度で最終仕上焼鈍
を行うことを特徴とする、高周波鉄損の良好な方向性電
磁鋼板の製造方法。
3. In mass%, C: 0.08% or less, Si: 2.0
~ 8.0% and Mn: 0.005 ~ 3.0%, and Al
A steel slab having a composition of not more than 00 ppm and N reduced to not more than 50 ppm is hot-rolled, and then subjected to hot-rolled sheet annealing.
Cold rolling is performed once or twice or more with intermediate annealing, with the grain size before final cold rolling being less than 150 μm, followed by recrystallization annealing to make the grain size after the annealing 30 to 80 μm, Manufacture of grain-oriented electrical steel sheets with good high-frequency iron loss, characterized by applying an annealing separator that does not use an annealing separator or does not contain MgO, and then performs final finishing annealing at a temperature of 975 ° C or less. Method.

【0019】4.上記3において、鋼スラブが、質量%
で、さらに、Ni:0.005 〜1.50%、Sn:0.01〜1.50%、
Sb:0.005 〜0.50%、Cu:0.01〜1.50%、P:0.005 〜
0.50%およびCr:0.01〜1.50%のうちから選んだ1種ま
たは2種以上を含有する組成になることを特徴とする、
高周波鉄損の良好な方向性電磁鋼板の製造方法。
4. In the above item 3, the steel slab contains
In addition, Ni: 0.005 to 1.50%, Sn: 0.01 to 1.50%,
Sb: 0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.005 to
0.50% and Cr: a composition containing one or more selected from 0.01 to 1.50%,
A method for producing grain-oriented electrical steel sheets with good high-frequency iron loss.

【0020】[0020]

【作用】本発明を完成させるに至った新知見の一点目、
すなわち焼鈍分離剤を適用しないか、または焼鈍分離剤
としてMgOを使用しないことでフォルステライト被膜の
形成を排除することにより、高周波鉄損が改善する理由
については必ずしも明らかではないが、本発明者らは以
下のように考えている。焼鈍分離剤として一般的に適用
されるMgOは、脱炭焼鈍および最終仕上焼鈍時に形成さ
れるSiO2と高温で反応してフォルステライト (Mg2SiO4)
下地被膜を鋼板表面に形成させ、リン酸塩等を主体とし
た張力コーティングとの密着性を確保する役割を担って
いる。フォルステライト被膜と地鉄との界面は俗にアン
カー部と呼ばれる部分であり、酸化物が複雑な形状で地
鉄と混在している。このような複雑な構造は、リン酸塩
等を主体とした張力コーティングとの密着性を確保する
のに効果がある一方で、地鉄表面の平滑性を著しく損な
っている。高周波域で磁化する場合、商用周波数の場合
に比較して、より表面での磁化が優先して起こる表皮効
果が現れる。そのため、高周波鉄損は、平滑度の高い表
面であるフォルステライト被膜を有しない場合のほうが
良好となるものと推察される。
[Function] The first point of the new findings that led to the completion of the present invention,
That is, the reason why the high frequency iron loss is improved by eliminating the formation of the forsterite film by not using the annealing separator or using MgO as the annealing separator is not always clear, but the present inventors have found that. Thinks as follows. MgO, which is generally applied as an annealing separator, reacts with SiO 2 formed at the time of decarburizing annealing and final finishing annealing at a high temperature and forsterite (Mg 2 SiO 4 )
An undercoat film is formed on the surface of the steel sheet, and plays a role in ensuring adhesion with a tension coating mainly composed of phosphate or the like. The interface between the forsterite film and the steel is a part commonly called an anchor portion, and the oxide is mixed with the steel in a complicated shape. Such a complicated structure is effective in securing adhesion to a tension coating mainly composed of phosphate or the like, but significantly impairs the smoothness of the ground iron surface. When magnetized in a high frequency region, a skin effect occurs in which magnetization on the surface takes precedence as compared with the case of the commercial frequency. Therefore, it is presumed that the high-frequency iron loss is better when the forsterite film, which is a surface having high smoothness, is not provided.

【0021】次に、最終仕上焼鈍における到達温度を 9
75℃以下に抑えて微細結晶粒を残存させることが、鉄損
の低減に寄与する理由については必ずしも明らかではな
いが、本発明者らは以下のように考えている。すなわ
ち、二次再結晶粒の内部の微細結晶粒の存在は、磁区を
細分化して渦電流損失を低減するものと考えられる。通
常のインヒビタを用いる技術では、975℃を超える高温
焼鈍でインヒビタ成分(S, Se, N等)を純化しなけれ
ば低鉄損が得られないが、本発明のようにインヒビタを
使用しない方法では、純化を行わなくとも二次再結晶が
完了すれば低鉄損が得られるため、仕上焼鈍における到
達温度を低めに抑え、微細粒を残存させる方法が有効に
作用するものと考えられる。
Next, the ultimate temperature in the final finish annealing is set to 9
Although it is not always clear why keeping fine crystal grains at 75 ° C. or less contributes to reducing iron loss, the present inventors consider as follows. That is, it is considered that the presence of fine crystal grains inside the secondary recrystallized grains reduces the eddy current loss by subdividing the magnetic domains. In a technique using an ordinary inhibitor, a low iron loss cannot be obtained unless an inhibitor component (S, Se, N, etc.) is purified by high-temperature annealing at a temperature exceeding 975 ° C., but in a method using no inhibitor as in the present invention, In addition, since a low iron loss can be obtained if the secondary recrystallization is completed without performing purification, it is considered that a method in which the ultimate temperature in the finish annealing is suppressed to a low level and fine grains remain remains effective.

【0022】また、最終冷延前の粒径の粗大化を抑制す
ることにより、ゴス方位粒面積率が高まり高周波鉄損が
向上することについては、冷延前粒径を微細に保つこと
で、一次再結晶集合組織の{111}組織の集積度が高
まり、ゴス方位二次再結晶粒の成長に有利な一次再結晶
集合組織が形成されるためと考えられる。
In addition, by suppressing the coarsening of the grain size before the final cold rolling, the area ratio of the Goss orientation grain is increased and the high-frequency iron loss is improved. It is considered that the degree of accumulation of the {111} structure of the primary recrystallization texture is increased, and a primary recrystallization texture advantageous for the growth of Goss orientation secondary recrystallized grains is formed.

【0023】さらに、本発明において、インヒビタ成分
を含まない鋼において二次再結晶が発現する理由は、以
下のように考えている。発明者らは、ゴス方位粒が二次
再結晶する理由について鋭意研究を重ねた結果、一次再
結晶組織における方位差角が20〜45°である粒界が重要
な役割を果たしていることを見出し、Acta Materia1 45
巻(1997)1285ページに報告した。方向性電磁鋼板の二
次再結晶直前の状態である一次再結晶組織を解析し、様
々な結晶方位を持つ各々の結晶粒周囲の粒界について、
粒界方位差角が20〜45°である粒界の全体に対する割合
(%)を調査した結果を図7に示す。図7において、結
晶方位空間はオイラー角(Φ1 、Φ、Φ2 )のΦ2 =45
°断面を用いて表示しており、ゴス方位など主な方位を
模式的に表示してある。
Further, in the present invention, the reason why secondary recrystallization is exhibited in steel containing no inhibitor component is considered as follows. The inventors have conducted intensive studies on the reason why Goss grains undergo secondary recrystallization and found that grain boundaries in which the misorientation angle in the primary recrystallized structure is 20 to 45 ° play an important role. , Acta Materia1 45
Volume (1997), p. 1285. Analyze the primary recrystallization structure, which is the state immediately before the secondary recrystallization of grain-oriented electrical steel sheets, and for the grain boundaries around each crystal grain having various crystal orientations,
FIG. 7 shows the results of investigating the ratio (%) of the grain boundaries having a grain boundary azimuth difference angle of 20 to 45 ° to the whole. In FIG. 7, the crystal orientation space is Φ 2 = 45 of Euler angles (Φ 1 , Φ, Φ 2 ).
° The cross section is used for display, and main directions such as the Goss direction are schematically displayed.

【0024】図7は、方向性電磁鋼板の一次再結晶組織
における方位差角が20〜45°である粒界の存在頻度を示
したものであるが、ゴス方位が最も高い頻度を持つ。方
位差角:20〜45°の粒界は、C.G.Dunnらによる実験デー
タ(AIME Transaction 188巻(1949) P.368 )によれ
ば、高エネルギー粒界である。高エネルギー粒界は、粒
界内の自由空間が大きく乱雑な構造をしている。粒界拡
散は、粒界を通じて原子が移動する過程であるので、粒
界中の自由空間の大きい高エネルギー粒界の方が粒界拡
散が速い。二次再結晶は、インヒビタと呼ばれる析出物
の拡散律速による成長・粗大化に伴って発現することが
知られている。高エネルギー粒界上の析出物は、仕上焼
鈍中に優先的に粗大化が進行するので、ゴス方位となる
粒の粒界が優先的にピン止めがはずれて、粒界移動を開
始しゴス方位粒が成長すると考えられる。
FIG. 7 shows the frequency of grain boundaries having a misorientation angle of 20 to 45 ° in the primary recrystallized structure of grain-oriented electrical steel sheets. The Goss orientation has the highest frequency. According to the experimental data by CGDunn et al. (AIME Transaction 188 (1949) P.368), the grain boundary having a misorientation angle of 20 to 45 ° is a high energy grain boundary. The high energy grain boundary has a large free space in the grain boundary and has a random structure. Since the grain boundary diffusion is a process in which atoms move through the grain boundary, the high energy grain boundary having a large free space in the grain boundary has a faster grain boundary diffusion. It is known that secondary recrystallization develops with growth and coarsening of a precipitate called an inhibitor due to diffusion control. The precipitates on the high-energy grain boundaries are preferentially coarsened during the finish annealing, so that the grain boundaries of the grains having the Goss orientation are preferentially unpinned, and the grain boundaries start to move and the Goss orientation is started. The grains are thought to grow.

【0025】発明者らは、上記の研究をさらに発展させ
て、二次再結晶におけるゴス方位粒の優先的成長の本質
的要因は、一次再結晶組織中の高エネルギー粒界の分布
状態にあり、インヒビタの役割は、高エネルギー粒界で
あるゴス方位粒の粒界と他の粒界との移動速度差を生じ
させることにあることを突き止めた。従って、この理論
に従えば、インヒビタを用いなくとも、粒界の移動速度
差を生じさせることができれば、ゴス方位に二次再結晶
させることが可能となる。
The present inventors have further developed the above research, and the essential factor of preferential growth of Goss-oriented grains in secondary recrystallization is the distribution of high-energy grain boundaries in the primary recrystallized structure. It has been found that the role of the inhibitor is to cause a difference in the moving speed between the grain boundary of the Goss orientation grain, which is a high energy grain boundary, and another grain boundary. Therefore, according to this theory, it is possible to secondary recrystallize in Goss orientation if a difference in the moving speed of the grain boundary can be generated without using an inhibitor.

【0026】鋼中に存在する不純物元素は、粒界とくに
高エネルギー粒界に偏析し易いため、不純物元素を多く
含む場合には、高エネルギー粒界と他の粒界の移動速度
に差がなくなっているものと考えられる。従って、素材
の高純度化によって、上記のような不純物元素の影響を
排除することにより、高エネルギー粒界の構造に依存す
る本来的な移動速度差が顕在化して、ゴス方位粒に二次
再結晶させることが可能になる。
Since impurity elements existing in steel are liable to segregate at grain boundaries, especially at high energy grain boundaries, when there are many impurity elements, there is no difference in the moving speed between the high energy grain boundaries and other grain boundaries. It is thought that it is. Therefore, by removing the influence of the impurity elements as described above by purifying the material, an inherent difference in the moving speed depending on the structure of the high-energy grain boundary becomes apparent, and the secondary re-growth occurs in the Goss-oriented grains. It becomes possible to crystallize.

【0027】[0027]

【発明の実施の形態】次に、本発明の構成用件の限定理
由について述べる。まず、本発明の電磁鋼板の成分とし
ては、質量%でSi:2 %〜8.0 %を含有する必要があ
る。というのは、Siが2%に満たないと十分な鉄損改善
効果が得られず、一方8%を超えると加工性が劣化する
からである。また、粒径が1mm以下の微細粒を除いて測
定した鋼板表面における二次再結晶平均粒径が5mm以上
であることが必要である。というのは、二次再結晶粒径
が5mm未満では、ゴス方位粒面積率が低下し、良好な高
周波鉄損が得られないからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the reasons for limiting the constitutional requirements of the present invention will be described. First, as a component of the magnetic steel sheet of the present invention, it is necessary to contain Si: 2% to 8.0% by mass%. This is because if the content of Si is less than 2%, a sufficient iron loss improving effect cannot be obtained, while if the content exceeds 8%, the workability is deteriorated. Further, it is necessary that the average secondary recrystallization particle size on the surface of the steel sheet measured excluding fine particles having a particle size of 1 mm or less is 5 mm or more. This is because if the secondary recrystallized grain size is less than 5 mm, the Goss orientation grain area ratio is reduced, and good high-frequency iron loss cannot be obtained.

【0028】さらに、本発明の鋼板は、二次再結晶粒の
内部に粒径0.15mm以上、1.00mm以下の微細結晶粒を10個
/cm2 以上の頻度で含有することが、高周波鉄損低減の
ために必要である。ここに、微細粒の粒径が0.15mm未満
の場合あるいは1.00mm超の場合には、磁区の細分化効果
が小さく鉄損低減に寄与しないので、粒径が0.15〜1.00
mmの範囲の微細結晶粒の存在頻度に着目するが、かかる
微細結晶粒の存在頻度が10個/cm2に満たないと、磁区
細分化効果が減少して、十分な高周波鉄損の改善が望め
ない。
Further, the steel sheet of the present invention may contain fine crystal grains having a grain size of 0.15 mm or more and 1.00 mm or less at a frequency of 10 or more / cm 2 or more in the secondary recrystallized grains. Necessary for reduction. Here, when the particle size of the fine particles is less than 0.15 mm or more than 1.00 mm, since the domain refining effect is small and does not contribute to the reduction of iron loss, the particle size is 0.15 to 1.00.
Focusing on the frequency of the presence of fine crystal grains in the range of mm, if the frequency of the presence of such fine crystal grains is less than 10 / cm 2 , the magnetic domain refining effect is reduced and sufficient improvement of high-frequency iron loss is not achieved. I can't hope.

【0029】また、{110}<001>方位からの方
位差が20°以内結晶粒の面積率いわゆるゴス方位粒面積
率が50%以上、好ましくは80%以上であることも良好な
高周波鉄損を得る上での必須の条件である。というの
は、ゴス方位粒面積率が50%未満では、既存の方向性電
磁と同様な高周波鉄損になってしまい、本発明による電
磁鋼板の優位性がなくなるからである。
It is also preferable that the area ratio of crystal grains in which the orientation difference from the {110} <001> orientation is within 20 °, that is, the so-called Goss orientation grain area ratio is 50% or more, preferably 80% or more. This is an essential condition for obtaining. This is because, if the Goss orientation grain area ratio is less than 50%, high-frequency iron loss similar to that of existing directional electromagnetics occurs, and the electrical steel sheet according to the present invention loses its superiority.

【0030】さらに、鋼板表面にはフォルステライト
(Mg2SiO4)を主体とした下地被膜を有しないことが、磁
気的に平滑な平面を有し、高周波鉄損を確保するための
大前提である。
Further, forsterite is applied to the surface of the steel sheet.
Not having an undercoat mainly composed of (Mg 2 SiO 4 ) is a major premise for ensuring a magnetically smooth flat surface and ensuring high-frequency iron loss.

【0031】次に、本発明の電磁鋼板を製造する際の素
材スラブ成分の限定理由をについて説明する。なお、以
下に示す成分組成の%表示は「質量%」である。 C:0.08%以下 素材段階でC量が0.08%を超えていると、脱炭焼鈍を施
してもCを磁気時効が起こらない 50ppm以下まで低減す
ることが困難になるので、C量は0.08%以下に制限して
おく必要がある。特に、素材段階で 50ppm以下に低減し
ておくことが、再結晶焼鈍を乾燥雰囲気中で行い脱炭を
省略して平滑な製品表面を得る上で望ましい。
Next, the reasons for limiting the raw material slab components in producing the magnetic steel sheet of the present invention will be described. The percentages of the component compositions shown below are “% by mass”. C: 0.08% or less If the C content exceeds 0.08% at the material stage, it becomes difficult to reduce C to 50 ppm or less where magnetic aging does not occur even if decarburizing annealing is performed, so the C content is 0.08%. It is necessary to limit to the following. In particular, it is desirable to reduce the content to 50 ppm or less at the material stage in order to obtain a smooth product surface by performing recrystallization annealing in a dry atmosphere and eliminating decarburization.

【0032】Mn:0.005 〜3.0 % Mnは、熱間加工性を良好にするために必要な元素である
が、0.005 %に満たないその添加効果に乏しく、一方
3.0%を超えると磁束密度が低下するので、Mn量は0.005
〜3.0 %とする。なお、Siは、製品板である電磁鋼板
について、上述したところと同じである。
Mn: 0.005 to 3.0% Mn is an element necessary for improving the hot workability, but its effect of adding less than 0.005% is poor.
If it exceeds 3.0%, the magnetic flux density decreases.
To 3.0%. Here, Si is the same as that described above for the electromagnetic steel sheet as the product sheet.

【0033】Al:100 ppm 以下、N:50 ppm以下 Alは 100 ppm以下、またNは 50ppm以下好ましくは 30p
pm以下まで低減することが、良好に二次再結晶を発現さ
せる上で必要である。さらに、インヒビタ形成元素であ
るSやSeについても 50ppm以下、好ましくは30 ppm以下
に低減することが有利である。その他、窒化物形成元素
であるTi, Nb, B, Ta, V等についても、それぞれ50pp
m 以下に低減することが鉄損の劣化を防ぎ、加工性を確
保する上で有効である。
Al: 100 ppm or less, N: 50 ppm or less Al is 100 ppm or less, and N is 50 ppm or less, preferably 30 p
It is necessary to reduce to less than pm in order to achieve good secondary recrystallization. Further, it is advantageous to reduce the inhibitory element S and Se to 50 ppm or less, preferably 30 ppm or less. In addition, each of the nitride forming elements Ti, Nb, B, Ta, V, etc. is also 50pp
Reduction to m or less is effective in preventing deterioration of iron loss and ensuring workability.

【0034】以上、必須成分および抑制成分について説
明したが、本発明では、その他にも以下に述べる元素を
適宜含有させることができる。すなわち、熱延板組織を
改善して高周波鉄損を向上させる目的で、Niを添加する
ことができる。しかしながら、添加量が 0.005%未満で
は高周波鉄損の向上が小さく、一方1.50%を超えると二
次再結晶が不安定になり高周波鉄損が劣化するので、Ni
添加量は 0.005〜1.50%とすることが好ましい。また、
電気抵抗を増加させて高周波鉄損を向上させる目的で、
Sn:0.01〜1.50%、Sb:0.005 〜0.50%、Cu:0.01〜1.
50%、P:0.005 〜0.50%およびCr:0.01〜1.5 %等を
単独または複合して添加することができる。しかしなが
ら、それぞれの添加量が下限に満たないと高周波鉄損の
向上効果が小さく、一方上限を超えると二次再結晶粒の
発達が抑制され高周波鉄損が劣化するので、いずれも上
記の範囲で添加する必要がある。
Although the essential components and the inhibiting components have been described above, the present invention may contain other elements as described below. That is, Ni can be added for the purpose of improving the hot-rolled sheet structure and improving the high-frequency iron loss. However, if the addition amount is less than 0.005%, the improvement in high-frequency iron loss is small, while if it exceeds 1.50%, secondary recrystallization becomes unstable and the high-frequency iron loss deteriorates.
The addition amount is preferably 0.005 to 1.50%. Also,
In order to increase high-frequency iron loss by increasing electrical resistance,
Sn: 0.01-1.50%, Sb: 0.005-0.50%, Cu: 0.01-1.
50%, P: 0.005 to 0.50%, Cr: 0.01 to 1.5%, etc. can be added alone or in combination. However, if the amount of each addition is less than the lower limit, the effect of improving the high-frequency iron loss is small, while if it exceeds the upper limit, the development of secondary recrystallized grains is suppressed and the high-frequency iron loss deteriorates. It needs to be added.

【0035】次に、本発明の製造方法について説明す
る。上記の好適成分組成に調整した溶鋼から、通常、造
塊法や連続鋳造法を用いてスラブを製造する。また、直
接鋳造法を用いて 100mm以下の厚さの薄鋳片を直接製造
してもよい。スラブは、通常の方法で加熱して熱間圧延
するが、鋳造後、加熱せずに直ちに熱延に供してもよ
い。また、薄鋳片の場合には、熱間圧延を行っても良い
し、熱間圧延を省略してそのまま以後の工程に進めても
よい。
Next, the manufacturing method of the present invention will be described. A slab is usually manufactured from molten steel adjusted to the above-mentioned preferable component composition by using an ingot-making method or a continuous casting method. Further, a thin slab having a thickness of 100 mm or less may be directly manufactured using a direct casting method. The slab is heated by a usual method and hot rolled, but may be subjected to hot rolling immediately after casting without heating. In the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps.

【0036】ついで、熱延板焼鈍を施す。熱延板焼鈍温
度は、再結晶が進行する 800℃以上とするのが有利であ
るが、{110}<001>方位からの方位差が20°以
内結晶粒の面積率を50%以上確保して、高周波鉄損を向
上させるためには、最終冷延前の粒径を 150μm 未満、
好ましくは 120μm 以下とすることが、現行の方向性電
磁鋼板のレベルを超える高周波鉄損を得る上で有効であ
る。ここに、最終冷延前粒径を 150μm 未満とするため
には、熱延板焼鈍あるいは中間焼鈍の温度を1000℃以下
とすることが好適である。
Then, hot rolled sheet annealing is performed. The annealing temperature of the hot-rolled sheet is advantageously set to 800 ° C. or higher where recrystallization proceeds, but the orientation difference from the {110} <001> orientation is within 20 °. Therefore, to improve high frequency iron loss, the particle size before final cold rolling should be less than 150 μm,
Preferably, the thickness is 120 μm or less, which is effective for obtaining high-frequency iron loss exceeding the level of current grain-oriented electrical steel sheets. Here, in order to reduce the particle diameter before final cold rolling to less than 150 μm, it is preferable to set the temperature of hot-rolled sheet annealing or intermediate annealing to 1000 ° C. or less.

【0037】上記の熱延板焼鈍後、1回または中間焼鈍
を挟む2回以上の冷間圧延を施したのち、再結晶焼鈍を
行い、Cを磁気時効の起こらない 50ppm以下、好ましく
は30ppm 以下に低減する。なお、この冷間圧延に際して
は、圧延温度を 100〜250 ℃に上昇させて行うこと、お
よび冷間圧延途中で 100〜250 ℃の範囲での時効処理を
1回または複数回行うことが、ゴス組織を発達させる点
で有効である。
After the above-described hot-rolled sheet annealing, cold rolling is performed once or twice or more with intermediate annealing, then recrystallization annealing is performed, and C is reduced to 50 ppm or less, preferably 30 ppm or less, at which magnetic aging does not occur. To be reduced. In this cold rolling, it is necessary to raise the rolling temperature to 100 to 250 ° C. and to perform one or more aging treatments in the range of 100 to 250 ° C. during the cold rolling. It is effective in developing the tissue.

【0038】最終冷延後の再結晶焼鈍では、再結晶焼鈍
後の粒径を30〜80μm の範囲に制御する必要がある。と
いうのは、再結晶焼鈍後の粒径が30μm に満たないと、
ゴス方位からずれた方位を持つ二次再結晶粒が発生し
て、高周波鉄損が劣化し、一方再結晶焼鈍後の粒径が80
μm を超えると二次再結晶が起こらなくなるため、やは
り高周波鉄損が劣化するからである。ここに、再結晶焼
鈍後の粒径を30〜80μmに制御するためには、再結晶焼
鈍は 850〜975 ℃の温度範囲の短時間均熱処理を連続焼
鈍で行うことが経済的に有利である。なお、最終冷間圧
延後あるいは再結晶焼鈍後に浸珪法によってSi量を増加
させる技術を併用してもよい。
In the recrystallization annealing after the final cold rolling, the particle size after the recrystallization annealing needs to be controlled in the range of 30 to 80 μm. This is because if the grain size after recrystallization annealing is less than 30 μm,
Secondary recrystallized grains having an orientation deviated from the Goss orientation are generated, and high-frequency iron loss is degraded.
If the thickness exceeds μm, secondary recrystallization does not occur, so that high-frequency iron loss also deteriorates. Here, in order to control the grain size after recrystallization annealing to 30 to 80 μm, it is economically advantageous to perform short-time soaking heat treatment in a temperature range of 850 to 975 ° C. by continuous annealing in recrystallization annealing. . Note that a technique of increasing the amount of Si by a siliconizing method after the final cold rolling or recrystallization annealing may be used in combination.

【0039】その後、必要に応じて焼鈍分離剤を適用す
るが、その際にはシリカと反応してフォルステライトを
形成するMgOは使用しないことが、本発明において肝要
な点である。そのためには、焼鈍分離剤を適用しないこ
とが最も望ましいが、焼鈍分離剤を適用する場合には、
コロイド状シリカ、アルミナ粉末およびBN粉末など、
シリカと反応しない物質を用いる。
Thereafter, an annealing separator is applied as required, but it is important in the present invention that MgO which reacts with silica to form forsterite is not used. For that purpose, it is most desirable not to apply an annealing separator, but when applying an annealing separator,
Colloidal silica, alumina powder and BN powder, etc.
Use a substance that does not react with silica.

【0040】ついで、最終仕上焼鈍を施すことにより二
次再結晶組織を発達させる。この最終仕上焼鈍は二次再
結晶発現のために 800℃以上で行う必要があるが、 800
℃までの加熱速度は、磁気特性に大きな影響を与えない
ので任意の条件でよい。一方、最高到達温度は 975℃以
下とすることが、二次再結晶粒内部に粒径が0.15mm以
上、1.00mm以下の微細結晶粒を散在させることによっ
て、高周波鉄損を改善する上で必要である。
Next, a secondary recrystallization structure is developed by performing a final finish annealing. This final finish annealing must be performed at 800 ° C or higher for secondary recrystallization,
The heating rate up to ° C. does not significantly affect the magnetic properties, and may be any condition. On the other hand, the maximum temperature must be 975 ° C or less to improve high-frequency iron loss by dispersing fine crystal grains of 0.15 mm or more and 1.00 mm or less inside secondary recrystallized grains. It is.

【0041】なお、鋼板を積層して使用する場合には、
鉄損を改善するために、鋼板表面に絶縁コーティングを
施すことが有効である。良好な打抜き性を確保するため
に樹脂を含有する有機系コーティングが望ましいが、溶
接性を重視する場合には無機系コーティングを適用す
る。
When steel sheets are laminated and used,
In order to improve iron loss, it is effective to apply an insulating coating on the steel sheet surface. An organic coating containing a resin is desirable in order to ensure good punching properties, but an inorganic coating is applied when emphasis is placed on weldability.

【0042】[0042]

【実施例】実施例1 C:0.002 %,Si:3.5 %,Mn:0.05%およびSb:0.02
%を含有し、かつAlを40 ppm,Nを9ppm ,その他の成
分を20ppm 以下に低減した組成になる鋼スラブを、連続
鋳造にて製造した。ついで、1100℃, 20分のスラブ加熱
後、熱間圧延により 2.6mm厚の熱延板としたのち、1000
℃, 60秒間均熱の熱延板焼鈍を施した。その後、常温に
よる1回目の冷間圧延にて1.60mmの中間板厚としたの
ち、850 ℃, 10秒間均熱の中間焼鈍を行った。中間焼鈍
後の最終冷延前粒径は70μm であった。ついで、途中板
厚:0.90mmの時に 200℃で5時間の時効処理を挟んで常
温による2回目の冷間圧延により0.20mmの最終板厚に仕
上げた。ついで、水素:75 vol%、窒素:25 vol%の雰
囲気中にて、表1に示す条件で再結晶焼鈍を行った。再
結晶焼鈍後の結晶粒径を測定したのち、焼鈍分離剤を適
用せずに、露点:−50℃、窒素:25 vol%、水素:75 v
ol%の混合雰囲気中にて 800℃までを50℃/hr の速度で
昇温し、 800℃以上を10℃/hの速度で 830℃まで昇温
し、この温度に50時間保持する条件で最終仕上焼鈍を行
った。その後、重クロム酸アルミニウム、エマルジョン
樹脂およびエチレングリコールを混合したコーティング
液を塗布し 300℃で焼き付けて製品とした。
EXAMPLES Example 1 C: 0.002%, Si: 3.5%, Mn: 0.05% and Sb: 0.02%
%, And a composition in which Al has been reduced to 40 ppm, N has been reduced to 9 ppm, and other components have been reduced to 20 ppm or less by continuous casting. Then, after slab heating at 1100 ° C for 20 minutes, hot-rolled to make a hot-rolled sheet of 2.6mm thickness, then 1000
The sheet was annealed at 60 ° C for 60 seconds. Thereafter, the first cold rolling was performed at room temperature to obtain an intermediate sheet thickness of 1.60 mm, and then, an intermediate annealing at 850 ° C. for 10 seconds was performed. The grain size before final cold rolling after intermediate annealing was 70 μm. Then, when the sheet thickness was 0.90 mm in the middle, the sheet was finished to a final sheet thickness of 0.20 mm by the second cold rolling at room temperature with aging treatment at 200 ° C. for 5 hours. Next, recrystallization annealing was performed under the conditions shown in Table 1 in an atmosphere of hydrogen: 75 vol% and nitrogen: 25 vol%. After measuring the crystal grain size after recrystallization annealing, the dew point: -50 ° C, nitrogen: 25 vol%, hydrogen: 75 v without applying an annealing separator.
In a mixed atmosphere of ol%, the temperature was raised up to 800 ° C at a rate of 50 ° C / hr, 800 ° C or more was raised to 830 ° C at a rate of 10 ° C / h, and this temperature was maintained for 50 hours. Final finish annealing was performed. Thereafter, a coating solution containing a mixture of aluminum dichromate, an emulsion resin and ethylene glycol was applied and baked at 300 ° C. to obtain a product.

【0043】かくして得られた製品板について、1mm以
下の微細粒を除いて鋼板表面における二次再結晶平均粒
径を測定した。また、二次再結晶粒の内部における粒
径:0.15mm以上、1.00mm以下の微細結晶粒の存在頻度
を、鋼板表面の3cm角の領域内での微細結晶粒の数を計
測して求めた。さらに、製品板の結晶方位をX線回折法
を用いて30×280 mmの範囲について測定し、{110}
<001>方位からのずれ角が20°以内である結晶粒の
頻度(ゴス方位粒面積率)を測定した。またさらに、40
0 Hzおよび1000Hzの周波数での高周波鉄損(周波数:40
0 Hz,1000Hz)を測定した。得られた結果を表1に併記
する。なお、表1には、比較のため、同じ板厚:0.20mm
の方向性電磁鋼板および無方向性電磁鋼板について、同
様な調査を行った結果も併せて示す。
With respect to the product sheet thus obtained, the average secondary recrystallized grain size on the surface of the steel sheet was measured except for fine grains of 1 mm or less. The frequency of fine crystal grains having a particle size of 0.15 mm or more and 1.00 mm or less inside the secondary recrystallized grains was determined by measuring the number of fine crystal grains in a 3 cm square region of the steel sheet surface. . Further, the crystal orientation of the product plate was measured in the range of 30 × 280 mm using the X-ray diffraction method, and {110}
The frequency of crystal grains having a deviation angle from the <001> orientation within 20 ° (Goth orientation grain area ratio) was measured. Another 40
High frequency iron loss at frequencies of 0 Hz and 1000 Hz (frequency: 40
0 Hz, 1000 Hz) were measured. Table 1 also shows the obtained results. Table 1 shows the same plate thickness: 0.20 mm for comparison.
For the grain-oriented electrical steel sheet and the non-oriented electrical steel sheet, the results of similar investigations are also shown.

【0044】[0044]

【表1】 [Table 1]

【0045】同表に示したとおり、本発明の要件を満足
する発明例はいずれも、従来の方向性電磁鋼板よりも優
れた高周波鉄損が得られている。
As shown in the table, all of the inventions that satisfy the requirements of the present invention have higher high-frequency iron loss than conventional grain-oriented electrical steel sheets.

【0046】実施例2 C:0.003 %,Si:3.6 %およびMn:0.12%を含有し、
かつAlを 30ppm、Nを10 ppmに低減した組成になる鋼ス
ラブを、連続鋳造にて製造した。ついで、1200℃, 20分
のスラブ加熱後、熱間圧延により 2.2mmの熱延板とした
のち、 900℃,30秒間均熱の条件で熱延板焼鈍を行った
のち、常温における1回目の冷間圧延で0.30mmに仕上げ
た。ついで、表2で示す条件で中間焼鈍を行ったのち、
常温にて2回目の冷間圧延を施して0.10mmの最終板厚に
仕上げた。ついで、水素:75 vol%、窒素:25 vol%、
露点:−50℃の雰囲気中にて 900℃, 10秒間均熱の再結
晶焼鈍を行った。再結晶焼鈍後の粒径を測定したのち、
コロイド状シリカを焼鈍分離剤として塗布してから、常
温から 900℃まで30℃/hの速度で 900℃まで昇温し、こ
の温度に50時間保持する最終仕上焼鈍を行った。その
後、重クロム酸アルミニウム、エマルジョン樹脂および
エチレングリコールを混合したコーティング液を塗布し
300℃で焼き付けて製品とした。
Example 2 C: 0.003%, Si: 3.6% and Mn: 0.12%
A steel slab having a composition in which Al was reduced to 30 ppm and N was reduced to 10 ppm was manufactured by continuous casting. Then, after slab heating at 1200 ° C for 20 minutes, a 2.2 mm hot-rolled sheet was formed by hot rolling, and then hot-rolled sheet annealing was performed at 900 ° C for 30 seconds under soaking conditions. Finished to 0.30 mm by cold rolling. Then, after performing intermediate annealing under the conditions shown in Table 2,
A second cold rolling was performed at room temperature to finish to a final thickness of 0.10 mm. Then, hydrogen: 75 vol%, nitrogen: 25 vol%,
Dew point: In a -50 ° C atmosphere, recrystallization annealing was performed at 900 ° C for 10 seconds. After measuring the grain size after recrystallization annealing,
After applying colloidal silica as an annealing separating agent, the temperature was raised from normal temperature to 900 ° C. at a rate of 30 ° C./h to 900 ° C., and final finish annealing was performed at this temperature for 50 hours. After that, apply a coating liquid mixed with aluminum dichromate, emulsion resin and ethylene glycol.
The product was baked at 300 ° C.

【0047】かくして得られた製品板について、実施例
1と同様にして、二次再結晶粒径、微細結晶粒の存在頻
度ゴス方位粒面積率および各周波数での高周波鉄損を測
定した。得られた結果を表2に併記する。なお、表2に
は、比較のため、同じ板厚:0.10mmの 6.5%Si組成にな
る無方向性電磁鋼板について、同様な調査を行った結果
も併せて示す。
With respect to the product sheet thus obtained, the secondary recrystallized grain size, the frequency of existence of fine crystal grains, the area ratio of Goss orientation grains, and the high-frequency iron loss at each frequency were measured in the same manner as in Example 1. The obtained results are also shown in Table 2. For comparison, Table 2 also shows the results of a similar investigation conducted on a non-oriented electrical steel sheet having the same sheet thickness: 0.10 mm and a 6.5% Si composition.

【0048】[0048]

【表2】 [Table 2]

【0049】同表に示したとおり、本発明の要件を満足
する発明例はいずれも、従来の 6.5%Si無方向性電磁鋼
板よりも優れた高周波鉄損が得られている。
As shown in the table, all of the inventions satisfying the requirements of the present invention have higher high-frequency iron loss than the conventional 6.5% Si non-oriented electrical steel sheet.

【0050】実施例3 表3に示す成分組成になる鋼スラブを、1160℃に加熱
後、熱間圧延により 1.6mm厚の熱延板とし、ついで 850
℃, 均熱30秒の条件で熱延板焼鈍を行ったのち、冷間圧
延により0.23mmの最終板厚に仕上げた。この時、最終冷
延前の粒径は40〜60μm であった。ついで、水素:50 v
ol%、窒素:50 vol%、露点:−30℃の雰囲気中にて 9
50℃で均熱10秒の再結晶焼鈍を施した。再結晶焼鈍後の
粒径を測定したのち、焼鈍分離剤を適用せずに、 850℃
まで10℃/hの速度で昇温し、この温度に75時間保持する
最終仕上焼鈍を露点が−40℃の窒素雰囲気中で行った。
その後、リン酸アルミニウム、重クロム酸カリウムおよ
びホウ酸を混合したコーティング液を塗布し 300℃で焼
き付けて製品とした。
Example 3 A steel slab having the composition shown in Table 3 was heated to 1160 ° C., and then hot-rolled into a hot-rolled sheet having a thickness of 1.6 mm.
After performing hot-rolled sheet annealing at 30 ° C. and soaking temperature of 30 seconds, the sheet was finished to a final thickness of 0.23 mm by cold rolling. At this time, the particle size before final cold rolling was 40 to 60 μm. Then hydrogen: 50v
ol%, nitrogen: 50 vol%, dew point: -30 ° C in an atmosphere 9
Recrystallization annealing was performed at 50 ° C for 10 seconds. After measuring the particle size after recrystallization annealing, 850 ℃
The temperature was raised at a rate of 10 ° C./h until the final finishing annealing was performed at this temperature for 75 hours in a nitrogen atmosphere having a dew point of −40 ° C.
Thereafter, a coating solution containing a mixture of aluminum phosphate, potassium dichromate and boric acid was applied and baked at 300 ° C. to obtain a product.

【0051】かくして得られた製品板について、実施例
1と同様にして、二次再結晶粒径、微細結晶粒の存在頻
度ゴス方位粒面積率および周波数:1000Hzでの高周波鉄
損を測定した。得られた結果を表4に示す。なお、同表
には、比較のため、同じ板厚:0.23mmの方向性電磁鋼板
について、同様な調査を行った結果も併せて示す。
For the product sheet thus obtained, the secondary recrystallized grain size, the frequency of the presence of fine crystal grains, the area ratio of the Goss orientation grains, and the high-frequency iron loss at a frequency of 1000 Hz were measured in the same manner as in Example 1. Table 4 shows the obtained results. For comparison, the same table also shows the results of a similar investigation conducted on a grain-oriented electrical steel sheet having the same sheet thickness: 0.23 mm for comparison.

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】表4に示したとおり、本発明の要件を満足
する発明例はいずれも、従来の方向性電磁鋼板よりも優
れた高周波鉄損が得られている。
As shown in Table 4, all of the invention examples satisfying the requirements of the present invention have higher high-frequency iron loss than conventional grain-oriented electrical steel sheets.

【0055】[0055]

【発明の効果】かくして、本発明によれば、インヒビタ
を含有しない高純度成分の素材を用いて、高周波鉄損に
優れた方向性電磁鋼板を安定して得ることができる。ま
た、この発明では、素材中にインヒビター成分を含有し
ないので、スラブの高温加熱や脱炭焼鈍、高温純化焼鈍
などを施す必要がないので、低コストにて大量生産可能
であるという大きな利点がある。
As described above, according to the present invention, a grain-oriented electrical steel sheet excellent in high-frequency iron loss can be stably obtained by using a material of a high-purity component containing no inhibitor. Further, in the present invention, since the inhibitor component is not contained in the raw material, there is no need to perform high-temperature heating, decarburization annealing, high-temperature purification annealing, etc. of the slab, so that there is a great advantage that mass production can be performed at low cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 仕上焼鈍到達温度と高周波鉄損(W
10/1000 )との関係を示したグラフである。
FIG. 1 Finish annealing annealing temperature and high-frequency iron loss (W
10 is a graph showing the relationship with the data.

【図2】 表面酸化被膜の除去前、除去後における鉄損
の変化を示したグラフである。
FIG. 2 is a graph showing changes in iron loss before and after removal of a surface oxide film.

【図3】 最終仕上焼鈍後の電磁鋼板の現象組織を示し
た写真である。
FIG. 3 is a photograph showing a phenomenon structure of an electrical steel sheet after final finish annealing.

【図4】 二次再結晶粒内の微細粒個数と高周波鉄損
(W10/1000 )との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the number of fine grains in secondary recrystallized grains and high-frequency iron loss ( W10 / 1000 ).

【図5】 高周波鉄損(W10/1000 )とゴス方位粒面積
率との関係を示したグラフである。
FIG. 5 is a graph showing a relationship between a high-frequency iron loss ( W10 / 1000 ) and a Goss orientation grain area ratio.

【図6】 最終冷延前の粒径とゴス方位粒面積率との関
係を示したグラフである。
FIG. 6 is a graph showing the relationship between the particle size before final cold rolling and the goss orientation grain area ratio.

【図7】 方向性電磁鋼板の一次再結晶組織における方
位差角が20〜45°である粒界の存在頻度を示した図であ
る。
FIG. 7 is a diagram showing the frequency of existence of grain boundaries having a misorientation angle of 20 to 45 ° in the primary recrystallized structure of grain-oriented electrical steel sheets.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 CA01 CA02 CA03 CA07 CA08 DA01 FA00 FA13 HA01 HA03 JA01 LA01 MA02 5E041 AA02 AA19 CA02 HB11 NN01 NN06 NN18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. HA01 HA03 JA01 LA01 MA02 5E041 AA02 AA19 CA02 HB11 NN01 NN06 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Si:2.0 〜8.0 %を含む組成
になり、粒径が1mm以下の微細粒を除いて測定した鋼板
表面における二次再結晶平均粒径が5mm以上で、かつ二
次再結晶粒の内部に粒径が0.15mm以上、1.00mm以下の微
細結晶粒を10個/cm2 以上の頻度で含み、さらに{11
0}<001>方位からの方位差が20°以内の結晶粒の
面積率が50%以上で、しかもフォルステライト(Mg2Si
O4) を主体とする下地被膜を有しないことを特徴とす
る、高周波鉄損の良好な方向性電磁鋼板。
1. A steel sheet having a composition containing 2.0 to 8.0% of Si by mass%, and having an average secondary recrystallized grain size of 5 mm or more on a steel sheet surface, excluding fine grains having a grain size of 1 mm or less, and The secondary recrystallized grains contain fine crystal grains having a grain size of 0.15 mm or more and 1.00 mm or less at a frequency of 10 grains / cm 2 or more.
The area ratio of crystal grains whose orientation difference from the 0 ° <001> orientation is within 20 ° is 50% or more, and forsterite (Mg 2 Si
A grain-oriented electrical steel sheet with good high-frequency iron loss, characterized by having no undercoat mainly composed of O 4 ).
【請求項2】 請求項1において、鋼板が、質量%で、
さらに、Ni:0.005 〜1.50%、Sn:0.01〜1.50%、Sb:
0.005 〜0.50%、Cu:0.01〜1.50%、P:0.005〜0.50
%およびCr:0.01〜1.50%のうちから選んだ1種または
2種以上を含有する組成になることを特徴とする、高周
波鉄損の良好な方向性電磁鋼板。
2. The steel sheet according to claim 1, wherein the steel sheet is expressed by mass%.
Further, Ni: 0.005 to 1.50%, Sn: 0.01 to 1.50%, Sb:
0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.005 to 0.50
% And Cr: A grain-oriented electrical steel sheet having a good high-frequency iron loss, characterized in that the composition contains one or more selected from 0.01 to 1.50%.
【請求項3】 質量%で、C:0.08%以下、Si:2.0 〜
8.0 %およびMn:0.005〜3.0 %を含み、かつAlを 100
ppm以下、Nを 50ppm以下に低減した組成になる鋼スラ
ブを、熱間圧延し、ついで熱延板焼鈍を施したのち、1
回または中間焼鈍を挟む2回以上の冷間圧延を、最終冷
延前の粒径を 150μm 未満として施し、ついで再結晶焼
鈍を施して、該焼鈍後の粒径を30〜80μm とし、その後
焼鈍分離剤を用いず、またはMgOを含有しない焼鈍分離
剤を塗布してから、975 ℃以下の温度で最終仕上焼鈍を
行うことを特徴とする、高周波鉄損の良好な方向性電磁
鋼板の製造方法。
3. In mass%, C: 0.08% or less, Si: 2.0 to
8.0% and Mn: 0.005 to 3.0%, and 100% Al
A steel slab having a composition in which N is reduced to 50 ppm or less and N is reduced to 50 ppm or less is hot-rolled and then subjected to hot-rolled sheet annealing.
Two or more times of cold rolling with intermediate or intermediate annealing, the grain size before final cold rolling is reduced to less than 150 μm, and then recrystallization annealing is performed to reduce the grain size after annealing to 30 to 80 μm. A method for producing a grain-oriented electrical steel sheet having good high-frequency iron loss, comprising applying an annealing separating agent that does not use a separating agent or does not contain MgO, and then performs a final finish annealing at a temperature of 975 ° C. or lower. .
【請求項4】 請求項3において、鋼スラブが、質量%
で、さらに、Ni:0.005〜1.50%、Sn:0.01〜1.50%、S
b:0.005 〜0.50%、Cu:0.01〜1.50%、P:0.005 〜
0.50%およびCr:0.01〜1.50%のうちから選んだ1種ま
たは2種以上を含有する組成になることを特徴とする、
高周波鉄損の良好な方向性電磁鋼板の製造方法。
4. The steel slab according to claim 3, wherein
In addition, Ni: 0.005 to 1.50%, Sn: 0.01 to 1.50%, S
b: 0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.005 to
0.50% and Cr: a composition containing one or more selected from 0.01 to 1.50%,
A method for producing grain-oriented electrical steel sheets with good high-frequency iron loss.
JP2001021467A 2001-01-19 2001-01-30 Oriented electrical steel sheet Expired - Fee Related JP3956621B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001021467A JP3956621B2 (en) 2001-01-30 2001-01-30 Oriented electrical steel sheet
DE60231581T DE60231581D1 (en) 2001-01-19 2002-01-17 CORRUGATED ELECTOMAGNETIC STEEL PLATE WITH OUTSTANDING MAGNETIC PROPERTIES WITHOUT UNDERGROUND FILM WITH FORSTERIT AS A PRIMARY COMPONENT AND METHOD OF MANUFACTURING THEREOF.
PCT/JP2002/000291 WO2002057503A1 (en) 2001-01-19 2002-01-17 Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
CNB028007476A CN1196801C (en) 2001-01-19 2002-01-17 Grain-oriented magnetic steel sheet having no under coat fim comprising forsterite as primary component and having good magnetic characteristics and its producing method
US10/312,663 US6942740B2 (en) 2001-01-19 2002-01-17 Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
EP02715785A EP1273673B1 (en) 2001-01-19 2002-01-17 Grain oriented electromagnetic steel sheet having excellent magnetic properties without undercoating mainly composed of forsterite and method of producing the steel sheet.
KR1020027012307A KR100837129B1 (en) 2001-01-19 2002-01-17 Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
TW091100786A TW589385B (en) 2001-01-19 2002-01-18 Grain-oriented electromagnetic steel sheet having excellent magnetic property without forming therein a base coating film mainly comprising forsterite and its manufacturing method
US11/145,705 US7371291B2 (en) 2001-01-19 2005-06-06 Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021467A JP3956621B2 (en) 2001-01-30 2001-01-30 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002220644A true JP2002220644A (en) 2002-08-09
JP3956621B2 JP3956621B2 (en) 2007-08-08

Family

ID=18887027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021467A Expired - Fee Related JP3956621B2 (en) 2001-01-19 2001-01-30 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3956621B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225154A (en) * 2003-01-27 2004-08-12 Jfe Steel Kk Grain-oriented magnetic steel sheet
JP2008031498A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Grain-oriented electrical steel sheet and its production method
JP2008031495A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Manufacturing method of grain-oriented electrical steel sheet
US9637812B2 (en) 2009-09-03 2017-05-02 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
JPWO2019131974A1 (en) * 2017-12-28 2019-12-26 Jfeスチール株式会社 Grain-oriented electrical steel sheets
JP2020050955A (en) * 2015-12-22 2020-04-02 ポスコPosco Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
CN113366125A (en) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217012A (en) * 2001-01-19 2002-08-02 Kawasaki Steel Corp Grain-oriented magnetic steel sheet for ei type core and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217012A (en) * 2001-01-19 2002-08-02 Kawasaki Steel Corp Grain-oriented magnetic steel sheet for ei type core and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604449B2 (en) * 2003-01-27 2011-01-05 Jfeスチール株式会社 Oriented electrical steel sheet
JP2004225154A (en) * 2003-01-27 2004-08-12 Jfe Steel Kk Grain-oriented magnetic steel sheet
JP2008031498A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Grain-oriented electrical steel sheet and its production method
JP2008031495A (en) * 2006-07-26 2008-02-14 Jfe Steel Kk Manufacturing method of grain-oriented electrical steel sheet
US9637812B2 (en) 2009-09-03 2017-05-02 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof
US11335475B2 (en) 2015-12-22 2022-05-17 Posco Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
US11848122B2 (en) 2015-12-22 2023-12-19 Posco Co., Ltd Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
JP2020050955A (en) * 2015-12-22 2020-04-02 ポスコPosco Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet
JPWO2019131974A1 (en) * 2017-12-28 2019-12-26 Jfeスチール株式会社 Grain-oriented electrical steel sheets
EP3733902A4 (en) * 2017-12-28 2020-11-04 JFE Steel Corporation Oriented electromagnetic steel sheet
US11525174B2 (en) 2017-12-28 2022-12-13 Jfe Steel Corporation Grain-oriented electrical steel sheet
KR20210010526A (en) * 2018-06-21 2021-01-27 닛폰세이테츠 가부시키가이샤 Directional electromagnetic steel plate with excellent magnetic properties
JPWO2019245044A1 (en) * 2018-06-21 2021-06-17 日本製鉄株式会社 Directional electrical steel sheet with excellent magnetic properties
KR102484304B1 (en) 2018-06-21 2023-01-03 닛폰세이테츠 가부시키가이샤 Grain-oriented electromagnetic steel sheet with excellent magnetic properties
JP7307354B2 (en) 2018-06-21 2023-07-12 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic properties
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
CN113366125A (en) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
CN113366125B (en) * 2019-01-31 2023-01-20 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and iron core using same
US11959149B2 (en) 2019-01-31 2024-04-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Also Published As

Publication number Publication date
JP3956621B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR100837129B1 (en) Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics
JP2016505706A (en) Directional silicon steel and method for producing the same
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4123662B2 (en) Electrical steel sheet for small electrical equipment and manufacturing method thereof
WO2018117674A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP3956621B2 (en) Oriented electrical steel sheet
JP2008150697A (en) Production method of magnetic steel sheet
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP3997712B2 (en) Manufacturing method of grain-oriented electrical steel sheet for EI core
JP3846064B2 (en) Oriented electrical steel sheet
JP2001158919A (en) Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001032021A (en) Manufacture of grain oriented silicon steel sheet
JP4692518B2 (en) Oriented electrical steel sheet for EI core
JP2003213339A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3896937B2 (en) Method for producing grain-oriented electrical steel sheet
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0689805A (en) Very high magnetic flux density oriented electromagnetic steel plate
JP3928275B2 (en) Electrical steel sheet
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JPH06100996A (en) Grain-oriented silicon steel sheet with ultrahigh magnetic flux density

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3956621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees