JP2002218679A - Remote control unit not consuming power in standby - Google Patents

Remote control unit not consuming power in standby

Info

Publication number
JP2002218679A
JP2002218679A JP2001007314A JP2001007314A JP2002218679A JP 2002218679 A JP2002218679 A JP 2002218679A JP 2001007314 A JP2001007314 A JP 2001007314A JP 2001007314 A JP2001007314 A JP 2001007314A JP 2002218679 A JP2002218679 A JP 2002218679A
Authority
JP
Japan
Prior art keywords
power
remote control
self
semiconductor relay
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007314A
Other languages
Japanese (ja)
Inventor
Kunihiko Onishi
邦彦 大西
Etsuro Tago
悦郎 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pana R & D kk
Original Assignee
Pana R & D kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pana R & D kk filed Critical Pana R & D kk
Priority to JP2001007314A priority Critical patent/JP2002218679A/en
Publication of JP2002218679A publication Critical patent/JP2002218679A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Abstract

PROBLEM TO BE SOLVED: To stabilize the operation of a remote control without consuming power in standby by efficiently taking out energy of a weak electric wave in a high frequency range. SOLUTION: A microwave from a remote control transmitter is received with an antenna 1, and the energy is taken out by an array detector 2 without power source. The energy turns on a self-holding semiconductor relay without power in standby, consisting of a photo coupler 3 and PUT4. AC100 V of the main power source 5 is turned on by the self-holding semiconductor relay, and the main power is supplied to a reception part and a control part 6. Based on a baseband signal of a control signal wave demodulated in the reception part, an electric device is controlled in a control part 6. The control part 6 turns off the self-holding semiconductor relay when the control is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、待機消費電力ゼロ
の遠隔制御装置に関し、特に、リモコン送信機からの電
波を無電源検波器で検波して、待機電流がリーク電流の
みであるスイッチで電気機器の電源を投入する待機消費
電力ゼロの遠隔制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote control device having zero standby power consumption, and more particularly, to detecting a radio wave from a remote control transmitter with a non-power detector, and using a switch in which the standby current is only a leak current. The present invention relates to a remote control device with zero standby power consumption for turning on power to a device.

【0002】[0002]

【従来の技術】一般に、家庭用電気機器を遠隔操作する
ために、有線・赤外線・電波などによりリモートコント
ローラからの制御信号を電気機器の制御装置に入力さ
せ、電気機器の電源投入等の制御を行っている。有線遠
隔制御方式では、電気機器と使用者との間が有線で接続
されているため、リモートコントローラの移動範囲が制
限される。赤外線遠隔制御方式では、電気機器を制御す
る制御装置とリモートコントローラとの間に遮蔽物を置
かないようにする必要があり、リモートコントローラと
制御装置との間の距離も制限される。電波遠隔制御方式
では、携帯電話機などの情報端末を利用できるから、非
常に離れた場所から複数の電気機器を簡単に制御でき
る。
2. Description of the Related Art Generally, in order to remotely control home electric equipment, a control signal from a remote controller is input to a control device of the electric equipment by wire, infrared ray, radio wave, or the like, and control such as power-on of the electric equipment is performed. Is going. In the wired remote control system, the electric device and the user are connected by a wired connection, so that the moving range of the remote controller is limited. In the infrared remote control method, it is necessary to keep a shield from being placed between a control device for controlling an electric device and the remote controller, and the distance between the remote controller and the control device is also limited. In the radio remote control method, since an information terminal such as a mobile phone can be used, a plurality of electric devices can be easily controlled from a very remote place.

【0003】ところが、このようなリモートコントロー
ラで制御される電気機器には、待機電力を必要とすると
いう問題がある。電気機器の稼働の際、制御装置が制御
する制御電力及び電気機器の稼働電力が消費される。こ
の制御時以外にも、電気機器の予熱による待機電力と、
常時待機におかれる電気機器により消費されるムダ電力
がある。待機電力は、機器が制御されうる状態にあると
きの消費電力である。ムダ電力は、制御される状態にな
い時の消費電力である。例えば、家庭用電気機器では、
深夜時に消費される電力はムダ電力である。
However, there is a problem that electric equipment controlled by such a remote controller requires standby power. When the electric device operates, control power controlled by the control device and operating power of the electric device are consumed. In addition to this control, standby power due to preheating of electrical equipment,
2. Description of the Related Art There is wasted power consumed by electrical devices that are always on standby. Standby power is power consumption when the device is in a controllable state. Waste power is power consumption when not in a controlled state. For example, in household electrical appliances,
The power consumed at midnight is wasted power.

【0004】日本全体での待機電力とムダ電力の総計
は、年間126億kWhで、全消費電力の10%にも達すると試
算されている。1kWh当たりの電力料金を20円と仮定す
れば、126億(KWh)×20(円)=2520億(円)にも達す
る。この待機電力とムダ電力の総計は、予熱・スタンバ
イ時などによる全く無駄な家庭用電気機器の電力消費で
あるが、このことは、家庭用以外の機器についても類推
できる。
[0004] The total standby power and waste power in Japan is estimated to be 12.6 billion kWh per year, which amounts to 10% of the total power consumption. Assuming that the electricity rate per kWh is 20 yen, it will reach 12.6 billion (KWh) x 20 (yen) = 252 billion (yen). The total of the standby power and the waste power is the wasteful consumption of electric power of home electric appliances due to preheating and standby, but this can be analogized to appliances other than home electric appliances.

【0005】予熱のための消費電力を低減するために
は、電気機器の立上り時間を短くする必要があり、リモ
ートコントローラでは対処できない。しかし、リモート
コントローラの制御を待っている時間の消費電力は、リ
モートコントローラを改善することにより低減可能であ
る。待機電力を低減するために、リモートコントローラ
の受信回路を低消費電力にすることが、数多く提案され
ている。
[0005] In order to reduce power consumption for preheating, it is necessary to shorten the rise time of electric equipment, which cannot be dealt with by a remote controller. However, power consumption while waiting for control of the remote controller can be reduced by improving the remote controller. Many proposals have been made to reduce the power consumption of a receiving circuit of a remote controller in order to reduce standby power.

【0006】特開平11-122842号公報に開示されている
ものでは、AC電源と太陽電池で充電した電池で、リモ
コン受信機を動作させている。特開2000-13998号公報と
特開2000-111122号公報に開示されているものでは、A
C電源で充電したコンデンサで、リモコン受信機を動作
させている。特開2000-175124号公報に開示されている
ものでは、リモコン受光素子の光起電力で、リモコン受
信機用の電源スイッチをオンにしている。特開2000-324
560号公報に開示されているものでは、受信したマイク
ロ波の電力を電源として、赤外線受信部を動作させてい
る。図6に、従来の無電源検波回路である倍電圧検波回
路を使ったスイッチを示す。
In the device disclosed in Japanese Patent Application Laid-Open No. 11-122842, a remote control receiver is operated by a battery charged with an AC power supply and a solar cell. In those disclosed in JP-A-2000-13998 and JP-A-2000-111122, A
The remote control receiver is operated by the capacitor charged with the C power supply. In the device disclosed in Japanese Patent Application Laid-Open No. 2000-175124, a power switch for a remote control receiver is turned on by photoelectromotive force of a remote control light receiving element. JP 2000-324
In the device disclosed in Japanese Patent Publication No. 560, the infrared receiver is operated using the received microwave power as a power source. FIG. 6 shows a switch using a voltage doubler detection circuit which is a conventional non-power supply detection circuit.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の待機電
力ゼロのリモートコントローラでは、無電源検波器が低
効率で、短距離での制御しかできないという問題があっ
た。リモートコントローラでは、他の電波利用装置に妨
害を与えないために、高い周波数領域の微弱電波を使う
必要があるが、高い周波数領域では、マッチングトラン
スやコックロフト回路で、電波エネルギーを効率よく取
り出すことが殆ど不可能である。周波数が高くなると、
半導体の接合層間やパッケージ内・間の容量、配線に起
因するインピーダンスを無視できず、整合が困難となる
ので、低い周波数と同様の無電源検波回路を超高周波領
域で用いることができない。
However, the conventional remote controller with zero standby power has a problem that the non-power detector has low efficiency and can be controlled only over a short distance. The remote controller must use weak radio waves in the high frequency range in order to prevent interference with other radio devices, but in the high frequency range, use a matching transformer or cockloft circuit to efficiently extract radio wave energy. Is almost impossible. As the frequency increases,
Since the impedance due to the capacitance and wiring between the junction layer of the semiconductor and between / in the package and the wiring cannot be neglected and matching is difficult, a powerless detection circuit similar to a low frequency cannot be used in an ultra-high frequency region.

【0008】本発明は、上記従来の問題を解決して、待
機消費電力ゼロの遠隔制御装置において、高い周波数領
域の微弱電波のエネルギーを効率よく取り出して、見通
し外にある装置でも安定に制御できるようにすることを
目的とする。
The present invention solves the above-mentioned conventional problems, and in a remote control device with zero standby power consumption, it is possible to efficiently extract weak radio wave energy in a high frequency region and stably control a device that is out of sight. The purpose is to be.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、遠隔制御装置を、リモコン送信機か
らの制御信号電波を受けるアンテナと、アンテナで受け
た電波から電磁エネルギーを取り出すアレイ型無電源検
波器と、アレイ型無電源検波器の出力電圧が所定値にな
ったとき動作する待機電力消費のない自己保持型半導体
リレーと、制御信号電波を復調してベースバンド信号を
出力する受信部と、受信部の出力に基づいて被制御電気
機器を制御する制御部と、自己保持型半導体リレーによ
り主電源を受信部と制御部とに供給する手段とを具備す
る構成とした。
In order to solve the above-mentioned problems, in the present invention, a remote control device includes an antenna for receiving a control signal radio wave from a remote control transmitter, and extracting electromagnetic energy from the radio wave received by the antenna. Array-type no-power detector, self-holding semiconductor relay that operates when the output voltage of the array-type no-power detector reaches a predetermined value, without standby power consumption, and demodulates control signal radio waves to output baseband signals And a control unit that controls the controlled electrical device based on the output of the receiving unit, and a unit that supplies main power to the receiving unit and the control unit by a self-holding semiconductor relay.

【0010】このように構成したことにより、高い周波
数領域の微弱電波のエネルギーを効率よく取り出して、
離れた位置にある装置でも、待機電力ゼロで確実に遠隔
制御できる。
With this configuration, the energy of a weak radio wave in a high frequency region can be efficiently extracted,
Even remote devices can be controlled remotely with zero standby power.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1〜図5を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to FIGS.

【0012】(実施の形態)本発明の実施の形態は、ア
ンテナで受けたマイクロ波のエネルギーをアレイ型無電
源検波器で取り出し、待機電力消費のない自己保持型半
導体リレーをオンにして、主電源を受信部と制御部とに
供給する待機消費電力ゼロの遠隔制御装置である。
(Embodiment) In an embodiment of the present invention, microwave energy received by an antenna is extracted by an array type non-power detector, a self-holding semiconductor relay that does not consume standby power is turned on, and a main power source is turned on. This is a remote control device with zero standby power consumption that supplies power to the receiving unit and the control unit.

【0013】図1は、本発明の実施の形態における待機
消費電力ゼロの遠隔制御装置の基本部分を示す機能ブロ
ック図である。図1において、アンテナ1は、リモート
コントローラからの制御信号電波を受ける電波受信素子
である。アレイ型無電源検波器2は、複数の無電源検波
器を直列または行列状に接続した検波器である。フォト
カップラ3は、LEDとフォトMOSトランジスタから
なる半導体スイッチである。PUT4は、半導体トリガ
素子であるプログラマブル・ユニジャンクション・トラ
ンジスタである。主電源回路5は、AC100Vから直流
電源を生成するAC/DCコンバータである。制御部6
は、制御用マイコンにより実現される制御手段である。
商用電源7は、AC100Vの電源である。受信部と被制
御電気機器は図示を省略してある。
FIG. 1 is a functional block diagram showing a basic part of a remote control device with zero standby power consumption according to an embodiment of the present invention. In FIG. 1, an antenna 1 is a radio wave receiving element that receives a control signal radio wave from a remote controller. The array type non-power detector 2 is a detector in which a plurality of non-power detectors are connected in series or in a matrix. The photocoupler 3 is a semiconductor switch including an LED and a photo MOS transistor. The PUT 4 is a programmable unijunction transistor that is a semiconductor trigger element. The main power supply circuit 5 is an AC / DC converter that generates a DC power supply from AC100V. Control unit 6
Is control means realized by the control microcomputer.
The commercial power supply 7 is a power supply of AC100V. The illustration of the receiving unit and the controlled electrical equipment is omitted.

【0014】図2は、本発明の実施の形態における待機
消費電力ゼロの遠隔制御装置に用いるアレイ型無電源検
波器の原理を示す回路図である。図2において、整合回
路8は、同調回路などのインピーダンス整合をとる回路
である。LED9は、フォトカップラのLEDである。
光半導体素子10は、フォトMOSトランジスタである。
FIG. 2 is a circuit diagram showing the principle of an array type non-power detector used in a remote control device with zero standby power consumption according to an embodiment of the present invention. In FIG. 2, a matching circuit 8 is a circuit that performs impedance matching such as a tuning circuit. The LED 9 is a photocoupler LED.
The optical semiconductor device 10 is a photo MOS transistor.

【0015】図3は、本発明の実施の形態における待機
消費電力ゼロの遠隔制御装置に用いるアレイ型無電源検
波器の回路図である。倍電圧型の無電源検波器をN個直
列に接続したものである。図4は、アレイ型無電源検波
器の別の例を示す回路図である。N個の倍電圧型の無電
源検波器と、N'個の逆極性の倍電圧型の無電源検波器
を、極性を合わせて直列に接続したものである。
FIG. 3 is a circuit diagram of an array type non-power detector used in a remote control device with zero standby power consumption according to the embodiment of the present invention. In this figure, N double-voltage non-power detectors are connected in series. FIG. 4 is a circuit diagram showing another example of the array type non-power detector. In this figure, N double-voltage non-power detectors and N 'reverse-voltage double non-power detectors of opposite polarity are connected in series with matching polarities.

【0016】図5は、本発明の実施の形態における待機
消費電力ゼロの遠隔制御装置の機能ブロック図である。
図5において、自己保持型半導体リレー11は、フォトカ
ップラとPUTからなる自己保持機能を有する半導体リ
レーである。送受信アンテナ12は、制御信号電波を受信
し、状態情報などを送信するためのアンテナである。受
信部13は、リモコン送信機からの制御信号電波を検波復
調してベースバンド信号を出力する回路である。デコー
ド部14は、復調されたベースバンド信号を解読する手段
である。送信部15は、被制御電気機器の状態情報などの
データを変調してリモコン装置に送信する回路である。
データ処理部16は、被制御電気機器の状態情報などのデ
ータを収集して編集する手段である。被制御電気機器17
は、遠隔制御の対象となる電気機器である。制御手段18
は、デコード部の出力に基づいてリレーや被制御電気機
器を制御する手段である。デコード部と制御手段とデー
タ処理部の機能をマイコンとプログラムで実現するマイ
コン処理部で、制御部6を構成している。送受信切替ス
イッチ19は、送受信アンテナを送信と受信で共用するた
めに切り替えるスイッチである。
FIG. 5 is a functional block diagram of the remote control device with zero standby power consumption according to the embodiment of the present invention.
In FIG. 5, a self-holding semiconductor relay 11 is a semiconductor relay having a self-holding function including a photocoupler and a PUT. The transmission / reception antenna 12 is an antenna for receiving a control signal radio wave and transmitting state information and the like. The receiving unit 13 is a circuit that detects and demodulates a control signal radio wave from a remote control transmitter and outputs a baseband signal. The decoding unit 14 is means for decoding the demodulated baseband signal. The transmission unit 15 is a circuit that modulates data such as state information of the controlled electric device and transmits the data to the remote control device.
The data processing unit 16 is a unit that collects and edits data such as state information of the controlled electric device. Controlled electrical equipment 17
Is an electric device to be remotely controlled. Control means 18
Is means for controlling a relay and a controlled electric device based on the output of the decoding unit. The control unit 6 is constituted by a microcomputer processing unit that realizes the functions of the decoding unit, the control unit, and the data processing unit with a microcomputer and a program. The transmission / reception switch 19 is a switch that switches the transmission / reception antenna to be used for both transmission and reception.

【0017】上記のように構成された本発明の実施の形
態における待機消費電力ゼロの遠隔制御装置の動作を説
明する。最初に、図1を参照して、全体の概略を説明す
る。単独或いは複数のアンテナ1で、図示していないリ
モコン送信機からの制御信号電波を受ける。超高周波領
域用のアンテナ1は、スロットアレーアンテナ、パッチ
アンテナ、誘電体アンテナなどの小型のアンテナであ
る。
The operation of the thus configured remote control device with zero standby power consumption according to the embodiment of the present invention will be described. First, an overall outline will be described with reference to FIG. A single or a plurality of antennas 1 receive control signal radio waves from a remote control transmitter (not shown). The antenna 1 for the ultrahigh frequency range is a small antenna such as a slot array antenna, a patch antenna, or a dielectric antenna.

【0018】アンテナ1で受けた電波を、アレイ型無電
源検波器2で検波して、電磁エネルギーを取り出す。そ
のエネルギーで、フォトカップラ3のLEDを点灯し
て、フォトMOSトランジスタをオンにする。フォトカッ
プラ3のLEDは、1V0.1mA程度で点灯して、フォトM
OSトランジスタをオンにできるものを使う。それにより
主電源回路5にAC100Vを供給して、直流電源Vddを
得る。直流電源Vddで、自己保持型半導体リレーをオン
状態に保持して、制御部6を動作させ、図示していない
制御対象の電気機器をオンするなどの制御を行なう。全
ての動作が完了した時には、制御部6により自己保持型
半導体リレーをオフにする制御を行ない、初期状態に戻
る。
An electric wave received by the antenna 1 is detected by an array type non-power detector 2 to extract electromagnetic energy. With the energy, the LED of the photocoupler 3 is turned on, and the photoMOS transistor is turned on. The LED of the photocoupler 3 is lit at about 1 V 0.1 mA,
Use something that can turn on the OS transistor. Thus, 100 V AC is supplied to the main power supply circuit 5 to obtain a DC power supply Vdd. With the DC power supply Vdd, the self-holding type semiconductor relay is held in the ON state, the control unit 6 is operated, and control such as turning on an electric device to be controlled (not shown) is performed. When all the operations are completed, the control unit 6 controls to turn off the self-holding semiconductor relay, and returns to the initial state.

【0019】自己保持型半導体リレーの動作を説明す
る。制御信号電波を受けてフォトMOSトランジスタがオ
ンになり、主電源回路5がオンになると、直流電源Vdd
が立ち上がる。すると、ダイオードDと抵抗R4とLE
Dを介して、PUT4に電圧が印加される。その直後
に、コンデンサC1と抵抗R2を介してトランジスタTR2
にパルスが供給されるので、トランジスタTR2が一瞬だ
けオンになる。それにより、PUT4のゲートが低電圧
になって点弧され、導通状態を維持する。したがって、
フォトカップラ3のLEDが継続的に点灯し、フォトカ
ップラ3とPUT4からなる自己保持型半導体リレー
は、オン状態を保持する。直流電源Vddが制御部6へ供
給され、所定の動作を行なうことができる。制御終了
後、制御部6からオフを指示するパルスをトランジスタ
TR1に送ると、PUT4のアノードが低電圧になり、P
UT4がオフとなる。主電源回路5は1つのものとして
図示してあるが、必要ならば、自己保持型半導体リレー
専用の立上りの速い電源回路を設けてもよい。
The operation of the self-holding type semiconductor relay will be described. When the photo MOS transistor is turned on in response to the control signal radio wave and the main power supply circuit 5 is turned on, the DC power supply Vdd
Stand up. Then, the diode D, the resistor R4 and the LE
A voltage is applied to PUT 4 via D. Immediately thereafter, the transistor TR2 is connected via the capacitor C1 and the resistor R2.
, The transistor TR2 is turned on for a moment. As a result, the gate of the PUT 4 has a low voltage and is fired, thereby maintaining a conductive state. Therefore,
The LED of the photocoupler 3 is continuously turned on, and the self-holding semiconductor relay including the photocoupler 3 and the PUT 4 is kept on. The DC power supply Vdd is supplied to the control unit 6, and a predetermined operation can be performed. After the control is completed, a pulse for instructing the control unit 6 to turn off is applied to the transistor.
When sent to TR1, the anode of PUT4 goes low,
UT4 turns off. Although the main power supply circuit 5 is shown as one, if necessary, a power supply circuit with a fast rise dedicated to a self-holding type semiconductor relay may be provided.

【0020】このようにして、遠隔制御装置の起動を、
待機電力無しで行なうことができる。遠隔制御装置の待
機時の消費電力は、自己保持型半導体リレーのリーケー
ジ電流(pAオーダー)以外は、ゼロである。
In this manner, the activation of the remote control device
It can be performed without standby power. The standby power consumption of the remote control device is zero except for the leakage current (pA order) of the self-holding semiconductor relay.

【0021】第2に、図2〜図4を参照して、アレイ型
無電源検波器の動作を説明する。アンテナと倍電圧検波
回路で構成する一組の無電源検波器の単位検波回路は、
単一の仮想電池とみなすことができる。これを直列に複
数個接続することにより、任意の電圧を得ることができ
る。この回路は、信号の検波というよりは、むしろ整流
を目的としているため、回路を接地することなく、単位
検波回路ごとに独立回路とすることができるので、複数
回路の整合がきわめて容易である。
Second, the operation of the array type non-power detector will be described with reference to FIGS. The unit detection circuit of a pair of non-power detectors composed of an antenna and a voltage doubler detection circuit is:
It can be considered as a single virtual battery. By connecting a plurality of these in series, an arbitrary voltage can be obtained. Since this circuit is intended for rectification rather than signal detection, it is possible to provide an independent circuit for each unit detection circuit without grounding the circuit, and it is extremely easy to match a plurality of circuits.

【0022】図2に示すように、アンテナ1で受信した
電波を、整合回路8で所定のインピーダンスの高周波電
流に変換する。高周波電流を、回路上半部のコンデンサ
とダイオードからなる倍電圧検波器で検波して、直流の
電気エネルギーをコンデンサC1に蓄積する。同様に、
回路下半部で逆極性の電荷をコンデンサC2に蓄積す
る。2つのコンデンサC1,C2を直列に接続して、2倍
の電圧を得る。このコンデンサC1,C2の蓄積電荷でL
ED9を短時間点灯し、光半導体素子10をオンにする。
As shown in FIG. 2, a radio wave received by the antenna 1 is converted by a matching circuit 8 into a high-frequency current having a predetermined impedance. The high-frequency current is detected by a voltage doubler detector including a capacitor and a diode in the upper half of the circuit, and DC electric energy is stored in the capacitor C1. Similarly,
In the lower half of the circuit, charges of opposite polarity are stored in the capacitor C2. Two capacitors C1 and C2 are connected in series to obtain a double voltage. The charge stored in the capacitors C1 and C2 is L
The ED 9 is turned on for a short time, and the optical semiconductor element 10 is turned on.

【0023】図3に示すように、倍電圧検波器のコンデ
ンサをN個直列に接続すると、単位検波回路のN倍の電
圧を得ることができる。図4に示すように、正極性のN
個の単位検波回路と、負極性のN'個の単位検波回路
を、接地を共通にして相補的に接続することにより、
(N+N')倍の電圧を得ることができる。さらに、こ
れらの単位検波回路を並列に行列状に接続すれば、蓄積
電荷を多くしてインピーダンスを低くすることができ
る。
As shown in FIG. 3, when N capacitors of the voltage doubler are connected in series, a voltage N times higher than that of the unit detector can be obtained. As shown in FIG.
By connecting the unit detection circuits and the N ′ unit detection circuits of negative polarity in a complementary manner with a common ground,
(N + N ′) times the voltage can be obtained. Furthermore, if these unit detection circuits are connected in parallel in a matrix, the accumulated charges can be increased and the impedance can be reduced.

【0024】このように、単位検波回路を複数個接続し
て、所望の電圧の蓄積電荷を得ることができる。この検
波器は、回路構成が集積化に適していて、IC化が容易
である。特に、高い周波数領域では、小型化が可能であ
る。なお、単位検波回路を、ダイオード1個で構成する
半波検波回路としてもよい。
As described above, by connecting a plurality of unit detection circuits, it is possible to obtain accumulated charges of a desired voltage. This detector has a circuit configuration suitable for integration and can be easily integrated into an IC. In particular, in a high frequency region, miniaturization is possible. Note that the unit detection circuit may be a half-wave detection circuit configured with one diode.

【0025】第3に、図5を参照して、遠隔制御装置全
体の詳細な動作を説明する。アレイ型無電源検波回路2
で、自己保持型半導体リレー11をオンにし、主電源回路
5をオンした後、直流電源Vddが、ダイオードDを介し
てフォトカップラのLEDとPUTに加えられ、自己保
持動作を開始すると、直流電源Vddが、制御部6(マイ
コン処理部)と受信部13と送信部15に安定に供給され
る。
Third, a detailed operation of the entire remote control device will be described with reference to FIG. Array type no-power detection circuit 2
Then, after the self-holding semiconductor relay 11 is turned on and the main power supply circuit 5 is turned on, the DC power supply Vdd is applied to the LED and the PUT of the photocoupler via the diode D, and the self-holding operation is started. Vdd is stably supplied to the control unit 6 (microcomputer processing unit), the receiving unit 13 and the transmitting unit 15.

【0026】送受信アンテナ12で、図示しないリモコン
送信機から送られてきた制御信号電波を受信すると、受
信部13で検波復調してベースバンド信号にして、デコー
ド部14で解読する。雑音電波など、解読したデータが規
定のものでないときは、制御手段18で、データを捨てて
自己保持型半導体リレー11のオフ制御を行ない、初期状
態に戻る。規定のデータの場合は、デコード結果に基づ
いて、制御手段18で所定の制御を行なう。例えば、リレ
ー17をオンにして、被制御電気機器17にAC100Vを供
給する。制御信号に基づいて被制御電気機器17を制御す
る方法は、基本的には従来の方法と同じである。
When the transmission / reception antenna 12 receives a control signal radio wave transmitted from a remote control transmitter (not shown), the reception unit 13 detects and demodulates the signal to make a baseband signal, and the decoding unit 14 decodes the signal. If the decoded data, such as a noise radio wave, is not a prescribed one, the control means 18 discards the data and controls the self-holding type semiconductor relay 11 to be turned off to return to the initial state. In the case of prescribed data, the control means 18 performs predetermined control based on the decoding result. For example, the relay 17 is turned on to supply AC 100 V to the controlled electric device 17. The method of controlling the controlled electric device 17 based on the control signal is basically the same as the conventional method.

【0027】制御動作終了後は、被制御電気機器17の状
態情報などを、データ処理部16で収集編集して、送信部
15を介してリモートコントローラ側に送信する。送信時
のみ、送受信切替スイッチ19をTx側に切り替える。送
信しないときは、常にRx側に接続しておく。一連の所
定の動作完了後は、自己保持型半導体リレー11をオフに
して、初期状態にもどる。
After completion of the control operation, the data processing unit 16 collects and edits status information and the like of the controlled electrical equipment 17 and sends the edited information to the transmission unit.
15 to the remote controller side. Only during transmission, the transmission / reception switch 19 is switched to the Tx side. When not transmitting, it is always connected to the Rx side. After the completion of a series of predetermined operations, the self-holding semiconductor relay 11 is turned off to return to the initial state.

【0028】上記のように、本発明の実施の形態では、
待機消費電力ゼロの遠隔制御装置を、アンテナで受けた
マイクロ波のエネルギーをアレイ型無電源検波器で取り
出し、待機電力消費のない自己保持型半導体リレーをオ
ンにして、主電源を受信部と制御部とに供給する構成と
したので、高い周波数領域の微弱電波のエネルギーを効
率よく取り出して、待機消費電力ゼロで安定に遠隔制御
することができる。
As described above, in the embodiment of the present invention,
The remote control device with zero standby power consumption is extracted from the microwave energy received by the antenna with an array type non-power detector, and the self-holding semiconductor relay that does not consume standby power is turned on to control the main power with the receiving unit Since it is configured to supply the power to the unit, the energy of the weak radio wave in the high frequency region can be efficiently extracted, and the remote control can be stably performed with zero standby power consumption.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
では、遠隔制御装置を、リモコン送信機からの制御信号
電波を受けるアンテナと、アンテナで受けた電波から電
磁エネルギーを取り出すアレイ型無電源検波器と、アレ
イ型無電源検波器の出力電圧が所定値になったとき動作
する待機電力消費のない自己保持型半導体リレーと、制
御信号電波を復調してベースバンド信号を出力する受信
部と、受信部の出力に基づいて被制御電気機器を制御す
る制御部と、自己保持型半導体リレーにより主電源を受
信部と制御部とに供給する手段とを具備する構成とした
ので、高い周波数領域の微弱電波のエネルギーを効率よ
く取り出して、見通し外にある装置でも安定に制御でき
るという効果が得られる。
As is apparent from the above description, according to the present invention, the remote control device comprises an antenna for receiving a control signal radio wave from the remote control transmitter, and an array type non-power source for extracting electromagnetic energy from the radio wave received by the antenna. A detector, a self-holding semiconductor relay without standby power consumption that operates when the output voltage of the array type non-power detector reaches a predetermined value, and a receiving unit that demodulates a control signal radio wave and outputs a baseband signal. A control unit that controls the controlled electrical device based on the output of the receiving unit, and a unit that supplies main power to the receiving unit and the control unit by a self-holding semiconductor relay, so that The energy of the weak radio wave can be efficiently extracted, and an effect can be obtained such that a device out of sight can be controlled stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における待機消費電力ゼロ
の遠隔制御装置の基本部分を示す機能ブロック図、
FIG. 1 is a functional block diagram showing a basic part of a remote control device with zero standby power consumption according to an embodiment of the present invention;

【図2】本発明の実施の形態における待機消費電力ゼロ
の遠隔制御装置に用いるアレイ型無電源検波器の原理を
示す回路図、
FIG. 2 is a circuit diagram showing the principle of an array type non-power detector used in a remote control device with zero standby power consumption according to an embodiment of the present invention;

【図3】本発明の実施の形態における待機消費電力ゼロ
の遠隔制御装置に用いるアレイ型無電源検波器の回路
図、
FIG. 3 is a circuit diagram of an array type non-power detector used in a remote control device with zero standby power consumption according to the embodiment of the present invention;

【図4】本発明の実施の形態における待機消費電力ゼロ
の遠隔制御装置に用いるアレイ型無電源検波器の他の例
の回路図、
FIG. 4 is a circuit diagram of another example of the array type non-power detector used in the remote control device with zero standby power consumption according to the embodiment of the present invention;

【図5】本発明の実施の形態における待機消費電力ゼロ
の遠隔制御装置の詳細機能ブロック図、
FIG. 5 is a detailed functional block diagram of a remote control device with zero standby power consumption according to the embodiment of the present invention;

【図6】従来の待機消費電力ゼロの遠隔制御スイッチの
回路図である。
FIG. 6 is a circuit diagram of a conventional remote control switch with zero standby power consumption.

【符号の説明】[Explanation of symbols]

1 アンテナ 2 アレイ型無電源検波器 3 フォトカップラ 4 PUT 5 主電源回路 6 制御部 7 商用電源 8 整合回路 9 LED 10 光半導体素子 11 自己保持型半導体リレー 12 送受信アンテナ 13 受信部 14 デコード部 15 送信部 16 データ処理部 17 被制御電気機器 18 制御手段 19 送受信切替スイッチ DESCRIPTION OF SYMBOLS 1 Antenna 2 Array type non-power detector 3 Photocoupler 4 PUT 5 Main power supply circuit 6 Control part 7 Commercial power supply 8 Matching circuit 9 LED 10 Optical semiconductor element 11 Self-holding semiconductor relay 12 Transmitting and receiving antenna 13 Receiving part 14 Decoding part 15 Transmission Unit 16 Data processing unit 17 Controlled electrical equipment 18 Control means 19 Transmission / reception switch

フロントページの続き Fターム(参考) 5G064 AA01 CB12 DA07 5K048 AA16 BA01 DB01 DC01 EA23 FC01 HA01 HA02 HA05 HA07 HA31 Continued on the front page F term (reference) 5G064 AA01 CB12 DA07 5K048 AA16 BA01 DB01 DC01 EA23 FC01 HA01 HA02 HA05 HA07 HA31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リモコン送信機からの制御信号電波を受
けるアンテナと、前記アンテナで受けた電波から電磁エ
ネルギーを取り出すアレイ型無電源検波器と、前記アレ
イ型無電源検波器の出力電圧が所定値になったとき動作
する待機電力消費のない自己保持型半導体リレーと、前
記制御信号電波を復調してベースバンド信号を出力する
受信部と、前記受信部の出力に基づいて被制御電気機器
を制御する制御部と、前記自己保持型半導体リレーによ
り主電源を前記受信部と前記制御部とに供給する手段と
を具備することを特徴とする遠隔制御装置。
An antenna for receiving a control signal radio wave from a remote control transmitter, an array-type non-power detector for extracting electromagnetic energy from radio waves received by the antenna, and an output voltage of the array-type non-power detector having a predetermined value. A self-holding semiconductor relay that does not consume standby power when operating, a receiving unit that demodulates the control signal radio wave and outputs a baseband signal, and controls the controlled electric device based on an output of the receiving unit. And a means for supplying main power to the receiving unit and the control unit by the self-holding semiconductor relay.
【請求項2】 前記アレイ型無電源検波器は、複数の無
電源検波器を直列に接続したものであることを特徴とす
る請求項1記載の遠隔制御装置。
2. The remote control device according to claim 1, wherein the array type non-power detector includes a plurality of non-power detectors connected in series.
【請求項3】 前記アレイ型無電源検波器は、複数の無
電源検波器を行列状に接続したものであることを特徴と
する請求項1記載の遠隔制御装置。
3. The remote control device according to claim 1, wherein the array-type non-power detector includes a plurality of non-power detectors connected in a matrix.
【請求項4】 前記自己保持型半導体リレーは、発光ダ
イオードとフォトMOSスイッチとPUTスイッチとの
組合せにより構成されたものであることを特徴とする請
求項1記載の遠隔制御装置。
4. The remote control device according to claim 1, wherein said self-holding semiconductor relay is configured by a combination of a light emitting diode, a photo MOS switch and a PUT switch.
【請求項5】 前記制御部は、前記受信部の出力に基づ
いて前記被制御電気機器に電力を供給する手段と、前記
受信部の出力に基づいて前記自己保持型半導体リレーを
オフにする手段とを有することを特徴とする請求項1記
載の遠隔制御装置。
5. The control unit supplies power to the controlled electrical device based on an output of the receiving unit, and turns off the self-holding semiconductor relay based on an output of the receiving unit. The remote control device according to claim 1, comprising:
JP2001007314A 2001-01-16 2001-01-16 Remote control unit not consuming power in standby Pending JP2002218679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007314A JP2002218679A (en) 2001-01-16 2001-01-16 Remote control unit not consuming power in standby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007314A JP2002218679A (en) 2001-01-16 2001-01-16 Remote control unit not consuming power in standby

Publications (1)

Publication Number Publication Date
JP2002218679A true JP2002218679A (en) 2002-08-02

Family

ID=18875082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007314A Pending JP2002218679A (en) 2001-01-16 2001-01-16 Remote control unit not consuming power in standby

Country Status (1)

Country Link
JP (1) JP2002218679A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319863A (en) * 2005-05-16 2006-11-24 Matsushita Electric Ind Co Ltd Electric device and remote controller
JP2009299956A (en) * 2008-06-11 2009-12-24 Denso Corp Transmitting device, and communication system and equipment system using such device
JP2010045509A (en) * 2008-08-11 2010-02-25 Toshiba Corp Remote controller, apparatus and wireless controlling system
EP2251618A1 (en) * 2008-01-25 2010-11-17 Sanden Corporation Heat-pump type water heater
JP2012070415A (en) * 2011-11-09 2012-04-05 Panasonic Corp Electrical equipment
JP2012510196A (en) * 2008-11-26 2012-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for providing wireless control in an electronic device
JP2013070473A (en) * 2011-09-21 2013-04-18 Nec Corp Wireless power transmission device
WO2019142417A1 (en) * 2018-01-18 2019-07-25 ソニーセミコンダクタソリューションズ株式会社 Power supply control circuit and electronic apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172835A (en) * 1984-01-30 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Battery saving system
JPH037034A (en) * 1989-06-02 1991-01-14 Yamatake Honeywell Co Ltd Microwave power receiver
JPH03208409A (en) * 1990-01-10 1991-09-11 Sharp Corp Self-hold type semiconductor device and self-hold type semiconductor relay
JPH0833244A (en) * 1994-07-18 1996-02-02 Nissan Motor Co Ltd Microwave receiver
JPH0833243A (en) * 1994-07-18 1996-02-02 Nissan Motor Co Ltd Microwave receiver
JPH09261771A (en) * 1996-03-22 1997-10-03 Kazuo Tsubouchi Radio data transmitter-receiver
JPH1014137A (en) * 1996-06-24 1998-01-16 Serutetsuku:Kk Method for preventing disaster caused by commercial power supply and power supply outlet for disaster prevention
JP2000278887A (en) * 1999-03-19 2000-10-06 Denso Corp Rectenna device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172835A (en) * 1984-01-30 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Battery saving system
JPH037034A (en) * 1989-06-02 1991-01-14 Yamatake Honeywell Co Ltd Microwave power receiver
JPH03208409A (en) * 1990-01-10 1991-09-11 Sharp Corp Self-hold type semiconductor device and self-hold type semiconductor relay
JPH0833244A (en) * 1994-07-18 1996-02-02 Nissan Motor Co Ltd Microwave receiver
JPH0833243A (en) * 1994-07-18 1996-02-02 Nissan Motor Co Ltd Microwave receiver
JPH09261771A (en) * 1996-03-22 1997-10-03 Kazuo Tsubouchi Radio data transmitter-receiver
JPH1014137A (en) * 1996-06-24 1998-01-16 Serutetsuku:Kk Method for preventing disaster caused by commercial power supply and power supply outlet for disaster prevention
JP2000278887A (en) * 1999-03-19 2000-10-06 Denso Corp Rectenna device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319863A (en) * 2005-05-16 2006-11-24 Matsushita Electric Ind Co Ltd Electric device and remote controller
EP2251618A1 (en) * 2008-01-25 2010-11-17 Sanden Corporation Heat-pump type water heater
EP2251618A4 (en) * 2008-01-25 2013-12-25 Sanden Corp Heat-pump type water heater
JP2009299956A (en) * 2008-06-11 2009-12-24 Denso Corp Transmitting device, and communication system and equipment system using such device
JP2010045509A (en) * 2008-08-11 2010-02-25 Toshiba Corp Remote controller, apparatus and wireless controlling system
JP2012510196A (en) * 2008-11-26 2012-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for providing wireless control in an electronic device
US9552721B2 (en) 2008-11-26 2017-01-24 Philips Lighting Holding B.V. System and method for providing wireless control on an electronic device
JP2013070473A (en) * 2011-09-21 2013-04-18 Nec Corp Wireless power transmission device
JP2012070415A (en) * 2011-11-09 2012-04-05 Panasonic Corp Electrical equipment
WO2019142417A1 (en) * 2018-01-18 2019-07-25 ソニーセミコンダクタソリューションズ株式会社 Power supply control circuit and electronic apparatus
JPWO2019142417A1 (en) * 2018-01-18 2021-01-14 ソニーセミコンダクタソリューションズ株式会社 Power control circuit and electronic equipment
JP7148553B2 (en) 2018-01-18 2022-10-05 ソニーセミコンダクタソリューションズ株式会社 Power control circuits and electronics

Similar Documents

Publication Publication Date Title
US10211678B2 (en) Wireless charging apparatus and wireless charging method
US9812893B2 (en) Wireless power receiver
US11368191B2 (en) Multi-use wireless power and data system
CN102299548B (en) Electronic device and power supply method thereof as well as wireless power supply system
KR101243544B1 (en) Wireless power transfer for appliances and equipments
US6426887B2 (en) Power control device, remote control receiving device and optical communication device with zero power consumption during standby
US8531306B2 (en) Energy-saving control circuit for turning off a power supply for an appliance
JP5718891B2 (en) System for controlling a device
US9438062B2 (en) Wireless electric power receiver for wirelessly regulating electric power using switch
US20090289503A1 (en) Illumination control system
CN204741606U (en) Single live wire switch of intelligence
CN101965599A (en) Method of actuating a switch between a device and a power supply
CN100492852C (en) Wireless type zero quiescent dissipation power supply controller
US10333351B2 (en) Driving circuit for driving N transmitter-side coupling circuits and wireless power transmitter including the same
JPH0739077A (en) Cordless power station
JP2002218679A (en) Remote control unit not consuming power in standby
US8955757B2 (en) Apparatus for collecting wireless energy and wireless electronic label employing the apparatus
JP2005295289A (en) Remote controller and electric appiance
CN104124766A (en) Wireless power transmission system, receiving end, transmitting end and wake method thereof
CN105765874B (en) Power receiver with magnetic feature and method of operating the same
Kogawa et al. Low power consumption wireless wake-up module controlling AC power supply at household appliances
CN202600405U (en) Electric appliance standby control device
JP2002078232A (en) Electronic device
TW202118192A (en) Wireless charger with microwave transformed power and energy-storing
JP2001197573A (en) Remote control system for electric appliance without standby power consumption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914