JP2002212651A - Copper composite material - Google Patents

Copper composite material

Info

Publication number
JP2002212651A
JP2002212651A JP2001001900A JP2001001900A JP2002212651A JP 2002212651 A JP2002212651 A JP 2002212651A JP 2001001900 A JP2001001900 A JP 2001001900A JP 2001001900 A JP2001001900 A JP 2001001900A JP 2002212651 A JP2002212651 A JP 2002212651A
Authority
JP
Japan
Prior art keywords
copper
composite material
sintered body
copper composite
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001001900A
Other languages
Japanese (ja)
Inventor
慶平 ▲冬▼
Kiyouhei Fuyu
Koichi Furutoku
浩一 古徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001001900A priority Critical patent/JP2002212651A/en
Publication of JP2002212651A publication Critical patent/JP2002212651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper composite material which has excellent low thermal expansibility and high thermal conductivity as a heat radiation board for a semiconductor device. SOLUTION: In the copper composite material, a porous sintered body obtained by sintering an inorganic substance whose thermal expansion coefficient is small than that of copper is impregnated with a copper alloy containing 0.4 to 2.5 wt.% O (oxygen) in the ratio of 20 to 60 vol.%. In this way, low thermal conductivity and high thermal expansibility can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、無機物質に銅合金
を含浸させた銅複合材料に関し、特に、半導体装置用放
熱板として優れた低熱膨張性および高熱伝導性を有する
銅複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper composite material in which an inorganic substance is impregnated with a copper alloy, and more particularly to a copper composite material having excellent low thermal expansion and high thermal conductivity as a heat sink for a semiconductor device.

【0002】[0002]

【従来の技術】半導体チップの高容量化、高速化に伴
い、半導体チップの発熱量が増大する傾向にある。この
ため、発熱に起因する半導体素子の特性劣化、短寿命化
を防止するためには、放熱部材を設け、半導体素子およ
びその近傍での温度上昇を抑制する必要がある。
2. Description of the Related Art As the capacity and speed of semiconductor chips increase, the amount of heat generated by the semiconductor chips tends to increase. For this reason, in order to prevent the deterioration of the characteristics of the semiconductor element and the shortening of the life of the semiconductor element due to heat generation, it is necessary to provide a heat radiating member to suppress the temperature rise in the semiconductor element and its vicinity.

【0003】銅は、熱伝導率が393W/(m・K)と
大きく、かつ低価格であるため、プラスチックパッケー
ジ等のLSI放熱部材として一般に用いられている。
[0003] Copper is generally used as an LSI heat dissipating member such as a plastic package because copper has a high thermal conductivity of 393 W / (m · K) and is inexpensive.

【0004】一方、セラミックパッケージや、各種オン
・オフ機能を有する電力やエネルギーの変換・制御用の
半導体素子は、発熱量が大きいことから、放熱板として
熱膨張率が半導体チップを構成するSi、GaAsの熱
膨張率に近い材料、例えば、Mo、W、Al−SiC、
Cu−SiC等が使われている。
On the other hand, ceramic packages and semiconductor elements for converting and controlling power and energy having various on / off functions generate a large amount of heat. A material having a coefficient of thermal expansion close to that of GaAs, for example, Mo, W, Al-SiC,
Cu-SiC or the like is used.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のWおよ
びMoを用いた半導体装置用放熱板は、熱膨張率が半導
体チップを構成するSi、AsGaの熱膨張率に近く、
熱伝導率もl60〜200W/mKであるため、放熱板
として好都合であるものの、材料コストが高い。また、
Al−SiCを用いた放熱板は、多孔質焼結体にAlを
含浸させたものであり、熱膨張率が小さいものの、熱伝
導率がl50W/mKと比較的低い。また、Cu−Si
Cを用いた放熱板は、SiCとCuの粉末を混合した
後、圧粉体を成形して形成される粉体成形体であるた
め、密度が低く、緻密性が悪い等の欠点がある。さら
に、多孔質焼結体に銅を含浸させる方法もあるが、無機
物質からなる多孔質体に対する銅の濡れ性が悪く、銅の
含浸しない空孔が残り、緻密な複合材料が得られない欠
点がある。
However, a conventional heat sink for a semiconductor device using W and Mo has a thermal expansion coefficient close to that of Si or AsGa constituting a semiconductor chip.
Since the thermal conductivity is also from 160 to 200 W / mK, it is convenient as a heat sink, but the material cost is high. Also,
The heat radiating plate using Al-SiC is obtained by impregnating a porous sintered body with Al, and has a relatively low coefficient of thermal expansion but a relatively low thermal conductivity of 150 W / mK. In addition, Cu-Si
A heat sink using C is a powder compact formed by mixing SiC and Cu powders and then compacting the compact, and thus has disadvantages such as low density and poor denseness. Further, there is a method of impregnating the porous sintered body with copper.However, the wettability of copper to the porous body made of an inorganic substance is poor, voids not impregnated with copper remain, and a dense composite material cannot be obtained. There is.

【0006】従って、本発明の目的は、半導体装置用放
熱板として優れた低熱膨張性および高熱伝導性を有する
銅複合材料を提供することにある。
Accordingly, it is an object of the present invention to provide a copper composite material having excellent low thermal expansion and high thermal conductivity as a heat sink for a semiconductor device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、熱膨張率が銅よりも小さい無機物質を焼成
して得られた多孔質焼結体に、所定の酸素含有量の銅合
金を所定の割合で含浸させたことを特徴とする銅複合材
料を提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a porous sintered body obtained by firing an inorganic substance having a coefficient of thermal expansion smaller than that of copper and having a predetermined oxygen content. A copper composite material characterized by being impregnated with a copper alloy at a predetermined ratio.

【0008】銅は、無機物質多孔質体に対する濡れ性が
悪く、酸素を含まない銅溶湯を含浸させた場合、銅の含
浸しない空孔が残る。その結果、純銅を含浸した複合材
料は、熱伝導率が低下するだけでなく、空孔が複合材料
の表面まで露出し、放熱材として欠かせないめっき工程
において、めっき膨れ等の不具合が発生しやすい。従っ
て、このような不具合を回避するためには、所定量の酸
素を含む銅合金を含浸させる必要がある。
[0008] Copper has poor wettability to a porous inorganic substance, and when impregnated with a copper melt containing no oxygen, pores not impregnated with copper remain. As a result, the composite material impregnated with pure copper not only has a reduced thermal conductivity, but also has pores exposed to the surface of the composite material, causing problems such as plating swelling in a plating process indispensable as a heat sink. Cheap. Therefore, in order to avoid such a problem, it is necessary to impregnate a copper alloy containing a predetermined amount of oxygen.

【0009】酸素は、SiC等の無機物質多孔質焼結体
に対する溶融銅の濡れ性を向上する作用がある。酸素含
有量が0.4重量%未満では、溶融銅の濡れ性向上の効
果が不十分である。一方、酸素含有量が2.5重量%を
超えると、溶融状態においてCuとCu2Oが二液分離
し、均一なCu−O溶湯が得られない。従って、含浸さ
れる銅合金は酸素含有量が0.4〜2.5重量%が必要
であり、望ましくは0.8〜2重量%である,
Oxygen has an effect of improving the wettability of molten copper to a porous sintered body of an inorganic substance such as SiC. When the oxygen content is less than 0.4% by weight, the effect of improving the wettability of the molten copper is insufficient. On the other hand, when the oxygen content exceeds 2.5% by weight, Cu and Cu 2 O are separated into two liquids in a molten state, and a uniform Cu—O melt cannot be obtained. Therefore, the copper alloy to be impregnated must have an oxygen content of 0.4 to 2.5% by weight, preferably 0.8 to 2% by weight.

【0010】この銅複合材料は、熱膨張率が無機物質に
依存し、熱伝導率が銅合金の含浸量に依存する。酸素を
含む銅合金の含浸量については、20体積%未満では、
l60W/mK以上の熱伝導率を得ることができず、6
0体積%を超えると、SiC等の無機物質多孔質体の強
度が低下し、熱膨張率が10.0ppm/℃以上にな
る。従って、酸素を含む銅合金の含浸量は、20〜60
体積%が望ましい。また、多孔質焼結体としては、熱膨
張率が小さいSi34,SiC,AlNおよびA123
から選ばれた1種類以上の化合物からなることが望まし
い。なお、SiC等の無機物質の曲げ強度としては、1
0Mpa以上、望ましくは20Mpa以上が好ましい。
曲げ強度がl0Mpa以下では、熱膨張率が増加する問
題が発生する。
In this copper composite material, the coefficient of thermal expansion depends on the inorganic substance, and the thermal conductivity depends on the impregnation amount of the copper alloy. Regarding the impregnation amount of the copper alloy containing oxygen, if less than 20% by volume,
A thermal conductivity of more than 160 W / mK could not be obtained,
When the content exceeds 0% by volume, the strength of the porous inorganic material such as SiC decreases, and the coefficient of thermal expansion becomes 10.0 ppm / ° C. or more. Therefore, the impregnation amount of the copper alloy containing oxygen is 20 to 60.
% By volume is desirable. Further, as the porous sintered body, Si 3 N 4 , SiC, AlN and A1 2 O 3 having a small coefficient of thermal expansion are used.
It is desirable to consist of at least one compound selected from the group consisting of: The bending strength of an inorganic substance such as SiC is 1
0 Mpa or more, desirably 20 Mpa or more is preferable.
When the bending strength is 10 Mpa or less, there is a problem that the coefficient of thermal expansion increases.

【0011】半導体装置用放熱板として低熱膨張性と高
熱伝導性が要求されるので、熱膨張率としては、AlN
等のセラミック基板やSi、GaAs等の半導体基板の
熱膨張率と合わせる必要があり、熱伝導率としては高い
方がよい。このため、室温〜300℃の平均熱膨張率が
4.0〜10.0ppm/℃、熱伝導率が160W/m
K以上となるように酸素含有量および多孔質焼結体に対
する割合を調整するのが好ましい。
[0011] Since a heat sink for a semiconductor device is required to have low thermal expansion and high thermal conductivity, the thermal expansion coefficient is AlN.
It is necessary to match the coefficient of thermal expansion of a ceramic substrate such as that described above or a semiconductor substrate such as Si or GaAs, and the higher the thermal conductivity, the better. Therefore, the average coefficient of thermal expansion from room temperature to 300 ° C. is 4.0 to 10.0 ppm / ° C., and the thermal conductivity is 160 W / m.
It is preferable to adjust the oxygen content and the ratio to the porous sintered body so as to be K or more.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態に係る半導体
装置用放熱板の製造方法を説明する。この半導体装置用
放熱板は、熱膨張率が銅よりも小さい無機物質からなる
多孔質焼結体に酸素を含む銅合金を含浸させる方法で製
造される。まず、予め所定の空孔率(酸素を含む銅合金
の含浸率と同じ)を有する無機物質からなる多孔質焼結
体を1600〜1700℃にて予備焼成して作製する。
次に、多孔質焼結体をl200℃に予熱し、別途に所定
量の酸素を含む銅合金を1300℃にて溶解して得られ
た酸素を含む銅合金溶湯を、上記予熱された多孔質焼結
体に上方から落下させることにより、多孔質焼結体の空
孔部に酸素を含む銅合金を含浸させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a heat sink for a semiconductor device according to an embodiment of the present invention will be described. This heat sink for a semiconductor device is manufactured by a method in which a porous sintered body made of an inorganic substance having a smaller coefficient of thermal expansion than copper is impregnated with a copper alloy containing oxygen. First, a porous sintered body made of an inorganic substance having a predetermined porosity (the same as the impregnation rate of a copper alloy containing oxygen) is preliminarily fired at 1600 to 1700 ° C. to produce a sintered body.
Next, the porous sintered body is preheated to 1200 ° C., and a copper alloy melt containing oxygen obtained by separately melting a copper alloy containing a predetermined amount of oxygen at 1300 ° C. is mixed with the preheated porous alloy. By dropping the sintered body from above, the pores of the porous sintered body are impregnated with a copper alloy containing oxygen.

【0013】[0013]

【実施例】表1は、以下に説明する実施例および比較例
の測定結果を示す。
EXAMPLES Table 1 shows the measurement results of Examples and Comparative Examples described below.

【表1】 <実施例1〜7>実施例1〜7の銅複合材料は、上記実
施の形態で示した方法を用いて銅合金中の酸素濃度また
は無機物質の種類、あるいは焼結体の空孔率を変えたも
のである。これらの銅複合材料について、組織観察、熱
膨張率および熱伝導率の測定結果を表1に示す。なお、
熱膨張率は室温〜300℃の平均値で、熱伝導率が室温
での値である。
[Table 1] <Examples 1 to 7> The copper composite materials of Examples 1 to 7 were prepared by using the method described in the above embodiment to determine the oxygen concentration in the copper alloy, the type of inorganic substance, or the porosity of the sintered body. It has changed. Table 1 shows the results of microstructure observation, thermal expansion coefficient, and thermal conductivity measurement of these copper composite materials. In addition,
The coefficient of thermal expansion is an average value from room temperature to 300 ° C., and the thermal conductivity is a value at room temperature.

【0014】これらの銅複合材料についての組織観察に
より多孔質焼結体の空孔部全域に酸素を含む銅合金が含
浸されたことを確認した。また、多孔質焼結体の空孔部
に含浸された銅合金は、銅とCu2O(第1酸化銅)粒
子の2相金属組織となっている。表1に示すように実施
例1〜7の銅複合材料は、いずれも熱膨張率が4.0〜
10.0ppm/℃の範囲にあり、熱伝導率が165W
/mK以上の特性が得られた。
By observing the structure of these copper composite materials, it was confirmed that the entire area of the pores of the porous sintered body was impregnated with a copper alloy containing oxygen. The copper alloy impregnated in the pores of the porous sintered body has a two-phase metal structure of copper and Cu 2 O (first copper oxide) particles. As shown in Table 1, each of the copper composite materials of Examples 1 to 7 had a coefficient of thermal expansion of 4.0 to 4.0.
It is in the range of 10.0 ppm / ° C and has a thermal conductivity of 165 W
/ MK or more.

【0015】<比較例1>比較例1は、多孔質焼結体お
よびその空孔率を実施例1と同じにして含浸材を純銅と
した。この場合、熱伝導率がl55W/mKと低かっ
た。この複合材料について組織を観察した結果、銅の含
浸しない空孔が残っている。
Comparative Example 1 In Comparative Example 1, a porous sintered body and the porosity thereof were the same as those in Example 1, and the impregnating material was pure copper. In this case, the thermal conductivity was as low as 155 W / mK. As a result of observing the structure of the composite material, pores not impregnated with copper remain.

【0016】<比較例2>比較例2は、多孔質焼結体の
空孔率が低い値(l5体積%)となっていることから、
銅の含浸率が低くなり、それに伴って熱伝導率も150
W/mKと低くなっている。
Comparative Example 2 In Comparative Example 2, since the porosity of the porous sintered body was a low value (15% by volume),
The copper impregnation rate is low and the thermal conductivity is 150
It is as low as W / mK.

【0017】<比較例3>比較例3は、多孔質焼結体の
空孔率が高い値(70体積%)となっていることから、
銅の含浸率が高くなり、熱伝導率も295W/mKと高
くなっているが、SiCの焼結体の強度が低くなり、熱
膨張率は11.4ppm/℃と高くなっている。
Comparative Example 3 In Comparative Example 3, since the porosity of the porous sintered body was a high value (70% by volume),
Although the impregnation rate of copper is high and the thermal conductivity is high at 295 W / mK, the strength of the sintered body of SiC is low and the thermal expansion coefficient is high at 11.4 ppm / ° C.

【0018】上述した実施例1〜7は、いずれも銅合金
の酸素含有量が0.4〜2.5重量%O(酸素)であ
り、銅合金の割合は20〜60体積%の範囲であり、そ
れによって作製した銅複合材料は熱伝導率が160W/
mK以上、熱膨張率が4.0〜l0.0ppm/℃の範
囲にある。一方、上記範囲を逸脱した比較例1〜3で
は、熱膨張4.0〜10.0ppm/℃、熱伝導率16
0W/mK以上を同時に満たすことができなかった。
In Examples 1 to 7 described above, the oxygen content of the copper alloy is 0.4 to 2.5% by weight O (oxygen), and the proportion of the copper alloy is in the range of 20 to 60% by volume. The resulting copper composite material has a thermal conductivity of 160 W /
mK or more, the coefficient of thermal expansion is in the range of 4.0 to 10.0 ppm / ° C. On the other hand, in Comparative Examples 1 to 3 which deviated from the above range, the thermal expansion was 4.0 to 10.0 ppm / ° C and the thermal conductivity was 16
0 W / mK or more could not be satisfied at the same time.

【0019】なお、銅複合材料の含浸は、大気圧下で行
っても高圧下で行ってもよい。また、酸素を含む銅合金
の製造における酸素の添加方法については、特に限定せ
ず、銅溶湯中に酸化銅(CuO、Cu2O)を添加して
も、銅溶湯中に酸素を送り込んでも、あるいは大気中で
溶解してもよい。
The impregnation of the copper composite material may be performed under atmospheric pressure or under high pressure. The method of adding oxygen in the production of a copper alloy containing oxygen is not particularly limited. Even if copper oxide (CuO, Cu 2 O) is added to the copper melt or oxygen is sent into the copper melt, Alternatively, it may be dissolved in the air.

【0020】[0020]

【発明の効果】以上説明したように本発明の銅複合材料
によれば、多孔質焼結体に所定の酸素含有量の銅合金を
所定の割合で含浸させることにより、半導体装置用放熱
板として優れた低熱膨張性および高熱伝導性を有する銅
複合材料を得ることが可能となる。
As described above, according to the copper composite material of the present invention, a porous sintered body is impregnated with a copper alloy having a predetermined oxygen content at a predetermined ratio to form a heat sink for a semiconductor device. It is possible to obtain a copper composite material having excellent low thermal expansion and high thermal conductivity.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】熱膨張率が銅よりも小さい無機物質を焼成
して得られた多孔質焼結体に、所定の酸素含有量の銅合
金を所定の割合で含浸させたことを特徴とする銅複合材
料。
1. A porous sintered body obtained by firing an inorganic substance having a coefficient of thermal expansion smaller than that of copper is impregnated with a copper alloy having a predetermined oxygen content at a predetermined ratio. Copper composite material.
【請求項2】前記銅合金は、0.4〜2.5重量%O
(酸素)の前記酸素含有量を含むことを特徴とする請求
項1記載の銅複合材料。
2. The method according to claim 1, wherein said copper alloy contains 0.4 to 2.5% by weight of O.
The copper composite material according to claim 1, comprising the oxygen content of (oxygen).
【請求項3】前記銅合金は、前記多孔質焼結体に20〜
60体積%の割合で含浸されたことを特徴とする請求項
1記載の銅複合材料。
3. The method according to claim 2, wherein the copper alloy contains 20 to
The copper composite material according to claim 1, wherein the copper composite material is impregnated at a rate of 60% by volume.
【請求項4】前記多孔質焼結体は、Si34、SiC、
AlNおよびA123から選ばれた1種類以上の化合物
からなることを特徴とする請求項1記載の銅複合材料。
4. The porous sintered body is made of Si 3 N 4 , SiC,
Copper composite material according to claim 1, characterized in that it consists of one or more compounds selected from AlN and A1 2 O 3.
【請求項5】前記銅合金は、前記銅複合材料における室
温〜300℃の平均熱膨張率が4.0〜10.0ppm
/℃、熱伝導率が160W/mK以上となるように前記
酸素含有量および前記割合を調整されたことを特徴とす
る請求項1記載の銅複合材料。
5. The copper alloy has an average coefficient of thermal expansion from room temperature to 300 ° C. in the copper composite material of 4.0 to 10.0 ppm.
2. The copper composite material according to claim 1, wherein the oxygen content and the ratio are adjusted so that the thermal conductivity is not less than 160 W / mK.
JP2001001900A 2001-01-09 2001-01-09 Copper composite material Pending JP2002212651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001900A JP2002212651A (en) 2001-01-09 2001-01-09 Copper composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001900A JP2002212651A (en) 2001-01-09 2001-01-09 Copper composite material

Publications (1)

Publication Number Publication Date
JP2002212651A true JP2002212651A (en) 2002-07-31

Family

ID=18870480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001900A Pending JP2002212651A (en) 2001-01-09 2001-01-09 Copper composite material

Country Status (1)

Country Link
JP (1) JP2002212651A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
EP2439295A2 (en) 2006-02-15 2012-04-11 Jfe Precision Corporation Method for producing a Cr-Cu-alloy
CN110079697A (en) * 2019-06-10 2019-08-02 张国忠 A kind of novel Si3N4Grain reinforced metal Cu based composites and preparation method
CN112391552A (en) * 2020-12-07 2021-02-23 西安稀有金属材料研究院有限公司 Preparation method of in-situ authigenic alumina reinforced copper-based composite material
CN113388752A (en) * 2021-04-22 2021-09-14 上海交通大学 Preparation method of metal-based composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
EP2439295A2 (en) 2006-02-15 2012-04-11 Jfe Precision Corporation Method for producing a Cr-Cu-alloy
US8557015B2 (en) 2006-02-15 2013-10-15 Jfe Precision Corporation Cr-Cu alloy, method for producing the same, heat-release plate for semiconductor, and heat-release component for semiconductor
CN110079697A (en) * 2019-06-10 2019-08-02 张国忠 A kind of novel Si3N4Grain reinforced metal Cu based composites and preparation method
CN112391552A (en) * 2020-12-07 2021-02-23 西安稀有金属材料研究院有限公司 Preparation method of in-situ authigenic alumina reinforced copper-based composite material
CN113388752A (en) * 2021-04-22 2021-09-14 上海交通大学 Preparation method of metal-based composite material

Similar Documents

Publication Publication Date Title
EP0100232B2 (en) Substrate for semiconductor apparatus
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
WO2000076940A1 (en) Composite material and semiconductor device using the same
JP3960933B2 (en) High thermal conductive heat dissipation material and method for manufacturing the same
JP2002212651A (en) Copper composite material
JPH09209058A (en) Composite material with high thermal conductivity and its production
JPH0243700B2 (en)
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP3948797B2 (en) Method for producing silicon carbide composite
JP4907777B2 (en) Metal-ceramic composite material
JP2000272968A (en) Silicon nitride sintered compact and its production
JP2002294358A (en) Thermally conductive composite material
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JPH01305863A (en) Aluminium nitride sintered body, its production, and electronic parts using the same sintered body
JPH10321776A (en) Radiator member for semiconductor element
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2003013168A (en) High thermal-conductivity material and manufacturing method therefor
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
JPH11116363A (en) Silicon carbide-based composite and heat radiating part using the same
JP3420415B2 (en) High thermal conductive composite material
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2024053480A (en) Method for producing sintered silicon nitride
JP2002173373A (en) Aluminum nitride sintered compact, method of producing the same and electronic component using the same