JP2002212638A - Method for producing grain oriented silicon steel sheet - Google Patents

Method for producing grain oriented silicon steel sheet

Info

Publication number
JP2002212638A
JP2002212638A JP2001013945A JP2001013945A JP2002212638A JP 2002212638 A JP2002212638 A JP 2002212638A JP 2001013945 A JP2001013945 A JP 2001013945A JP 2001013945 A JP2001013945 A JP 2001013945A JP 2002212638 A JP2002212638 A JP 2002212638A
Authority
JP
Japan
Prior art keywords
annealing
furnace
steel sheet
secondary recrystallization
annealing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001013945A
Other languages
Japanese (ja)
Other versions
JP4569007B2 (en
Inventor
Norihisa Okada
典久 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001013945A priority Critical patent/JP4569007B2/en
Publication of JP2002212638A publication Critical patent/JP2002212638A/en
Application granted granted Critical
Publication of JP4569007B2 publication Critical patent/JP4569007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and stably producing a grain oriented silicon steel sheet which has excellent electromagnetic properties. SOLUTION: A hot rolled sheet obtained by subjecting a silicon steel stock to hot rolling is subjected to cold rolling for one time or two or more times including process annealing into a final sheet thickness. The sheet is thereafter subjected to primary recrystallization annealing serving also as decarburization, is next coated with a separation agent for annealing, and is dried. Then, the steel sheet is coiled into a coiled-shape, and is subjected to finish annealing consisting of secondary recrystallization annealing and purification annealing. In the finish annealing, the secondary recrystallization annealing is performed in a batch annealing furnace, and the purification annealing is performed in a continuous annealing furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性電磁鋼板
の製造方法に関するものである。
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、電磁鋼素材を熱間圧
延して得られた熱延板に、1回または中間焼鈍を挟む2
回以上の冷間圧延を施して最終板厚とした後、脱炭を兼
ねた1次再結晶焼鈍を施し、次いで焼鈍分離剤を塗布・
乾燥してからコイル状に鋼板を巻き取った後に、仕上焼
鈍を施すことによって製造される。
2. Description of the Related Art A grain-oriented electrical steel sheet is obtained by hot-rolling an electromagnetic steel material and subjecting a hot-rolled sheet to one or intermediate annealing.
After performing cold rolling more than twice to make the final sheet thickness, perform primary recrystallization annealing also serving as decarburization, and then apply an annealing separator.
It is manufactured by subjecting a steel sheet to a coil shape after drying, followed by finish annealing.

【0003】また、例えば特公平3−52521号公報に記
載されているように、MnSe、MnSをインヒビターとする
方向性電磁鋼板では、前記仕上焼鈍を、{110}<0
01>方位に揃った2次再結晶粒を発達させるため、比
較的低温かつ長時間の処理を必要とする2次再結晶焼鈍
と、鉄損に有害な鋼中のS、Se、N等を除去するため、
比較的高温かつ短時間の処理を必要とする純化焼鈍との
2つに分けて、いわゆる2段加熱のヒートパターンで行
うのが一般的である。
Further, as described in Japanese Patent Publication No. 3-52521, for example, in a grain-oriented electrical steel sheet using MnSe and MnS as inhibitors, the finish annealing is restricted to {110} <0.
01> secondary recrystallization annealing, which requires relatively low-temperature and long-term treatment to develop secondary recrystallized grains aligned with the orientation, and removes S, Se, N, etc. in steel harmful to iron loss. To remove
In general, the heat treatment is performed in a so-called two-stage heating pattern, which is divided into two processes, namely, purification annealing which requires a relatively high-temperature and short-time treatment.

【0004】さらに、上記方向性電磁鋼板を省エネルギ
ーや省力化により効率よく製造するための従来の仕上焼
鈍方法としては、例えば特公平62−61653号公報に記載
されているような連続式(回転式)仕上焼鈍炉で行うの
が一般的である。前記連続式仕上焼鈍炉1は、図1及び
図2に示すように、インナーカバー2で覆われた鋼板コ
イル3を垂直に載置したコイル受台4を所定半径の円周
上を走行する炉床5上に設け、前記コイル受台4が、前
記鋼板コイル3を1段積み2列で載置しうる構成とし、
加熱装置(図示せず)の取付け位置6をコイル受台4上
の鋼板コイル3の上端部より上方に設置した構成を有し
ており、また、炉内温度は、2段加熱のヒートパターン
に設定するのが一般的である。
Further, as a conventional finish annealing method for efficiently producing the grain-oriented electrical steel sheet by energy saving and labor saving, for example, a continuous type (rotary type) described in Japanese Patent Publication No. 62-61653 is disclosed. ) It is generally performed in a finish annealing furnace. As shown in FIGS. 1 and 2, the continuous finish annealing furnace 1 is a furnace that runs on a coil cradle 4 on which a steel sheet coil 3 covered with an inner cover 2 is mounted vertically, on a circumference having a predetermined radius. The coil receiving table 4 is provided on a floor 5 so that the steel coil 3 can be placed in two rows in a single-stacked state.
The heating device (not shown) has a configuration in which the mounting position 6 is set above the upper end of the steel sheet coil 3 on the coil support 4 and the furnace temperature is set to a two-stage heating pattern. It is common to set.

【0005】ところが、2次再結晶焼鈍は、2次再結晶
温度や保持時間等の条件が、鋼種や、要求される電磁特
性及び前工程の処理条件等(以下、単に「鋼種」とい
う。)によって大きく異なるため、鋼種ごとに焼鈍条件
を正確に制御して行うことが必要であり、一方、純化焼
鈍は、鋼種によって焼鈍条件にあまり差がなく、厳密な
制御はさほど必要とされない場合が多い。
However, in the secondary recrystallization annealing, the conditions such as the secondary recrystallization temperature and the holding time depend on the type of steel, the required electromagnetic characteristics, the processing conditions in the preceding process, and the like (hereinafter, simply referred to as “steel type”). It is necessary to precisely control the annealing conditions for each type of steel because it greatly depends on the type of steel.On the other hand, in the case of purification annealing, there is not much difference in the annealing conditions depending on the type of steel, and strict control is often not so required. .

【0006】しかしながら、連続式仕上焼鈍炉では、同
一炉内の加熱帯で2次再結晶焼鈍と純化焼鈍を行うた
め、ヒートパターンの変更範囲が制限され、2次再結晶
焼鈍を、鋼種ごとに分けて最適な炉内温度で行うことは
困難である。
However, in the continuous finishing annealing furnace, since the secondary recrystallization annealing and the purification annealing are performed in the heating zone in the same furnace, the range of changing the heat pattern is limited, and the secondary recrystallization annealing is performed for each steel type. It is difficult to separate and perform at the optimum furnace temperature.

【0007】さらに、2次再結晶焼鈍を行う時間は、純
化焼鈍を行う時間に比べてかなり長いため、1台の連続
式(回転式)仕上焼鈍炉内で2次再結晶焼鈍と純化焼鈍
の双方を行う場合には、長時間を要する2次再結晶焼鈍
工程に要する時間が、仕上焼鈍工程に要する時間に占め
る割合が非常に大きくなることから、各コイルの連続式
仕上焼鈍炉での滞留時間が長くなり、連続式(回転式)
仕上焼鈍炉を有効に活用することができなかった。この
ため、効率よく仕上焼鈍を行うには、現状では設備コス
トが多大である連続式仕上焼鈍炉を複数用いて使い分け
を行う必要があった。
Further, the time for performing the secondary recrystallization annealing is considerably longer than the time for performing the purification annealing. Therefore, the secondary recrystallization annealing and the purification annealing are performed in one continuous (rotary) finish annealing furnace. When both are performed, the time required for the secondary recrystallization annealing step, which requires a long time, accounts for a very large proportion of the time required for the finish annealing step, so that each coil stays in the continuous finish annealing furnace. Longer time, continuous (rotary)
The finish annealing furnace could not be used effectively. For this reason, in order to perform the finish annealing efficiently, it is necessary to selectively use a plurality of continuous finish annealing furnaces, which currently require a large equipment cost.

【0008】[0008]

【発明が解決しようとする課題】この発明の目的は、上
記の問題を有利に解決するもので、2次再結晶焼鈍およ
び純化焼鈍からなる仕上焼鈍のうち、特に2次再結晶焼
鈍を、正確な温度制御が可能なバッチ式焼鈍炉で行うこ
とにより、電磁特性に優れた方向性電磁鋼板を効率よく
かつ安定に製造するための方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem advantageously, and among the finish annealings consisting of secondary recrystallization annealing and purification annealing, in particular, secondary recrystallization annealing is performed accurately. It is an object of the present invention to provide a method for efficiently and stably producing a grain-oriented electrical steel sheet having excellent electromagnetic properties by performing the process in a batch annealing furnace capable of controlling the temperature.

【0009】[0009]

【課題を解決するための手段】発明者は、上記課題を解
決するため鋭意検討を行ったところ、仕上焼鈍のうち、
2次再結晶焼鈍は、2次再結晶温度等の2次再結晶条件が
異なる鋼種ごとに正確な温度制御と長時間の処理が必要
であるため、鋼種により大きく違いのある2次再結晶過
程の温度及び保持時間を鋼種単位ごとに最適に設定する
ことができ、かつ正確な温度制御が可能なバッチ式焼鈍
炉で行い、純化焼鈍は、鋼種ごとの焼鈍条件に差がない
ため、連続式焼鈍炉でまとめて行えば、効率的かつ安定
して電磁特性に優れた電磁鋼板を製造できることを見出
した。
Means for Solving the Problems The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems.
The secondary recrystallization annealing requires accurate temperature control and long-time treatment for each steel type with different secondary recrystallization conditions such as the secondary recrystallization temperature. Temperature and holding time can be set optimally for each steel type unit, and it is performed in a batch type annealing furnace capable of accurate temperature control.Since there is no difference in the annealing conditions for each steel type, purification It has been found that, if performed collectively in an annealing furnace, it is possible to efficiently and stably produce an electromagnetic steel sheet having excellent electromagnetic characteristics.

【0010】すなわち、この発明の要旨は下記のとおり
である。 (1)電磁鋼素材を熱間圧延して得られた熱延板に、1
回または中間焼鈍を挟む2回以上の冷間圧延を施して最
終板厚とした後、脱炭を兼ねた1次再結晶焼鈍を施し、
次いで焼鈍分離剤を塗布・乾燥してからコイル状に鋼板
を巻き取った後に、2次再結晶焼鈍および純化焼鈍から
なる仕上焼鈍を施す一連の工程を有する方向性電磁鋼板
の製造方法において、仕上焼鈍にて、2次再結晶焼鈍は
バッチ式焼鈍炉で行い、純化焼鈍は連続式焼鈍炉で行う
ことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows. (1) A hot rolled sheet obtained by hot rolling an electromagnetic steel material
After performing cold rolling twice or more with intermediate or intermediate annealing to make the final sheet thickness, perform primary recrystallization annealing also serving as decarburization,
Then, after applying and drying the annealing separating agent, winding the steel sheet into a coil, and then performing a series of steps of performing a finish annealing consisting of a secondary recrystallization annealing and a purification annealing, a method of manufacturing a grain-oriented electrical steel sheet, A method for producing a grain-oriented electrical steel sheet, wherein the secondary recrystallization annealing is performed in a batch annealing furnace, and the purification annealing is performed in a continuous annealing furnace.

【0011】(2) 前記鋼板コイルの2次再結晶条件
が異なる場合、 2次再結晶焼鈍は、同一の2次再結晶条
件を有する鋼板コイル群ごとに別個のバッチ式焼鈍炉で
行い、純化焼鈍は、前記2次再結晶焼鈍を行った鋼板コ
イルを同一の連続式焼鈍炉で行う前記(1)に記載の方
向性電磁鋼板の製造方法。
(2) When the secondary recrystallization conditions of the steel sheet coil are different, the secondary recrystallization annealing is performed in a separate batch-type annealing furnace for each of the steel sheet coils having the same secondary recrystallization condition, and purified. The method for producing a grain-oriented electrical steel sheet according to (1), wherein the annealing is performed in the same continuous annealing furnace on the steel sheet coil that has been subjected to the secondary recrystallization annealing.

【0012】(3)2次再結晶焼鈍は、不活性ガス雰囲
気中にて、900℃以下でかつ30時間以上保持することに
より行い、純化焼鈍は、還元ガス雰囲気中にて、1100℃
以上でかつ10時間以下保持することにより行う前記
(1)又は(2)に記載の方向性電磁鋼板の製造方法。
(3) The secondary recrystallization annealing is performed in an inert gas atmosphere at a temperature of 900 ° C. or less and for 30 hours or more. The purification annealing is performed in a reducing gas atmosphere at 1100 ° C.
The method for producing a grain-oriented electrical steel sheet according to the above (1) or (2), which is performed by holding the above for 10 hours or less.

【0013】(4)バッチ式焼鈍炉から連続式焼鈍炉へ
の炉換えを大気中で行う場合には、前記鋼板コイルをバ
ッチ式焼鈍炉内で400℃以下に冷却してから連続式焼鈍
炉に炉換えする前記(1)、(2)又は(3)に記載の
方向性電磁鋼板の製造方法。
(4) When the furnace is changed from a batch type annealing furnace to a continuous type annealing furnace in the atmosphere, the steel sheet coil is cooled to 400 ° C. or less in the batch type annealing furnace, and then the continuous type annealing furnace is used. The method for producing a grain-oriented electrical steel sheet according to (1), (2) or (3), wherein the furnace is replaced with a furnace.

【0014】(5)方向性電磁鋼板の製造に用いる仕上
焼鈍設備であって、バッチ式焼鈍炉と連続式焼鈍炉から
なり、鋼板コイルが2次再結晶を行うバッチ式焼鈍炉に
装入・取出された後に、純化焼鈍を行う連続式焼鈍炉に
装入・取出されることを特徴とする方向性電磁鋼板製造
用仕上焼鈍設備。
(5) Finish annealing equipment used for the production of grain-oriented electrical steel sheets, comprising a batch annealing furnace and a continuous annealing furnace, wherein the steel sheet coil is charged into a batch annealing furnace for performing secondary recrystallization. Finish annealing equipment for manufacturing grain-oriented electrical steel sheets, which is charged and unloaded into a continuous annealing furnace for purifying annealing after being unloaded.

【0015】[0015]

【発明の実施の形態】次に、この発明に従う方向性電磁
鋼板の製造方法の実施形態の一例について説明する。ま
ず、電磁鋼素材を熱間圧延する。電磁鋼素材の組成につ
いては特に限定はしないが、一例を挙げておくと、質量
%で、C:0.02〜0.10%、Si:2.0〜4.5%、Mn:0.05〜0.
2%を含有し、かつSe:およびSの1種または2種を合計
で0.01〜0.04%含有する組成になる電磁鋼素材を用いる
ことが好ましい。
Next, an embodiment of a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. First, the electromagnetic steel material is hot-rolled. The composition of the electromagnetic steel material is not particularly limited, but to give an example, C: 0.02 to 0.10%, Si: 2.0 to 4.5%, Mn: 0.05 to 0.
It is preferable to use an electromagnetic steel material containing 2% and having a composition containing one or two of Se: and S in a total amount of 0.01 to 0.04%.

【0016】また、電磁鋼素材(スラブ)は、公知の方
法によって製造することができる。例えば、転炉製鋼法
等によって所望の成分組成の溶鋼に溶製し、連続鋳造法
あるいは造塊−分塊圧延法によって製造すればよい。
The electromagnetic steel material (slab) can be manufactured by a known method. For example, it may be produced by melting into molten steel having a desired component composition by a converter steelmaking method or the like, and then by a continuous casting method or an ingot-bulking rolling method.

【0017】さらに、電磁鋼素材は、熱間圧延を行う前
に、通常はインヒビター形成元素を十分に解離固溶させ
るために1250℃以上の高温に加熱することが好ましく、
その後、公知の方法に従って熱間圧延を施し、所定の厚
み、好適には1.4〜5.0mm程度の厚みの熱延板とする。
Further, the electromagnetic steel material is preferably heated to a high temperature of 1250 ° C. or more before hot rolling, usually to sufficiently dissociate and solidify the inhibitor-forming element.
Thereafter, hot rolling is performed according to a known method to obtain a hot-rolled sheet having a predetermined thickness, preferably about 1.4 to 5.0 mm.

【0018】次いで、この熱延板に、必要に応じて熱延
板焼鈍を施した後、酸洗処理を行い、その後、1回また
は中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚
の冷延板とする。冷間圧延は、公知の方法に従って行え
ばよく、最終板厚は、0.20〜0.35mmとすることが好ま
しい。
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing if necessary, and then is subjected to an acid pickling treatment, and thereafter, is subjected to one or two or more cold-rolling steps with intermediate annealing, so as to be finally finished. Cold rolled sheet of thickness. The cold rolling may be performed according to a known method, and the final thickness is preferably 0.20 to 0.35 mm.

【0019】その後、冷延板は、磁気特性に悪影響を及
ぼす鋼中のCを除去するための脱炭を兼ねた1次再結晶
焼鈍を施し、次いで、MgOで代表される焼鈍分離剤を塗
布・乾燥してからコイル状に鋼板を巻き取った後、前記
鋼板コイルに、2次再結晶焼鈍および純化焼鈍からなる
仕上焼鈍を施すことによって、方向性電磁鋼板を製造す
ることができる。
Thereafter, the cold-rolled sheet is subjected to a primary recrystallization annealing which also serves as decarburization for removing C in the steel, which adversely affects magnetic properties, and then an annealing separating agent represented by MgO is applied. After winding the steel sheet into a coil after drying, a grain-oriented electrical steel sheet can be manufactured by subjecting the steel sheet coil to finish annealing including secondary recrystallization annealing and purification annealing.

【0020】そして、この発明の構成上の主な特徴は、
前記鋼板コイルの仕上焼鈍方法の適正化を図ることにあ
り、より具体的には、仕上焼鈍を2次再結晶焼鈍と純化
焼鈍とに分けて行うこと、すなわち、2次再結晶焼鈍
は、正確な温度制御が可能なバッチ式焼鈍炉で行い、純
化焼鈍は、大量処理可能な連続式焼鈍炉で行うことにあ
る。
The main features of the configuration of the present invention are as follows.
In order to optimize the finish annealing method of the steel sheet coil, more specifically, the finish annealing is divided into secondary recrystallization annealing and purification annealing, that is, the secondary recrystallization annealing is accurate. It is performed in a batch annealing furnace capable of controlling the temperature, and the purification annealing is performed in a continuous annealing furnace capable of mass processing.

【0021】従来の仕上焼鈍は、図1に示すように、2
次再結晶焼鈍と純化焼鈍の双方を同一の連続式焼鈍炉で
行っていたが、この構成だと、あらかじめ炉の入口から
出口にかけてヒートパターンを形成しておき、その中を
コイルが順次連続的に移動しながら焼鈍されるため、炉
内温度(ヒートパターン)を鋼種ごとの最適な温度に正
確に制御することが難しく、加えて、2次再結晶焼鈍の
処理時間は純化焼鈍の処理時間に比べて非常に長いた
め、各コイルの連続式焼鈍炉での滞留時間が長くなり、
結局、連続式焼鈍炉の利点である優れた生産性を十分に
活かすことができなかった。
As shown in FIG.
Both the next recrystallization annealing and the purification annealing were performed in the same continuous annealing furnace.However, with this configuration, a heat pattern was formed in advance from the inlet to the outlet of the furnace, and the coil was continuously and continuously in the furnace. It is difficult to accurately control the furnace temperature (heat pattern) to the optimum temperature for each steel type, and the processing time for secondary recrystallization annealing is reduced to that for purification annealing. Because it is very long, the residence time of each coil in the continuous annealing furnace is long,
As a result, the excellent productivity, which is the advantage of the continuous annealing furnace, could not be fully utilized.

【0022】そこで、この発明は、2次再結晶焼鈍を正
確な温度制御が可能なバッチ式焼鈍炉で行い、2次再結
晶温度、保持時間及び炉内雰囲気等の2次再結晶条件を
最適に設定することができるため、{110}<001
>方位に揃った2次再結晶粒を十分に発達させることが
でき、また、鋼種ごとに焼鈍条件に差がない純化焼鈍の
みを連続式焼鈍炉で行うことによって、鋼板コイルを大
量に処理することができ、これによって、2次再結晶焼
鈍と純化焼鈍の双方を連続式焼鈍炉で行っていた従来の
製造方法に比べて、電磁特性が格段に優れた電磁鋼板を
効率よくかつ安定して製造することができる。
Therefore, the present invention performs the secondary recrystallization annealing in a batch-type annealing furnace capable of accurately controlling the temperature, and optimizes the secondary recrystallization conditions such as the secondary recrystallization temperature, the holding time, and the furnace atmosphere. {110} <001
> The secondary recrystallized grains aligned in the orientation can be sufficiently developed, and a large amount of steel sheet coils are processed by performing only the purification annealing with no difference in the annealing conditions for each steel type in the continuous annealing furnace. This makes it possible to efficiently and stably produce electrical steel sheets with remarkably excellent electromagnetic properties, compared to the conventional manufacturing method in which both secondary recrystallization annealing and purification annealing are performed in a continuous annealing furnace. Can be manufactured.

【0023】また、2次再結晶温度、保持時間及び炉内
雰囲気等の2次再結晶条件、特に2次再結晶温度が異な
る複数の鋼種の鋼板コイルを仕上焼鈍する場合には、2
次再結晶焼鈍は、同一の2次再結晶条件を有する鋼板コ
イル群ごとに、最適な炉内温度に設定した別個のバッチ
式焼鈍炉で行うとともに、純化焼鈍は、2次再結晶焼鈍
を行った全鋼板コイルを同一の連続式焼鈍炉でまとめて
行えば、上述したように、バッチ式焼鈍炉と連続式焼鈍
炉の長所を最大限に引き出すことができる。
Further, when secondary recrystallization conditions such as a secondary recrystallization temperature, a holding time, and an atmosphere in a furnace, particularly a steel coil of a plurality of steel types having different secondary recrystallization temperatures are subjected to finish annealing, the following conditions are required.
The secondary recrystallization annealing is performed in a separate batch annealing furnace set to the optimum furnace temperature for each steel sheet coil group having the same secondary recrystallization conditions, and the purification annealing is performed in the secondary recrystallization annealing. If all the steel sheet coils are combined in the same continuous annealing furnace, the advantages of the batch annealing furnace and the continuous annealing furnace can be maximized as described above.

【0024】なお、2次再結晶焼鈍は、炉内雰囲気をN
2、Ar等の不活性ガス雰囲気とし、焼鈍温度を930℃以
下、好適には830〜870℃とし、焼鈍温度の保持時間を30
時間以上、好適には30〜80時間とすることが好ましい。
焼鈍温度が930℃を超えると、純化焼鈍で行うべき被膜
形成や純化が進行してしまう結果、電磁特性が悪化する
とともに被膜特性も劣る傾向があるからである。
In the second recrystallization annealing, the atmosphere in the furnace is changed to N
2 , an inert gas atmosphere of Ar or the like, an annealing temperature of 930 ° C. or less, preferably 830 to 870 ° C., and an annealing temperature holding time of 30 ° C.
The time is preferably at least 30 hours, preferably 30 to 80 hours.
If the annealing temperature exceeds 930 ° C., the formation and purification of the film to be performed by the purification annealing progress, so that the electromagnetic characteristics are deteriorated and the film characteristics tend to be deteriorated.

【0025】また、純化焼鈍は、炉内雰囲気をH2、N2
+H2等の還元ガス雰囲気とし、焼鈍温度を1100℃以
上、好適には1150〜1200℃とする。焼鈍温度が1100℃未
満だと、被膜形成や純化を十分に行うことができなくな
るからである。また、前記焼鈍温度の保持時間は、10時
間以下、好適には3〜10時間とすることが好ましい。
尚、生産効率を特に重視する場合には、焼鈍温度の保持
時間を2時間以下にすることが好ましい。
Further, in the purification annealing, the atmosphere in the furnace is H 2 , N 2
The atmosphere is a reducing gas atmosphere such as + H 2 , and the annealing temperature is 1100 ° C. or higher, preferably 1150 to 1200 ° C. If the annealing temperature is lower than 1100 ° C., the film cannot be sufficiently formed or purified. Further, the holding time of the annealing temperature is preferably 10 hours or less, more preferably 3 to 10 hours.
When the production efficiency is particularly important, the holding time of the annealing temperature is preferably set to 2 hours or less.

【0026】さらに、バッチ式焼鈍炉から連続式焼鈍炉
への炉換えを非酸化雰囲気中で行う場合には、バッチ式
焼鈍炉で加熱・保持した鋼板コイルを冷却することなく
連続式焼鈍炉に移動させることが、純化焼鈍で鋼板コイ
ルを加熱するエネルギー量が少なくなる点で好ましい
が、前記炉換えを大気中で行う場合には、ブルーイング
や酸化を防止するため、前記鋼板コイルをバッチ式焼鈍
炉内で400℃以下に冷却してから連続式焼鈍炉に炉換え
することが好ましい。
Further, when the furnace is changed from a batch annealing furnace to a continuous annealing furnace in a non-oxidizing atmosphere, the steel sheet coil heated and held in the batch annealing furnace can be converted to a continuous annealing furnace without cooling. Movement is preferable in that the amount of energy for heating the steel sheet coil in the purification annealing is reduced.However, when the furnace change is performed in the air, the steel sheet coil is batch-processed to prevent bluing and oxidation. It is preferable to cool the furnace to 400 ° C. or lower in the annealing furnace and then switch to a continuous annealing furnace.

【0027】なお、上述したところは、この発明の実施
形態の一例を示したにすぎず、請求の範囲において種々
の変更を加えることができる。
The above description is merely an example of the embodiment of the present invention, and various changes can be made within the scope of the claims.

【0028】[0028]

【実施例】(実施例1) C:0.045mass%、Si:3.30 mass%、Mn:0.087 mass
%、Se:0.025 mass%を含有する組成になるけい素鋼を
中間焼鈍を挟む2回冷延法により0.23mmの最終板厚と
した後、脱脂してから1次再結晶焼鈍を施し、次いでMg
Oを主成分とする焼鈍分離剤を塗布・乾燥してから巻き
取った各鋼板コイルについて、下記(A)〜(F)の条
件で仕上焼鈍を行うことにより電磁鋼板を作製し、各電
磁鋼板の電磁特性(鉄損W17/50と磁束密度B8)と被膜
特性(被膜外観、剥離試験、ベンド試験)を評価した。
表1にそれらの評価結果を示す。なお、上記鋼板コイル
はいずれも、同一ロットで製造され、2次再結晶温度は
いずれも853℃であった。
[Example] (Example 1) C: 0.045 mass%, Si: 3.30 mass%, Mn: 0.087 mass
%, Se: 0.025 mass% of silicon steel having a final sheet thickness of 0.23 mm by a twice cold rolling method with intermediate annealing sandwiched, then degreased and then subjected to primary recrystallization annealing, Mg
Each steel sheet coil coated and dried with an annealing separator containing O as a main component is subjected to finish annealing under the following conditions (A) to (F) to produce an electromagnetic steel sheet. The electromagnetic properties (iron loss W 17/50 and magnetic flux density B 8 ) and coating properties (coat appearance, peel test, bend test) were evaluated.
Table 1 shows the evaluation results. In addition, all of the above steel sheet coils were manufactured in the same lot, and the secondary recrystallization temperatures were all 853 ° C.

【0029】記 (A)2次再結晶焼鈍及び純化焼鈍を同一の連続式(回
転式)焼鈍炉で行う。まず、乾燥N2ガス雰囲気中にて8
50℃、50時間の保定により2次再結晶焼鈍を行い、次い
で、炉内雰囲気を乾燥H2ガス雰囲気に切り替え、1200
℃、10時間の保定により純化焼鈍を行う(従来例)。 (B)2次再結晶焼鈍をバッチ式焼鈍炉で行い、純化焼
鈍を連続式(回転式)焼鈍炉で行う。まず、乾燥N2
ス雰囲気中にて855℃、50時間の保定により2次再結晶焼
鈍を行い、420℃まで冷却し、大気雰囲気下で4時間放
置してから炉換えした後、乾燥N2ガス雰囲気にて700℃
まで加熱後、炉内雰囲気を乾燥H2ガス雰囲気に切り替
えて1200℃、10時間の保定により純化焼鈍を行う(比較
例1)。 (C)2次再結晶焼鈍をバッチ式焼鈍炉で行い、純化焼
鈍を連続式(回転式)焼鈍炉で行う。まず、乾燥N2
ス雰囲気中にて855℃、50時間の保定により2次再結晶焼
鈍を行い、200℃まで冷却し、大気雰囲気下で4時間放
置してから炉換えした後、乾燥N2ガス雰囲気にて700℃
まで加熱後、炉内雰囲気を乾燥H2ガス雰囲気に切り替
えて1200℃、10時間の保定により純化焼鈍を行う(発明
例1)。 (D)2次再結晶焼鈍をバッチ式焼鈍炉で行い、純化焼
鈍を連続式(回転式)焼鈍炉で行う。まず、乾燥N2
ス雰囲気中にて850℃、50時間の保定し、900℃まで加熱
することにより2次再結晶焼鈍を行い、200℃まで冷却
し、大気雰囲気下で4時間放置してから炉換えした後、
乾燥N2ガス雰囲気にて700℃まで加熱後、炉内雰囲気を
乾燥H2ガス雰囲気に切り替えて1200℃、10時間の保定
により純化焼鈍を行う(発明例2)。 (E)2次再結晶焼鈍をバッチ式焼鈍炉で行い、純化焼
鈍を連続式(回転式)焼鈍炉で行う。まず、乾燥N2
ス雰囲気中にて850℃、50時間の保定し、炉内雰囲気を
乾燥H2ガス雰囲気に切り替えてから930℃まで加熱する
ことにより2次再結晶焼鈍を行い、200℃まで冷却し、大
気雰囲気下で4時間放置してから炉換えした後、乾燥N
2ガス雰囲気にて700℃まで加熱後、炉内雰囲気を乾燥H
2ガス雰囲気に切り替えて1200℃、10時間の保定により
純化焼鈍を行う(発明例3)。 (F)2次再結晶焼鈍をバッチ式焼鈍炉で行い、純化焼
鈍を連続式(回転式)焼鈍炉で行う。まず、乾燥N2
ス雰囲気中にて850℃、50時間の保定し、炉内雰囲気を
乾燥H2ガス雰囲気に切り替えてから970℃まで加熱する
ことにより2次再結晶焼鈍を行い、200℃まで冷却し、大
気雰囲気下で4時間放置してから炉換えした後、乾燥N
2ガス雰囲気にて700℃まで加熱後、炉内雰囲気を乾燥H
2ガス雰囲気に切り替えて1200℃、10時間の保定により
純化焼鈍を行う(比較例2)。
(A) The secondary recrystallization annealing and the purification annealing are performed in the same continuous (rotary) annealing furnace. First, in a dry N 2 gas atmosphere,
Secondary recrystallization annealing was performed by holding at 50 ° C. for 50 hours, and then the atmosphere in the furnace was switched to a dry H 2 gas atmosphere,
Purification annealing is performed by holding at 10 ° C. for 10 hours (conventional example). (B) The secondary recrystallization annealing is performed in a batch annealing furnace, and the purification annealing is performed in a continuous (rotary) annealing furnace. First, 855 ° C. in a dry N 2 gas atmosphere, subjected to secondary recrystallization annealing by retention of 50 hours, cooled to 420 ° C., was replaced furnace left to stand for 4 hours under an air atmosphere, dry N 2 700 ° C in gas atmosphere
After heating, the furnace atmosphere was switched to a dry H 2 gas atmosphere, and purification annealing was performed by holding at 1200 ° C. for 10 hours (Comparative Example 1). (C) The secondary recrystallization annealing is performed in a batch annealing furnace, and the purification annealing is performed in a continuous (rotary) annealing furnace. First, dry N 855 ° C. at 2 gas atmosphere, subjected to secondary recrystallization annealing by retention of 50 hours, cooled to 200 ° C., was replaced furnace left to stand for 4 hours under an air atmosphere, dry N 2 700 ° C in gas atmosphere
After heating, the furnace atmosphere is changed to a dry H 2 gas atmosphere, and purification annealing is performed at 1200 ° C. for 10 hours (Inventive Example 1). (D) The secondary recrystallization annealing is performed in a batch annealing furnace, and the purification annealing is performed in a continuous (rotary) annealing furnace. First, hold at 850 ° C. for 50 hours in a dry N 2 gas atmosphere, perform a second recrystallization annealing by heating to 900 ° C., cool to 200 ° C., and leave in an air atmosphere for 4 hours. After changing the furnace,
After heating to 700 ° C. in a dry N 2 gas atmosphere, the atmosphere in the furnace is switched to a dry H 2 gas atmosphere, and purification annealing is performed at 1200 ° C. for 10 hours (Inventive Example 2). (E) Secondary recrystallization annealing is performed in a batch annealing furnace, and purification annealing is performed in a continuous (rotary) annealing furnace. First, the temperature was maintained at 850 ° C. for 50 hours in a dry N 2 gas atmosphere, the atmosphere in the furnace was switched to a dry H 2 gas atmosphere, and then heated to 930 ° C. to perform secondary recrystallization annealing to 200 ° C. After cooling, leaving it in the air atmosphere for 4 hours and replacing the furnace, dry N
2 After heating to 700 ° C in a gas atmosphere, dry the atmosphere in the furnace with H
The gas atmosphere is switched to a gas atmosphere, and purification annealing is performed by holding at 1200 ° C. for 10 hours (Inventive Example 3). (F) Secondary recrystallization annealing is performed in a batch annealing furnace, and purification annealing is performed in a continuous (rotary) annealing furnace. First, at 850 ° C. for 50 hours in a dry N 2 gas atmosphere, the atmosphere in the furnace is switched to a dry H 2 gas atmosphere, and then heated to 970 ° C. to perform a secondary recrystallization annealing to 200 ° C. After cooling, leaving it in the air atmosphere for 4 hours and replacing the furnace, dry N
2 After heating to 700 ° C in a gas atmosphere, dry the atmosphere in the furnace with H
The atmosphere is switched to a two- gas atmosphere, and purification annealing is performed at 1200 ° C. for 10 hours (Comparative Example 2).

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示す結果から、発明例1〜3は、従
来例に比べて、鉄損が低くかつ磁束密度が高く、加え
て、被膜特性についても何ら問題なく良好である。一
方、大気中での炉換え時の鋼板コイルの温度が高い比較
例1は、ブルーイングを生じるため、電磁特性及び被膜
特性とも劣っており、また、比較例2は、2次再結晶焼
鈍段階で既に被膜形成が初期段階まで進行してしまうた
め、電磁特性及び被膜特性とも劣っている。
From the results shown in Table 1, the invention examples 1 to 3 have a lower iron loss and a higher magnetic flux density than the conventional examples, and also have good coating characteristics without any problem. On the other hand, in Comparative Example 1 in which the temperature of the steel sheet coil was high when the furnace was replaced in the atmosphere, the electromagnetic properties and the coating properties were inferior because bluing occurred. In Comparative Example 2, the secondary recrystallization annealing step was performed. However, since the film formation has already progressed to the initial stage, the electromagnetic characteristics and the film characteristics are inferior.

【0032】(実施例2)実施例1と同様な方法によっ
て製造した同一鋼種(鋼種は同じだが異なるロットで製
造したものも含む。)の鋼板コイル20本について、下記
(a)及び(b)の条件で仕上焼鈍を行うことにより電
磁鋼板を作製し、各電磁鋼板の電磁特性(鉄損W17/50
と磁束密度B8)を評価した。表1に電磁特性の評価結果
を示す。なお、表中の鉄損W17/50と磁束密度B8の数値
は、いずれも平均値である。
(Example 2) For 20 steel sheet coils of the same steel type (including the same steel type but manufactured in different lots) manufactured by the same method as in Example 1, the following (a) and (b) Finished annealing was performed under the conditions described above to produce electrical steel sheets, and the electromagnetic properties (iron loss W 17/50
And the magnetic flux density B 8 ) were evaluated. Table 1 shows the evaluation results of the electromagnetic characteristics. The values of the iron loss W 17/50 and the magnetic flux density B 8 in the table are all average values.

【0033】記 (a)前記同一鋼種の鋼板コイルをまとめて同一の連続
式(回転式)焼鈍炉で2次再結晶焼鈍及び純化焼鈍の双
方を行う。なお、このときのヒートパターンは、二次再
結晶焼鈍と純化焼鈍を組み合わせた2段加熱パターンに
設定した(従来例a)。 (b)ロットごとに鋼板コイルの2次再結晶焼鈍温度を
測定し、測定された温度から、それぞれのロットごとの
鋼板コイルを、炉内温度を最適に設定したバッチ式焼鈍
炉で2次再結晶焼鈍を行った後、これらの鋼板コイルを
まとめて連続式(回転式)焼鈍炉で純化焼鈍を行う(発
明例a)。
(A) The steel coils of the same steel type are collectively subjected to both secondary recrystallization annealing and purification annealing in the same continuous (rotary) annealing furnace. The heat pattern at this time was set to a two-step heating pattern combining secondary recrystallization annealing and purification annealing (conventional example a). (B) The secondary recrystallization annealing temperature of the steel sheet coil is measured for each lot, and from the measured temperature, the steel sheet coil of each lot is subjected to a secondary recrystallization in a batch annealing furnace in which the furnace temperature is optimally set. After performing the crystal annealing, these steel sheet coils are collectively subjected to purification annealing in a continuous (rotary) annealing furnace (Invention Example a).

【0034】[0034]

【表2】 [Table 2]

【0035】表2に示す評価結果から、発明例aは、従
来例aに比べて鉄損が低く磁束密度が高くなっている。
From the evaluation results shown in Table 2, the invention example a has lower iron loss and higher magnetic flux density than the conventional example a.

【0036】[0036]

【発明の効果】この発明の方法によって、電磁特性に優
れた方向性電磁鋼板を効率よくかつ安定に製造すること
が可能になった。
According to the method of the present invention, it has become possible to efficiently and stably produce a grain-oriented electrical steel sheet having excellent electromagnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の連続式(回転式)仕上焼鈍炉の概略平
面図である。
FIG. 1 is a schematic plan view of a conventional continuous (rotary) finish annealing furnace.

【図2】 図1のI−I線上の断面図である。FIG. 2 is a cross-sectional view taken along the line II of FIG.

【符号の説明】[Explanation of symbols]

1 連続式(回転式)焼鈍炉 2 インナーカバー 3 鋼板コイル 4 コイル受台 5 炉床 6 加熱装置の取付け位置 7 保温カバー DESCRIPTION OF SYMBOLS 1 Continuous (rotary) annealing furnace 2 Inner cover 3 Steel plate coil 4 Coil pedestal 5 Hearth 6 Heating device installation position 7 Heat insulation cover

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電磁鋼素材を熱間圧延して得られた熱延
板に、1回または中間焼鈍を挟む2回以上の冷間圧延を
施して最終板厚とした後、脱炭を兼ねた1次再結晶焼鈍
を施し、次いで焼鈍分離剤を塗布・乾燥してからコイル
状に鋼板を巻き取った後に、2次再結晶焼鈍および純化
焼鈍からなる仕上焼鈍を施す一連の工程を有する方向性
電磁鋼板の製造方法において、 仕上焼鈍にて、2次再結晶焼鈍はバッチ式焼鈍炉で行
い、純化焼鈍は連続式焼鈍炉で行うことを特徴とする方
向性電磁鋼板の製造方法。
1. A hot-rolled sheet obtained by hot-rolling an electromagnetic steel material is subjected to one or two or more cold-rolling steps with intermediate annealing to a final sheet thickness, which also serves as decarburization. A series of steps of performing a primary recrystallization annealing, then applying and drying an annealing separating agent, winding a steel sheet in a coil shape, and then performing a finish annealing consisting of a secondary recrystallization annealing and a purification annealing. A method for producing a grain-oriented electrical steel sheet, wherein the secondary recrystallization annealing is performed in a batch annealing furnace and the purification annealing is performed in a continuous annealing furnace in finish annealing.
【請求項2】 前記鋼板コイルの2次再結晶条件が異な
る場合、 2次再結晶焼鈍は、同一の2次再結晶条件を有
する鋼板コイル群ごとに別個のバッチ式焼鈍炉で行い、 純化焼鈍は、前記2次再結晶焼鈍を行った鋼板コイルを
同一の連続式焼鈍炉で行う請求項1に記載の方向性電磁
鋼板の製造方法。
2. When the steel sheet coil has different secondary recrystallization conditions, the secondary recrystallization annealing is performed in a separate batch-type annealing furnace for each steel sheet coil group having the same secondary recrystallization condition. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the steel sheet coil subjected to the secondary recrystallization annealing is performed in the same continuous annealing furnace.
【請求項3】 2次再結晶焼鈍は、不活性ガス雰囲気中
にて、900℃以下でかつ30時間以上保持することにより
行い、 純化焼鈍は、還元ガス雰囲気中にて、1100℃以上でかつ
10時間以下保持することにより行う請求項1又は2に記
載の方向性電磁鋼板の製造方法。
3. The secondary recrystallization annealing is performed in an inert gas atmosphere at 900 ° C. or lower for 30 hours or more. The purification annealing is performed in a reducing gas atmosphere at 1100 ° C. or higher.
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the method is performed by holding for 10 hours or less.
【請求項4】 バッチ式焼鈍炉から連続式焼鈍炉への炉
換えを大気中で行う場合には、前記鋼板コイルをバッチ
式焼鈍炉内で400℃以下に冷却してから連続式焼鈍炉に
炉換えする請求項1、2又は3に記載の方向性電磁鋼板
の製造方法。
4. When the furnace is changed from a batch type annealing furnace to a continuous type annealing furnace in the atmosphere, the steel sheet coil is cooled to 400 ° C. or less in a batch type annealing furnace, and then the continuous type annealing furnace is converted to a continuous type annealing furnace. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the furnace is replaced.
【請求項5】 方向性電磁鋼板の製造に用いる仕上焼鈍
設備であって、バッチ式焼鈍炉と連続式焼鈍炉からな
り、鋼板コイルが2次再結晶を行うバッチ式焼鈍炉に装
入・取出された後に、純化焼鈍を行う連続式焼鈍炉に装
入・取出されることを特徴とする方向性電磁鋼板製造用
仕上焼鈍設備。
5. A finishing annealing equipment used for producing grain-oriented electrical steel sheets, comprising a batch annealing furnace and a continuous annealing furnace, wherein a steel sheet coil is charged and unloaded into a batch annealing furnace for performing secondary recrystallization. Finish annealing equipment for producing grain-oriented electrical steel sheets, which is charged and taken out of a continuous annealing furnace for performing purification annealing after being performed.
JP2001013945A 2001-01-23 2001-01-23 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4569007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013945A JP4569007B2 (en) 2001-01-23 2001-01-23 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013945A JP4569007B2 (en) 2001-01-23 2001-01-23 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002212638A true JP2002212638A (en) 2002-07-31
JP4569007B2 JP4569007B2 (en) 2010-10-27

Family

ID=18880703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013945A Expired - Fee Related JP4569007B2 (en) 2001-01-23 2001-01-23 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4569007B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224808A (en) * 2014-05-26 2015-12-14 オオノ開發株式会社 Waste incineration system
US11031162B2 (en) 2014-11-27 2021-06-08 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US12040110B2 (en) 2014-11-27 2024-07-16 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524972A (en) * 1978-08-12 1980-02-22 Nippon Steel Corp Very high magnetic flux density, aluminum containing one directional silicon steel plate
JPS63259023A (en) * 1987-04-15 1988-10-26 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet mimimal in iron loss

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524972A (en) * 1978-08-12 1980-02-22 Nippon Steel Corp Very high magnetic flux density, aluminum containing one directional silicon steel plate
JPS63259023A (en) * 1987-04-15 1988-10-26 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet mimimal in iron loss

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224808A (en) * 2014-05-26 2015-12-14 オオノ開發株式会社 Waste incineration system
US11031162B2 (en) 2014-11-27 2021-06-08 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US12040110B2 (en) 2014-11-27 2024-07-16 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP4569007B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5479448B2 (en) Method for producing directional silicon steel with high electromagnetic performance
CN100381598C (en) Orientating silicon steel, manufacturing process and equipment
RU2609605C2 (en) Method of producing regular grain-oriented silicon steel with high magnetic induction
CN102560235B (en) Manufacturing method of high-magnetic-induction oriented silicon steel
CN104451378B (en) A kind of orientation silicon steel having excellent magnetic characteristics and production method
JP2020507673A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
CN109182907B (en) Method for producing semi-process non-oriented electrical steel by endless rolling
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JP4569007B2 (en) Method for producing grain-oriented electrical steel sheet
JP4604370B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JP4604369B2 (en) Method for producing grain-oriented electrical steel sheet
JP4085975B2 (en) Hot rolling method
JP3492993B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2002266030A5 (en)
JPH0730395B2 (en) Manufacturing method of grain-oriented electrical steel sheet without surface bulge defect
CN102816914B (en) Cold-rolled steel plate production method
RU2701599C1 (en) Production method of high-permeable anisotropic electrical steel
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees