JP2002212309A - Resin composite and method for producing the same - Google Patents

Resin composite and method for producing the same

Info

Publication number
JP2002212309A
JP2002212309A JP2001009729A JP2001009729A JP2002212309A JP 2002212309 A JP2002212309 A JP 2002212309A JP 2001009729 A JP2001009729 A JP 2001009729A JP 2001009729 A JP2001009729 A JP 2001009729A JP 2002212309 A JP2002212309 A JP 2002212309A
Authority
JP
Japan
Prior art keywords
resin
composite
metal
particles
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001009729A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koyama
利幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001009729A priority Critical patent/JP2002212309A/en
Publication of JP2002212309A publication Critical patent/JP2002212309A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin composite having high stiffness and excellent in abrasion resistance compared with resin alone. SOLUTION: This resin composite is obtained by forming particles of ceramic or metal as a microstructure having high fluid permeability while bringing at least either particles of a ceramic or a metal into contact with each other and impregnating a resin or resin raw material into these particles so that volume ratio of at least either particles of the ceramic or the metal forming a skeleton structure to the resultant resin becomes 40-90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に摺動部材また
は機械部品として好適に用いられる樹脂複合体およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin composite suitably used as a sliding member or a mechanical component, and a method for producing the same.

【0002】[0002]

【従来の技術】一般的に、樹脂材料は自己潤滑性に優
れ、軽量であり、特にエンジニアリングプラスティック
に分類される樹脂材料は耐衝撃性に優れているため、各
種の構造材、摺動部材や歯車などの機械部品、その他に
広く用いられている。また、このような樹脂材料に耐摩
耗性や電気的絶縁性を向上させる目的でセラミックス粒
子などの高剛性材料を体積分率で1割程度で混入したも
のも用いられている。さらに、近年では表面を改質した
セラミックス粒子を用いることによって、樹脂中での体
積分率を2割以上に増やし、耐摩耗性の一層の向上を図
ったものも提案されている。
2. Description of the Related Art In general, resin materials have excellent self-lubricating properties and are light in weight. In particular, resin materials classified as engineering plastics have excellent impact resistance. Widely used for mechanical parts such as gears and others. In addition, for the purpose of improving abrasion resistance and electrical insulation, such a resin material is mixed with a highly rigid material such as ceramic particles at a volume fraction of about 10%. Further, in recent years, there has been proposed a material in which the volume fraction in a resin is increased to 20% or more by using ceramic particles having a modified surface to further improve wear resistance.

【0003】[0003]

【発明が解決しようとする課題】上記の従来例では、次
の問題が指摘されていた。まず第1に、耐摩耗性に問題
があった。すなわち、複合材料中の樹脂の割合が依然と
して多いために、その部分での摩耗が進行すること。ま
た、各高剛性粒子は樹脂のマトリックス中に全く独立し
て分散しているために、使用中にそれら粒子が脱落する
ことがあり、これによって周辺部材を傷つけたり、破壊
することがあった。こうした問題を解決するにはセラミ
ックス粒子の割合を増やして互いに接触させることが必
要である。
The following problems have been pointed out in the above conventional example. First, there was a problem in wear resistance. That is, since the proportion of the resin in the composite material is still large, the wear in that portion proceeds. In addition, since each of the high-rigidity particles is completely independently dispersed in the resin matrix, the particles may fall off during use, thereby damaging or destroying peripheral members. In order to solve these problems, it is necessary to increase the ratio of the ceramic particles and make them contact each other.

【0004】第2に、電気絶縁性等の電気的特性にも問
題があった。すなわち、エンジニアリングプラスティク
の中でも、ナイロンのように耐衝撃性は高いものの吸水
性が高い樹脂材料では電気絶縁性,誘電特性,耐アーク
特性等の電気的特性が劣る問題があった。このためにも
高剛性粒子の割合を増やして互いに接触させて形成され
る空間に樹脂を満たす構造とすることが求められてい
る。
[0004] Second, there is a problem in electrical characteristics such as electrical insulation. That is, among engineering plastics, a resin material having high impact resistance but high water absorption like nylon has a problem in that electrical characteristics such as electrical insulation, dielectric characteristics, and arc resistance are inferior. For this reason, it is required that the space formed by increasing the ratio of the high-rigidity particles to be in contact with each other is filled with a resin.

【0005】本発明は、このような実情に鑑み、上記従
来例の問題点を解決すべくなされたものであって、先ず
セラミックスや金属などの高剛性粒子について互いに接
触しながらも高い流体透過率を有する微構造として形成
した後に、樹脂や樹脂原料を含浸して複合体とすること
で、耐衝撃性、耐摩耗性、電気絶縁性等などに優れ、高
剛性粒子の体積割合が4割以上である樹脂複合材および
その製造方法を提案することを目的とする。
The present invention has been made in view of the above circumstances, and has been made to solve the above-mentioned problems of the prior art. First, high rigidity particles such as ceramics and metal are brought into contact with each other while having high fluid permeability. After being formed as a microstructure having, a resin or resin material is impregnated into a composite to provide excellent impact resistance, abrasion resistance, electrical insulation, etc., and the volume ratio of high-rigidity particles is 40% or more. And a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記した本発明の目的
は、三次元的に互いが接触する骨格組織を有し、該骨格
組織を形成するセラミックスまたは金属の少なくとも一
方の粒子の体積割合が4〜9割であり、その残りの空間
について、任意部分または全体が樹脂により満たされて
いることを特徴とする樹脂複合体によって達成される。
また、セラミックスまたは金属の少なくとも一方の粒子
を互いに接触しながらも高い流体透過率を有する微構造
として形成した後に、樹脂や樹脂原料を含浸して複合体
とする樹脂複合体の製造方法によって達成される。さら
に具体的に本発明を開示すれば、先ず、互いの空孔が連
続している有機物多孔体を所望形状に整形して成形用型
枠内に設置する。そして、セラミックスあるいは金属の
少なくとも一方を分散させた、成形用バインダを含むス
ラリを有機質多孔体に含浸させてから加熱などの方法に
よって分散媒を除去することなく固化させる。これを乾
燥してから脱脂、更に仮焼あるいは焼成して多孔体を得
る。この多孔体の空孔中に、複合体を形成する樹脂ある
いは樹脂原料を含浸させることで、所定形状をなし高剛
性粒子の体積割合が5割以上の複合材が得られるように
なる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a skeletal structure having three-dimensional contact with each other, wherein the volume ratio of at least one of ceramics and metal particles forming the skeletal structure is 4%. This is achieved by a resin composite characterized in that any part or the whole of the remaining space is filled with resin.
Further, it is achieved by a method of manufacturing a resin composite in which at least one particle of ceramics or metal is formed as a microstructure having high fluid permeability while being in contact with each other, and then impregnated with a resin or a resin raw material to form a composite. You. More specifically, when the present invention is disclosed, first, an organic porous body in which pores are continuous with each other is shaped into a desired shape, and is placed in a forming mold. Then, the organic porous material is impregnated with a slurry containing a molding binder in which at least one of ceramics and metal is dispersed, and then solidified by a method such as heating without removing the dispersion medium. This is dried, degreased, calcined or fired to obtain a porous body. By impregnating the pores of the porous body with a resin or a resin raw material forming the composite, a composite having a predetermined shape and a volume ratio of the high-rigidity particles of 50% or more can be obtained.

【0007】[0007]

【発明の実施の形態】本発明は、上記手段より構成され
ており、その作用は以下の通りである。この製造方法で
は、まずセラミックスあるいは金属の少なくとも一方に
ついて、スラリとして有機質多孔体中に含浸させた後
に、スラリの分散媒を除去することなく固化させる。こ
れによりセラミックスあるいは金属の少なくとも一方を
含むスラリは有機質多孔体中に隙間を生じることなく均
一に満たすことが出来る。このようなスラリに含まれる
成形用バインダは、加熱や紫外線照射などの外的刺激に
よって変成し、分散媒を取込みながら固化する性質も有
するものであれば特に制限なく好適に用いることが可能
である。尿素-メラミン樹脂、アクリル樹脂、エポキシ
樹脂などの合成高分子あるいは樹脂原料の他、寒天、デ
ンプン、カラギナンなどの天然高分子が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is constituted by the above-mentioned means, and its operation is as follows. In this manufacturing method, at least one of ceramics and metal is impregnated as a slurry in an organic porous material, and then solidified without removing a dispersion medium of the slurry. As a result, the slurry containing at least one of ceramics and metal can be uniformly filled in the organic porous body without any gap. The molding binder contained in such a slurry can be suitably used without any particular limitation as long as it has a property of being denatured by an external stimulus such as heating or ultraviolet irradiation, and having a property of solidifying while taking in a dispersion medium. . In addition to synthetic polymers or resin raw materials such as urea-melamine resins, acrylic resins, and epoxy resins, natural polymers such as agar, starch, and carrageenan are exemplified.

【0008】互いの空孔が三次元的に連続しているよう
な微構造を有する有機質多孔体では、空孔は球体あるい
は球体に近い多面体であることから、その空孔に充填さ
れたスラリも球体あるいは球体に近い多面体が互いに接
するように三次元的に広がることになる。このような樹
脂多孔体としては例えばポリウレタンやポリビニルアセ
タールなどの合成樹脂製フィルタが特に好適に用いるこ
とが出来る。紙などの繊維からなる多孔体は安価ではあ
るが、多くは空孔の分布が二次元的であり、また、弾性
が低いためにスラリを含浸する際に、スラリの表面張力
によって変形するなどの問題が起こり易い。
In an organic porous material having a microstructure in which pores are three-dimensionally continuous with each other, the pores are spherical or polyhedral close to a sphere. A sphere or a polyhedron close to a sphere spreads three-dimensionally so as to touch each other. As such a resin porous body, for example, a filter made of a synthetic resin such as polyurethane or polyvinyl acetal can be particularly preferably used. Porous materials made of fibers such as paper are inexpensive, but many have a two-dimensional distribution of pores, and because of their low elasticity, when impregnated with slurry, they deform due to the surface tension of the slurry. Problems are easy to occur.

【0009】上記立体構造はスラリ中に含まれるセラミ
ックスあるいは金属の少なくとも一方粒子によって、有
機質多孔体や成形用バインダを除去した後にも保たれ、
有機質多孔体が焼失した跡は粗大な空孔として残る。こ
れらの空孔を通路とすることで、複合体形成用の樹脂あ
るいは樹脂原料を隅々まで容易に含浸することが可能と
なる。必要に応じてスラリ中に成形に必要な量を超える
バインダを加えたり、有機物粒子や分解して気体を生成
する無機物などを気孔形成材として分散させるなどの方
法で、微細な空孔の量や大きさを調整することが可能と
なる。セラミックスあるいは金属の少なくとも一方から
なる骨格中の空孔の全てを樹脂で満たす必要はなく、用
途に応じて任意部分のみに行なってもよい。例えば、本
発明で得られる複合体を更に金属部材と接合して用いる
場合、接合面に樹脂を含浸せずに多孔体として残したま
まにしておいて、金属と接合すれば、接合材が多孔体中
に侵入するために接合強度が向上する利点がある。
The three-dimensional structure is maintained by the ceramic or metal particles contained in the slurry even after the removal of the organic porous material and the molding binder.
Traces of the burned-out organic porous material remain as coarse pores. By using these holes as passages, it becomes possible to easily impregnate the resin or resin raw material for forming the complex into every corner. If necessary, add a binder in the slurry in excess of the amount necessary for molding, or disperse organic particles or inorganic substances that decompose and generate gas as a pore-forming material, etc. The size can be adjusted. It is not necessary to fill all the pores in the skeleton composed of at least one of ceramics and metal with the resin, and the pores may be formed only in arbitrary portions depending on the application. For example, when the composite obtained in the present invention is further used by bonding it to a metal member, the bonding surface is left as a porous body without impregnating the resin, and if the metal is bonded, the bonding material becomes porous. There is an advantage that the bonding strength is improved because it penetrates into the body.

【0010】一般的には、例えばセラミックス多孔体を
得るには、有機質多孔体の骨格表面にセラミックス粒子
を付着させた後に焼成して有機質多孔体を除去してお
り、これで得られるセラミックス多孔体を用いたセラミ
ックス/樹脂複合体中でのセラミックスは互いに連続し
ているものの、その体積割合は1乃至2程度であること
から、樹脂材料のデメリットを十分に補うことは出来な
い。また、樹脂多孔体中にセラミックス粒子ペーストを
押し込んで乾燥させるなどの方法では樹脂多孔体中を変
形させることなく、且つ、隙間なくセラミックス粒子を
分散させることは不可能である。
Generally, for example, in order to obtain a porous ceramic body, ceramic particles are adhered to the surface of the skeleton of the organic porous body and then fired to remove the organic porous body. Although the ceramics in the ceramics / resin composite using the same are continuous with each other, the volume ratio thereof is about 1 or 2, so that the disadvantages of the resin material cannot be sufficiently compensated. In addition, it is impossible to disperse the ceramic particles without any deformation without deforming the inside of the porous resin body by a method such as pressing the ceramic particle paste into the porous resin body and drying the paste.

【0011】そして、このようにして得られた複合材は
次のような特徴を有する。先ず、この複合材は樹脂の特
性を反映して、セラミックスや金属単体に比べて自己潤
滑性に優れ、軽量であり、更にセラミックス単体に比べ
て耐衝撃性に優れている。また、この複合材は樹脂単体
に比べて剛性が高く、更にセラミックスの特性を反映し
て、樹脂単体に比べて耐摩耗性に優れ、電気絶縁性,誘
電特性,耐アーク特性等の電気的特性にも優れている。
複合体中のセラミックスあるいは金属の少なくとも一方
の体積割合は4割以上9割以下であることが望ましい。
これよりも体積割合が少ないと骨格の強度が低く、特に
大型品では取扱いが困難になる。反対にこれよりも体積
割合が多いと気孔が連続して存在できなくなり複合体構
成用の樹脂を含浸することが困難になる他、樹脂の効果
が期待出来なくなる。
The composite material thus obtained has the following characteristics. First, this composite material is excellent in self-lubricating property, lighter in weight than ceramics or metal alone, and more excellent in impact resistance than ceramics alone, reflecting the properties of resin. In addition, this composite material has higher rigidity than the resin alone, and further reflects the characteristics of ceramics, and has better wear resistance than the resin alone, and has electrical properties such as electrical insulation, dielectric properties, and arc resistance. Is also excellent.
It is desirable that the volume ratio of at least one of ceramics and metal in the composite is 40% to 90%.
If the volume ratio is smaller than this, the strength of the skeleton is low, and handling becomes difficult particularly for large products. Conversely, if the volume ratio is larger than this, pores cannot be continuously present, and it becomes difficult to impregnate the resin for forming the composite, and the effect of the resin cannot be expected.

【0012】本発明で得られる複合体は、上記特性によ
り、セラミックス/樹脂複合体ではワーヤーソーローラ
に代表される摺動部材に、また、金属/樹脂複合体では
歯車などの機械部品に好適に用いることが出来る。
The composite obtained by the present invention is suitable for a sliding member typified by a wire saw roller in a ceramic / resin composite, and for a mechanical part such as a gear in a metal / resin composite due to the above characteristics. Can be used.

【0013】[0013]

【実施例】以下本発明を、実施例に基づいて、詳細に説
明する。 (実施例1)セラミックス粉末としてアルミナ100重量部
(平均粒径1.2μm)をアニオン系分散剤0.1重量部、成形
用バインダ(アクリル系)20重量部、と共に気孔形成材
(カーボン、10μm)10重量部をイオン交換水100重量部に
分散させた。これをボールミルにて混合し、均一なスラ
リとした。有機多孔体として樹脂フィルタ(ポリビニル
アセタール製)を100×50×5mmのテフロン(登録商標)
製型枠内に設置し、上記スラリを注型した。スラリが乾
燥しないように蓋で覆い、80℃の恒温槽で1hr保持する
ことでスラリを固化させた。取出した固化体を温度30
℃、湿度90%の恒温恒湿槽内で2週間放置して乾燥させ
た。550℃で成形用バインダや気孔形成材、樹脂多孔体
などを除去し、更に1600℃で焼成して体積気孔率40%の
セラミックス多孔体を得た。複合体形成用の樹脂として
は、研磨試料埋設用のエポキシ樹脂を用いて、上記セラ
ミックス多孔体に常温で含浸し、一晩放置して固化させ
た。このようにして、三次元的に互いが接触するアルミ
ナ粒子が体積割合6割を占める骨格組織を有し、その残
りの空間全体をエポキシ樹脂が満たしているセラミック
ス/樹脂複合体が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. (Example 1) 100 parts by weight of alumina as ceramic powder
(Average particle size 1.2 μm) 0.1 parts by weight of an anionic dispersant, 20 parts by weight of a molding binder (acrylic), and a pore-forming material
10 parts by weight (carbon, 10 μm) were dispersed in 100 parts by weight of ion-exchanged water. This was mixed with a ball mill to obtain a uniform slurry. 100 × 50 × 5mm Teflon (registered trademark) resin filter (made of polyvinyl acetal) as organic porous material
The slurry was placed in a mold frame and the slurry was cast. The slurry was covered with a lid so as not to dry, and kept in an 80 ° C. constant temperature bath for 1 hour to solidify the slurry. Remove the solidified product at a temperature of 30
It was left to dry in a thermo-hygrostat at 90 ° C. and 90% humidity for 2 weeks. The molding binder, pore-forming material, resin porous body, and the like were removed at 550 ° C., and then fired at 1600 ° C. to obtain a ceramic porous body having a volume porosity of 40%. As the resin for forming the composite, an epoxy resin for embedding a polishing sample was used, and the above ceramic porous body was impregnated at room temperature and left overnight to solidify. In this way, a ceramic / resin composite is obtained in which the alumina particles that come into contact with each other three-dimensionally have a skeletal structure occupying 60% by volume, and the entire remaining space is filled with the epoxy resin.

【0014】(実施例2)金属粉末としてマグネシウム50
重量部(平均粒径30μm)をノニオン系分散剤0.2重量部、
成形用バインダ(寒天)5重量部、と共に気孔形成材(ポリ
スチレン、20μm)10重量部をイオン交換水100重量部に
分散させた。これをボールミルにて混合し、均一なスラ
リとした。有機多孔体として樹脂フィルタ(ポリアセタ
ール製)を100×50×5mmのテフロン製型枠内に設置し、
上記スラリを注型した。スラリが乾燥しないように蓋で
覆い、80℃の恒温槽で1hr保持することでスラリを固化
させた。取出した固化体を温度30℃、湿度90%の恒温恒
湿槽内で2週間放置して乾燥させた。550℃で成形用バイ
ンダや気孔形成材、樹脂多孔体などを除去し、更にアル
ゴン中350℃で熱処理して体積気孔率50%の金属多孔体
を得た。複合体形成用の樹脂としては、粉末ナイロン樹
脂を用いて、ホットプレート上で加熱した上記金属多孔
体の一方の面に含浸し、室温で放置冷却して固化させ
た。このようにして、三次元的に互いが接触する金属粒
子が体積割合5割を占める骨格組織を有し、その残りの
空間全体の中で一部分をナイロン樹脂が満たしている金
属/樹脂複が得られる。
(Example 2) Magnesium 50 as a metal powder
Parts by weight (average particle size 30 μm) 0.2 parts by weight of nonionic dispersant,
5 parts by weight of a molding binder (agar) and 10 parts by weight of a pore-forming material (polystyrene, 20 μm) were dispersed in 100 parts by weight of ion-exchanged water. This was mixed with a ball mill to obtain a uniform slurry. A resin filter (made of polyacetal) as an organic porous body was installed in a Teflon mold frame of 100 × 50 × 5 mm,
The above slurry was cast. The slurry was covered with a lid so as not to dry, and kept in an 80 ° C. constant temperature bath for 1 hour to solidify the slurry. The solidified product taken out was left to dry in a thermo-hygrostat at a temperature of 30 ° C. and a humidity of 90% for 2 weeks. The molding binder, pore-forming material, and porous resin were removed at 550 ° C., and heat treatment was performed at 350 ° C. in argon to obtain a porous metal having a volume porosity of 50%. As a resin for forming the composite, one surface of the porous metal body heated on a hot plate was impregnated with a powdered nylon resin, and left to cool at room temperature to be solidified. In this way, a metal / resin composite in which the three-dimensionally contacting metal particles have a skeletal structure occupying 50% of the volume ratio and part of the remaining space is filled with nylon resin is obtained. Can be

【0015】これら複合材では、セラミックスあるいは
金属の少なくとも一方の粒子が互いに接触しており、
又、樹脂材料がこれら粒子間に均一存在しているため
に、樹脂の特性を反映して、セラミックスや金属単体に
比べて自己潤滑性に優れ、軽量であり、特にセラミック
ス単体に比べて耐衝撃性に優れていると共に、セラミッ
クスや金属の特性を反映して樹脂単体に比べて剛性が高
く、耐摩耗性に優れ、特にセラミックスの特性を反映し
て電気絶縁性,誘電特性,耐アーク特性等の電気的特性
にも優れている。これらの特性により、ワーヤーソーロ
ーラに代表される摺動部材や歯車などの機械部品に好適
に用いることが出来る。
In these composite materials, at least one of ceramic and metal particles is in contact with each other,
In addition, since the resin material is uniformly present between these particles, it reflects the properties of the resin, and is superior in self-lubricating properties and lighter weight than ceramics or metal alone. In addition to its excellent properties, it has higher rigidity than resin alone, reflecting the properties of ceramics and metals, and has excellent wear resistance. In particular, it reflects the properties of ceramics, such as electrical insulation, dielectric properties, and arc resistance. Also has excellent electrical characteristics. Due to these characteristics, it can be suitably used for mechanical parts such as sliding members and gears typified by wire saw rollers.

【0016】[0016]

【発明の効果】以上説明したように、本発明による樹脂
複合体は、樹脂の特性を反映して、セラミックスや金属
単体に比べて自己潤滑性に優れ、軽量であり、特にセラ
ミックス単体に比べて耐衝撃性に優れていると共に、セ
ラミックスや金属の特性を反映して樹脂単体に比べて剛
性が高く、耐摩耗性に優れ、特にセラミックスの特性を
反映して電気絶縁性,誘電特性,耐アーク特性等の電気
的特性にも優れているという効果を有している。
As described above, the resin composite according to the present invention is excellent in self-lubricating property and light in weight as compared with ceramics or a metal alone, reflecting the properties of the resin, and in particular, compared with the ceramics alone. In addition to being excellent in impact resistance, it has higher rigidity than resin alone, reflecting the properties of ceramics and metals, and has excellent wear resistance. In particular, it reflects the properties of ceramics, and has electrical insulation, dielectric properties, and arc resistance. It also has the effect of being excellent in electrical characteristics such as characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三次元的に互いが接触する骨格組織を有
し、該骨格組織を形成するセラミックスまたは金属の少
なくとも一方の粒子の体積割合が4〜9割であり、その
残りの空間について、任意部分または全体が樹脂により
満たされていることを特徴とする樹脂複合体。
1. A skeletal structure having three-dimensional contact with each other, wherein the volume ratio of at least one particle of ceramics or metal forming the skeletal structure is 40 to 90%, and the remaining space is A resin composite, wherein an arbitrary part or the whole is filled with a resin.
【請求項2】 セラミックスまたは金属の少なくとも一
方の粒子を互いに接触しながらも高い流体透過率を有す
る微構造として形成した後に、樹脂や樹脂原料を含浸し
て複合体とすることを特徴とする請求項1記載の樹脂複
合体の製造方法。
2. A composite formed by forming at least one of ceramics and metal particles into a microstructure having high fluid permeability while being in contact with each other, and then impregnating with a resin or a resin raw material. Item 10. A method for producing a resin composite according to Item 1.
JP2001009729A 2001-01-18 2001-01-18 Resin composite and method for producing the same Pending JP2002212309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009729A JP2002212309A (en) 2001-01-18 2001-01-18 Resin composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009729A JP2002212309A (en) 2001-01-18 2001-01-18 Resin composite and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002212309A true JP2002212309A (en) 2002-07-31

Family

ID=18877163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009729A Pending JP2002212309A (en) 2001-01-18 2001-01-18 Resin composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002212309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229489A (en) * 2009-03-27 2010-10-14 National Institute For Materials Science Composite material
WO2014196496A1 (en) 2013-06-03 2014-12-11 電気化学工業株式会社 Resin-impregnated boron nitride sintered body and use for same
WO2015022956A1 (en) 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
CN114007852A (en) * 2019-06-17 2022-02-01 株式会社Lg化学 Method for producing a composite material and composite material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229489A (en) * 2009-03-27 2010-10-14 National Institute For Materials Science Composite material
WO2014196496A1 (en) 2013-06-03 2014-12-11 電気化学工業株式会社 Resin-impregnated boron nitride sintered body and use for same
KR20160016857A (en) 2013-06-03 2016-02-15 덴카 주식회사 Resin-impregnated boron nitride sintered body and use for same
US10087112B2 (en) 2013-06-03 2018-10-02 Denka Company Limited Resin-impregnated boron nitride sintered body and use for same
US10377676B2 (en) 2013-06-03 2019-08-13 Denka Company Limited Resin-impregnated boron nitride sintered body and use for same
WO2015022956A1 (en) 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
KR20160042883A (en) 2013-08-14 2016-04-20 덴카 주식회사 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
US9516741B2 (en) 2013-08-14 2016-12-06 Denka Company Limited Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
CN114007852A (en) * 2019-06-17 2022-02-01 株式会社Lg化学 Method for producing a composite material and composite material
JP2022537022A (en) * 2019-06-17 2022-08-23 エルジー・ケム・リミテッド Composite manufacturing method and composite
JP7383871B2 (en) 2019-06-17 2023-11-21 エルジー・ケム・リミテッド Composite manufacturing method and composite material
CN114007852B (en) * 2019-06-17 2023-12-08 株式会社Lg化学 Method for producing a composite material and composite material

Similar Documents

Publication Publication Date Title
Chen et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review
US8932514B1 (en) Fracture toughness of glass
Ishizaki et al. Porous Materials: Process technology and applications
Bourlinos et al. Synthesis and characterization of hollow clay microspheres through a resin template approach
CN108585886A (en) A kind of porous ceramic film material and preparation method thereof that porosity change is controllable
JPS63149306A (en) Production of hollow sphere enhanced in its wall strength and composite thereof
EP1304185A4 (en) Porous metal article, metal composite material using the article and method for production thereof
JP2007224359A (en) Metal matrix composite powder, metal matrix composite material and method for producing the same
JP2002212309A (en) Resin composite and method for producing the same
Nakahira et al. Fabrication of Porous Hydroxyapatite Using Hydrothermal Hot Pressing and Post‐Sintering
JPH02175803A (en) Porous metal material
CN107277948A (en) Far infrared compound resin heating base plate, its preparation method and application
DE69112313T2 (en) Porous filter membrane carrier made of carbon / carbon composite material with a fiber mat substrate made of carbon fiber and process for its production.
Götz et al. Vibration assisted self‐assembly processing of ceramic‐based composites with modular meta‐structure
KR890701245A (en) Heteroporous mold tool for manufacturing mold from molding sand and its manufacturing method
CN113844032B (en) Printed material and strength enhancement method for printed material
JP2784377B2 (en) Process for producing a hard, moldable material with channels for passage of fluids and uses of the material
JPH02310329A (en) Manufacture of particle dispersion composite
JP2002346322A (en) Air cleaning filter
US3674526A (en) Moldable metal powder compositions
JPH03141181A (en) Production of alumina ceramic having improved surface
Uthaman et al. Porous ceramic properties and its different fabrication process
JP2002105610A (en) Preform for metal matrix composite, and metal matrix composite
KR20200061392A (en) Structure for casting
JPH06299273A (en) Production of metallic porous body and metallic multiple porous body