JP2002210609A - Cutting tool - Google Patents

Cutting tool

Info

Publication number
JP2002210609A
JP2002210609A JP2001009742A JP2001009742A JP2002210609A JP 2002210609 A JP2002210609 A JP 2002210609A JP 2001009742 A JP2001009742 A JP 2001009742A JP 2001009742 A JP2001009742 A JP 2001009742A JP 2002210609 A JP2002210609 A JP 2002210609A
Authority
JP
Japan
Prior art keywords
angle
cutting
cutting tool
outer peripheral
bottom blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001009742A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shintani
谷 一 博 新
Hideji Kato
藤 秀 治 加
Yasuo Ake
康 夫 明
Yoshihiko Murakami
上 良 彦 村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2001009742A priority Critical patent/JP2002210609A/en
Publication of JP2002210609A publication Critical patent/JP2002210609A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool capable of obtaining a good finishing surface accuracy at the time of cutting of an engineering plastic or the like. SOLUTION: The cutting tool is provided with a blade tip having a blade tip shape of which a twist angle is 25 deg.-35 deg., an outer periphery rake angle is 13 deg.-18 deg., a bottom blade clearance angle is 10-15 and an outer periphery clearance angle is 20-24 deg.. A good finishing processing of a surface accuracy of 3 μm or less is implemented by this cutting tool. The cutting processing can be made to an effective method at a cost side in a variable kind/variable amount production to cope with a variation of product needs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削用工具に係
り、特に、プラスチック材料の切削加工において要求さ
れる仕上げ精度を達成するために選定される最適刃先形
状を有するの切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool, and more particularly, to a cutting tool having an optimum cutting edge shape selected to achieve a finishing accuracy required for cutting a plastic material.

【0002】[0002]

【従来の技術】一般に、エンジニアリングプラスチック
製品は、大量生産方式で製造される場合が多く、その成
形加工は、金型を用い射出成形等により行われる場合が
ほとんどである(例えば、阿部により、塑性と加工、4
0巻、58号(1999)、pp203−208に示さ
れている)。
2. Description of the Related Art In general, engineering plastic products are often manufactured in a mass production system, and their molding is mostly performed by injection molding or the like using a mold (for example, plastic molding is performed by Abe. And processing, 4
0, 58 (1999), pp 203-208).

【0003】しかしながら、近年盛んなように製品ニー
ズの多様化に対応するために変種変量生産方式を採用す
る場合には、成形加工段階で金型を用いるプラスチック
製品の従来の製造方法は、コスト面で必ずしも有効な手
法とは言えない。このような場合、フレキシプブルな加
工に対応できる切削加工を用いることが有効と考えられ
る。
[0003] However, when a variety and variable production system is adopted to cope with diversification of product needs, which has become popular in recent years, the conventional method of manufacturing a plastic product using a mold at a molding stage is not cost effective. This is not always an effective method. In such a case, it is considered effective to use a cutting process capable of coping with flexible processing.

【0004】[0004]

【発明が解決しようとする問題】ところが、エンジニア
リングプラスチック用の切削用工具は市販されていない
ため、金属加工用工具を転用せざるを得ないのが現状で
ある。そしてこのような工具を転用して用いた場合、良
好な仕上げ面精度を得ることは困難である。
However, since cutting tools for engineering plastics are not commercially available, metal cutting tools must be diverted at present. When such a tool is diverted and used, it is difficult to obtain good finished surface accuracy.

【0005】そこで本発明の目的は、上記従来技術の有
する問題を解消し、エンジニアリングプラスチック等の
切削において良好な仕上げ面精度を得ることを可能とす
る刃先形状の刃先を備えた切削用工具を提供することで
ある。
Accordingly, an object of the present invention is to provide a cutting tool having a cutting edge having a cutting edge shape capable of solving the above-mentioned problems of the prior art and obtaining good finished surface accuracy in cutting of engineering plastics and the like. It is to be.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の切削用工具は、ねじれ角が25°〜35
°、外周すくい角が13°〜18°、底刃逃げ角が10
°〜15°、かつ外周逃げ角が20°〜24°である刃
先形状の刃先を備えることを特徴とする。
In order to solve the above-mentioned problems, a cutting tool according to the present invention has a torsion angle of 25 ° to 35 °.
°, outer rake angle is 13 ° to 18 °, bottom blade relief angle is 10
° to 15 °, and a cutting edge having a cutting edge shape having an outer clearance angle of 20 ° to 24 °.

【0007】ここで、先端にある底刃として曲線刃を有
することを特徴とする。また、K10の超硬合金からな
ることを特徴とする。また、プラスチック加工用のエン
ドミル工具であることを特徴とする。
Here, a curved blade is provided as the bottom blade at the tip. Further, it is characterized by being made of K10 cemented carbide. Further, it is an end mill tool for plastic processing.

【0008】また、前記刃先形状は、ねじれ角がほぼ3
0°、外周すくい角がほぼ16°、底刃逃げ角がほぼ1
2°、かつ外周逃げ角が20°〜24°であることを特
徴とする。
The cutting edge shape has a torsion angle of about 3
0 °, outer rake angle is approximately 16 °, bottom blade relief angle is approximately 1
2 ° and an outer clearance angle of 20 ° to 24 °.

【0009】本発明における刃先形状は、エンジニアリ
ングプラスチックの切削において良好な仕上げ面精度が
得られるように、ねじれ角、外周すくい刃、外周逃げ
角、及び底刃逃げ角の加工面精度に及ぼす影響を調査し
選定して最適化されたものである。
The shape of the cutting edge in the present invention determines the effect of the torsion angle, the outer rake blade, the outer clearance angle, and the bottom blade clearance angle on the machined surface accuracy so that good finished surface accuracy can be obtained when cutting engineering plastics. It was researched, selected and optimized.

【0010】[0010]

【発明実施の形態】以下に図面を参照して、本発明の切
削用工具の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cutting tool according to the present invention will be described below with reference to the drawings.

【0011】まず以下に、エンジニアリングプラスチッ
クの切削において良好な仕上げ面精度を得ることを可能
とする刃先形状を決定する手続きについて説明する。
First, a description will be given of a procedure for determining a shape of a cutting edge which enables to obtain a good precision of a finished surface in cutting an engineering plastic.

【0012】エンジニアリングプラスチックとしての被
削材は超高分子量ポリエチレン(UHMW−PE)であ
り、被削材の形状は50×150×25mmの直方体形状
とした。なお、被削材の均一化を計るため、北尾他によ
り、高分子論文集、Vol.52、No.3、(199
5)、pp181−186に示されている方法でアニール
処理(393K、6h保持)を施したものを用いた。
The work material as the engineering plastic was ultra-high molecular weight polyethylene (UHMW-PE), and the shape of the work material was a rectangular parallelepiped shape of 50 × 150 × 25 mm. In order to make the work material uniform, Kito et al. 52, no. 3, (199
5), which had been subjected to an annealing treatment (at 393 K, holding for 6 hours) by the method shown in pp 181-186.

【0013】使用工具は図1及び図2に示すようなエン
ドミル工具であり超硬合金材種(K10)を用いた。
The tool used was an end mill tool as shown in FIGS. 1 and 2, and a cemented carbide grade (K10) was used.

【0014】工具形状は直径10mm、刃数2枚とし、表
1に示すようにねじれ角:15°、25°、30°、3
5°、45°、外周すくい角:10°、16°、23
°、底刃逃げ角:8°、12°、24°を変化させたも
のを使用した。
The tool shape is 10 mm in diameter and has two blades. As shown in Table 1, the torsion angles are: 15 °, 25 °, 30 °, 3 °
5 °, 45 °, outer rake angle: 10 °, 16 °, 23
°, the clearance angle of the bottom blade: 8 °, 12 °, and 24 ° were used.

【0015】切削条件は切削速度:7.8、13.3、
16.7m/s、一刃当たりの送り量:0.04、0.
08、0.16mm/刃とし、軸方向の切込み:10m
m、半径方向の切込み:2.0mmとした。
The cutting conditions were as follows: cutting speed: 7.8, 13.3,
16.7 m / s, feed amount per tooth: 0.04, 0.
08, 0.16 mm / blade, axial cut: 10 m
m, radial cut: 2.0 mm.

【0016】切削環境は乾式とし、切削点には0.2M
Paの圧力で空気を供給した。製品精度が要求されるた
め加工表面の表面粗さ(Ry)が3μmを評価基準とし
た。また、バラツキを考慮して各条件とも3回実験を行
い平均値をデータとした。
The cutting environment is dry, and the cutting point is 0.2M
Air was supplied at a pressure of Pa. Since product accuracy is required, the surface roughness (Ry) of the processed surface was set to 3 μm as an evaluation criterion. In addition, the experiment was performed three times under each condition in consideration of variations, and the average value was used as data.

【0017】[0017]

【表1】 表1において、以下の実施例1乃至実施例5の条件と評
価結果が示されている。実施例1は、ねじれ角が25
°、外周すくい角が10°、底刃逃げ角が22°、かつ
外周逃げ角が22°の刃先形状の場合を示す。実施例2
は、ねじれ角が30°、外周すくい角が13°、底刃逃
げ角が10°、かつ外周逃げ角が20°の刃先形状の場
合を示す。実施例3は、ねじれ角が30°、外周すくい
角が13°、底刃逃げ角が12°、かつ外周逃げ角が2
2°の刃先形状の場合を示す。実施例4は、ねじれ角が
30°、外周すくい角が18°、底刃逃げ角が15°、
かつ外周逃げ角が24°の刃先形状の場合を示す。実施
例5は、ねじれ角が35°、外周すくい角が16°、底
刃逃げ角が12°、かつ外周逃げ角が22°の刃先形状
の場合を示す。
[Table 1] In Table 1, conditions and evaluation results of the following Examples 1 to 5 are shown. Example 1 has a twist angle of 25.
°, the outer peripheral rake angle is 10 °, the bottom blade clearance angle is 22 °, and the outer peripheral clearance angle is 22 °. Example 2
Indicates a case where the torsion angle is 30 °, the outer peripheral rake angle is 13 °, the bottom blade clearance angle is 10 °, and the outer peripheral clearance angle is 20 °. In Example 3, the torsion angle was 30 °, the outer peripheral rake angle was 13 °, the bottom blade clearance angle was 12 °, and the outer peripheral clearance angle was 2 °.
The case of a 2 ° cutting edge shape is shown. In Example 4, the torsion angle was 30 °, the outer peripheral rake angle was 18 °, the bottom blade relief angle was 15 °,
In addition, the case where the outer peripheral relief angle is 24 ° is shown. Example 5 shows a case where the torsion angle is 35 °, the outer peripheral rake angle is 16 °, the bottom blade clearance angle is 12 °, and the outer peripheral clearance angle is 22 °.

【0018】また、表1において、比較のために8個の
比較例の条件と評価結果が示されている。比較例とし
て、ねじれ角が15°、外周すくい角が16°、底刃逃
げ角が12°、かつ外周逃げ角が22°の刃先形状の場
合、他の場合としてねじれ角が25°、外周すくい角が
10°、底刃逃げ角が8°、かつ外周逃げ角が18°の
刃先形状の場合、さらに他の場合としてねじれ角が25
°、外周すくい角が23°、底刃逃げ角が24°、かつ
外周逃げ角が26°の刃先形状の場合、さらに他の場合
としてねじれ角が30°、外周すくい角が10°、底刃
逃げ角が8°、かつ外周逃げ角が18°の刃先形状の場
合、さらに他の場合としてねじれ角が30°、外周すく
い角が23°、底刃逃げ角が24°、かつ外周逃げ角が
26°の刃先形状の場合、さらに他の場合としてねじれ
角が35°、外周すくい角が10°、底刃逃げ角が8
°、かつ外周逃げ角が18°の刃先形状の場合、さらに
他の場合としてねじれ角が35°、外周すくい角が23
°、底刃逃げ角が24°、かつ外周逃げ角が26°の刃
先形状の場合、さらに他の場合としてねじれ角が45
°、外周すくい角が16°、底刃逃げ角が12°、かつ
外周逃げ角が22°の刃先形状の場合を示す。
Table 1 shows conditions and evaluation results of eight comparative examples for comparison. As a comparative example, when the torsion angle is 15 °, the outer peripheral rake angle is 16 °, the bottom blade clearance angle is 12 °, and the outer peripheral clearance angle is 22 °, the torsion angle is 25 ° and the outer peripheral rake is the other case. In the case of a cutting edge shape having an angle of 10 °, a clearance angle of the bottom blade of 8 °, and an outer clearance angle of 18 °, as another case, a twist angle of 25
°, the outer peripheral rake angle is 23 °, the bottom blade clearance angle is 24 °, and the outer peripheral clearance angle is 26 °. In other cases, the torsion angle is 30 °, the outer peripheral rake angle is 10 °, and the bottom blade When the clearance angle is 8 ° and the outer peripheral clearance angle is 18 °, the torsion angle is 30 °, the outer peripheral rake angle is 23 °, the bottom blade clearance angle is 24 °, and the outer peripheral clearance angle is still another case. In the case of a 26 ° cutting edge shape, as still another case, the torsion angle is 35 °, the outer peripheral rake angle is 10 °, and the bottom blade relief angle is 8
°, and the outer peripheral relief angle is 18 °, the torsion angle is 35 ° and the outer peripheral rake angle is 23
°, the clearance angle of the bottom blade is 24 °, and the clearance angle of the outer periphery is 26 °. In another case, the torsion angle is 45 °.
°, the outer peripheral rake angle is 16 °, the bottom blade clearance angle is 12 °, and the outer peripheral clearance angle is 22 °.

【0019】切削距離の増加に伴う最大高さ(表面粗さ
Ry(μm))の変化を調べたところ、切削距離が30
kmに達しても切削初期から最大高さの変化量は極めて
小さく、安定した値を示した。また、加工側面と加工底
面の最大高さの値を比較すると加工側面の値が2.5μ
mに対して加工底面の値は5.0μmと大きい値を示し
ていることが明らかであることから加工底面に着目して
実験を行う必要があると考えられる。また、使用工具の
ポケット形状の都合上芯厚が小さくなったため、工具突
出し量を50、25mmと変化させて実験を行ったとこ
ろ、工具突出し量25mmの場合、底面のプロファイル
の乱れが抑制され、最大高さも減少した。以上のことに
より、工具突出し量25mmとし、切削初期の加工底面
で以降の評価を行うこととした。
When the change in the maximum height (surface roughness Ry (μm)) with the increase in the cutting distance was examined, the cutting distance was 30
Even when the distance reached km, the amount of change in the maximum height from the beginning of cutting was extremely small, and showed a stable value. Also, comparing the maximum height value of the processing side surface and the processing bottom surface, the value of the processing side surface is 2.5μ.
Since it is clear that the value of the processed bottom surface is as large as 5.0 μm with respect to m, it is considered that it is necessary to conduct an experiment focusing on the processed bottom surface. In addition, because the core thickness was reduced due to the pocket shape of the tool used, the experiment was performed with the tool protrusion amount changed to 50 and 25 mm. The maximum height has also been reduced. From the above, the tool protrusion amount was set to 25 mm, and the subsequent evaluation was performed on the processing bottom surface at the beginning of cutting.

【0020】表1において、各々の実施例と比較例とに
おいて、最大高さ(表面粗さRy(μm))の値が許容
範囲にあり加工表面を観察した場合に良好である場合を
〇印で表示し、最大高さ(表面粗さRy(μm))の値
が許容範囲にない場合を×印で表示してある。
In Table 1, in each of Examples and Comparative Examples, the case where the value of the maximum height (surface roughness Ry (μm)) is within the allowable range and the working surface is good when observed is marked with a triangle. , And the case where the value of the maximum height (surface roughness Ry (μm)) is not within the allowable range is indicated by an x mark.

【0021】ねじれ角を変化させた場合のねじれ角(底
刃すくい角)と加工底面の表面粗さRyの関係を調べ
た。実施例1乃至実施例5においては、底刃すくい角3
0°の場合が他の底刃すくい角の場合に比べて若干であ
るが良好な表面粗さRyを示していることの相違がある
ものの実施例1乃至実施例5のいずれの場合も基準値の
3μm以下に抑えられていることが認められる。なお、
ここで、ねじれ角は底刃すくい角に相当する。また、加
工物の仕上がり状態について観察を行ったところ、いず
れの場合も加工面に格子状の模様が観察された。送りマ
ークに相当する凸部が、ねじれ角(底刃すくい角)15
°と45°のものは乱れているのに対して、30°のも
のはほぼ一様になっており、良好な状態であった。
The relationship between the torsion angle (bottom rake angle) and the surface roughness Ry of the machined bottom surface when the torsion angle was changed was examined. In the first to fifth embodiments, the rake angle of the bottom blade is 3
The case of 0 ° is slightly different from the case of the other rake angles of the bottom blade, but has a difference that it shows a good surface roughness Ry. Of 3 μm or less. In addition,
Here, the torsion angle corresponds to the rake angle of the bottom blade. When the finished state of the processed product was observed, a lattice pattern was observed on the processed surface in each case. The projection corresponding to the feed mark has a torsion angle (rake angle of the bottom blade) 15.
In the case of ° and 45 °, those of 30 ° were disordered, while those in 30 ° were almost uniform, and were in a good state.

【0022】外周すくい角を変化させた場合の半径方向
のすくい角と加工底面の表面粗さRyの関係を調べた。
外周すくい角が10°の条件で最大高さが5.1μm
(ねじれ角が30°の場合)を示し、外周すくい角の角
度が増大するに従い最大高さが減少する傾向にある。し
かし、値のバラツキも含め、基準値に抑えられているの
は、外周すくい角が16°の条件のみであった。また、
外周すくい角が10°の条件で表面粗さRyの値が大き
くなるのは、チップポケットの大きさが小さくなること
で切屑排出性が悪くなるからだと考えられた。
The relationship between the rake angle in the radial direction when the outer rake angle was changed and the surface roughness Ry of the machined bottom surface was examined.
The maximum height is 5.1μm when the outer rake angle is 10 °
(When the torsion angle is 30 °), and the maximum height tends to decrease as the angle of the outer peripheral rake angle increases. However, only the condition in which the outer peripheral rake angle was 16 ° was suppressed to the reference value, including the value variation. Also,
It is considered that the reason why the value of the surface roughness Ry increases under the condition that the outer peripheral rake angle is 10 ° is that the chip discharging property deteriorates due to the decrease in the size of the chip pocket.

【0023】次に、底刃逃げ角を変化させた場合の底刃
逃げ角と加工底面の表面粗さRyとの関係を調べた。底
刃逃げ角12°の場合のみ表面粗さRyが許容可能な基
準値以内に抑えられている。また、底刃逃げが24°と
大きい条件では、刃先が鋭利に成り過ぎるために表面粗
さRyが悪くなることが認められる。
Next, the relationship between the clearance angle of the bottom edge and the surface roughness Ry of the processed bottom surface when the clearance angle of the bottom edge was changed was examined. Only when the clearance angle of the bottom blade is 12 °, the surface roughness Ry is kept within an allowable reference value. Also, under the condition that the clearance of the bottom blade is as large as 24 °, it is recognized that the surface roughness Ry is deteriorated because the cutting edge becomes too sharp.

【0024】ここで、上述した加工面の底面にはいずれ
の条件でも、格子模様が観察された。この格子模様は底
刃の回転送りにより、底刃が加工した面にかえし刃が付
加されることで形成されるものと考える。そこで、外周
すくい角10°の条件を代表としてかえし刃の進行方向
に水平に切断した加工面を観察したところ、最大高さ
(表面粗さRy)を決定している凸部はかえし刃が付加
された場合においても変化は極めて小さいことが明らか
である。以上のことから、最大高さ(表面粗さRy)は
底刃が最初に加工した面によって決定されることが明ら
かであり、この形態を改善することが最大の高さ(表面
粗さRy)の低下につながると考えられる。
Here, a lattice pattern was observed on the bottom surface of the processed surface under any conditions. It is considered that this lattice pattern is formed by adding a barbed blade to the surface processed by the bottom blade by rotating the bottom blade. Therefore, when the machined surface cut horizontally in the traveling direction of the barbed blade was observed under the condition that the outer peripheral rake angle was 10 ° as a representative, the barbed blade was added to the convex portion that determined the maximum height (surface roughness Ry). It is clear that the change is very small even in the case where it is performed. From the above, it is clear that the maximum height (surface roughness Ry) is determined by the surface first processed by the bottom blade, and improving this form is the maximum height (surface roughness Ry). It is thought to lead to a decrease in

【0025】今回変えた刃先形状の中では、ねじれ角が
30°、外周すくい角が16°、底刃逃げ角が12°の
刃先形状のものが最も安定して良好な加工面を示した。
この場合、外周逃げ角は20°〜24°の範囲にあれば
よい。
Among the cutting edge shapes changed this time, the cutting edge shape having a helix angle of 30 °, an outer peripheral rake angle of 16 °, and a bottom blade clearance angle of 12 ° showed the most stable and favorable machined surface.
In this case, the outer clearance angle may be in the range of 20 ° to 24 °.

【0026】また、ねじれ角が25°〜35°の範囲に
あり、外周すくい角が13°〜18°の範囲にあり、底
刃逃げ角が10°〜15°の範囲にあり、かつ外周逃げ
角が20°〜24°の範囲にある場合においても、良好
な加工面が得られることが確認された。
The torsion angle is in the range of 25 ° to 35 °, the outer peripheral rake angle is in the range of 13 ° to 18 °, the bottom blade clearance angle is in the range of 10 ° to 15 °, and the outer peripheral clearance is It was confirmed that a good processed surface was obtained even when the angle was in the range of 20 ° to 24 °.

【0027】以上、本発明の実施の形態によれば、最適
刃先形状の決定により、エンジニアリングプラスチック
の切削において面精度3μm以下の良好な仕上げ加工が
可能となり、製品のニーズの多様化に対応するための変
種変量生産において切削加工がコスト面でも有効な手法
とすることができる。そして、フレキシブルな加工に対
応できることからエンジニアリングプラスチックの有効
利用をさらに広く図ることができる。
As described above, according to the embodiment of the present invention, by determining the optimum shape of the cutting edge, it becomes possible to perform good finishing with a surface accuracy of 3 μm or less in the cutting of engineering plastic, and to respond to diversification of product needs. Cutting can be an effective method from the viewpoint of cost in the production of various kinds and quantities. And since it can respond to flexible processing, the effective use of engineering plastics can be further widened.

【0028】[0028]

【発明の効果】以上説明したように、本発明の構成によ
れば、エンジニアリングプラスチック等の切削において
良好な仕上げ面精度を得ることを可能とする刃先形状の
刃先を備えた切削用工具を提供することができる。
As described above, according to the configuration of the present invention, there is provided a cutting tool provided with a cutting edge having a cutting edge shape capable of obtaining a good finished surface accuracy in cutting an engineering plastic or the like. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る切削用工具の刃先を示す平面図
(a)と、刃先端部を拡大して示す図)b)と、刃先の
底面図(c)。
FIG. 1 is a plan view (a) showing a cutting edge of a cutting tool according to the present invention, a view (b) showing an enlarged tip of the cutting edge), and a bottom view (c) of the cutting edge.

【図2】図1の(a)のA部を拡大して示す図。FIG. 2 is an enlarged view showing a portion A in FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 明 康 夫 石川県金沢市黒田1丁目142番 北陸有機 工業株式会社内 (72)発明者 村 上 良 彦 愛知県豊川市本野ヶ原1丁目15番 オーエ スジー株式会社内 Fターム(参考) 3C022 KK01 KK23 KK25 KK28  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor 1-142 Kuroda, Kanazawa-shi, Ishikawa Prefecture Inside Hokuriku Organic Industry Co., Ltd. (72) Yoshihiko Murakami 1-1-15 Motonohara, Toyokawa-shi, Aichi No. OSG Co., Ltd. F-term (reference) 3C022 KK01 KK23 KK25 KK28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ねじれ角が25°〜35°、外周すくい角
が13°〜18°、底刃逃げ角が10°〜15°、かつ
外周逃げ角が20°〜24°である刃先形状の刃先を備
えることを特徴とする切削用工具。
1. A cutting edge having a helix angle of 25 ° to 35 °, an outer peripheral rake angle of 13 ° to 18 °, a bottom blade relief angle of 10 ° to 15 °, and an outer peripheral relief angle of 20 ° to 24 °. A cutting tool comprising a cutting edge.
【請求項2】先端にある底刃として曲線刃を有すること
を特徴とする請求項1に記載の切削用工具。
2. The cutting tool according to claim 1, wherein the cutting tool has a curved blade as a bottom blade at the tip.
【請求項3】K10の超硬合金からなることを特徴とす
る請求項1に記載の切削用工具。
3. The cutting tool according to claim 1, wherein the cutting tool is made of a K10 cemented carbide.
【請求項4】プラスチック加工用のエンドミル工具であ
ることを特徴とする請求項1に記載の切削用工具。
4. The cutting tool according to claim 1, wherein the cutting tool is an end mill tool for processing plastic.
【請求項5】前記刃先形状は、ねじれ角がほぼ30°、
外周すくい角がほぼ16°、底刃逃げ角がほぼ12°、
かつ外周逃げ角が20°〜24°であることを特徴とす
る請求項1に記載の切削用工具。
5. The cutting edge shape has a torsion angle of about 30 °,
The outer rake angle is about 16 °, the bottom blade relief angle is about 12 °,
The cutting tool according to claim 1, wherein an outer clearance angle is 20 ° to 24 °.
JP2001009742A 2001-01-18 2001-01-18 Cutting tool Pending JP2002210609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009742A JP2002210609A (en) 2001-01-18 2001-01-18 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009742A JP2002210609A (en) 2001-01-18 2001-01-18 Cutting tool

Publications (1)

Publication Number Publication Date
JP2002210609A true JP2002210609A (en) 2002-07-30

Family

ID=18877175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009742A Pending JP2002210609A (en) 2001-01-18 2001-01-18 Cutting tool

Country Status (1)

Country Link
JP (1) JP2002210609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013513A1 (en) 2009-03-31 2010-10-07 Hitachi Automotive Systems, Ltd., Hitachinaka Vehicle brake system and master cylinder
JP2019076996A (en) * 2017-10-25 2019-05-23 株式会社タンガロイ Cutting insert and blade edge replaceable rotary cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013513A1 (en) 2009-03-31 2010-10-07 Hitachi Automotive Systems, Ltd., Hitachinaka Vehicle brake system and master cylinder
JP2019076996A (en) * 2017-10-25 2019-05-23 株式会社タンガロイ Cutting insert and blade edge replaceable rotary cutting tool
US10625352B2 (en) 2017-10-25 2020-04-21 Tungaloy Corporation Cutting insert and indexable rotating tool

Similar Documents

Publication Publication Date Title
EP2676753B1 (en) End mill for cutting of high-hardness materials
KR101625700B1 (en) Radius end mill
JP4809306B2 (en) Ball end mill
WO2016158664A1 (en) Formed end mill
US20170304909A1 (en) Radius end mill
KR101534120B1 (en) Ball end mill and insert
JP5842708B2 (en) Ball end mill
JP5601464B2 (en) Thread milling machine for hardened materials
JP2014039994A (en) Multi-blade ball end mill
JP2010162677A (en) Small-diameter cbn ball end mill
JP2008036722A (en) Radius end mill
JP2003039223A (en) Ball end mill and processing method using the same
JP2002210609A (en) Cutting tool
JP2006088232A (en) Ball end mill
JPH04159010A (en) End mill
JP2003071626A (en) Radius end mill
JP6825400B2 (en) Taper ball end mill
JP5126205B2 (en) Ball end mill
JP3754270B2 (en) Taper blade end mill
KR20110023709A (en) Rotary cutting tool
JP2013013962A (en) Cbn end mill
JP2019202395A (en) End mill
JP2001009624A (en) End mill
JP2005034982A (en) Ball end mill
JP2002126929A (en) Taper ball end mill for machining taper groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A131 Notification of reasons for refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A02