JP2002210367A - Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst - Google Patents

Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst

Info

Publication number
JP2002210367A
JP2002210367A JP2001011219A JP2001011219A JP2002210367A JP 2002210367 A JP2002210367 A JP 2002210367A JP 2001011219 A JP2001011219 A JP 2001011219A JP 2001011219 A JP2001011219 A JP 2001011219A JP 2002210367 A JP2002210367 A JP 2002210367A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
hydrogen gas
composite oxide
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001011219A
Other languages
Japanese (ja)
Inventor
Fukuo Mori
冨久男 森
Fujio Mizukami
富士夫 水上
Takashi Hayakawa
孝 早川
Hideo Orita
秀夫 折田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001011219A priority Critical patent/JP2002210367A/en
Publication of JP2002210367A publication Critical patent/JP2002210367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which oxidizes CO in hydrogen gas of a high CO content selectively and purifies hydrogen gas to be used in a fuel cell and a fuel cell anode catalyst which is not poisoned by CO. SOLUTION: In the catalyst for purifying hydrogen gas for a fuel cell, platinum black is dispersed on the surface of a compound oxide containing MnO2, Co3O4, 2CuO-Cr2O3, and Ag2O. In the fuel cell anode catalyst, Ag2O is dispersed on the surface of a compound oxide containing CuO, and a platinum black layer is formed on the Ag2O layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に用いる
触媒に関する。詳しくは燃料電池用水素ガス精製触媒、
及び、燃料電池アノード電極触媒に関する。
[0001] The present invention relates to a catalyst used for a fuel cell. Specifically, hydrogen gas purification catalyst for fuel cells,
And a fuel cell anode electrode catalyst.

【0002】[0002]

【従来の技術】固体高分子燃料電池は比較的低温でも高
電流密度が得られるため、環境対応型自動車として実用
化されつつある燃料電池車移動の電源として期待されて
いる。固体高分子型燃料電池では、燃料として水素ガス
が使用されている。この燃料としての水素ガスの製造方
法には、水素吸蔵合金法、ガソリンの触媒分解、メチル
アルコールの触媒分解方法等が使用されてきた。このう
ち、水素吸蔵合金法では使用する合金が希土類合金のL
a−Ni5等であって高価で重いという欠点があり、高
純度の水素ガスは得られるものの、合金の消耗もあり、
水素ガス燃料の価格が高価になってしまう。また、ガソ
リンの触媒分解では、メタノールに比較してガソリンは
水素原子に対して炭素原子量が多く構成されており、水
素を多く作れない欠点がある。中で最も期待されている
のが、触媒で低温分解ができ、取り扱いが容易である、
メタノールの水蒸気改質である。
2. Description of the Related Art Since a polymer electrolyte fuel cell can provide a high current density even at a relatively low temperature, it is expected as a power source for moving a fuel cell vehicle which is being put into practical use as an environment-friendly vehicle. In a polymer electrolyte fuel cell, hydrogen gas is used as a fuel. As a method for producing hydrogen gas as a fuel, a hydrogen storage alloy method, catalytic decomposition of gasoline, a catalytic decomposition method of methyl alcohol, and the like have been used. Of these, the alloy used in the hydrogen storage alloy method is rare earth alloy L
a-Ni 5 and the like, which has the disadvantage of being expensive and heavy, and although high-purity hydrogen gas can be obtained, there is also consumption of the alloy,
The price of hydrogen gas fuel becomes expensive. Further, in the catalytic cracking of gasoline, gasoline has a larger amount of carbon atoms than hydrogen atoms as compared with methanol, and thus has a drawback that hydrogen cannot be produced much. The most promising among them is that catalysts can be decomposed at low temperatures and are easy to handle.
It is steam reforming of methanol.

【0003】しかし、通常、メタノールと水から水素と
二酸化炭素とを含有する水素ガスを次式の反応によって
作り出すが、次式の反応を完全に行うことが実際上困難
なので、水素ガス中に約1%のCOが存在してしまう。
However, hydrogen gas containing hydrogen and carbon dioxide is usually produced from methanol and water by the following reaction. However, it is practically difficult to completely carry out the reaction of the following formula. 1% of CO will be present.

【0004】CH3OH→CO+2H2−21.7kcal/m
ol CO+H2O→CO2+H2+9.8kcal/mol
[0004] CH 3 OH → CO + 2H 2 -21.7 kcal / m
ol CO + H 2 O → CO 2 + H 2 +9.8 kcal / mol

【0005】水素ガス中にCOが1%もあると、100
℃で燃料電池アノード電極のPt触媒に吸着して機能を
低下させる被毒が起こり、アノード反応である水素の分
解反応を阻害して燃料電池の出力低下を起こし、寿命も
短くなる。固体高分子型燃料電池の場合、許容されるC
O濃度は数ppm以下である。燃料電池の出力低下を防
止するため、水素ガスにO2を6〜13%を加えてCO
からCO2に酸化除去することが考えられるが、それで
は、爆発の危険性が生じ、また、温度上昇による電極の
面の温度分布のムラが生じたり、H2の損失と発生電力
の低下の原因となる。
When 1% of CO is contained in hydrogen gas, 100%
At ℃, the poisoning of the anode electrode of the fuel cell adsorbed on the Pt catalyst to deteriorate its function occurs, inhibiting the decomposition reaction of hydrogen, which is an anode reaction, causing a decrease in the output of the fuel cell and shortening the service life. In the case of a polymer electrolyte fuel cell, the allowable C
O concentration is several ppm or less. In order to prevent a decrease in the output of the fuel cell, 6 to 13% of O 2 is added to hydrogen gas to reduce CO 2
Can be considered to be oxidized and removed to CO 2 , but this may cause an explosion, and may cause unevenness of the temperature distribution on the electrode surface due to the rise in temperature, loss of H 2 and reduction of generated power. Becomes

【0006】COによる燃料電池電極の被毒の問題は、
ボンベ充填した純水素を使用することで回避することが
できるが、詰め替え等が困難であり、さらに、高圧で危
険性が高いという問題点がある。
The problem of poisoning of fuel cell electrodes by CO is as follows.
Although it can be avoided by using pure hydrogen filled in a cylinder, there is a problem that refilling and the like are difficult, and there is a high danger at high pressure.

【0007】そこで、燃料電池においてCOの影響を回
避する方法として、触媒存在下で少量の酸素によって水
素ガス中のCOをCO2に酸化して低減するCO選択酸
化方法が試みられている。例えば、特開平9−3080
2号公報には、この触媒として白金及びルテニウムから
なる触媒が示されている。
Therefore, as a method of avoiding the influence of CO in a fuel cell, a CO selective oxidation method of oxidizing and reducing CO in hydrogen gas to CO 2 with a small amount of oxygen in the presence of a catalyst has been attempted. For example, Japanese Patent Application Laid-Open No. 9-3080
No. 2 discloses a catalyst comprising platinum and ruthenium as this catalyst.

【0008】特開平9−30802号公報では、触媒製
造上のルテニウムの出発物質としては、塩化ルテニウム
水溶液(RuCl3・3H2O)を使用している。しか
し、これは製造工程で、触媒の経時変化等の原因となる
Clの除去が困難である。これに替わるものとして、
[Ru(SO3)(NH35]・2H2O,Ru2(CH3
CO24(OH)2,[Ru32(NH314](N
37等があるが、いずれも不安定で製造も容易ではな
い。また、RuO4は、揮発性で有毒であるという、問
題点を有している。
In Japanese Patent Application Laid-Open No. 9-30802, a ruthenium chloride aqueous solution (RuCl 3 .3H 2 O) is used as a ruthenium starting material for producing a catalyst. However, this is difficult in a manufacturing process to remove Cl which causes a change with time of the catalyst. As an alternative,
[Ru (SO 3 ) (NH 3 ) 5 ] .2H 2 O, Ru 2 (CH 3
CO 2 ) 4 (OH) 2 , [Ru 3 O 2 (NH 3 ) 14 ] (N
O 3 ) 7 etc., but all are unstable and the production is not easy. Further, RuO 4 has a problem that it is volatile and toxic.

【0009】また、COとH2は分子の大きさ、分子燃
焼熱等も近い値にあり、簡単に分離することは不可能で
ある。Pt/Al23触媒ではH2は常温で吸着燃焼さ
れ、COは80〜100℃から吸着燃焼される。また、
Pd膜は、H2のみ透過する性質があるが、相当の圧力
を加える必要がある。このように、燃料電池用水素ガス
中のCOの選択酸化は困難であった。
Further, CO and H 2 have similar values in terms of molecular size, molecular combustion heat, and the like, and cannot be easily separated. In the Pt / Al 2 O 3 catalyst, H 2 is adsorbed and combusted at room temperature, and CO is adsorbed and combusted from 80 to 100 ° C. Also,
The Pd film has the property of permeating only H 2, but requires considerable pressure. Thus, it was difficult to selectively oxidize CO in hydrogen gas for fuel cells.

【0010】また、燃料電池のアノード電極自体をCO
に被毒されないものとするための開発、研究も行われて
いて、例えば、特開平9−161811号公報には電極
触媒をPt−Fe−Rh等の合金とすることが提案され
ている。しかし、これらもCOの被毒を完全に除去でき
るものではない。
Further, the anode electrode of the fuel cell is replaced with CO.
Development and research are also being carried out to prevent poisoning. For example, Japanese Patent Application Laid-Open No. 9-161811 proposes that the electrode catalyst be an alloy such as Pt-Fe-Rh. However, these methods also cannot completely remove CO poisoning.

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来の燃料
電池用水素ガス精製触媒及び燃料電池電極自体のCO被
毒の問題点を解決し、高濃度のCOを含む燃料電池用水
素ガス中のCOを選択的に酸化除去し、燃料電池用に許
容される水素ガスを精製する触媒、並びに、COに被毒
されない燃料電池のアノード電極触媒を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional hydrogen gas purification catalyst for a fuel cell and the CO poisoning of the fuel cell electrode itself. It is an object of the present invention to provide a catalyst for selectively oxidizing and removing CO to purify hydrogen gas permitted for a fuel cell and an anode electrode catalyst for a fuel cell which is not poisoned by CO.

【0012】[0012]

【課題を解決するための手段】本発明は、MnO2、C
34、2CuO・Cr23、及び、Ag2Oを含む複
合酸化物の表面にPt-ブラック粒子を分散させたこと
を特徴とする燃料電池用水素ガス精製触媒である。さら
に、MnO2、Co34、及び、CuOを含む複合酸化
物の表面にAg2Oを分散させ、該Ag2Oの上からPt
-ブラック粒子層を形成したことを特徴とする燃料電池
アノード電極触媒である。
According to the present invention, MnO 2 , C
o 3 O 4, 2CuO · Cr 2 O 3, and a hydrogen gas purification catalyst for a fuel cell, characterized in that the Pt- black particles to the surface of the composite oxide was dispersed containing Ag 2 O. Further, Ag 2 O is dispersed on the surface of the composite oxide containing MnO 2 , Co 3 O 4 , and CuO, and Pt is added from above the Ag 2 O.
-A fuel cell anode electrode catalyst comprising a black particle layer.

【0013】[0013]

【発明の実施の形態】本発明の燃料電池用水素ガス精製
触媒は、COとH2の共存ガスにおいて、COをCO2
酸化するが、H2は酸化しない、CO選択酸化触媒から
なるものである。
Fuel cell hydrogen gas purifying catalyst of the embodiment of the present invention, in the coexistence gases CO and H 2, is to oxidize CO to CO 2, H 2 does not oxidize, made of CO selective oxidation catalyst It is.

【0014】不完全燃焼警報用に使用するCOセンサー
であって、COとH2(但し500ppm)の共存ガス
中からCOのみ選択的に検知できるセンサーに使用され
るCO選択酸化触媒は、金属の中で、COの酸化特性に
関して、低温感度、相対感度ともPtが最も高いことに
基づいて作成されている。Ptを主触媒とした、担持貴
金属触媒とする場合には、COに対する感度が高く、低
温活性があり、かつ化学的に安定で、比較的被毒に強い
Pt−ブラック/Al23が一般に使用される。しか
し、Pt−ブラック/Al23はCOと同様な感度をH
2に対しても有している。
A CO selective oxidation catalyst used for a CO sensor used for an incomplete combustion warning and capable of selectively detecting only CO from a coexisting gas of CO and H 2 (500 ppm) is a metal catalyst. Among them, the oxidation characteristics of CO are created based on the fact that Pt is the highest in both low-temperature sensitivity and relative sensitivity. In the case of using a supported noble metal catalyst having Pt as a main catalyst, Pt-black / Al 2 O 3 which has high sensitivity to CO, has low-temperature activity, is chemically stable, and is relatively resistant to poisoning is generally used. used. However, Pt-black / Al 2 O 3 has the same sensitivity as CO as H
Has also for two .

【0015】COセンサー用触媒は、H2感度を除去す
るために、MnO2、2CuO・Cr 23、Co34
AgO、及びγ−Al23を含む金属酸化物をPt−ブ
ラックと組み合わせて触媒としている。このうち、Mn
2は結晶成長抑制をする。CuOはH2感度の除去を行
うが、CuOのみでは酸化還元に弱いため、Cr23
安定化する。Co34とMnO2はAg2OにO2-を供給
し、H2感度除去の補助をする。γ−Al23は、線材
への熱伝導及び触媒保持体の働きをする。COセンサー
の触媒のセンサーは、センサー温度、すなわち、触媒温
度を150〜160℃に保つ様、センサーのコイル形状
と抵抗値を加工(ブリッジ電圧:DC6.0V)し、5
00ppmのCO、H2ガスに接触し、燃焼した時の温
度を検出し、電圧に変換して各々CO:20〜25m
V,H2:0mVの出力が得られる様、設計されてい
る。
The catalyst for the CO sensor is HTwoEliminate sensitivity
MnOTwo、 2CuO ・ Cr TwoOThree, CoThreeOFour,
AgO and γ-AlTwoOThreePt-b
The catalyst is used in combination with a rack. Of these, Mn
OTwoSuppresses crystal growth. CuO is HTwoRemove sensitivity
However, since CuO alone is vulnerable to oxidation and reduction,TwoOThreeso
Stabilize. CoThreeOFourAnd MnOTwoIs AgTwoO to O2-Supply
And HTwoHelps remove sensitivity. γ-AlTwoOThreeIs a wire rod
It acts as a heat conductor and catalyst support. CO sensor
The catalyst sensor has a sensor temperature,
Sensor coil shape to keep the temperature between 150 and 160 ° C
And the resistance value (bridge voltage: DC 6.0 V)
00 ppm CO, HTwoThe temperature at which the gas contacts and burns
The degree is detected and converted into a voltage, and CO: 20 to 25 m, respectively.
V, HTwo: Designed to obtain 0 mV output
You.

【0016】本発明は、MnO2、Co34、2CuO
・Cr23、及び、Ag2Oを含む複合酸化物の表面に
Pt-ブラックを分散させた触媒であって、燃料電池用
水素ガス中のCOのみを選択的に酸化して、水素ガスを
精製する触媒である。当該触媒からなる触媒層に、例え
ば、メタノールの水蒸気改質によって得られた水素ガス
を適切な設定温度と上限制御温度の下で導入すると、C
Oは酸化されるがH2は酸化されず、当初約1%の濃度
のCOが含まれる水素ガスは、固体高分子型燃料電池の
場合に許容されるCO濃度にすることができる。
The present invention relates to MnO 2 , Co 3 O 4 , 2CuO
A catalyst in which Pt-black is dispersed on the surface of a composite oxide containing Cr 2 O 3 and Ag 2 O, and selectively oxidizes only CO in hydrogen gas for a fuel cell to produce hydrogen gas Is a catalyst for purifying When, for example, hydrogen gas obtained by steam reforming of methanol is introduced into a catalyst layer made of the catalyst at an appropriate set temperature and an upper limit control temperature, C
O is oxidized H 2 is not oxidized, the hydrogen gas that contains CO originally about 1% concentration can be CO concentrations that are acceptable in the case of a polymer electrolyte fuel cell.

【0017】本発明の燃料電池用水素ガス精製触媒の複
合酸化物には、使用される触媒層の形状、及び精製条件
等に応じて、適切な量のγ−Al23を保持体として含
むことができる。
The composite oxide of the hydrogen gas purifying catalyst for a fuel cell according to the present invention contains an appropriate amount of γ-Al 2 O 3 as a support in accordance with the shape of the catalyst layer to be used and the purification conditions. Can be included.

【0018】複合酸化物の卑金属の組成は限定されるも
のではないが、MnO2が30〜55重量%、2CuO
・Cr23が15〜35重量%、Co34が5〜25重
量%γ−Al23が10〜30重量%であると、触媒の
選択性、及び安定性等が優れ好ましい。当該卑金属及
び、微量のAg2Oを含む混合物は球形粒状、円柱形ペ
レット状等の好ましい形状に形成される。
Although the composition of the base metal of the composite oxide is not limited, the content of MnO 2 is 30 to 55% by weight,
When the content of Cr 2 O 3 is 15 to 35% by weight, the content of Co 3 O 4 is 5 to 25% by weight, and the content of γ-Al 2 O 3 is 10 to 30% by weight, the selectivity and stability of the catalyst are excellent and preferable. . The mixture containing the base metal and a small amount of Ag 2 O is formed into a preferable shape such as a spherical particle or a cylindrical pellet.

【0019】成形された複合酸化物の表面にPt−ブラ
ックを分散させて、燃料電池用水素ガス精製触媒が製造
される。
By dispersing Pt-black on the surface of the formed composite oxide, a hydrogen gas purification catalyst for a fuel cell is manufactured.

【0020】触媒製造に係る総ての出発物質は、経時変
化の原因となり、製造工程で除去不可能な、アルカリ金
属、アルカリ土類金属、ハロゲン元素、硫酸塩、及び燐
酸塩を含まないことが必要とされる。従って、形成され
る触媒中にハロゲン等を含ませないため、Ptの出発物
質は[Pt(NH34](NO32が好ましい。複合酸
化物の表面にPt−ブラックを分散させる方法は、特に
限定は無く、例えば、[Pt(NH34](NO32
液を成形された複合酸化物の表面に塗布、乾燥、分解す
る方法が挙げられる。
All starting materials involved in the preparation of the catalyst must be free of alkali metals, alkaline earth metals, halogen elements, sulfates, and phosphates that can cause aging and cannot be removed during the manufacturing process. Needed. Therefore, the starting catalyst for Pt is preferably [Pt (NH 3 ) 4 ] (NO 3 ) 2 , because halogens and the like are not contained in the formed catalyst. The method of dispersing Pt-black on the surface of the composite oxide is not particularly limited. For example, a [Pt (NH 3 ) 4 ] (NO 3 ) 2 solution is applied to the surface of the formed composite oxide, dried, Decomposition method is mentioned.

【0021】また、MnO2、Co34、及び、CuO
を含む複合酸化物の表面にAg2Oを分散し、その上に
Pt-ブラック層を形成した触媒は、COとH2の混合ガ
スにおいてH2のみを選択的に吸着酸化する。当該触媒
を燃料電池アノード電極触媒として使用すると、当該触
媒にはCOが吸着しないため、H2→2H++e-のアノ
ード反応を、COを含むH2ガスを燃料とした場合に
も、長期間安定的に行うことができる。
Further, MnO 2 , Co 3 O 4 and CuO
Dispersed Ag 2 O on the surface of the composite oxide containing, catalyst to form a Pt- black layer thereon, selectively adsorbs oxidized only H 2 in the mixed gas of CO and H 2. When the catalyst is used as a fuel cell anode electrode catalyst, CO is not adsorbed on the catalyst. Therefore, even when H 2 gas containing CO is used as fuel, the anode reaction of H 2 → 2H + + e can be performed for a long time. It can be performed stably.

【0022】[0022]

【実施例】以下、本発明を実施例により具体的に説明す
る。しかし、これらの実施例は本発明の実施態様を具体
的に説明するものであり、本発明の範囲を限定するもの
ではない。
The present invention will be described below in more detail with reference to examples. However, these examples specifically illustrate embodiments of the present invention and do not limit the scope of the present invention.

【0023】実施例1 MnO2 42重量% 2CuO・Cr23 25重量% Co34 13重量% γ−Al23 20重量% 上記組成の混合物に、当該混合物1g当たり5×10-4
gのAgOを加えボールミルにかけて、混合粉砕した
後、直径3.0mm、長さ3mmの円柱形ペレットに成
型し、[Pt(NH34](NO32(1:60)溶液
をペレット1cm 2あたり1〜2ccを表面に塗布し、
乾燥後、熱分解して、表面にPt−ブラックを分散さ
せ、水洗乾燥して触媒を得た。
Example 1 MnOTwo 42% by weight 2CuO.CrTwoOThree 25% by weight CoThreeOFour 13% by weight γ-AlTwoOThree 20% by weight A mixture of the above composition was added in an amount of 5 × 10-Four
g of AgO was added, and the mixture was mixed and pulverized with a ball mill.
Then, it is formed into a cylindrical pellet of 3.0 mm in diameter and 3 mm in length.
And type [Pt (NHThree)Four] (NOThree)Two(1:60) solution
The pellet 1cm TwoApply 1 to 2 cc per surface to
After drying, it is thermally decomposed and Pt-black is dispersed on the surface.
And washed with water and dried to obtain a catalyst.

【0024】この触媒は、120℃からCOを酸化する
性能が有り、COとH2のバランスは150〜160℃
の間でとれる様になっている。COセンサに用いると、
センサー温度が150℃でCO:1000ppm 30
〜40mV、H2:1000ppm 0mVの様な特性
が予測される。CO 0.1%(1000ppm)が燃
焼すると、触媒の温度上昇は9.2℃であるので、設定
温度150〜160℃、上昇制限温度160〜170℃
の温度範囲でCOを含むH2ガスを流せば、COのみ酸
化されH2は酸化されない。出力3KW燃料電池に必要
なH2供給量は、約75L/Minであるので、必要量
に応じた触媒層を設計する。
This catalyst has a performance of oxidizing CO from 120 ° C., and the balance between CO and H 2 is 150 to 160 ° C.
Between the two. When used for a CO sensor,
CO: 1000 ppm 30 when the sensor temperature is 150 ° C
Characteristics such as 4040 mV and H 2 : 1000 ppm 0 mV are expected. When 0.1% (1000 ppm) of CO is burned, the temperature rise of the catalyst is 9.2 ° C.
When H 2 gas containing CO is flowed in the temperature range, only CO is oxidized and H 2 is not oxidized. Since the supply amount of H 2 required for a 3 KW fuel cell output is about 75 L / Min, the catalyst layer is designed according to the required amount.

【0025】実施例2 MnO2 50重量% CuO 30重量% Co34 15重量% 上記組成の酸化物を含む塗装液を調整し、カーボンに塗
装した。低温乾燥及び120℃で2時間乾燥した後、5
00℃で15〜20分焼成して複合酸化物を得た。Ag
2Oが触媒において0.5重量%になるように、AgN
3溶液を塗布乾燥させAg2O層を形成した。[Pt
(NH34](NO32(1:60)溶液をAg2O層の
上から塗布し、乾燥後、500℃で分解し、Pt−ブラ
ックを触媒1g当たり1×10-4gとなる様に分散形成
して、燃料電池のアノード電極触媒を得た。
Example 2 50% by weight of MnO 2 30% by weight of CuO 15% by weight of Co 3 O 4 A coating solution containing an oxide having the above composition was prepared and coated on carbon. After drying at low temperature and drying at 120 ° C for 2 hours, 5
The composite oxide was obtained by firing at 00 ° C. for 15 to 20 minutes. Ag
AgN so that 2 O is 0.5% by weight in the catalyst.
The O 3 solution was applied and dried to form an Ag 2 O layer. [Pt
(NH 3 ) 4 ] (NO 3 ) 2 (1:60) solution was applied on the Ag 2 O layer, dried and decomposed at 500 ° C. to remove Pt-black at 1 × 10 -4 g per gram of catalyst. Thus, an anode electrode catalyst for a fuel cell was obtained.

【0026】[0026]

【発明の効果】本発明の水素ガス精製触媒を用いて精製
された水素ガスにより、燃料電池はPt電極の被毒が無
く、室温で稼働することができ、発電能力も大きくとれ
る。また、本発明のアノード電極触媒によれば、高濃度
COを含む水素ガスを燃料としてもCOによる被毒の無
い燃料電池アノード電極を作成することができる。
According to the hydrogen gas purified by using the hydrogen gas purification catalyst of the present invention, the fuel cell can be operated at room temperature without poisoning of the Pt electrode, and the power generation capacity can be increased. Further, according to the anode electrode catalyst of the present invention, a fuel cell anode electrode free from poisoning by CO can be produced even when hydrogen gas containing high concentration CO is used as fuel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) 5H027 (71)出願人 501130969 早川 孝 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 (71)出願人 501131106 折田 秀夫 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 (72)発明者 森 冨久男 千葉県松戸市河原塚423−7 (72)発明者 水上 富士夫 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 (72)発明者 早川 孝 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 (72)発明者 折田 秀夫 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所内 Fターム(参考) 4G040 FA06 FB04 FC07 FE01 4G069 AA03 AA08 BA01A BA01B BA08B BB06A BB06B BC31A BC31B BC32A BC32B BC58A BC58B BC62A BC62B BC67A BC67B BC75A BC75B CC32 DA06 EA02Y EE06 EE08 FA01 FA02 FB23 4G140 FA06 FB04 FC07 FE01 5H018 AA06 AS02 BB01 BB06 BB08 BB11 BB13 EE03 EE12 5H026 AA06 EE02 EE12 5H027 AA06 BA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) 5H027 (71) Applicant 501130969 Takashi Hayakawa 1-1 Higashi Tsukuba, Ibaraki Pref. Within the Technical Research Institute (71) Applicant 501131106 Hideo Orita 1-1, Higashi 1-1, Tsukuba, Ibaraki Pref. ) Inventor Fujio Mizukami 1-1, Higashi, Tsukuba, Ibaraki Pref., Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (72) Inventor Takashi Hayakawa 1-1, Higashi, Tsukuba, Ibaraki, Japan Within the Institute of Industrial Technology (72) Inventor Hideo Orita 1-1, Higashi 1-1, Tsukuba City, Ibaraki Prefecture F-term (Reference) 4G040 FA06 FB04 FC07 FE01 4G069 AA03 AA08 BA01A BA01B BA08B BB06A BB06B BC31A BC31B BC32A BC32B BC58A BC58B BC62A BC62B BC67A BC67B BC75 FA BC02EA06 FA06 FB04 FC07 FE01 5H018 AA06 AS02 BB01 BB06 BB08 BB11 BB13 EE03 EE12 5H026 AA06 EE02 EE12 5H027 AA06 BA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MnO2、Co34、2CuO・Cr2
3、及び、Ag2Oを含む複合酸化物の表面にPt-ブラ
ックを分散させたことを特徴とする燃料電池用水素ガス
精製触媒。
1. MnO 2 , Co 3 O 4 , 2CuO.Cr 2 O
3. A hydrogen gas purification catalyst for a fuel cell, wherein Pt-black is dispersed on the surface of a composite oxide containing Ag 2 O.
【請求項2】 複合酸化物がAl23をさらに含む請求
項1記載の燃料電池用水素ガス精製触媒。
2. The hydrogen gas purifying catalyst for a fuel cell according to claim 1, wherein the composite oxide further contains Al 2 O 3 .
【請求項3】 MnO2、Co34、及び、CuOを含
む複合酸化物の表面にAg2Oを分散し、該Ag2O層の
上にPt-ブラック層を形成させたことを特徴とする燃
料電池アノード電極触媒。
Wherein MnO 2, Co 3 O 4 and, characterized by dispersing the Ag 2 O on the surface of the composite oxide containing CuO, to form a Pt- black layer on the Ag 2 O layer Fuel cell anode electrode catalyst.
JP2001011219A 2001-01-19 2001-01-19 Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst Pending JP2002210367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011219A JP2002210367A (en) 2001-01-19 2001-01-19 Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011219A JP2002210367A (en) 2001-01-19 2001-01-19 Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst

Publications (1)

Publication Number Publication Date
JP2002210367A true JP2002210367A (en) 2002-07-30

Family

ID=18878380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011219A Pending JP2002210367A (en) 2001-01-19 2001-01-19 Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst

Country Status (1)

Country Link
JP (1) JP2002210367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079470A1 (en) * 2002-03-20 2003-09-25 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2006116475A (en) * 2004-10-22 2006-05-11 Sakaguchi Giken:Kk Carbon monoxide-removing catalyst, carbon monoxide-removing method, and fuel for fuel battery
JP2007111695A (en) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079470A1 (en) * 2002-03-20 2003-09-25 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2006116475A (en) * 2004-10-22 2006-05-11 Sakaguchi Giken:Kk Carbon monoxide-removing catalyst, carbon monoxide-removing method, and fuel for fuel battery
JP2007111695A (en) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd Oxidation catalyst for carbon monoxide and its production method, fuel processor and fuel cell system
US8101542B2 (en) 2005-10-21 2012-01-24 Samsung Sdi Co., Ltd. Catalyst for oxidizing monoxide and method of preparing the same

Similar Documents

Publication Publication Date Title
EP0764466B1 (en) Fuel cell device equipped with catalyst material for removing carbon monoxide
JP2004525047A (en) Non-ignitable water-gas conversion catalyst
JP3593358B2 (en) Reformed gas oxidation catalyst and method for oxidizing carbon monoxide in reformed gas using the catalyst
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP3715482B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide removal method using the catalyst, and solid polymer electrolyte fuel cell system
EP1029593B1 (en) Catalyst and method for selectively oxidizing carbon monoxide contained in reformed gas
JP4689508B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
KR101109394B1 (en) Catalyst for Removal of Carbon Monoxide from Hydrogen Gas
JP5154887B2 (en) Carbon monoxide selective oxidation catalyst using vermiculite (Expanded vermiculite) as support
US20020010090A1 (en) Oxidizing catalysts, carbon monoxide sensor, and hydrogen sensor
JP2008104906A (en) Method for manufacturing catalyst for removing carbon monoxide
JP2002210367A (en) Catalyst for purifying hydrogen gas for fuel cell and fuel cell anode catalyst
JP3606494B2 (en) Carbon monoxide removing catalyst body, fuel cell device equipped with the catalyst body, and method for removing carbon monoxide in reformed gas supplied to the fuel cell
US20040156771A1 (en) Method of reducing carbon monoxide concentration
JP3788718B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP2003059497A (en) Anode electrode protection catalyst for fuel cell
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP2001149781A (en) Catalyst for selectively oxidizing gaseous carbon monoxide in hydrogen-rich gas and method for removing carbon monoxide using the same
JP2003251181A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP2006167501A (en) Reforming catalyst, hydrogen generation apparatus, and fuel cell system
JP2000317307A (en) Catalyst for decomposing nitrous oxide and its using method
JP2002273223A (en) Method for manufacturing co removing catalyst