JP2002208715A - Photovoltaic element and its manufacturing method - Google Patents

Photovoltaic element and its manufacturing method

Info

Publication number
JP2002208715A
JP2002208715A JP2001001604A JP2001001604A JP2002208715A JP 2002208715 A JP2002208715 A JP 2002208715A JP 2001001604 A JP2001001604 A JP 2001001604A JP 2001001604 A JP2001001604 A JP 2001001604A JP 2002208715 A JP2002208715 A JP 2002208715A
Authority
JP
Japan
Prior art keywords
layer
transparent electrode
oxygen concentration
electrode layer
doped layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001001604A
Other languages
Japanese (ja)
Inventor
Katsuhito Wada
雄人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001001604A priority Critical patent/JP2002208715A/en
Publication of JP2002208715A publication Critical patent/JP2002208715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To improve conversion efficiency by reducing contact resistance between a transparent electrode and a semiconductor doped layer below the transparent electrode without deteriorating light transmittance of the transparent electrode of a light incident side in a photovoltaic element. SOLUTION: A low oxidation concentration layer of indium tin oxide whose oxygen concentration is low as compared with that of the other part is arranged in the vicinity of an interface between the transparent electrode and the doped layer. As a method for forming the low oxidation concentration layer, the flow rate of oxygen which is introduced when the transparent electrode is formed is changed in film thickness direction, i.e., the flow rate is made small at first and increased later.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明電極を有する
光起電力素子およびその製造方法に関する。
The present invention relates to a photovoltaic device having a transparent electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】基板上に少なくとも第一電極層、第一ド
ープ層、光活性層、第二ドープ層、第二電極層を積層し
てなる光起電力素子においては、通常光入射側の電極と
して透明電極が使用される。その透明電極は、光起電力
素子の特性に大きく影響を与える要素であり、従来この
ような透明電極には、スパッタリング法等によるインジ
ウム錫酸化膜(以下ITO膜と記す)等が使用されてい
た。この電極は、光の透過率が高いこと、そして高い導
電率を備えることが望ましい。ITO膜においては、抵
抗を低減する方法として、酸素が不足している不完全な
酸化物とすることにより、正孔の濃度を増加させる方法
が取られていた。
2. Description of the Related Art In a photovoltaic device having at least a first electrode layer, a first doped layer, a photoactive layer, a second doped layer, and a second electrode layer laminated on a substrate, an electrode on a light incident side is usually used. Is used as a transparent electrode. The transparent electrode is a factor that greatly affects the characteristics of the photovoltaic element. Conventionally, an indium tin oxide film (hereinafter referred to as an ITO film) formed by a sputtering method or the like has been used for such a transparent electrode. . The electrode desirably has a high light transmittance and a high electrical conductivity. In the ITO film, as a method of reducing the resistance, a method of increasing the hole concentration by using an incomplete oxide lacking oxygen has been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述のように
酸素濃度を低くし、正孔の密度を増加させると、ITO
膜の光の透過率が低下して変換効率を悪化させる。逆に
酸素濃度を高くすると正孔の密度が減少し、ITO膜の
導電率が低下するとともに、第二ドープ層との接触抵抗
が大きくなって、やはり変換効率を悪化させるという問
題がある。従来はこの両者の兼ね合いから酸素濃度を決
定していた。
However, as described above, when the oxygen concentration is lowered and the hole density is increased, the ITO
The light transmittance of the film is reduced, thereby deteriorating the conversion efficiency. Conversely, when the oxygen concentration is increased, the hole density decreases, the conductivity of the ITO film decreases, and the contact resistance with the second doped layer increases, which also has the problem of deteriorating the conversion efficiency. Conventionally, the oxygen concentration has been determined based on a balance between the two.

【0004】これらの問題に鑑み本発明の目的は、導電
率が高く、第二ドープ層との接触抵抗が小さく、しかも
光の透過率が大きい透明電極を備えた光起電力素子およ
びその製造方法を提供することにある。
In view of these problems, an object of the present invention is to provide a photovoltaic element having a transparent electrode having high conductivity, low contact resistance with the second doped layer, and high light transmittance, and a method of manufacturing the same. Is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の光起電力素子は、基板上に少なくとも第一電極層、
半導体からなる第一ドープ層、光活性層、第二ドープ
層、およびインジウム錫酸化物等からなる透明電極層を
積層してなる光起電力素子において、その透明電極層の
第二ドープ層に接する部分に酸素濃度が他の部分のそれ
より低い低酸素濃度部分を有するものとする。
A photovoltaic device according to the present invention for solving the above-mentioned problems comprises at least a first electrode layer on a substrate,
In a photovoltaic element in which a first doped layer made of a semiconductor, a photoactive layer, a second doped layer, and a transparent electrode layer made of indium tin oxide or the like are stacked, the photovoltaic element is in contact with the second doped layer of the transparent electrode layer It is assumed that a portion has a low oxygen concentration portion where the oxygen concentration is lower than that of the other portions.

【0006】第二ドープ層に接する部分に酸素濃度が他
の部分のそれより低い低酸素濃度部分を設ければ、酸素
不足の不完全な酸化物となるため正孔密度が増して透明
電極層の導電率が増すとともに第二ドープ層との接触抵
抗を低減することができる。透明電極層の他の部分の酸
素濃度は高いので、光の透過率が大幅に低下することは
無い。
If a low oxygen concentration portion having an oxygen concentration lower than that of the other portion is provided in a portion in contact with the second dope layer, the oxide becomes insufficient oxygen-deficient and the hole density increases, so that the transparent electrode layer is increased. And the contact resistance with the second doped layer can be reduced. Since the oxygen concentration in the other part of the transparent electrode layer is high, the light transmittance does not decrease significantly.

【0007】低酸素濃度部分の厚さが0.1〜10nmの
範囲にあるものとする。低酸素濃度部分の厚さが0.1
nmより薄いと、接触抵抗の低減効果は殆ど見られない。
逆に10nmより厚くすると、透明電極層の光透過率を悪
化させ、変換効率に悪影響を与える。そのような光起電
力素子の製造方法としては、基板上に第一電極層、第一
ドープ層、光活性層、第二ドープ層を積層した後、スパ
ッタリングにより透明電極を製膜するとき、製膜初期の
スパッタガス中の酸素濃度を少なくし、その後に酸素濃
度を増加させると良い。
It is assumed that the thickness of the low oxygen concentration portion is in the range of 0.1 to 10 nm. The thickness of the low oxygen concentration part is 0.1
When the thickness is smaller than nm, the effect of reducing the contact resistance is hardly observed.
Conversely, when the thickness is more than 10 nm, the light transmittance of the transparent electrode layer is deteriorated, and the conversion efficiency is adversely affected. As a method for manufacturing such a photovoltaic element, a first electrode layer, a first doped layer, a photoactive layer, a second doped layer is laminated on a substrate, and then a transparent electrode is formed by sputtering. It is preferable to reduce the oxygen concentration in the sputtering gas at the initial stage of the film and then increase the oxygen concentration.

【0008】製膜初期のスパッタガス中の酸素濃度を少
なくすることにより、製膜初期の透明電極の酸素濃度が
低められる。その後に酸素濃度を増加させことにより、
酸素濃度が高められる。このため導電率が増大し、ドー
プ層との接触抵抗が下げられる。その後に製膜を継続し
て酸素濃度の高い透明電極層を製膜すれば、光透過率は
保たれる。
By reducing the oxygen concentration in the sputtering gas at the initial stage of film formation, the oxygen concentration of the transparent electrode at the initial stage of film formation can be reduced. Then, by increasing the oxygen concentration,
Oxygen concentration is increased. For this reason, the conductivity increases, and the contact resistance with the doped layer is reduced. Thereafter, if the film formation is continued to form a transparent electrode layer having a high oxygen concentration, the light transmittance is maintained.

【0009】[0009]

【発明の実施の形態】以下に本発明の詳細な構成を実施
形態例として説明する。図1は、本発明の光起電力素子
の構造例を示す。図1に示す構造は、pin接合を一組
有するシングル構造の光起電力素子である。支持体10
1上に銀からなる電極層102、非単結晶シリコン系半
導体からなるn型層103、i型層104、p型層10
5、ITO膜からなる透明電極層106および107か
ら構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed configuration of the present invention will be described below as an embodiment. FIG. 1 shows a structural example of a photovoltaic element of the present invention. The structure shown in FIG. 1 is a single structure photovoltaic element having one set of pin junctions. Support 10
1, an electrode layer 102 made of silver, an n-type layer 103 made of a non-single-crystal silicon-based semiconductor, an i-type layer 104, and a p-type layer 10.
5. Transparent electrode layers 106 and 107 made of an ITO film.

【0010】透明電極は、p型層104に近い側の低酸
素濃度部分106と、それ以外の高酸素濃度部分107
から構成されている。図には示さないが、pinもしく
はnipの積層ユニットを2組積層したタンデム構造、
もしくは3組積層したトリプル構造の光起電力素子も本
発明に適した光起電力素子である。本発明の光起電力素
子の透明電極層106、107は、生成した電流を通す
とともに、全ての入射光が通る重要な要素である。以下
に基板上に形成された上記シングル構造の太陽電池にお
ける透明電極の形成方法を述べる。タンデム構造、トリ
プル構造の光起電力素子においても同様である。
The transparent electrode has a low oxygen concentration portion 106 near the p-type layer 104 and a high oxygen concentration portion 107
It is composed of Although not shown in the figure, a tandem structure in which two sets of pin or nip stack units are stacked,
Alternatively, a triple structure photovoltaic device having a triple structure is also a photovoltaic device suitable for the present invention. The transparent electrode layers 106 and 107 of the photovoltaic element of the present invention are important elements for passing the generated current and passing all incident light. Hereinafter, a method for forming a transparent electrode in the solar cell having the single structure formed on the substrate will be described. The same applies to a photovoltaic element having a tandem structure and a triple structure.

【0011】本発明の光起電力素子に適した支持体10
1としては、ガラス基板を用いることができるが、ポリ
イミド、カプトン等の樹脂系の材料も用いることができ
る。ただし、樹脂系の材料を用いた場合には、耐熱性が
低いために、各層の製膜時の温度を低く保つ必要があ
る。本発明の光起電力素子に適した第一電極層102と
しては、単一の層、または複数の材料からなる層で形成
することができる。単一の層からなる場合には、銀やア
ルミニウム、銅などを用いることができる。また半導体
層との反応を防ぐとともに、反射を増加させるために酸
化亜鉛、酸化錫、酸化インジウム等の透明導電体を第一
電極と第一ドープ層との間に挿入することができる。
A support 10 suitable for the photovoltaic device of the present invention
As 1, a glass substrate can be used, but a resin-based material such as polyimide or Kapton can also be used. However, when a resin-based material is used, it is necessary to keep the temperature at the time of forming each layer low because of low heat resistance. The first electrode layer 102 suitable for the photovoltaic device of the present invention can be formed of a single layer or a layer made of a plurality of materials. When a single layer is used, silver, aluminum, copper, or the like can be used. In addition, a transparent conductor such as zinc oxide, tin oxide, indium oxide, or the like can be inserted between the first electrode and the first doped layer to prevent a reaction with the semiconductor layer and increase reflection.

【0012】なお、この第一電極層層102は、スパッ
タリング法、CVD法等で形成することができる。また
電極の表面に凹凸を形成して光閉じ込めを引き起こし、
さらに高い反射率と導電性を保持する電極は、融点の低
いアルミニウム等と反射率の高い銀等の積層構造を取る
ことや、製膜温度に傾斜を設けることで形成できる。ま
た各層の間の付着性を高くし、相互拡散を防ぐために
は、クロムやチタンを界面に挿入することができる。ま
た、膜形成時の温度に傾斜を設けるなどすることができ
る。
The first electrode layer 102 can be formed by a sputtering method, a CVD method, or the like. Also, irregularities are formed on the surface of the electrode to cause light confinement,
An electrode having higher reflectance and conductivity can be formed by adopting a laminated structure of aluminum or the like having a low melting point and silver or the like having a high reflectance, or by providing a gradient in film forming temperature. Chromium or titanium can be inserted at the interface to increase the adhesion between the layers and prevent interdiffusion. Further, it is possible to provide a gradient in the temperature at the time of film formation.

【0013】本発明の光起電力素子の第一、第二ドープ
層である、n型層103およびp型層105は、半導体
からなり、素子の特性を左右する重要な層である。単結
晶材料ばかりでなく、非単結晶性の材料として、非晶質
材料(以下a-と表示する)、多結晶材料(以下poly- と
表示する)、微結晶材料(以下μc-と表示する)を用い
ることができる。
The n-type layer 103 and the p-type layer 105, which are the first and second doped layers of the photovoltaic device of the present invention, are semiconductors and are important layers that affect the characteristics of the device. Not only single crystal materials but also non-single crystalline materials include amorphous materials (hereinafter a-), polycrystalline materials (poly-), and microcrystalline materials (μc-). ) Can be used.

【0014】非晶質材料としては、例えば水素を含む非
晶質シリコン(以下a-Si:Hと表示する。他も同
様)、非晶質炭化シリコン(以下a-SiC:H)、非晶
質シリコンゲルマニウム合金(a-SiGe:H)、非晶
質酸化シリコン(a-SiO:H)、非晶質窒化シリコン
(a-SiN:H)、微結晶材料としては、例えばμc-S
i:H、μc-SiGe:H、μc-SiC:H、μc-Si
O:H、μc-SiN:H等にホウ素等の周期率表第II
I族元素に代表されるp型の荷電子制御材、燐等の周期
率表第V族元素に代表されるn型の荷電子制御材を添加
した材料が挙げられる。
As the amorphous material, for example, amorphous silicon containing hydrogen (hereinafter referred to as a-Si: H; the same applies to others), amorphous silicon carbide (hereinafter a-SiC: H), amorphous Amorphous silicon germanium alloy (a-SiGe: H), amorphous silicon oxide (a-SiO: H), amorphous silicon nitride (a-SiN: H), and microcrystalline materials such as μc-S
i: H, μc-SiGe: H, μc-SiC: H, μc-Si
O: H, μc-SiN: H, etc., periodic table of boron etc. II
Examples of the material include a p-type charge control material represented by a group I element and a material to which an n-type charge control material represented by a group V element in the periodic table such as phosphorus is added.

【0015】多結晶材料としては、例えばpoly- Si:
H、poly- SiGe:H、poly- SiC:H、poly- S
iCに微結晶材料と同様の荷電子制御材を添加した材料
が挙げられる。特に光入射側のp型層またはn型層に
は、光吸収の少ない結晶性の半導体層か、バンドギャッ
プの広い非晶質材料が適している。
As the polycrystalline material, for example, poly-Si:
H, poly-SiGe: H, poly-SiC: H, poly-S
A material in which the same charge control material as the microcrystalline material is added to iC is given. In particular, a crystalline semiconductor layer with little light absorption or an amorphous material with a wide band gap is suitable for the p-type layer or the n-type layer on the light incident side.

【0016】本発明の光起電力素子に適したp型層、n
型層の堆積方法としては、RFプラズマCVD等があ
る。RFプラズマCVD法においては、誘導結合型及び
容量結合型のプラズマCVDがある。どちらかといえば
容量結合型のRFプラズマCVDの方が大面積製膜時の
均一性が良く、望ましい。また、RFプラズマCVD法
においては、プラズマ励起周波数は1〜100MHz が適
しているが、特に、13.56MHz 、27.12MHz 、
40.68MHz 程度が望ましい。
A p-type layer suitable for the photovoltaic device of the present invention, n
As a method of depositing the mold layer, there is RF plasma CVD or the like. In the RF plasma CVD method, there are inductive coupling type and capacitive coupling type plasma CVD. If anything, the capacitively-coupled RF plasma CVD is preferable because it has better uniformity when forming a large area film. In the RF plasma CVD method, a plasma excitation frequency of 1 to 100 MHz is suitable, but in particular, 13.56 MHz, 27.12 MHz,
About 40.68 MHz is desirable.

【0017】本発明の光起電力素子のi型層104とし
ては、非単結晶材料が適している。例えば、非晶質材料
であるa-Si:H、a-SiC:H、a-SiGe:H、a-
SiO:H、a-SiN:H、微結晶材料であるμc-S
i:H、μc-SiGe:H、μc-SiC:H、μc-Si
O:H、μc-SiN:H等である。また、i型層の内部
で組成に傾斜を設けることにより、光劣化の低減、変換
効率の向上を図ることもできる。また、周期率表第II
I族元素、第V族元素を導入することにより荷電子制御
をすることもできる。
As the i-type layer 104 of the photovoltaic element of the present invention, a non-single-crystal material is suitable. For example, amorphous materials a-Si: H, a-SiC: H, a-SiGe: H, a-Si: H
SiO: H, a-SiN: H, μc-S which is a microcrystalline material
i: H, μc-SiGe: H, μc-SiC: H, μc-Si
O: H, μc-SiN: H, etc. In addition, by providing a gradient in the composition inside the i-type layer, light degradation and conversion efficiency can be improved. In addition, the periodic rate table II
Charge introduction can also be controlled by introducing a group I element or a group V element.

【0018】本発明の光起電力素子に適したi型層10
4の堆積方法としては、n型層103、p型層105の
堆積方法と同じくRFプラズマCVD等が用いられる。
RFプラズマCVD法としては、容量結合型のRFプラ
ズマCVD法が適している。基板101上に形成された
少なくとも1組以上のpinもしくはnipのユニット
上に、スパッタリングによりITO膜の透明電極層10
6、107を形成する。
An i-type layer 10 suitable for the photovoltaic device of the present invention
As the method of depositing 4, RF plasma CVD or the like is used similarly to the method of depositing the n-type layer 103 and the p-type layer 105.
As the RF plasma CVD method, a capacitively coupled RF plasma CVD method is suitable. A transparent electrode layer 10 of an ITO film is formed on at least one set of pin or nip units formed on the substrate 101 by sputtering.
6, 107 are formed.

【0019】ITO膜をスパッタリングで形成するに
は、RFやDCによるマグネトロンスパッタリング法を
用いると良い。また、スパッタリングに用いる材料のタ
ーゲットとしては、インジウム錫酸化物、インジウムと
錫との合金を用いることができる。スパッタリング用の
ガスとしては、ヘリウム、アルゴン、キセノン等の不活
性ガスを用いる。そのガス中に適当な量の酸素を添加す
ることにより、膜中の酸素濃度を制御することができ
る。また、水素を添加することにより酸素濃度を制御す
ることもできる。
In order to form an ITO film by sputtering, it is preferable to use a magnetron sputtering method using RF or DC. As a target of a material used for sputtering, indium tin oxide or an alloy of indium and tin can be used. As a gas for sputtering, an inert gas such as helium, argon, or xenon is used. The oxygen concentration in the film can be controlled by adding an appropriate amount of oxygen to the gas. Further, the oxygen concentration can be controlled by adding hydrogen.

【0020】インジウムと錫との合金をターゲットとし
て用いる場合には、スパッタリング用のガスに酸素を多
く加え、ターゲットと反応させてITO膜を形成する。
特に、コンタクトを改善するためにドープ層近傍で膜中
の酸素濃度を、他の部分よりも少なくすることが重要で
ある。具体的には、図1の低酸素濃度部分106では、
ストイキオメトリーに対する酸素の不足率が17〜20
% の範囲であり、それ以外の部分、図1の高酸素濃度部
分107では、13〜17% の範囲であることが望まし
い。
When an alloy of indium and tin is used as a target, a large amount of oxygen is added to a sputtering gas, and the sputtering gas is reacted with the target to form an ITO film.
In particular, it is important to reduce the oxygen concentration in the film in the vicinity of the doped layer in order to improve the contact, as compared with other portions. Specifically, in the low oxygen concentration portion 106 of FIG.
The oxygen deficiency rate for stoichiometry is 17-20
%, And in the other portion, the high oxygen concentration portion 107 in FIG.

【0021】酸素濃度の制御方法は、以下の方法でおこ
なうことができる。その一つは、透明電極層の製膜の初
期において、スパッタガスの不活性ガス中に添加する酸
素濃度を少なくして低酸素濃度部分106を製膜し、そ
れ以降に酸素濃度を増加させ高酸素濃度部分107を製
膜するものである。なお、製膜の初期とは、膜厚が少な
くとも10nm以下の範囲である。上記の酸素の不足率を
実現するには、製膜初期の酸素の分圧としては、5×1
-3Pa以下であることが望ましい。またそれ以降の酸素
分圧は1×10-4〜5×10-2Paの範囲で制御されてい
ることが望ましい。
The method of controlling the oxygen concentration can be performed by the following method. One is that, in the initial stage of film formation of the transparent electrode layer, the oxygen concentration added to the inert gas of the sputtering gas is reduced to form the low oxygen concentration portion 106, and thereafter the oxygen concentration is increased to increase the oxygen concentration. The oxygen concentration portion 107 is formed. The initial stage of film formation is a range where the film thickness is at least 10 nm or less. To realize the above oxygen deficiency rate, the partial pressure of oxygen in the initial stage of film formation is 5 × 1
Desirably, it is 0 -3 Pa or less. Further, it is desirable that the oxygen partial pressure thereafter is controlled in the range of 1 × 10 −4 to 5 × 10 −2 Pa.

【0022】酸素ガスの圧力の制御方法としては、導入
する酸素の流量を変えるほか、背圧が高い場合には、水
素ガスを添加することによつて減少させることもでき
る。また酸素濃度は急激に変化させず、連続的に変化さ
せても良い。上記透明電極の形成における製膜温度およ
び処理温度は、膜の特性に大きな影響を与える重要な要
素であり、100〜350℃り範囲が適している。また
膜厚は10〜100nmが適している。またスパッタ時の
不活性ガスの圧力は0.01〜0.5Paが好ましい。
As a method of controlling the pressure of the oxygen gas, in addition to changing the flow rate of the oxygen to be introduced, when the back pressure is high, the pressure can be reduced by adding hydrogen gas. Also, the oxygen concentration may be changed continuously without abrupt change. The film forming temperature and the processing temperature in the formation of the transparent electrode are important factors that greatly affect the characteristics of the film, and a range of 100 to 350 ° C. is suitable. The film thickness is suitably from 10 to 100 nm. The pressure of the inert gas during sputtering is preferably 0.01 to 0.5 Pa.

【0023】[実施例1]DCマグネトロンスパッタリ
ング法及びRFプラズマCVD法により図2の断面構造
を持つ太陽電池を作成した。半導体層はタンデムのni
p構造のa-Si:Hである。まず基板101上に銀から
なる第一電極層102をスパッタリングにより形成し
た。基板101はガラス基板(コーニング社製705
9)で50mm角、厚さ1mmとした。スパッタガスはアル
ゴンを用い、製膜中は圧力が0.3Paになるように制御
した。また基板の温度は200℃とした。製膜時のパワ
ーはターゲツトの直径約75mmに対して10W とし、膜
厚を150nmとした。
Example 1 A solar cell having a sectional structure shown in FIG. 2 was prepared by a DC magnetron sputtering method and an RF plasma CVD method. The semiconductor layer is a tandem ni
a-Si: H having a p structure. First, a first electrode layer 102 made of silver was formed on a substrate 101 by sputtering. The substrate 101 is a glass substrate (705, manufactured by Corning Incorporated).
In 9), it was made 50 mm square and 1 mm thick. Argon was used as a sputtering gas, and the pressure was controlled to be 0.3 Pa during the film formation. The temperature of the substrate was 200 ° C. The power during film formation was 10 W for a target diameter of about 75 mm, and the film thickness was 150 nm.

【0024】次にRFプラズマCVD法により非単結晶
シリコン系半導体のn型層103、i型層104、、p
型層105、n型層203、i型層204、、p型層2
05を電極層102上に積層した。プラズマCVD装置
はn、i、p層のそれぞれに対して各々1つのチャンバ
ーを備えるマルチチャンバー装置である。続いてDCス
パッタリング法によりITOからなる透明電極層10
6、107を形成した。DCスパッタリング装置は、ア
ルゴンガスおよび酸素ガスを導入出来るようになってい
る。製膜時には、ヒーターにより基板を加熱し、基板温
度は150℃、圧力は0.1Paとした。また製膜の開始
後2分間は、アルゴンのみを用い、それ以降製膜終了時
まで酸素をアルゴンに対して0.1% 添加した。製膜速
度は5nm/ 分であり、低酸素濃度部分106の膜厚を5
nm、高酸素濃度部分107の膜厚を75nmとした。
Then, the n-type layer 103, the i-type layer 104, and the p-type
Mold layer 105, n-type layer 203, i-type layer 204, p-type layer 2
05 was laminated on the electrode layer 102. The plasma CVD apparatus is a multi-chamber apparatus having one chamber for each of the n, i, and p layers. Subsequently, a transparent electrode layer 10 made of ITO is formed by a DC sputtering method.
6, 107 were formed. The DC sputtering apparatus can introduce an argon gas and an oxygen gas. During film formation, the substrate was heated by a heater, the substrate temperature was 150 ° C., and the pressure was 0.1 Pa. For 2 minutes after the start of the film formation, only argon was used, and thereafter, oxygen was added to the argon at 0.1% until the film formation was completed. The deposition rate was 5 nm / min, and the film thickness of the low oxygen concentration portion 106 was 5 nm.
nm, and the film thickness of the high oxygen concentration portion 107 was 75 nm.

【0025】[比較例1]実施例1と同様な方法により
従来の光起電力素子を作成した。ただし透明電極層のス
パッタリング時のスパッタリングガスは、最初から最後
まで酸素を0.1% 添加したアルゴンガスで製膜をおこ
なった。 [比較例2]実施例1と同様な方法により従来の光起電
力素子を作成した。ただし透明電極層のスパッタリング
において、酸素の添加をおこなわなかった。
[Comparative Example 1] A conventional photovoltaic element was manufactured in the same manner as in Example 1. However, as a sputtering gas at the time of sputtering the transparent electrode layer, a film was formed from the beginning to the end using an argon gas to which 0.1% of oxygen was added. [Comparative Example 2] A conventional photovoltaic element was manufactured in the same manner as in Example 1. However, in the sputtering of the transparent electrode layer, oxygen was not added.

【0026】[特性の比較]作成した太陽電池特性の比
較は、太陽電池をAm−1.5、100mW/cm2の光照射
下において電流電圧特性を測定することでおこなった。
比較例1の太陽電池特性を基準として比較すると、直列
抵抗成分において、実施例1の太陽電池は約15% 小さ
く、実施例2の太陽電池では約9% 小さかった。
[Comparison of Characteristics] The comparison of the characteristics of the prepared solar cells was carried out by measuring the current-voltage characteristics of the solar cells under Am-1.5, 100 mW / cm 2 light irradiation.
Comparing the solar cell characteristics of Comparative Example 1 with the reference, the solar cell of Example 1 was smaller by about 15% and the solar cell of Example 2 was smaller by about 9% in the series resistance component.

【0027】その結果曲線因子においては、実施例1の
太陽電池は約2.5% 大きく、実施例2の太陽電池では
約1.5% 大きかった。これらは、透明電極層における
正孔濃度の増加とそれによるドープ層との界面での接触
抵抗の低減によると考えられる。変換効率としては、そ
れぞれ比較例1の太陽電池より2.5% 、1.5% 大き
い値を示した。
As a result, regarding the fill factor, the solar cell of Example 1 was about 2.5% larger and the solar cell of Example 2 was about 1.5% larger. These are considered to be due to an increase in the hole concentration in the transparent electrode layer and a reduction in the contact resistance at the interface with the doped layer. The conversion efficiencies were 2.5% and 1.5% larger than the solar cell of Comparative Example 1, respectively.

【0028】実施例1の太陽電池は比較例2と比べても
なお短絡電流が2% 多く、その結果変換効率はそれぞれ
比較例2の太陽電池よりもそれぞれ2% 、1% 大きい値
を示した。以上の測定結果より、本発明の透明電極中の
酸素濃度をトープ層近傍で減少させることにより作成し
た光起電力素子が、従来の光起電力素子に対して優れた
特性を有することが判明した。
The short-circuit current of the solar cell of Example 1 was 2% larger than that of Comparative Example 2, and the conversion efficiency was 2% and 1% larger than that of Comparative Example 2, respectively. . From the above measurement results, it was found that the photovoltaic device produced by reducing the oxygen concentration in the transparent electrode of the present invention in the vicinity of the tope layer had better characteristics than the conventional photovoltaic device. .

【0029】[0029]

【発明の効果】以上説明したように本発明は、光起電力
素子のドープ層に近い部分の透明電極の酸素濃度を、そ
れ以外の部分と比べて低くしたことによって、透明電極
の導電率および接触抵抗を改善し、変換効率を向上させ
ることができることを示した。本発明の製造方法として
は、透明電極層の製膜初期の酸素濃度を低くし、その後
増加させる方法を示した。
As described above, according to the present invention, the conductivity and the conductivity of the transparent electrode are reduced by lowering the oxygen concentration of the transparent electrode near the doped layer of the photovoltaic element as compared with the other portions. It was shown that the contact resistance can be improved and the conversion efficiency can be improved. As the production method of the present invention, a method has been shown in which the oxygen concentration in the initial stage of film formation of the transparent electrode layer is lowered and then increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明するための光起電力素
子の断面図
FIG. 1 is a cross-sectional view of a photovoltaic device for describing an embodiment of the present invention.

【図2】本発明実施例1の光起電力素子の断面図FIG. 2 is a cross-sectional view of the photovoltaic device of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

101 基板 102 第一電極層 103 第一ドープ層(n型層) 104 光活性層(i型層) 105 第二ドープ層(p型層) 106 透明電極層の低酸素濃度部分 107 透明電極層の高酸素濃度部分 Reference Signs List 101 substrate 102 first electrode layer 103 first doped layer (n-type layer) 104 photoactive layer (i-type layer) 105 second doped layer (p-type layer) 106 low oxygen concentration portion of transparent electrode layer 107 of transparent electrode layer High oxygen concentration part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくとも第一電極層、半導体か
らなる第一ドープ層、光活性層、第二ドープ層、および
透明電極層を積層してなる光起電力素子において、その
透明電極層の第二ドープ層に接する部分に酸素濃度が他
の部分のそれより低い低酸素濃度部分を有することを特
徴とする光起電力素子。
1. A photovoltaic device comprising a substrate on which at least a first electrode layer, a first doped layer made of a semiconductor, a photoactive layer, a second doped layer, and a transparent electrode layer are laminated. A photovoltaic element having a low oxygen concentration portion having a lower oxygen concentration in a portion in contact with the second doped layer of the above.
【請求項2】低酸素濃度部分の厚さが0.1〜10nmの
範囲にあることを特徴とする請求項1に記載の光起電力
素子。
2. The photovoltaic device according to claim 1, wherein the thickness of the low oxygen concentration portion is in the range of 0.1 to 10 nm.
【請求項3】透明電極層がインジウム錫酸化物からなる
ことを特徴とする請求項1または2に記載の光起電力素
子。
3. The photovoltaic device according to claim 1, wherein the transparent electrode layer is made of indium tin oxide.
【請求項4】基板上に少なくとも第一電極層、半導体か
らなる第一ドープ層、光活性層、第二ドープ層、および
透明電極層を積層してなる光起電力素子の製造方法にお
いて、基板上に第一電極層、第一ドープ層、光活性層、
第二ドープ層を積層した後、スパッタリングにより透明
電極を製膜するとき、製膜初期のスパッタガス中の酸素
濃度を少なくし、その後に酸素濃度を増加させることを
特徴とする光起電力素子の製造方法。
4. A method for manufacturing a photovoltaic device comprising a substrate and at least a first electrode layer, a first doped layer made of a semiconductor, a photoactive layer, a second doped layer, and a transparent electrode layer laminated on the substrate. A first electrode layer, a first doped layer, a photoactive layer,
After laminating the second doped layer, when forming a transparent electrode by sputtering, the oxygen concentration in the sputtering gas at the initial stage of film formation is reduced, then the oxygen concentration of the photovoltaic element characterized by increasing the oxygen concentration Production method.
【請求項5】透明電極層がインジウム錫酸化物からなる
ことを特徴とする請求項4に記載の光起電力素子の製造
方法。
5. The method according to claim 4, wherein the transparent electrode layer is made of indium tin oxide.
JP2001001604A 2001-01-09 2001-01-09 Photovoltaic element and its manufacturing method Pending JP2002208715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001604A JP2002208715A (en) 2001-01-09 2001-01-09 Photovoltaic element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001604A JP2002208715A (en) 2001-01-09 2001-01-09 Photovoltaic element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002208715A true JP2002208715A (en) 2002-07-26

Family

ID=18870223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001604A Pending JP2002208715A (en) 2001-01-09 2001-01-09 Photovoltaic element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002208715A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
WO2009038083A1 (en) 2007-09-18 2009-03-26 Mitsubishi Electric Corporation Thin-film solar cell device and method for manufacturing the same
EP2238627A2 (en) * 2008-02-04 2010-10-13 LG Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
WO2012020682A1 (en) * 2010-08-09 2012-02-16 株式会社カネカ Crystalline silicon solar cell
KR101382884B1 (en) 2012-09-12 2014-04-09 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP2014082387A (en) * 2012-10-17 2014-05-08 Mitsubishi Electric Corp Method for manufacturing photovoltaic element and photovoltaic element
JP2014103245A (en) * 2012-11-20 2014-06-05 Stanley Electric Co Ltd Semiconductor light-emitting element and formation method of electrode for the same
US20140196780A1 (en) * 2010-08-04 2014-07-17 Egypt Nanotechnology Center Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
KR101437070B1 (en) 2013-02-15 2014-09-02 서울시립대학교 산학협력단 Photovoltaic Device
JP2016012611A (en) * 2014-06-27 2016-01-21 サンケン電気株式会社 Semiconductor light emitting device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363577A (en) * 2003-05-13 2004-12-24 Kyocera Corp Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
JP2004363580A (en) * 2003-05-13 2004-12-24 Kyocera Corp Photoelectric transducer device and photovoltaic power generation device
WO2009038083A1 (en) 2007-09-18 2009-03-26 Mitsubishi Electric Corporation Thin-film solar cell device and method for manufacturing the same
EP2238627A4 (en) * 2008-02-04 2013-06-19 Lg Electronics Inc Solar cell having multiple transparent conductive layers and manufacturing method thereof
EP2238627A2 (en) * 2008-02-04 2010-10-13 LG Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
JP2011511470A (en) * 2008-02-04 2011-04-07 エルジー エレクトロニクス インコーポレイティド SOLAR CELL HAVING MULTILAYER TRANSPARENT CONDUCTIVE LAYER AND METHOD FOR MANUFACTURING SAME
US9209326B2 (en) 2008-02-04 2015-12-08 Lg Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
US20140196780A1 (en) * 2010-08-04 2014-07-17 Egypt Nanotechnology Center Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
US10283668B2 (en) 2010-08-04 2019-05-07 International Business Machines Corporation Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
US10297709B2 (en) 2010-08-04 2019-05-21 International Business Machines Corporation Photovoltaic devices with an interfacial band-gap modifying structure and methods for forming the same
JPWO2012020682A1 (en) * 2010-08-09 2013-10-28 株式会社カネカ Crystalline silicon solar cell
US20130146132A1 (en) * 2010-08-09 2013-06-13 Kaneka Corporation Crystalline silicon-based solar cell
WO2012020682A1 (en) * 2010-08-09 2012-02-16 株式会社カネカ Crystalline silicon solar cell
KR101382884B1 (en) 2012-09-12 2014-04-09 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP2014082387A (en) * 2012-10-17 2014-05-08 Mitsubishi Electric Corp Method for manufacturing photovoltaic element and photovoltaic element
JP2014103245A (en) * 2012-11-20 2014-06-05 Stanley Electric Co Ltd Semiconductor light-emitting element and formation method of electrode for the same
KR101437070B1 (en) 2013-02-15 2014-09-02 서울시립대학교 산학협력단 Photovoltaic Device
JP2016012611A (en) * 2014-06-27 2016-01-21 サンケン電気株式会社 Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
EP2128904A2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
US6488995B1 (en) Method of forming microcrystalline silicon film, method of fabricating photovoltaic cell using said method, and photovoltaic device fabricated thereby
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
JP2004165394A (en) Stacked photovoltaic element
US6815788B2 (en) Crystalline silicon thin film semiconductor device, crystalline silicon thin film photovoltaic device, and process for producing crystalline silicon thin film semiconductor device
KR101634480B1 (en) High efficiency solar cells fabricated by inexpensive pecvd
JP2002208715A (en) Photovoltaic element and its manufacturing method
JP4067589B2 (en) Thin film solar cell fabrication method
JPH09139515A (en) Transparent conducting film electrode
JP2009117463A (en) Thin-film photoelectric conversion device
WO2008059857A1 (en) Thin-film photoelectric conversion device
JP2002009312A (en) Method for manufacturing non-single crystal thin-film solar battery
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JP2003282902A (en) Thin film solar cell
JP2006216624A (en) Solar cell and its production process
JP3027670B2 (en) Photovoltaic element
TWI483405B (en) Photovoltaic cell and method of manufacturing a photovoltaic cell
JPH0282655A (en) Manufacture of photovolatic device
JPH11233443A (en) Forming method of microcrystal silicon film, photovoltaic element and forming equipment of semiconductor film
JP2003258286A (en) Thin film solar battery and manufacturing method thereof
JP2002222969A (en) Laminated solar battery
JP3746607B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
TWI405343B (en) Flexible solar cell with high conversion efficiency and the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929