JP2002207100A - Ship-bottom-shaped moderator container for cold neutron source device - Google Patents

Ship-bottom-shaped moderator container for cold neutron source device

Info

Publication number
JP2002207100A
JP2002207100A JP2001003288A JP2001003288A JP2002207100A JP 2002207100 A JP2002207100 A JP 2002207100A JP 2001003288 A JP2001003288 A JP 2001003288A JP 2001003288 A JP2001003288 A JP 2001003288A JP 2002207100 A JP2002207100 A JP 2002207100A
Authority
JP
Japan
Prior art keywords
container
cold
shaped
cell
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001003288A
Other languages
Japanese (ja)
Inventor
Toshio Kumai
敏夫 熊井
Yoshiki Koyama
芳己 小山
Hiroaki Kumada
博明 熊田
Shiyukuko Naito
俶孝 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIS KK
Japan Atomic Energy Agency
Original Assignee
NAIS KK
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIS KK, Japan Atomic Energy Research Institute filed Critical NAIS KK
Priority to JP2001003288A priority Critical patent/JP2002207100A/en
Publication of JP2002207100A publication Critical patent/JP2002207100A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To obtain a moderator container for a cold neutron source device located in a heavy water tank surrounding a core of a nuclear reactor and generate large quantities of cold neutrons used for the studies on physical properties of substances in life science, polymer science and environmental science especially by locating the moderator container in a position where thermal neutrons flowing in are strong, setting the thickness of liquid hydrogen in the moderator container at about 2 cm, preventing the generated cold neutrons from being absorbed as well as allowing the liquid hydrogen to sufficiently convert the thermal neutrons flowing in to cold neutrons and forming the wall of the moderator container of a thin material such as aluminum alloy that absorbs less neutrons. SOLUTION: This moderator container for a cold neutron source device has an upper part shaped like a hemispherical cap, a body shaped like a halved cylinder and a lower part shaped like a hemispherical cap. Each shaped part has a double-wall structure. The moderator container is composed of the parts mentioned above and a ship-bottom-shaped container where the interstice between the double walls is filled with liquid hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉の炉心を囲
む重水タンクに配置された冷中性子源装置の減速材容器
に関するものであり、特に、その減速材容器を流入する
熱中性子の強い位置に設置すること、減速材容器内の液
体水素の厚さを約2cmとし、液体水素が流入する熱中
性子を十分に冷中性子に変へ、且つ生成した冷中性子を
吸収しないようにすること、及び減速材容器の壁を中性
子吸収の少ないアルミニウム合金等の薄い材料で作製す
ることにより、生命科学、高分子科学、環境科学等での
物質の物性研究において使用される多量の冷中性子を発
生させるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moderator container of a cold neutron source device disposed in a heavy water tank surrounding a core of a nuclear reactor, and particularly to a position where thermal neutrons flowing into the moderator container are strong. The thickness of the liquid hydrogen in the moderator container is about 2 cm, the thermal neutrons into which the liquid hydrogen flows are sufficiently transformed into cold neutrons, and the generated cold neutrons are not absorbed. A moderator that produces a large amount of cold neutrons used in the physical properties research of materials in life science, polymer science, environmental science, etc. by making the moderator container wall with a thin material such as aluminum alloy with low neutron absorption It is.

【0002】[0002]

【従来の技術】冷中性子源装置は、原子炉内の熱中性子
(エネルギー約25mev、波長約2Å)を液体水素
(温度約20K、圧力約1.2bar)を通して減速
し、エネルギー約5mev(波長約4Å)付近の冷中性
子を発生する装置である。
2. Description of the Related Art A cold neutron source device slows down thermal neutrons (energy about 25 mev, wavelength about 2 °) in a nuclear reactor through liquid hydrogen (temperature about 20 K, pressure about 1.2 bar), and energy about 5 mev (wavelength about 2 bar). 4Å) A device that generates cold neutrons in the vicinity.

【0003】原子炉JRR−3Mに設置されている冷中
性子源装置(以下「CNS」という。)の液体水素を貯
溜している減速材容器(以下「セル」という。)は、原
子炉の炉心を囲む重水タンク内に設置されている真空容
器内の下部に遮蔽プラグから二重管で垂直に吊り下げら
れており、セル内では内管から流入する液体水素と沸騰
して外管へ流出するガス水素が量的にバランスして、常
に一定量の液体水素を保有している。
[0003] A moderator container (hereinafter, referred to as "cell") for storing liquid hydrogen of a cold neutron source device (hereinafter, referred to as "CNS") installed in the reactor JRR-3M is a reactor core. Is suspended vertically from the shielding plug by a double pipe at the lower part of the vacuum vessel installed in the heavy water tank surrounding the cell, and in the cell, the liquid hydrogen flowing from the inner pipe boils and flows out to the outer pipe Gas hydrogen is quantitatively balanced and always holds a certain amount of liquid hydrogen.

【0004】真空容器の周囲からセルへ入射する熱中性
子は、液体水素と散乱し、そのエネルギーを失い冷中性
子となる。冷中性子はセルを見込む方向に設置されてい
る水平実験孔を通して原子炉外に取り出され、中性子ビ
ーム実験に使用される。
[0004] Thermal neutrons entering the cell from around the vacuum vessel are scattered with liquid hydrogen, lose their energy and become cold neutrons. Cold neutrons are taken out of the reactor through horizontal experiment holes installed in the direction of the cell, and used for neutron beam experiments.

【0005】取り出された冷中性子は重水タンクから直
接取り出される熱中性子に比べ波長が長く、エネルギー
が小さいため高分子の様な多数の原子の塊まりから構成
される物質の構造や原子の結合状態を熱中性子より詳細
に調べることが出来る。このため、冷中性子ビームは生
命科学、高分子科学、環境科学等の分野での物質の物性
研究に役立っている。
[0005] The extracted cold neutrons have longer wavelengths and smaller energies than thermal neutrons extracted directly from heavy water tanks, so that the structure and bonding state of a substance composed of a large number of atoms such as macromolecules. Can be investigated in more detail than thermal neutrons. For this reason, cold neutron beams are useful for studying the properties of materials in fields such as life science, polymer science, and environmental science.

【0006】しかし、従来の減速材容器においては、下
記の材質、寸法、位置、形状の物で構成され、それによ
り問題点も存在した。 1)中性子吸収の大きいステンレス鋼を使用していた。
However, the conventional moderator container is made of the following materials, dimensions, positions, and shapes, and thus has a problem. 1) Stainless steel with high neutron absorption was used.

【0007】2)液体水素層の厚さは10〜50mmで
あり、最適厚さの領域面積が少なかった。 3)熱中性子の流れ込みの大きい位置に設置されていな
かった。
2) The thickness of the liquid hydrogen layer is 10 to 50 mm, and the area of the optimum thickness is small. 3) It was not installed at a position where thermal neutrons flowed in.

【0008】4)垂直方向に入射する熱中性子は減速さ
れていなかった。
[0008] 4) Thermal neutrons incident vertically are not decelerated.

【0009】[0009]

【発明が解決しようとする課題】冷中性子ビームを使用
する実験申込数は年々増加してきており、最近ではその
数は受け入れ可能数の約2倍に達し、実験までの待ち時
間の増加が目立ってきており、実験の円滑な実施を阻害
している。この阻害を解消する一つの方法として、冷中
性子ビーム強度を大きくして実験に要する時間を短く
し、決まった時間内でより多くの実験を行えるようにす
ることが考えられている。
The number of applications for experiments using cold neutron beams has been increasing year by year, and recently the number has reached about twice the acceptable number, and the increase in the waiting time until the experiment has been conspicuous. And hinders the smooth implementation of the experiment. As one method of solving this inhibition, it is considered to increase the cold neutron beam intensity to shorten the time required for the experiment so that more experiments can be performed within a fixed time.

【0010】冷中性子ビーム強度を大きくするためには
原子炉の出力増加、真空容器の炉心側への移動等が考え
られるが、いづれも原子炉本体設備の大きな変更とな
り、多額の費用及び長期の工事期間を必要とする。そこ
で、定期的に交換するセルを高性能化し、セル自体の発
生する冷中性子量を増加することに着目した。この方法
では原子炉本体設備の変更はもちろんCNS設備を変更
せずに冷中性子ビーム強度を増加することが出来る。
In order to increase the cold neutron beam intensity, it is conceivable to increase the power of the reactor, move the vacuum vessel to the core side, or the like. Requires a construction period. Therefore, we focused on improving the performance of cells that are periodically replaced and increasing the amount of cold neutrons generated by the cells themselves. In this method, the cold neutron beam intensity can be increased without changing the CNS equipment as well as the reactor main equipment.

【0011】セルで発生する冷中性子量はセルの材料、
寸法、形状、設置位置、セル内水素のボイド率、セル内
の液体水素のオルソーパラ比等に大きく依存している。
The amount of cold neutrons generated in the cell depends on the material of the cell,
It largely depends on the size, shape, installation position, void fraction of hydrogen in the cell, ortho-para ratio of liquid hydrogen in the cell, and the like.

【0012】[0012]

【課題を解決するための手段】本発明では、中性子の輸
送計算による挙動解析に世界的に広く使用されている連
続エネルギーモンテカルロ計算コードの最新バージョン
MCNP4Bを用い、CNSの計算体系において、セル
の材料、寸法、形状、真空容器内位置、セル内水素のボ
イド率、液体水素のオルソーパラ比等をパラメターとし
て、セルの発生する冷中性子量をサーベイ計算した。
In the present invention, the latest version of the continuous energy Monte Carlo calculation code MCNP4B, which is widely used worldwide for behavior analysis by neutron transport calculation, is used to calculate the cell material in the CNS calculation system. The amount of cold neutrons generated by the cell was calculated using parameters such as the size, shape, position in a vacuum vessel, void fraction of hydrogen in the cell, and ortho-para ratio of liquid hydrogen.

【0013】その結果、CNSで使用しているステンレ
ス鋼製の水筒形セル(以下「既存水筒形セル」とい
う。)の約2倍の量の冷中性子を発生する新しい船底形
セルの材料、寸法、形状、設置位置、セル内水素のボイ
ド率、液体水素のオルソーパラ比を求めることが出来
た。
As a result, the material and dimensions of a new bottom cell that generates about twice as much cold neutrons as the stainless steel water cell (hereinafter referred to as “existing water cell”) used in the CNS. , Shape, installation position, void fraction of hydrogen in the cell, and ortho-para ratio of liquid hydrogen were obtained.

【0014】本発明のセル形状は新しい船底形セルであ
る。この船底形セルは約1〜2mm厚のアルミニウム合
金製で半球帽形の上部、八橋形の胴部、半球帽形の下部
から構成されている。外観は2重底のボートを舳先を上
にして立てた形であり、2重底間の厚さ約2.5cmの
スペースには液体水素が充填される。ボート内側は水平
実験孔側に向けられ、ボートの外側は、真空容器の水平
実験孔と反対の真空容器の内側壁に近い位置に設置され
る。外形寸法は高さ約250mm(上部に取り付けられ
る管は含まない)、幅約130mm、深さ約80mmで
ある。
The cell configuration of the present invention is a new ship bottom cell. The bottom cell is made of an aluminum alloy having a thickness of about 1 to 2 mm and includes a hemispherical cap-shaped upper part, a Yatsuhashi-shaped body, and a hemispherical cap-shaped lower part. The external appearance is a double-bottomed boat standing upright with the bow on top. The space between the double bottoms with a thickness of about 2.5 cm is filled with liquid hydrogen. The inside of the boat is directed toward the horizontal experiment hole, and the outside of the boat is installed at a position near the inner wall of the vacuum vessel opposite to the horizontal experiment hole of the vacuum vessel. The external dimensions are about 250 mm in height (excluding the tube mounted on the top), about 130 mm in width, and about 80 mm in depth.

【0015】船底形セルの特徴は以下の通りである。 1)中性子を吸収しにくい材料(アルミニウム合金)を
使用する。また、使用する量を少なくしている。
The characteristics of the bottom type cell are as follows. 1) Use a material (aluminum alloy) that hardly absorbs neutrons. Also, the amount used is reduced.

【0016】2)減速に最適な液体水素層の厚さ(約2
cm)を維持できる形としている。また、最適液体素層
の領域面積を大きくしている。 3)流入する熱中性子の最も多い炉心近くにセルを配置
している。
2) The optimal thickness of the liquid hydrogen layer for deceleration (about 2
cm) can be maintained. In addition, the area of the region of the optimal liquid element layer is increased. 3) A cell is placed near the core where the most thermal neutrons enter.

【0017】4)減速された冷中性子が吸収されないよ
うにセル壁数を2枚にしている。 5)上部及び下部に球帽を設け、垂直方向に入射する熱
中性子も減速できるようにしている。
4) The number of cell walls is set to two so that the slowed-down cold neutrons are not absorbed. 5) Ball caps are provided at the top and bottom so that thermal neutrons incident vertically can be decelerated.

【0018】6)セル内で発生する水素ガスの気泡が上
部へ滞り無く上昇するように、セル壁には仰角を持たせ
ている。 7)セルの上部ほど水素ガス気泡が多くなり、熱中性子
を減速する液体水素の厚さが減少するのを防ぐため内側
壁をロート状に広げている。
6) The cell wall has an elevation angle so that the hydrogen gas bubbles generated in the cell rise to the upper part without any delay. 7) The inner wall is funnel-shaped to prevent hydrogen gas bubbles from increasing in the upper part of the cell and reducing the thickness of liquid hydrogen that slows down thermal neutrons.

【0019】8)実験孔へ入射しない冷中性子を発生す
るセルの部分は、中性子を吸収して実験孔から取り出せ
る冷中性子の量を減少させるために、この部分を除去し
ている。
8) The portion of the cell that generates cold neutrons that do not enter the experimental hole is removed in order to absorb neutrons and reduce the amount of cold neutrons that can be extracted from the experimental hole.

【0020】サーベイ計算における水素のガス気泡率は
0〜30%、液体水素のオルソ比は65%である。
In the survey calculation, the gas bubble rate of hydrogen is 0 to 30%, and the ortho ratio of liquid hydrogen is 65%.

【0021】[0021]

【発明の実施の形態】図1に示されるように、冷中性子
源装置の減速材容器(セル)は、真空容器内に配置さ
れ、原子炉プール中に設けられた炉心を囲む重水タンク
に設置されている。このセルには、コンデンサから液体
水素が三重管の内管を経て供給され、セル中で蒸発した
水素が、三重管の中管を経てコンデンサに戻され、コン
デンサ中でヘリウム冷凍設備から供給されるヘリウムに
より冷却され、凝縮されてセル中に再循環される。そし
て、原子炉内の熱中性子がセル中の液体水素に導入され
て減速され、冷中性子に変換され、この冷中性子が水平
実験孔を経て原子炉外に取出され、中性子ビーム実験に
使用される。従来、このセルの形状として、図2に示さ
れるような水筒形のものが使用されていた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a moderator container (cell) of a cold neutron source device is placed in a vacuum vessel and installed in a heavy water tank surrounding a reactor core provided in a reactor pool. Have been. In this cell, liquid hydrogen is supplied from the condenser through the inner tube of the triple tube, and hydrogen evaporated in the cell is returned to the condenser through the middle tube of the triple tube, and supplied from the helium refrigeration facility in the condenser. Cooled by helium, condensed and recycled into the cell. Then, the thermal neutrons in the reactor are introduced into the liquid hydrogen in the cell and decelerated, converted into cold neutrons.These cold neutrons are taken out of the reactor through the horizontal test holes and used for neutron beam experiments. . Conventionally, a water bottle type as shown in FIG. 2 has been used as the shape of this cell.

【0022】本発明の減速材容器は、従来の水筒形のセ
ルに代えて、図3に示されるような形状の船底形セルを
使用するものである。この船底形セルは、半球帽形の上
部、八橋形の胴部及び半球帽形の下部から構成されてい
る二重底構造のものである。その二重底の壁間の距離
は、上部に向けて幅が広くなるように形成されているた
めに、船底形の二重底壁間に満たされている液体水素中
に生ずる気泡の密度が上部、中部及び下部間で均一に存
在させることができる。このセルを使用する際には、図
4に示されるように、真空容器内にこのセルの外壁の中
心を炉心から45°に向けて縦型にして設置される。
The moderator container of the present invention uses a ship bottom type cell having a shape as shown in FIG. 3 in place of the conventional water bottle type cell. This ship bottom type cell has a double bottom structure composed of a hemispherical cap-shaped upper part, an eight bridge-shaped torso, and a hemispherical cap-shaped lower part. Since the distance between the walls of the double bottom is formed so as to increase in width toward the upper part, the density of bubbles generated in liquid hydrogen filled between the double bottom walls of the ship bottom shape is reduced. It can exist uniformly between the upper, middle and lower parts. When this cell is used, as shown in FIG. 4, it is installed in a vacuum vessel with the center of the outer wall of the cell oriented vertically at 45 ° from the core.

【0023】本発明の減速材容器は、遮蔽プラグ内の二
重管下端に溶接され、遮蔽プラグは液体水素が供給され
る三重管の外覆管にフランジ等を介して結合されるの
で、その容器を交換する際にはフランジ及び三重管どう
しを外して新しい減速材容器付遮蔽プラグと交換するこ
とができる。
The moderator container of the present invention is welded to the lower end of the double pipe in the shield plug, and the shield plug is connected to the outer pipe of the triple pipe to which liquid hydrogen is supplied via a flange or the like. When the container is replaced, the flange and the triple tube can be removed and replaced with a new shielding plug with a moderator container.

【0024】[0024]

【実施例】既存の水筒形セルを使用した場合に得られる
中性子スペクトルにおける中性子エネルギ−(eV)に
対する中性子束の関係を図5に示す。又、本発明の船底
形セルを使用した場合に得られる中性子スペクトルにお
ける中性子エネルギ−(eV)に対する中性子束の関係
を図6に示す。図5と図6とを比較すると、中性子エネ
ルギー約1.0E−01〜6.0E−04(eV)の領域
における中性子束は、本発明の船底形セルの方が高いこ
とを示している。
FIG. 5 shows the relationship of neutron flux to neutron energy (eV) in a neutron spectrum obtained when an existing water cell is used. FIG. 6 shows the relationship between the neutron energy and the neutron flux (eV) in the neutron spectrum obtained when the bottom cell of the present invention is used. 5 and FIG. 6 show that the neutron flux in the region of neutron energy of about 1.0E-01 to 6.0E-04 (eV) is higher in the bottom type cell of the present invention.

【0025】又、本発明の船底形セル対既存の水筒形セ
ルの中性子スペクトル比(船底形セルの中性子スペクト
ル/水筒形セルの中性子スペクトルの比)を図7に示
す。この図に示された比から、本発明の船底形セルの中
性子スペクトルが、従来の水筒形セルのそれと比較し
て、冷中性子のエネルギー範囲内にある1.0E−01
〜6.0E−04(eV)の領域において約2倍であるこ
とを示している。
FIG. 7 shows the neutron spectrum ratio of the ship bottom cell to the existing water bottle cell of the present invention (the ratio of the neutron spectrum of the ship bottom cell to the neutron spectrum of the water bottle cell). From the ratios shown in this figure, the neutron spectrum of the bottom cell of the present invention is 1.0E-01 which is within the energy range of cold neutrons as compared with that of the conventional water bottle cell.
In the region of で あ 6.0E-04 (eV), it is about double.

【0026】更に又、横軸を中性子の波長とした場合
に、本発明の船底形セル対既存の水筒形セルの中性子ス
ペクトルの比(船底形セルの中性子スペクトル/水筒形
セルの中性子スペクトルの比)を図8に示す。図に示さ
れたように、本発明の船底形セルの中性子スペクトル
が、既存の水筒形セルのそれと比較して、冷中性子の波
長範囲内である4〜10Åの領域において約2倍である
ことを示している。
When the neutron wavelength is plotted on the horizontal axis, the ratio of the neutron spectrum of the bottom cell of the present invention to the neutron spectrum of the existing water cell (the neutron spectrum of the bottom cell / the neutron spectrum of the water cell) ) Is shown in FIG. As shown in the figure, the neutron spectrum of the bottom cell of the present invention is about twice that in the cold neutron wavelength range of 4 to 10 ° compared to that of the existing water cell. Is shown.

【0027】[0027]

【発明の効果】既存水筒形セルの約2倍の量の冷中性子
を取り出すことのできる船底形セルを使用することによ
り、本発明に特有な顕著な下記の効果を生ずる。
By using a bottom type cell capable of extracting about twice as much cold neutrons as an existing water cell type, the following remarkable effects unique to the present invention are obtained.

【0028】1)冷中性子ビーム実験をより数多く行う
ことが出来る。 2)高い精度を必要とする新し分野の冷中性子ビーム実
験が可能になる。
1) More cold neutron beam experiments can be performed. 2) New fields of cold neutron beam experiments that require high accuracy are possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷中性子源装置の系統説明図である、FIG. 1 is a system explanatory diagram of a cold neutron source device;

【図2】既存の水筒形セルの形状を示す図である。FIG. 2 is a view showing the shape of an existing water bottle type cell.

【図3】本発明の船底形セルの形状を示す図である。FIG. 3 is a view showing the shape of a bottom-shaped cell according to the present invention.

【図4】本発明の船底形セルが真空容器内に設置された
ことを示す図である。
FIG. 4 is a view showing that the ship bottom type cell of the present invention is installed in a vacuum vessel.

【図5】既存の水筒形セルの中性子スペクトルを示す図
である。
FIG. 5 is a diagram showing a neutron spectrum of an existing water bottle cell.

【図6】船底形セルの中性子スペクトルを示す図であ
る。
FIG. 6 is a diagram showing a neutron spectrum of a bottom cell.

【図7】横軸を中性子エネルギーとした、船底形セル対
既存の水筒形セルの中性子スペクトル比を示す図であ
る。
FIG. 7 is a diagram showing a neutron spectrum ratio of a bottom-bottom cell to an existing water-tank cell, where the horizontal axis represents neutron energy.

【図8】横軸を中性子の波長とした、船底形セル対既存
の水筒形セルの中性子スペクトル比を示す図である。
FIG. 8 is a diagram showing a neutron spectrum ratio of a bottom vessel cell to an existing water bottle cell with the neutron wavelength on the horizontal axis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 芳己 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 熊田 博明 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 内藤 俶孝 茨城県那珂郡東海村村松1268−15 株式会 社ナイス内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshimi Koyama 2 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki Pref. Inside the Tokai Research Laboratory, Japan Atomic Energy Research Institute (72) Inventor Hiroaki Kumada, Shirakata, Tokai-mura, Naka-gun, Ibaraki 2-4 Shirane Inside the Japan Atomic Energy Research Institute Tokai Research Institute (72) Inventor Tatsutaka Naito 1268-15 Muramatsu, Tokai-mura, Naka-gun, Ibaraki

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半球帽形の上部、八橋形の胴部及び半球
帽形の下部からなる形状部分を有し、その形状部分が二
重壁構造からなり、その二重壁間の空隙に液体水素が満
たされている船底形容器から構成される冷中性子源装置
の減速材容器。
The present invention has a shape portion comprising a hemispherical cap-shaped upper portion, an eight-bridge-shaped torso, and a hemispherical cap-shaped lower portion. A moderator container for a cold neutron source device composed of a bottom vessel filled with hydrogen.
【請求項2】 前記船底形容器の二重壁の間隙幅が半球
帽形の上部に向かって順次拡大していることを特徴とす
る請求項1記載の減速材容器。
2. The moderator container according to claim 1, wherein the gap width of the double wall of the ship bottom type container is gradually increased toward the upper part of the hemispherical cap.
【請求項3】 船底形容器が、その船底の外壁を真空容
器の内側壁に近づけて、その船底の内壁を水平実験孔側
に向けて立てた形に設置されることを特徴とする請求項
1又は請求項2記載の減速材容器。
3. The ship-bottom-shaped container is installed in such a form that the outer wall of the ship bottom is close to the inner wall of the vacuum container and the inner wall of the ship bottom is set up toward the horizontal experiment hole. The moderator container according to claim 1 or 2.
【請求項4】 減速材容器を交換する際には、減速材容
器を遮蔽プラグ内の二重管に結合し、その遮蔽プラグ上
端とコンデンサからの液体水素供給用の三重管の外覆筒
下端とのフランジを介して三重管どうしを結合すること
を特徴とする請求項1乃至請求項3のいずれかに記載の
減速材容器。
4. When exchanging the moderator container, the moderator container is connected to the double pipe in the shielding plug, and the upper end of the shielding plug and the lower end of the outer cylinder of the triple pipe for supplying liquid hydrogen from the condenser. The moderator container according to any one of claims 1 to 3, wherein the triple pipes are connected to each other via a flange with the third pipe.
JP2001003288A 2001-01-11 2001-01-11 Ship-bottom-shaped moderator container for cold neutron source device Pending JP2002207100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003288A JP2002207100A (en) 2001-01-11 2001-01-11 Ship-bottom-shaped moderator container for cold neutron source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003288A JP2002207100A (en) 2001-01-11 2001-01-11 Ship-bottom-shaped moderator container for cold neutron source device

Publications (1)

Publication Number Publication Date
JP2002207100A true JP2002207100A (en) 2002-07-26

Family

ID=18871647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003288A Pending JP2002207100A (en) 2001-01-11 2001-01-11 Ship-bottom-shaped moderator container for cold neutron source device

Country Status (1)

Country Link
JP (1) JP2002207100A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964214A (en) * 2010-09-06 2011-02-02 西安交通大学 Single-phase moderator natural circulating device for reactor cold neutron source
DE102011121740B3 (en) * 2011-12-21 2012-12-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Arrangement, useful for generating cold neutrons using superfluid hydrogen, comprises a tube spirally wound in a multiple turns and in at least one winding layer, through which superfluid liquid hydrogen is guided to flow
US20160358682A1 (en) * 2013-12-10 2016-12-08 Nuclear Cargo + Service Gmbh Container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161099A (en) * 1986-01-10 1987-07-17 株式会社日立製作所 Moderator vessel for cold neutron source device
JPH0422896A (en) * 1990-05-18 1992-01-27 Nkk Corp Neutron moderator vessel
JPH08233988A (en) * 1995-02-27 1996-09-13 Japan Atom Energy Res Inst Moderator vessel for cold neutron source device
JP2000082597A (en) * 1998-09-07 2000-03-21 Japan Atom Energy Res Inst Moderator vessel for neutron scattering facility
JP2002064000A (en) * 2000-08-14 2002-02-28 Japan Atom Energy Res Inst Liquid metal loop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161099A (en) * 1986-01-10 1987-07-17 株式会社日立製作所 Moderator vessel for cold neutron source device
JPH0422896A (en) * 1990-05-18 1992-01-27 Nkk Corp Neutron moderator vessel
JPH08233988A (en) * 1995-02-27 1996-09-13 Japan Atom Energy Res Inst Moderator vessel for cold neutron source device
JP2000082597A (en) * 1998-09-07 2000-03-21 Japan Atom Energy Res Inst Moderator vessel for neutron scattering facility
JP2002064000A (en) * 2000-08-14 2002-02-28 Japan Atom Energy Res Inst Liquid metal loop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964214A (en) * 2010-09-06 2011-02-02 西安交通大学 Single-phase moderator natural circulating device for reactor cold neutron source
DE102011121740B3 (en) * 2011-12-21 2012-12-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Arrangement, useful for generating cold neutrons using superfluid hydrogen, comprises a tube spirally wound in a multiple turns and in at least one winding layer, through which superfluid liquid hydrogen is guided to flow
US20160358682A1 (en) * 2013-12-10 2016-12-08 Nuclear Cargo + Service Gmbh Container

Similar Documents

Publication Publication Date Title
Golub et al. A ‘super-thermal’source for ultra-cold neutrons
Bowron et al. Hydrophobic hydration and the formation of a clathrate hydrate
CA1111577A (en) Transport and storage vessel for radioactive materials
US20130142296A1 (en) Apparatus and method for generating medical isotopes
CA2869584A1 (en) Passive containment air cooling for nuclear power plants
KR20140100974A (en) Emergency core cooling system (eccs) for nuclear reactor employing closed heat transfer pathways
CN109545400A (en) A kind of Passive containment cooling system
JP2002207100A (en) Ship-bottom-shaped moderator container for cold neutron source device
CN106251918B (en) A kind of long timeliness Passive containment cooling system
Monsler et al. Electric power from laser fusion: the HYLIFE concept
BR112020001382A2 (en) nuclear fusion reactor, thermal device, external combustion engine, power generation device and moving object
CN105741888B (en) A kind of non-kinetic containment cooling system for presurized water reactor
CN207676666U (en) A kind of band is connected to the passive double containment of lateral water tank up and down
CN209447555U (en) A kind of Passive containment cooling system
Deng et al. Numerical investigation of convection heat transfer characteristics in sloshing corium pools
WO2019190367A1 (en) A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident
JP2018105841A (en) Liquid ring target type impact nuclear fusion reactor
JP3381612B2 (en) Liquid target and neutron generation equipment
CN202917186U (en) Accident alleviating device and pressure vessel used in nuclear power station
Aleksandrova et al. Survivability of fuel layers with a different structure under conditions of the environmental effects: Physical concept and modeling results
RU163388U1 (en) WATER-WATER NUCLEAR REACTOR OF THE POOL TYPE FOR PRODUCTION OF ISOTOPES
CN205582508U (en) A non - kinetic energy containment cooling system for PWR
JP4417859B2 (en) Transport container for radioactive material
Maniscalco et al. A laser fusion power plant based on a fluid wall reactor concept
US20230290528A1 (en) Radiation shielding for compact and transportable nuclear power systems

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100811