JP2002206155A - Immersion member for hot-dip metal coating bath, and its manufacturing method - Google Patents

Immersion member for hot-dip metal coating bath, and its manufacturing method

Info

Publication number
JP2002206155A
JP2002206155A JP2001001637A JP2001001637A JP2002206155A JP 2002206155 A JP2002206155 A JP 2002206155A JP 2001001637 A JP2001001637 A JP 2001001637A JP 2001001637 A JP2001001637 A JP 2001001637A JP 2002206155 A JP2002206155 A JP 2002206155A
Authority
JP
Japan
Prior art keywords
phase
plating bath
metal plating
immersion member
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001001637A
Other languages
Japanese (ja)
Other versions
JP4499928B2 (en
Inventor
Shigeharu Matsubayashi
重治 松林
Tetsuo Nose
哲郎 野瀬
Shigeru Shibamoto
芝本  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001001637A priority Critical patent/JP4499928B2/en
Publication of JP2002206155A publication Critical patent/JP2002206155A/en
Application granted granted Critical
Publication of JP4499928B2 publication Critical patent/JP4499928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion member for hot-dip metal coating bath by which durability against thermal shock and repeated thermal fatigue can be improved and the necessity of pouring of molten metal on it can be obviated because of its capability of coping with abrupt temperature change and simultaneously the replacement and recycling of the worn-out and broken member can be facilitated. SOLUTION: The immersion member for hot-dip metal coating bath is provided to a pot roll device to be immersed in a hot-dip metal coating bath. The immersion member is fitted at least to a part or the whole of the sliding part of a pot roll shaft part sleeve member or bearing member of the pot roll facility. The immersion member can be obtained by applying forming to a sintered compact in which a β-Si3N4 phase, an Si2N2O phase, a Y2Si2O7 phase and an inevitable-impurity phase are formed. Its manufacturing method is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板等の連続溶融
金属めっき装置における溶融金属めっき浴用浸漬部材及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immersion member for a hot-dip metal plating bath in a continuous hot-dip metal plating apparatus for steel plates and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】金属めっき板を得る方法として、図1に
示すように、加熱炉で加熱焼鈍された金属板を溶融金属
槽に導き、金属板へ溶融金属をめっきし、ポットロール
及びガイドロールを介して、これを引上げ連続的に金属
めっき板を得る方法が汎用されている。より詳しくは、
連続溶融金属めっき装置による金属板へのめっき方法
は、金属板として鋼板を用いた場合、前処理として表面
を洗浄・活性化した鋼板を溶融金属浴中に挿入して、浴
中のポットロールで方向を変えた後、鋼板の幅方向の反
りを抑えるために2本のガイドロールの間を通過させ
る。この後、さらに鋼板を上方に引上げ、めっき浴の直
上で鋼板表面に付着した余分の溶融金属を高圧ガスのワ
イピング等により除去して、所定のめっき量に調整し
て、溶融金属めっき鋼板を製造するものである。
2. Description of the Related Art As a method for obtaining a metal plated plate, as shown in FIG. 1, a metal plate heated and annealed in a heating furnace is led to a molten metal tank, and the molten metal is plated on the metal plate, and a pot roll and a guide roll are formed. The method of pulling this and continuously obtaining a metal plating plate is widely used. More specifically,
The method of plating a metal plate by a continuous hot-dip metal plating apparatus is as follows: When a steel plate is used as the metal plate, insert the steel plate whose surface has been cleaned and activated as a pretreatment into a molten metal bath, and use a pot roll in the bath. After changing the direction, the steel sheet is passed between two guide rolls to suppress warpage in the width direction. Thereafter, the steel sheet is further pulled upward, and excess molten metal adhering to the surface of the steel sheet immediately above the plating bath is removed by wiping of a high-pressure gas or the like, and adjusted to a predetermined plating amount to produce a hot-dip coated steel sheet. Is what you do.

【0003】この溶融金属めっき浴に浸漬されるポット
ロールの軸受部材及び軸部スリーブ部材には、一般的
に、耐食性の良好な24Cr-12Ni系ステンレス鋼が用いら
れている。ステンレス鋼は、溶融亜鉛、溶融アルミニウ
ム等の溶融金属との反応性が低く、耐食性は良好である
が、耐摩耗性は充分とは言えず、特に、軸受部材は、軸
部スリーブ部材と極狭い範囲(上側の半分)で常時接触し
ているため、摩耗量は軸部スリーブ部材より大きく、寿
命は4〜8日程度と短かい。軸受部材の摩耗が進行する
と、鋼板にバタツキ等が発生し、良好なめっきが行えな
いため、該部材を溶融金属めっき浴中から引き上げ、軸
受部材を交換しなければならない。そのため、溶融金属
めっき浴中に浸漬されているポットロール等の他の部材
に異常が無くても、操業を停止し、溶融金属めっき浴中
に浸漬されている部品全体を引き上げる必要がある。こ
の際に、浴温から室温へ急激に冷却されるため、熱衝撃
破損等のダメージが他の部品に発生することもあり、部
品全体を一括交換する場合もあり、生産上の損失は極め
て大きい。このため、溶融金属めっき浴中で使用される
ロール寿命の延長を図る様々な提案がなされている。
[0003] Generally, 24Cr-12Ni stainless steel having good corrosion resistance is used for a bearing member and a shaft portion sleeve member of a pot roll immersed in the molten metal plating bath. Stainless steel has low reactivity with molten metals such as molten zinc and molten aluminum, and has good corrosion resistance, but its wear resistance is not sufficient. In particular, the bearing member is extremely narrow with the shaft sleeve member. Since it is always in contact within the range (upper half), the amount of wear is larger than that of the shaft sleeve member, and the service life is as short as about 4 to 8 days. When the wear of the bearing member progresses, the steel plate flaps and the like, and good plating cannot be performed. Therefore, the member must be pulled out of the molten metal plating bath and the bearing member must be replaced. Therefore, even if there is no abnormality in other members such as a pot roll immersed in the hot-dip metal plating bath, it is necessary to stop the operation and pull up the entire part immersed in the hot-dip metal plating bath. At this time, since the temperature is rapidly cooled from the bath temperature to room temperature, damage such as thermal shock damage may occur to other parts, and the whole part may be replaced at a time, resulting in a very large loss in production. . For this reason, various proposals have been made to extend the life of a roll used in a molten metal plating bath.

【0004】特開平3-253547号公報や特開平5-44002号
公報では、溶融亜鉛浴中での軸受部材及び軸部スリーブ
部材に、アルミナ又は窒化珪素・サイアロンを用い、回
転するポットロールを外部から回転駆動する提案がなさ
れている。しかしながら、該提案では、溶融金属として
亜鉛のみを取り上げ、摺動摩耗量及び摩耗係数のみを選
定基準としており、耐熱衝撃性や溶融金属との濡れ性等
については考慮されていない。さらに、アルミナ又は窒
化珪素・サイアロンセラミックスに関しても、組成、焼
成条件(密度、組織)、機械的特性、摺動面粗さ等の諸特
性についての最適条件の記載はない。
In JP-A-3-253547 and JP-A-5-44002, alumina or silicon nitride sialon is used for a bearing member and a shaft sleeve member in a molten zinc bath, and a rotating pot roll is externally mounted. Has been proposed for rotational drive. However, in this proposal, only zinc is used as the molten metal, and only the sliding wear amount and the wear coefficient are used as selection criteria, and heat shock resistance, wettability with the molten metal, and the like are not considered. Further, with respect to alumina or silicon nitride / sialon ceramics, there is no description of optimum conditions for various characteristics such as composition, firing conditions (density, structure), mechanical characteristics, and sliding surface roughness.

【0005】また、モノリシック炭化珪素やジルコニア
セラミックスは、窒化珪素やサイアロンより熱衝撃性に
劣ることが知られている。比較的耐熱衝撃性に優れる窒
化珪素とサイアロンでも軸受け部材のサイズ(φ200mm
以上)や肉厚(t20mm以上)において、溶融アルミニウ
ム浴温度(660〜680℃)からの急激な空冷に十分耐えうる
材質はほとんど見い出されていない。
Further, it is known that monolithic silicon carbide and zirconia ceramics are inferior to silicon nitride and sialon in thermal shock resistance. The size of the bearing member (φ200mm) even for silicon nitride and sialon, which have relatively excellent thermal shock resistance
With regard to the above (A) and wall thickness (t20 mm or more), almost no material has been found that can sufficiently withstand rapid air cooling from the molten aluminum bath temperature (660 to 680 ° C.).

【0006】上記従来技術で開示されている内容に基づ
き、一般的な焼結助剤であるイットリア、アルミナを用
いて、相対密度比99%まで緻密化した市販の窒化珪素
セラミックスで、溶融アルミニウム浴中における摺動及
び熱衝撃試験を行った結果、亜鉛浴中の摩耗量を大きく
上回り、溶融アルミニウム浴中からの空冷を3回行った
だけで破損した。
Based on the contents disclosed in the above prior art, a commercially available silicon nitride ceramic densified to a relative density ratio of 99% using yttria and alumina, which are common sintering aids, is used to form a molten aluminum bath. As a result of the sliding and thermal shock tests in the inside, the wear amount in the zinc bath was greatly exceeded, and it was broken only by performing air cooling from the molten aluminum bath three times.

【0007】[0007]

【発明が解決しようとする課題】すべり軸受に関する上
記技術は、軸受部材及び軸部スリーブ部材の互いに接触
する面を、ステンレス鋼に比べれば溶融金属浴中での耐
食性が良好で、かつ、高硬度のセラミックスでコーティ
ングしたり、または、サーメット、超硬合金やセラミッ
クス焼結体等とすることで、軸受の長寿命化を図ろうと
したものである。しかし、溶融金属めっき浴用部材にと
って、軸受部材と軸部スリーブ部材の最適な組合せは、
浴温度(アルミニウムの場合、660〜680℃)からの急激な
空冷に十分耐えうることがより必要で、材料の耐熱衝撃
性、高靭性、耐酸化性等の特性を考慮することがはるか
に重要な選定要素である。数百℃に加熱されたポットロ
ールの引上げ時の空冷に伴う熱衝撃や繰返し熱疲労に対
する耐久性を高めることが不可欠である。
The above-mentioned technique relating to the plain bearing is characterized in that the surfaces of the bearing member and the shaft sleeve member that come into contact with each other have a better corrosion resistance in a molten metal bath and a higher hardness than stainless steel. It is intended to extend the life of the bearing by coating with ceramics or by using a cermet, a cemented carbide, a ceramic sintered body, or the like. However, the optimal combination of the bearing member and the shaft sleeve member for the molten metal plating bath member is
It is more necessary to be able to withstand rapid air cooling from the bath temperature (660-680 ° C for aluminum), and it is far more important to consider the properties of the material such as thermal shock resistance, high toughness, and oxidation resistance. Is an important selection factor. It is essential to increase the durability against thermal shock and repeated thermal fatigue associated with air cooling when pulling a pot roll heated to several hundred degrees Celsius.

【0008】また、取り替え作業が迅速に行えれば、操
業上の機会損失を低減できるため、当該部材の交換を簡
便に行える構造とすることも望まれている。
[0008] Further, if the replacement work can be performed quickly, the opportunity loss in operation can be reduced. Therefore, it is also desired to provide a structure in which the members can be easily replaced.

【0009】そこで、本発明の目的は、熱衝撃、繰り返
し熱疲労、酸化による剥離現象などに対する耐久性を大
幅に向上させ、併せて、摩耗・破損時の交換作業を著し
く簡便にした溶融金属めっき浴用浸漬部材及びその製造
方法を提供することにある。
Accordingly, an object of the present invention is to provide a hot-dip metal plating which has greatly improved the durability against thermal shock, repeated thermal fatigue, peeling phenomena due to oxidation, and the like and, at the same time, has greatly simplified the replacement work at the time of wear and breakage. An object of the present invention is to provide a bath immersion member and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決して、溶融金属めっき浴中で長時間安定して繰り返し
使用でき、めっき浴からロールが出入りする際にも急激
な温度変化を抑えるための柄杓がけが不要となり、軸受
け部が消耗した後の交換作業時には簡便にセラミックス
材を取り替えられる溶融金属めっき浴用浸漬部材を提供
することを目的としてなされたものであり、(1) 溶融
金属めっき浴に浸漬されるポットロール装置に付設され
た浸漬部材であって、該浸漬部材が、該ポットロール設
備の少なくともポットロール軸部スリーブ部材と軸受部
材の摺動する部分の一部又は全部に嵌合してなる、実質
的にβ-Si34相、Si22O相及びY2Si27相か
ら構成される高耐熱衝撃性、高耐酸化性セラミックス部
材であることを特徴とする溶融金属めっき浴用浸漬部
材、(2) 前記浸漬部材が、複数の柱状部材からなる請
求項1記載の溶融金属めっき浴用浸漬部材、(3) 前記柱
状部材が、前記軸受部の軸方向に嵌合してなる請求項2
記載の溶融金属めっき浴用浸漬部材、(4) 前記柱状部
材の回転方向の摺動面が、平面又は前記ポットロール軸
部スリーブ部材の曲率半径以上の円弧状面である請求項
3記載の溶融金属めっき浴用浸漬部材、(5) 前記柱状部
材が、前記ポットロール軸部スリーブ部材に軸方向に嵌
合してなる請求項2記載の溶融金属めっき浴用浸漬部
材、(6) 前記柱状部材の摺動面が、前記軸受部材の曲
率半径以下の円弧状面である請求項5記載の溶融金属め
っき浴用浸漬部材、(7) 前記柱状部材の軸方向の摺動
面が、凹凸状及び/又は波形状で、凸部の摺動面高さが
軸方向で揃った形状である請求項3又は5に記載の溶融
金属めっき浴用浸漬部材、(8) 前記セラミックス部材
が、理論密度の95%以上の焼結体密度である請求項1
〜7に記載の溶融金属めっき浴用浸漬部材、(9) 前記
セラミックス部材の組成が0.1〜3.0質量%のSi
22O相、4.9〜12.0質量%のY2Si27相及
び残部がβ-Si34相及び不可避的不純物相からなる
請求項8記載の溶融金属めっき浴用浸漬部材、(10) 酸
化イットリウム(Y23)3〜10質量%、酸化珪素
(SiO2)1〜5質量%および残部が窒化珪素(Si3
4)からなる混合粉末を成形し、該成形体を窒素ガス
雰囲気中にて1700〜2000℃の温度範囲で焼結
し、以下の〜の少なくとも一つの手段により粒界相
としてSi22O相及びY2Si27相を生成させた焼
結体を成形加工することを特徴とする溶融金属めっき浴
用浸漬部材の製造方法、 焼結の降温過程における降温速度を5℃/分以下とす
る、 焼結の降温過程において、1350〜1650℃の温
度範囲において2時間以上保持する、 焼結後、窒素雰囲気中、1350〜1650℃の温度
範囲において2時間以上保持の再加熱処理を行う、 を要旨とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and can be used repeatedly for a long time in a molten metal plating bath stably, and a rapid temperature change occurs when a roll enters and exits from the plating bath. The purpose of the present invention is to provide a molten metal plating bath immersion member that can easily replace a ceramic material at the time of replacement work after the bearing portion is worn out, without the need for a ladle to suppress, and (1) molten metal An immersion member attached to a pot roll device immersed in a plating bath, wherein the immersion member is provided on at least a part or all of a sliding portion of a pot roll shaft sleeve member and a bearing member of the pot roll equipment. fitted comprising, substantially β-Si 3 N 4 phase, Si 2 N 2 O phase and Y 2 Si high thermal shock resistance comprised 2 O 7 phase, that is highly oxidation resistant ceramic member The immersion member for a molten metal plating bath to be characterized, (2) the immersion member for a molten metal plating bath according to claim 1, wherein the immersion member is composed of a plurality of columnar members, (3) the columnar member, the axial direction of the bearing portion. Claim 2 which is fitted to
The immersion member for a molten metal plating bath according to (4), wherein the sliding surface in the rotational direction of the columnar member is a flat surface or an arc-shaped surface having a radius of curvature equal to or larger than the curvature radius of the pot roll shaft sleeve member.
The immersion member for a molten metal plating bath according to claim 3, (5) the immersion member for a molten metal plating bath according to claim 2, wherein the columnar member is axially fitted to the pot roll shaft sleeve member. The immersion member for a molten metal plating bath according to claim 5, wherein the sliding surface of the columnar member is an arc-shaped surface having a radius of curvature of the bearing member or less, (7) the axial sliding surface of the columnar member has an uneven surface. The immersion member for a molten metal plating bath according to claim 3 or 5, wherein the sliding surface height of the projections is uniform in the axial direction, and / or the corrugated shape, and the ceramic member has a theoretical density. 2. A sintered body having a density of 95% or more.
The immersion member for a hot-dip metal plating bath according to any one of Items 1 to 7, (9) wherein the composition of the ceramic member is 0.1 to 3.0% by mass of Si.
2 N 2 O phase, 4.9 to 12.0 wt% of Y 2 Si 2 O 7 phase and molten metal plating bath immersion balance being β-Si 3 N 4 phase and inevitable impurities phase claim 8, wherein member, (10) of yttrium oxide (Y 2 O 3) 3 to 10 wt%, silicon oxide (SiO 2) 1 to 5 wt% and the balance silicon nitride (Si 3
N 4 ) is formed into a mixed powder, and the formed body is sintered in a nitrogen gas atmosphere at a temperature in the range of 1700 to 2000 ° C., and Si 2 N 2 is formed as a grain boundary phase by at least one of the following means: A method for producing a dipped member for a hot-dip metal plating bath, which comprises forming and processing a sintered body in which an O phase and a Y 2 Si 2 O 7 phase have been formed. The rate of temperature decrease in the temperature decreasing step of sintering is 5 ° C./min or less. In the temperature decreasing process of sintering, it is maintained at a temperature of 1350 to 1650 ° C. for 2 hours or more. After sintering, reheating treatment is performed in a nitrogen atmosphere at a temperature of 1350 to 1650 ° C. for 2 hours or more. ,, And.

【0011】[0011]

【発明の実施の形態】本発明者らは、特開平3-253547号
公報や特開平5-44402号公報で提案された溶融亜鉛浴中
ロール軸受けを見直し、鋭意検討を行った結果、亜鉛(m
p=430℃)に比べ高融点の溶融アルミニウム(mp=660℃)浴
中にも適用可能にすることを前提としている。ロールを
溶融アルミニウム浴から出し入れする場合に起きる急激
な温度変化に備え、柄杓で該溶融金属をロールに浴びせ
掛けながら、急加熱や急冷却が起こらないように配慮し
ていた。本発明によって、その必要がない軸受け材質と
構造を提唱することができた。同時に、従来技術では困
難であった摺動摩耗及び熱疲労部周囲のチッピングや割
れ等の欠損を抑えることができた。これらのチッピング
や割れ等の欠損は、熱衝撃及び機械的衝撃により生成、
進展するものであり、部材に空孔が多い場合、低強度、
低靭性、低熱伝導、低耐熱衝撃、摺動面が粗い場合、等
に顕著であることが見い出された。一方で、摺動摩耗
は、摺動部位が曲面ではなく、線接触もしく点接触であ
る場合等に顕著に抑制されることを確認した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors reviewed the roll bearing in a molten zinc bath proposed in JP-A-3-253547 and JP-A-5-44402 and made intensive studies. m
It is assumed that the method can be applied to a molten aluminum (mp = 660 ° C.) bath having a higher melting point than that of (p = 430 ° C.). In preparation for a sudden temperature change that occurs when a roll is taken in and out of a molten aluminum bath, care was taken to prevent rapid heating and cooling while pouring the molten metal onto the roll with a ladle. According to the present invention, it was possible to propose a bearing material and a structure that does not need to be used. At the same time, it was possible to suppress defects such as sliding wear and chipping and cracking around the thermally fatigued portion, which were difficult with the conventional technology. These defects such as chipping and cracks are generated by thermal shock and mechanical shock,
If the material has many holes, low strength,
It was found to be remarkable in cases such as low toughness, low thermal conductivity, low thermal shock, and a rough sliding surface. On the other hand, it was confirmed that the sliding wear was remarkably suppressed when the sliding portion was not a curved surface but had a line contact or a point contact.

【0012】本発明の溶融金属めっき浴用浸漬部材は、
溶融金属めっき浴に浸漬されるポットロール装置に付設
された浸漬部材であって、該浸漬部材が該ポットロール
設備の少なくともポットロール軸部スリーブ部材または
軸受部材の摺動する部分の一部又は全部に嵌合してな
る、実質的にβ-Si34相、Si22O相及びY2Si
27相から構成される高耐熱衝撃性、高耐酸化性セラミ
ックス部材である。また、浸漬部材の取扱い易さの観点
から、柱状部材を複数嵌合することが好ましい。埋め込
み形状について、ポットロールと直接摺動する面が平面
またはポットロール軸部スリーブ部材の曲率半径以上の
上に凸な円弧状面が好ましいが、特に限定するものでは
なく、軸に垂直方向の断面形状が四角形以上の多角形や
半円形、円形でも良い。回転方向に柱状部材を配置する
ことは好適ではない。圧縮応力負荷に限定するために、
回転方向と同じ方向に線接触ならびに点接触させる配置
を推奨する。また、ポットロール軸部スリーブ部材の曲
率半径以下の上に凸な円弧状面もしくは曲率半径以上の
凹な円弧状面では埋め込み材に圧縮応力以外が負荷さ
れ、圧縮に比べて破損の確率が高くなることが予想され
る。好ましくは、下辺が上辺に比べて長い等脚台形を断
面とするセラミックス製軸受け片を使用すれば、楔(く
さび)や接着剤等を使用せず、位置決めすることが容易
であり、圧縮応力のみを負荷させることが可能である。
さらに、図2の iii)〜iv)に示したように柱状の埋め込
み材の回転軸と平行な方向に凹凸または波形を順次付与
することにより、線接触から点接触にすることが可能で
あり、めっき浴の流動を促進することが可能になること
から回転が円滑なものになることが想定される。隣接す
る埋め込み材との凹凸または波形パターンを逆相にする
か同相にするかはめっき浴の流動性やポットロールの回
転数によって対応すべきである。このような形状にする
ことにより、軸受け部での溶融金属溜りができにくくな
り、補修作業等の作業効率を改善できる。
The immersion member for a molten metal plating bath of the present invention comprises:
Attached to a pot roll device immersed in a molten metal plating bath
Immersion member, wherein the immersion member is the pot roll.
At least the pot roll shaft sleeve member of the equipment or
Do not fit part or all of the sliding part of the bearing member.
Substantially, β-SiThreeNFourPhase, SiTwoNTwoO phase and YTwoSi
TwoO7High thermal shock resistance and high oxidation resistance ceramic composed of phases
Box member. Also, from the viewpoint of easy handling of immersion members
Therefore, it is preferable to fit a plurality of columnar members. Embedding
The surface that slides directly on the pot roll is flat
Or the radius of curvature of the pot roll shaft sleeve
An upwardly convex arcuate surface is preferred, but is not particularly limited.
And polygons whose cross section perpendicular to the axis is
It may be semicircular or circular. Placing columnar members in the rotation direction
That is not preferred. To limit to compressive stress loading,
Arrangement for line contact and point contact in the same direction as the rotation direction
Is recommended. In addition, the bending of the pot roll shaft sleeve member
An arc-shaped surface that is convex above the radius of curvature or larger than the radius of curvature
On concave arc-shaped surfaces, other than compressive stress is applied to the embedding material.
Is expected to increase the probability of breakage compared to compression.
You. Preferably, trapezoids with lower legs longer than upper
If a ceramic bearing piece is used as the surface,
Easy positioning without using rust or adhesive
Thus, only the compressive stress can be applied.
Furthermore, as shown in iii) to iv) in FIG.
Add irregularities or waveforms sequentially in the direction parallel to the rotation axis of the material
Can be changed from line contact to point contact.
Yes, it is possible to promote the flow of the plating bath
It is assumed that the rotation will be smooth. Adjacent
The phase of unevenness or wave pattern with embedded material
The phase or the same phase depends on the fluidity of the plating bath and the rotation of the pot roll.
Should be addressed by turns. Make this shape
This makes it difficult for molten metal to collect in the bearings.
Work efficiency such as repair work can be improved.

【0013】また、ポットロールの回転軸部材の摺動部
について、軸受け部材と同じセラミックス材または超硬
(=WC)粒子を結合金属(=銅、チタン、亜鉛、クロム
等のバインダー)中に分散させたものでも構わない。こ
の場合も、上記と同様に軸の曲率より軸受け側の曲率が
大きくなければ、軸受け部材に押し広げようとする引っ
張り応力が印加されることとなり、全く不適である。平
面もしくは円弧状であれば加工が容易であり、曲率が大
きい場合はポットロール側の回転軸の安定性が僅かなが
ら高まることが容易に予想される。また、回転軸に嵌合
する場合は軸受けの曲率より回転軸側の埋め込み材の曲
率が大きくなれば、埋め込み材の形状が極端に大きくな
るか、薄過ぎることになるため好適ではない。
The sliding portion of the rotary shaft member of the pot roll is made of the same ceramic material or super hard material as the bearing member.
(= WC) particles may be dispersed in a binding metal (= binder such as copper, titanium, zinc, chromium, etc.). In this case as well, if the curvature on the bearing side is not greater than the curvature of the shaft as described above, a tensile stress for pushing and spreading is applied to the bearing member, which is completely unsuitable. If it is flat or arc-shaped, machining is easy, and if the curvature is large, it is easily expected that the stability of the rotating shaft on the pot roll side is slightly increased. Further, when fitting to the rotating shaft, if the curvature of the embedding material on the rotating shaft side becomes larger than the curvature of the bearing, the shape of the embedding material becomes extremely large or too thin, which is not preferable.

【0014】そして、この部材を上記形状とすることに
より、該部材を嵌合される金属製部材との熱膨張係数差
によって生じる浴中および空冷時の伸縮差の絶対値を小
さくでき、セラミックス側に加わる圧縮または引張応力
を低減することに加え、該セラミックス部材を製造する
上での緻密化を容易にする効用をもたらす。嵌合する部
材の形状は肉厚が5mm以上20mm以下で、2本以上
の柱状部材を用いることが好ましい。5mm未満では、
セラミックス部材の圧縮強度も低く、使用後に摺動面に
生じた摩耗痕を研磨し、リサイクル利用するときにもト
ータル寿命が短くなり好適ではない。2本未満即ち1本
の柱状部材では回転時の安定性が全く得られず相応しく
ない。また、ロールアームをハンドリングする時の機械
的衝撃に対する強度付与の点からも5〜20mm厚みの
範囲が好ましい。幅については、ポットロール径の大小
や柱状部材の嵌合せ本数に依存するが10〜30mmが
好適である。さらに柱状部材の長さは該部材を嵌合され
る金属製部材のスリーブ長さによって一義的に求められ
る。一般的には、80〜200mm程度がよく用いられ
ている。
By forming this member into the above-described shape, the absolute value of the difference in expansion and contraction during bathing and air cooling caused by the difference in thermal expansion coefficient between the member and the metal member to which the member is fitted can be reduced. In addition to reducing the compressive or tensile stress applied to the ceramic member, the effect of facilitating densification in manufacturing the ceramic member is brought about. The shape of the fitting member is preferably 5 mm or more and 20 mm or less, and it is preferable to use two or more columnar members. If it is less than 5 mm,
The compressive strength of the ceramic member is low, and wear marks generated on the sliding surface after use are polished, and the total life is undesirably short when recycled. With less than two, i.e., one columnar member, stability during rotation cannot be obtained at all, which is not appropriate. Further, the thickness is preferably in the range of 5 to 20 mm from the viewpoint of imparting strength against mechanical impact when handling the roll arm. The width depends on the diameter of the pot roll and the number of columnar members fitted, but is preferably 10 to 30 mm. Further, the length of the columnar member is uniquely determined by the length of the sleeve of the metal member to which the member is fitted. Generally, about 80 to 200 mm is often used.

【0015】図3に示したように、セラミックス製軸受
けを保持するために用いる金属製リング部材との間隙に
噛み込まれた溶融金属との熱膨張係数差に起因する圧縮
または引張応力を軽減するため、セラミックス部材と金
属部材との嵌合部の間隙は1mm以下にすることが好ま
しい。
As shown in FIG. 3, a compression or tensile stress caused by a difference in thermal expansion coefficient between a metal ring member used for holding a ceramic bearing and a molten metal caught in a gap is reduced. Therefore, it is preferable that the gap between the fitting portions between the ceramic member and the metal member be 1 mm or less.

【0016】上記とは全く逆に、軸受け部が円形の一体
品で構成され、軸受けの曲率以下の上に凸な円弧状面を
有する柱状部材をポットロール軸部スリーブに嵌合する
ことも可能である。但し、軸受け部に埋め込む際に十分
な固定強度が得られるように配慮が必要で、軸受け部の
接触時の摩擦抵抗を軽減するためには摺動部は平面では
なく軸受け部の内径より曲率の小なる円弧状曲面が最も
好適である。さらに、半周以上に渡って嵌合することが
必要であり、2本以上ではなく、少なくとも3本以上、
より好ましくは5本以上で安定した回転が得られる。3
本以上でなければ、柱状部材以外の部分で摺動する機会
が増え、金属製の軸部スリーブ材が柱状部材より選択的
に摩耗し、寿命の延長は望めなくなる。
[0016] Contrary to the above, it is also possible to fit a columnar member whose bearing portion is formed of a circular integral product and has an arc-shaped surface that is upwardly convex below the curvature of the bearing to the pot roll shaft portion sleeve. It is. However, care must be taken to obtain sufficient fixing strength when embedding in the bearing part.In order to reduce the frictional resistance when the bearing part comes into contact, the sliding part is not a flat surface but has a curvature smaller than the inner diameter of the bearing part. A small arcuate curved surface is most preferred. Furthermore, it is necessary to fit over half a circumference or more, and not two or more, but at least three or more,
More preferably, a stable rotation is obtained with 5 or more. 3
If it is not more than this, the chances of sliding on portions other than the columnar member will increase, the metal shaft sleeve material will be selectively worn away from the columnar member, and it will not be possible to extend the life.

【0017】高耐熱衝撃、耐摩耗、耐酸化などの特性を
同時に向上させる方法としては、各種結晶相より構成さ
れる複合組成焼結体を作製し、その特性を評価した。従
来の低融点ガラス相を有する窒化珪素や炭化珪素焼結体
では、高温下における耐酸化性、耐熱衝撃性に劣る。特
性評価の結果、β-Si34相および粒界相としてSi2
2O相、Y2Si27相から構成される緻密なセラミッ
クス焼結体が優れた特性を有することを見出した。ま
た、埋め込み材の柱状部材形状(図2)が、単純な平面も
しくは円弧面さらには長手方向に凹凸もしくは波形の単
純研削で付与可能なことから、焼結体の仕上げ加工コス
トを高めることなく、溶融金属めっき浴用部材の長寿命
化を実現することができる。
As a method for simultaneously improving properties such as high thermal shock resistance, abrasion resistance, and oxidation resistance, a composite composition sintered body composed of various crystal phases was prepared, and the properties were evaluated. Conventional silicon nitride and silicon carbide sintered bodies having a low melting point glass phase are inferior in oxidation resistance and thermal shock resistance at high temperatures. As a result of the characteristic evaluation, the β-Si 3 N 4 phase and Si 2
It has been found that a dense ceramic sintered body composed of an N 2 O phase and a Y 2 Si 2 O 7 phase has excellent characteristics. In addition, since the columnar member shape of the embedding material (FIG. 2) can be provided by a simple flat surface or an arc surface, or even simple grinding of irregularities or waveforms in the longitudinal direction, without increasing the finishing cost of the sintered body, The service life of the member for the hot-dip metal plating bath can be extended.

【0018】本発明の溶融金属めっき浴用部材は、耐熱
衝撃性、耐酸化性に優れ、使用環境下で部材中に生じる
温度勾配に起因する静的な疲労特性、また浴中から引上
げられる時の急激な冷却に伴う熱応力破壊抵抗特性を高
めるなどの特徴を有する。粒界相としてSi22O相及
びY2Si27相を結晶化させるためには、焼結の降温
過程で5℃/分以下の降温速度で冷却するか、降温過程
で1350〜1650℃、2時間以上保持の熱処理する
か、あるいは焼結後窒素雰囲気中にて11350〜16
50℃、2時間以上保持の再加熱処理の少なくとも一つ
を行うようにする。2時間以上の保持について、より好
ましくは12時間以上24時間以下が好ましい。2時間
から12時間までにもSi22O相及びY2Si27
の結晶化が少しずつ促進されるが、焼成物の肉厚に応じ
てその処理時間を延長する必要があり、セラミックス部
材の肉厚として汎用的な100mm以下では24時間が
適当と考えられる。降温過程でSi22O相及びY2
27相を析出させる場合の降温速度は5℃/分以下が
好ましいが、より望ましくは0.1℃/分以上2℃/分
以下である。0.1℃/分未満では製造効率上長時間の
熱処理が必要となるため好ましくない。降温速度が5℃
/分より速い場合はSi22O相及びY2Si27相が十
分生成しない。また、降温過程の際の保持温度、およ
び、再加熱処理の際の保持温度が1350℃未満、16
50℃超の場合も同様にSi22O相及びY2Si27
相が十分に生成しない。また、各々の保持時間が2時間
未満の場合もSi22O相及びY2Si27相は生成し
ない。Si22O相とY2Si27相がそれぞれ質量比
で0.1、4.9%未満では焼結体中の気孔率が高くな
り好ましくなく、それぞれ3、12%を越えるとβ-S
34結晶粒が十分に絡み合わず強度や靭性が低下し好
ましくない。また、 Si22O相とY2Si27相に関
し、Si22O相の質量比が全体の0.1%未満では機
械的強度に寄与する効果が少なく、3%を越えるとβ-
Si34結晶粒が十分に絡み合わず強度や靭性が低下す
るため好ましくない。同様にY2Si27相の質量比が
全体の4.9%未満ではSi34のα→β転移時の液相
が少なく相転移を円滑に進行させず、12%を越えると
β-Si34結晶粒が十分に絡み合わず強度や靭性が低
下するため好ましくない。本発明により得られる窒化珪
素質焼結体は、 β-Si34の平均結晶粒径が1〜3μ
m程度、アスペクト比が1.5〜10程度と大きく、か
つβ-Si34の柱状結晶粒が絡み合った組織を呈し、
また粒界に高融点のSi22O相及びY2Si27相が
析出しているため、高温まで高い強度を維持したまま高
い靭性を有し、抗折強さが大気中1400℃にて500
MPa以上の高強度でかつ靭性値KICが5MPam1/2の高
靭性を有するため、高温環境下での特性を要求される浴
用部材に好適に用いることができる。ここで、 Si2
2O相は粉末X線回折法により同定されるSi22O結
晶と同じ型のX線回折パターンを持ち、 Si34とS
iO2とからなる化合物の中で高温酸化雰囲気中にて最
も安定な化合物である。同様に、Y2Si27結晶相は
粉末X線回折法により同定されるY2Si27結晶と同
じ型のX線回折パターンを持ち、 Y23とSiO2とか
らなる化合物の中で高温酸化雰囲気中にて最も安定な化
合物である。また、β-Si34結晶相は、JCPDS
カード33−1160で示されるβ-Si34結晶と同
じ型のX線回折パターンを持つ。さらに、前記β-Si3
4相、Si22O相、Y2Si27相及び不可避的不純
物相により構成される窒化珪素質焼結体の相対密度は理
論密度に対して95%以上であることが望ましい。相対
密度が95%未満では、熱的安定性、機械的安定性が不
充分になり易く、長期耐久性の向上効果が見られない恐
れが高くなる。
The hot-dip metal bath member of the present invention is excellent in thermal shock resistance and oxidation resistance, and has a static fatigue characteristic due to a temperature gradient generated in the member under a use environment. It has features such as enhancing the thermal stress fracture resistance characteristics associated with rapid cooling. In order to crystallize the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase as the grain boundary phase, the sintering is cooled at a cooling rate of 5 ° C./min or less during the cooling step, or 1350 to Heat treatment at 1650 ° C for 2 hours or more, or after sintering in a nitrogen atmosphere
At least one of reheating treatments held at 50 ° C. for 2 hours or more is performed. The holding time of 2 hours or more is more preferably 12 hours or more and 24 hours or less. The crystallization of the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase is promoted little by little from 2 hours to 12 hours, but it is necessary to extend the treatment time according to the thickness of the fired product. If the thickness of the ceramic member is 100 mm or less, which is general-purpose, 24 hours is considered appropriate. During the cooling process, the Si 2 N 2 O phase and the Y 2 S
The rate of temperature decrease when the i 2 O 7 phase is precipitated is preferably 5 ° C./min or less, more preferably 0.1 ° C./min or more and 2 ° C./min or less. If the temperature is less than 0.1 ° C./min, a long-time heat treatment is required in view of production efficiency, which is not preferable. Temperature drop rate is 5 ℃
When the speed is higher than / min, the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase are not sufficiently formed. In addition, the holding temperature during the temperature lowering process and the holding temperature during the reheating treatment are less than 1350 ° C.,
When the temperature is higher than 50 ° C., the Si 2 N 2 O phase and the Y 2 Si 2 O 7
Not enough phase formation. Also, when the respective holding times are less than 2 hours, neither the Si 2 N 2 O phase nor the Y 2 Si 2 O 7 phase is formed. If the mass ratio of the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase is less than 0.1 and 4.9%, respectively, the porosity in the sintered body becomes high, which is not preferable. β-S
The i 3 N 4 crystal grains are not sufficiently entangled with each other, so that strength and toughness are undesirably reduced. Further, regarding the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase, if the mass ratio of the Si 2 N 2 O phase is less than 0.1% of the whole, the effect of contributing to the mechanical strength is small and exceeds 3%. And β-
It is not preferable because the Si 3 N 4 crystal grains are not sufficiently entangled and the strength and toughness are reduced. Similarly, when the mass ratio of the Y 2 Si 2 O 7 phase is less than 4.9% of the whole, the liquid phase at the time of α → β transition of Si 3 N 4 is small and the phase transition does not proceed smoothly. β-Si 3 N 4 crystal grains are not sufficiently entangled with each other, so that strength and toughness are undesirably reduced. The silicon nitride based sintered body obtained according to the present invention has an average crystal grain size of β-Si 3 N 4 of 1 to 3 μm.
m, an aspect ratio as large as about 1.5 to 10 and a structure in which columnar crystal grains of β-Si 3 N 4 are intertwined,
In addition, since a high melting point Si 2 N 2 O phase and a Y 2 Si 2 O 7 phase are precipitated at the grain boundaries, they have high toughness while maintaining high strength up to high temperatures, and have a transverse rupture strength of 1400 in air. 500 at ℃
Since it has high strength of not less than MPa and high toughness with a toughness value K IC of 5 MPam 1/2 , it can be suitably used for bath members requiring properties in a high-temperature environment. Here, Si 2 N
The 2 O phase has the same type of X-ray diffraction pattern as the Si 2 N 2 O crystal identified by the powder X-ray diffraction method, and Si 3 N 4 and S
It is the most stable compound in a high-temperature oxidizing atmosphere among the compounds consisting of iO 2 . Similarly, the Y 2 Si 2 O 7 crystal phase has an X-ray diffraction pattern of the same type as the Y 2 Si 2 O 7 crystal identified by the powder X-ray diffraction method, and is a compound composed of Y 2 O 3 and SiO 2 . Is the most stable compound in a high-temperature oxidizing atmosphere. Also, the β-Si 3 N 4 crystal phase is JCPDS
It has the same type of X-ray diffraction pattern as the β-Si 3 N 4 crystal shown by the card 33-1160. Further, the β-Si 3
The relative density of the silicon nitride sintered body composed of the N 4 phase, the Si 2 N 2 O phase, the Y 2 Si 2 O 7 phase and the unavoidable impurity phase is desirably 95% or more of the theoretical density. . If the relative density is less than 95%, thermal stability and mechanical stability are likely to be insufficient, and there is a high possibility that the effect of improving long-term durability cannot be obtained.

【0019】本発明において使用される窒化珪素粉末
は、α型の結晶構造をもつSi34粉末が焼結性の点か
ら好適であるが、β型あるいは非晶質Si34粉末が含
まれていても構わない。焼結時に十分に高い密度とする
ためには、平均粒径1μm以下の微粒子であることが望
ましい。
As the silicon nitride powder used in the present invention, Si 3 N 4 powder having an α-type crystal structure is preferable from the viewpoint of sinterability, but β-type or amorphous Si 3 N 4 powder is preferable. It may be included. In order to obtain a sufficiently high density during sintering, fine particles having an average particle diameter of 1 μm or less are desirable.

【0020】窒化珪素は共有結合性の強い物質であり、
単独では焼結が困難であることが多いため、一般に緻密
化するために焼結助剤を添加する。本発明においては、
焼結助剤としては、酸化珪素、酸化イットリウムを用い
る。ここで、酸化イットリウムはSi34の焼結時にα
-Si34相からβ-Si34相への結晶相転移をその融
液中で促進させる機能を持ち、さらにβ-Si34の柱
状相の成長を助長することにより、高温強度および靭性
を向上させることが知られている。それぞれの添加量
は、酸化珪素が1〜5質量%、酸化イットリウムが3〜
10質量%が好ましい。酸化珪素が1質量%未満の場
合、焼結昇温時の液相生成温度が高くなり十分緻密な焼
結体が得られず、またSi22O相及びY2Si27
が形成されない。5質量%を越えるとY2Si27相が
形成されず比較的低融点のSiO2相が形成され高温で
の機械的強度が低下するため好ましくない。酸化イット
リウムの添加量が3質量%より少ないと融液形成が不十
分で相対密度が95%未満となり緻密化が進行しない。
酸化イットリウムの添加量が10質量%を超えるとY2
Si27相が形成されず比較的低融点のY2SiO5相が
形成され、得られた焼結体の高温での機械的強度および
耐酸化性が低下する。酸化珪素も酸化イットリウムも均
質かつ高密度の焼結体を得るためには平均粒径が2μm
以下の微粒子であることが好ましい。焼結助剤として用
いるこれら原料粉末は比較的安価であり、水中での混合
工程での変質せず安定なセラミックス粉末である。
Silicon nitride is a substance having a strong covalent bond,
Since sintering is often difficult by itself, a sintering aid is generally added for densification. In the present invention,
Silicon oxide and yttrium oxide are used as sintering aids. Here, yttrium oxide is α when sintering Si 3 N 4.
Has the function of promoting the crystal phase transition from the -Si 3 N 4 phase to the β-Si 3 N 4 phase in the melt, and by promoting the growth of the β-Si 3 N 4 columnar phase, It is known to improve strength and toughness. The addition amounts of silicon oxide are 1 to 5% by mass, and yttrium oxide is 3 to 5% by mass.
10% by mass is preferred. If the silicon oxide content is less than 1% by mass, the liquid phase formation temperature at the time of raising the sintering temperature becomes high, and a sufficiently dense sintered body cannot be obtained. In addition, the Si 2 N 2 O phase and the Y 2 Si 2 O 7 phase Not formed. If the content exceeds 5% by mass, the Y 2 Si 2 O 7 phase is not formed, and a SiO 2 phase having a relatively low melting point is formed, and the mechanical strength at high temperatures is undesirably reduced. If the addition amount of yttrium oxide is less than 3% by mass, the melt formation is insufficient and the relative density becomes less than 95%, and the densification does not proceed.
If the amount of yttrium oxide exceeds 10% by mass, Y 2
The Si 2 O 7 phase is not formed, and the Y 2 SiO 5 phase having a relatively low melting point is formed, and the mechanical strength and oxidation resistance of the obtained sintered body at high temperatures are reduced. In order to obtain a homogeneous and high-density sintered body of both silicon oxide and yttrium oxide, the average particle size is 2 μm.
The following fine particles are preferred. These raw material powders used as sintering aids are relatively inexpensive, and are stable ceramic powders that do not deteriorate in the mixing step in water.

【0021】焼結方法としては、窒素ガスを含む雰囲気
にて、例えば無加圧焼結法、ガス圧焼結法、熱間静水圧
プレス焼結法、ホットプレス焼結法、等の各種焼結法を
用いることができ、さらにこれらの焼結法を複数組合せ
ても良い。窒素ガスを含む雰囲気で焼結するのは、焼結
中でのSi34の分解を抑制するためである。Si34
は窒素ガス1気圧下では約1850℃以上で分解が生じ
るため、1850℃以上にて焼結を行う場合は、窒素ガ
ス圧を焼結温度におけるSi34の臨界分解圧力以上に
設定するようにする。また、大型厚肉形状のバタフライ
弁を製造する場合には、十分な緻密化を図るために、無
加圧焼結後に、さらに窒素ガス雰囲気中での熱間静水圧
プレス焼結を行うことがより好ましい。無加圧及び熱間
静水圧プレス焼結条件としては、焼結温度が1700〜
2000℃であることが望ましい。1700℃未満で
は、緻密な焼結体が得られず、固溶体粒子近傍に残留応
力を十分に発生させることが困難となり、高靭性の焼結
体とすることができない。一方、2000℃を越える高
温では、β-Si34結晶粒が粗大化し強度低下を起こ
し、高硬度と耐熱衝撃性が得られない。また、保持時間
が8時間未満では成形体の肉厚にも依存するが緻密化が
十分に進行しない。
As the sintering method, various sintering methods such as a pressureless sintering method, a gas pressure sintering method, a hot isostatic press sintering method, and a hot press sintering method in an atmosphere containing a nitrogen gas. A sintering method can be used, and a plurality of these sintering methods may be combined. The sintering in an atmosphere containing nitrogen gas is for suppressing the decomposition of Si 3 N 4 during sintering. Si 3 N 4
Decomposition occurs at about 1850 ° C. or more under 1 atm of nitrogen gas, so when sintering at 1850 ° C. or more, the nitrogen gas pressure should be set to be equal to or higher than the critical decomposition pressure of Si 3 N 4 at the sintering temperature To When manufacturing a large-sized thick butterfly valve, it is necessary to perform hot isostatic press sintering in a nitrogen gas atmosphere after pressureless sintering in order to achieve sufficient densification. More preferred. The conditions for no pressure and hot isostatic pressing are as follows:
It is desirable that the temperature be 2000 ° C. When the temperature is lower than 1700 ° C., a dense sintered body cannot be obtained, and it becomes difficult to sufficiently generate residual stress in the vicinity of solid solution particles, and a sintered body having high toughness cannot be obtained. On the other hand, at a high temperature exceeding 2000 ° C., β-Si 3 N 4 crystal grains are coarsened and the strength is reduced, so that high hardness and thermal shock resistance cannot be obtained. If the holding time is less than 8 hours, the densification does not sufficiently proceed depending on the thickness of the molded body.

【0022】[0022]

【実施例】次に、本発明の実施例を比較例と共に説明す
る。
Next, examples of the present invention will be described together with comparative examples.

【0023】(実施例1〜3)窒化珪素(Si34)粉
末(α化率97%以上、純度99.7%、平均粒径0.
3μm)に酸化イットリウム(Y23)粉末( 平均粒
径1.5μm)、酸化珪素(SiO2)粉末(平均粒径
0.3μm)を表1に示す所定量(質量%)添加し、分
散媒として精製水またはアセトンを用い、炭化珪素セラ
ミックスを内貼りしたボールミルで24時間混練した。
精製水またはアセトンの添加量は、セラミックス全粉末
原料100gに対し120gとした。
(Examples 1 to 3) Silicon nitride (Si 3 N 4 ) powder (alpha conversion rate: 97% or more, purity: 99.7%, average particle size: 0.3%)
3 μm), yttrium oxide (Y 2 O 3 ) powder (average particle size 1.5 μm) and silicon oxide (SiO 2 ) powder (average particle size 0.3 μm) are added in predetermined amounts (% by mass) shown in Table 1, Using purified water or acetone as a dispersion medium, the mixture was kneaded for 24 hours in a ball mill with silicon carbide ceramics applied thereto.
The amount of purified water or acetone was 120 g per 100 g of the raw material powder of the entire ceramic.

【0024】次いで、得られた混合粉末を成形後焼結し
た。成形条件としては冷間静水圧による加圧150MPa
とし、100mm角、高さ22mmの板状成形体を得
た。焼結条件としては、窒素ガス流通中にて、表1中に
示す各温度で4〜16時間保持の無加圧焼結を行った。
Next, the obtained mixed powder was molded and sintered. Molding conditions are 150MPa pressurization with cold hydrostatic pressure.
To obtain a plate-shaped molded body having a size of 100 mm square and a height of 22 mm. As the sintering conditions, pressureless sintering was performed at a temperature shown in Table 1 for 4 to 16 hours while flowing nitrogen gas.

【0025】得られた焼結体から、15mm×20mm
×長さ80mmの固定側軸受けテスト材を研削加工し、
溶融アルミニウム浴中軸受け試験(図4)に供した。
From the obtained sintered body, 15 mm × 20 mm
× Grind a fixed side bearing test material of length 80mm,
It was subjected to a bearing test in a molten aluminum bath (FIG. 4).

【0026】板状焼結体から該15mm×20mm×長
さ80mmテスト材を切り出す際の残材から機械的性質
評価用の試験片を切り出し、その特性を評価した。硬さ
は、押込荷重10kgにてビッカース硬さとして測定し
た。靭性についてはJISR1607のSEPB法によ
り室温にて破壊靭性値KICを測定した。また、耐熱衝撃
性としては、曲げ試験片を大気中にて所定の温度に加熱
後、水中急冷し、抗折強さの劣化が始まる急冷温度差Δ
Tで評価した。焼結体密度は、アルキメデス法により相
対密度として測定した。濡れ性は、通常の溶融液滴と水
平板状態の接触角で測定した。
A test piece for evaluating mechanical properties was cut out from the remaining material when cutting out the test material of 15 mm × 20 mm × 80 mm length from the plate-shaped sintered body, and the characteristics were evaluated. Hardness was measured as Vickers hardness at an indentation load of 10 kg. Regarding the toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JISR1607. The thermal shock resistance was determined by heating the bending test piece to a predetermined temperature in the atmosphere, then quenching in water, and the quenching temperature difference Δ at which the bending strength began to deteriorate.
It was evaluated by T. The sintered body density was measured as a relative density by the Archimedes method. The wettability was measured by a contact angle between a normal molten droplet and a horizontal plate.

【0027】得られた各焼結体のアルキメデス密度、機
械的性質、並びに図4に示したアルミニウム浴中軸受け
評価結果を各配合系ごとに表2に示す。アルミニウム浴
中試験は、以下の条件にて行った。
Table 2 shows the Archimedes density and mechanical properties of each of the obtained sintered bodies, and the results of evaluation of the bearings in the aluminum bath shown in FIG. 4 for each compounding system. The test in the aluminum bath was performed under the following conditions.

【0028】(1)回転側軸受けテスト材:超硬リング
材φ90mm×高さ60mm (2)固定側軸受けテスト材:セラミックス試験材15
mm×20mm×長さ80mmを3本 (3)溶融アルミニウム温度:680℃ (4)押し当て力:30〜50N (5)すべり速度:2〜3m/秒 (6)摺り合わせ時間:浸漬後、10時間 (7)テスト前の仕上げ面粗さ:Rmax.=0.2μm
(△△△△程度、JIS-B0031参照) (8)繰り返し熱疲労試験:1時間浴中に漬けた後、浴
から引き上げ30分間空冷を繰り返す。
(1) Rotating-side bearing test material: carbide ring material φ90 mm × height 60 mm (2) Fixed-side bearing test material: ceramic test material 15
3 mm × 20 mm × 80 mm length (3) Molten aluminum temperature: 680 ° C. (4) Pressing force: 30-50 N (5) Sliding speed: 2-3 m / sec (6) Rubbing time: After immersion 10 hours (7) Finished surface roughness before test: Rmax. = 0.2 μm
(8) Refer to JIS-B0031. (8) Repeated thermal fatigue test: After immersion in a bath for 1 hour, pull up from the bath and repeat air cooling for 30 minutes.

【0029】上記(1)〜(7)の条件にて摩耗量を求
める方法として、回転側、固定側にそれぞれ発生した摩
耗痕跡の深さhr、hsを表面粗さ計にて測定した。ま
た、摩耗痕跡周囲の損傷有無、チッピング深さ、および
割れ深さを蛍光探傷法および断面研磨面の光学顕微鏡観
察により評価した。再利用に当たっての軸受け摺り合わ
せ面の必要研削量は、摩耗痕跡周囲に割れ・チッピング
の損傷が観察されない場合は摩耗痕跡深さhの1.2
倍、チッピングが生じている場合はチッピング深さの
1.2倍、そして割れが生じている場合は割れ深さの
1.2倍として表2中に示した。
As a method of determining the amount of wear under the above conditions (1) to (7), the depths hr and hs of wear marks generated on the rotating side and the fixed side were measured by a surface roughness meter. In addition, the presence or absence of damage around the wear mark, the chipping depth, and the crack depth were evaluated by a fluorescent flaw detection method and an optical microscope observation of the polished surface of the cross section. The required grinding amount of the bearing rubbing surface upon reuse is 1.2 times the wear mark depth h when no cracking or chipping damage is observed around the wear mark.
The results are shown in Table 2 as double the chipping depth, 1.2 times the chipping depth when chipping occurred, and 1.2 times the crack depth when cracking occurred.

【0030】(比較例4〜9)比較例4〜5は実施例1
〜3と同一原料を用い同じく精製水またはアセトンで調
製したが、それぞれ降温時の焼結条件が不適で相対密度
が95%を下回った場合(比較例4)、焼結助剤(Y2
3)の添加割合が不適で相対密度が95%を下回った
場合(比較例5)の各比較例である。
(Comparative Examples 4 to 9) Comparative Examples 4 and 5 correspond to Example 1.
The same raw materials as in Nos. 1 to 3 were also prepared using purified water or acetone, but when the sintering conditions at the time of cooling were inappropriate and the relative density was lower than 95% (Comparative Example 4), the sintering aid (Y 2
These are Comparative Examples in which the addition ratio of O 3 ) is inappropriate and the relative density is less than 95% (Comparative Example 5).

【0031】比較例6〜9は、一般市販のサイアロンを
用いた場合(比較例6)、市販の安価な窒化珪素セラミ
ックスを用いた場合(比較例7)、市販の比較的高価な
窒化珪素セラミックスを用いた場合(比較例8)、公知
の炭化珪素を用いた場合(比較例9)の各比較例であ
る。これら比較例の材料も実施例1〜3と同様の条件で
溶融アルミニウム浴中試験を行い、その結果を表2に示
した。
In Comparative Examples 6 to 9, when a commercially available sialon is used (Comparative Example 6), when a commercially available inexpensive silicon nitride ceramic is used (Comparative Example 7), a commercially available relatively expensive silicon nitride ceramic is used. These are Comparative Examples in which is used (Comparative Example 8) and in the case where a known silicon carbide is used (Comparative Example 9). The materials of these comparative examples were tested in a molten aluminum bath under the same conditions as in Examples 1 to 3, and the results are shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示すように、本発明の実施例による
ものは、耐熱衝撃性(=ΔT/℃)が比較例のほぼ2倍と大
きい上に、摩耗痕跡深さが固定側・回転側の何れも25
μm以下と非常に少なく、かつ摩耗痕跡周囲には割れ・
チッピングの欠損が何れの場合も認められず、耐摩耗
性、耐欠損性共に優れる。これに対し、比較例の各軸受
けは本発明の実施例に比べて、摩耗痕跡深さ50μm以
上と大きく、かつ割れ・チッピングのいずれかが発生し
ており、耐摩耗性、耐欠損性ともに未達成であることが
確認された。必要研削量も実施例の30μm以下に比
べ、比較例では60μm以上と著しく大きいことが判明
した。
As shown in Table 2, according to the embodiment of the present invention, the thermal shock resistance (= ΔT / ° C.) is almost twice as large as that of the comparative example, and the wear trace depth is fixed / rotated. Both are 25
μm or less and cracks around wear marks
No chipping loss was observed in any case, and both abrasion resistance and chipping resistance were excellent. On the other hand, each bearing of the comparative example is larger than the example of the present invention, having a wear mark depth of 50 μm or more, and has undergone either cracking or chipping. It was confirmed that this was achieved. It was also found that the required grinding amount was remarkably large at 60 μm or more in the comparative example, compared to 30 μm or less in the example.

【0035】表3に、各材料ごとの耐酸化試験(大気
中、1200℃、保持100h)を行った際の重量増加ならびに
アルミニウム浴中軸受け評価の試験条件(8)に基づい
た耐久試験結果を示す。
Table 3 shows the results of the durability test based on the test conditions (8) for the weight increase and the evaluation of the bearing in the aluminum bath when an oxidation resistance test (at 1200 ° C. in air, holding 100 hours) was performed for each material. Show.

【0036】[0036]

【表3】 [Table 3]

【0037】軸受けに繰り返し熱疲労を負荷した場合
も、本発明によるものは表2の耐熱衝撃性、ならびに表
3の耐酸化性が効果を発現し、繰返し360回使用可能
であるのに対し、比較例の各材料では摩耗が進んでいな
い場合でも熱衝撃による大きな亀裂が発生し5〜25回
と1桁以上少ないという結果が得られた。加えて熱衝撃
で破損が起こる前に、摺動摩耗によって高さの不均衡が
生じた場合、摺動部の再研磨を行い高さを調節すること
も必要になり、その際のセラミックス加工費を加えたリ
サイクル性を考慮した総寿命による費用対効果まで考慮
した結果でも、本発明の焼結体による軸受け材は比較例
の軸受け材より極めて有利であることが確認された。高
温のアルミニウム浴中での評価結果から、より低温の亜
鉛浴中の耐熱衝撃性も満たすことが容易に想定されるた
め、本発明は、より広い溶融温度範囲の溶融金属めっき
浴用部材への適用が可能と判断できる。
Even when the bearing is repeatedly subjected to thermal fatigue, the bearing according to the present invention exhibits the effects of the thermal shock resistance shown in Table 2 and the oxidation resistance shown in Table 3, and can be used 360 times repeatedly. In each of the materials of the comparative example, even when the abrasion did not progress, a large crack was generated by the thermal shock, and the result was obtained that the number was 5 to 25 times, which is one digit or less. In addition, if the height imbalance occurs due to sliding wear before damage occurs due to thermal shock, it is necessary to re-polish the sliding part and adjust the height, and ceramic processing cost at that time It was also confirmed that the bearing material made of the sintered body of the present invention was significantly more advantageous than the bearing material of the comparative example, even in consideration of the cost-effectiveness due to the total life in consideration of the recyclability in which was added. From the evaluation results in a high-temperature aluminum bath, it is easily assumed that the thermal shock resistance in a lower-temperature zinc bath is also satisfied. Therefore, the present invention is applied to a member for a hot-dip metal plating bath in a wider melting temperature range. Can be determined to be possible.

【0038】[0038]

【発明の効果】本発明により、連続溶融金属めっき装置
における軸受部材の寿命が大幅に延長できる。このこと
により、長時間安定して金属めっき鋼板の生産が可能と
なり、その工業的有用性は非常に大きい。
According to the present invention, the life of the bearing member in the continuous hot-dip metal plating apparatus can be greatly extended. This makes it possible to stably produce a metal-plated steel sheet for a long time, and its industrial utility is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶融めっき浴の装置断面模式図FIG. 1 is a schematic cross-sectional view of a hot-dip plating bath.

【図2】 埋め込み部材の長手方向断面図FIG. 2 is a longitudinal sectional view of an embedding member.

【図3】 軸受け部の組み付け構造図FIG. 3 is a structural view of an assembly of a bearing unit.

【図4】 本発明の実施例による軸受け損耗評価時の装
置断面図
FIG. 4 is a cross-sectional view of the apparatus when evaluating bearing wear according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:めっき処理ラインで通板中の鋼板 2:ポットロール 3:ガイドロール 4:加熱機能付き浴槽 5:回転側軸受けテスト材:φ90mm×高さ50mm 6:固定側軸受けテスト材:15mm×20mm×長さ
80mm 7:溶融アルミニウム浴(680℃) 8:保護管付き熱電対
1: Steel plate being passed through a plating line 2: Pot roll 3: Guide roll 4: Bathtub with heating function 5: Rotating-side bearing test material: φ90 mm x height 50 mm 6: Fixed-side bearing test material: 15 mm x 20 mm x Length 80mm 7: Molten aluminum bath (680 ° C) 8: Thermocouple with protection tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝本 茂 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4G001 BA04 BA09 BA32 BB04 BB09 BB32 BC51 BC52 BC54 BC71 BD04 BD36 BE01 BE03 4K027 AA02 AA22 AD17 AD20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeru Shibamoto 1-1 Futaba-cho, Tobata-ku, Kitakyushu-shi, Fukuoka F-term (reference) in Nippon Steel Corporation Yawata Works 4G001 BA04 BA09 BA32 BB04 BB09 BB32 BC51 BC52 BC54 BC71 BD04 BD36 BE01 BE03 4K027 AA02 AA22 AD17 AD20

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属めっき浴に浸漬されるポットロ
ール装置に付設された浸漬部材であって、該浸漬部材
が、該ポットロール設備の少なくともポットロール軸部
スリーブ部材と軸受部材の摺動する部分の一部又は全部
に嵌合してなる、実質的にβ−Si34相、Si22
相及びY2Si27相から構成される高耐熱衝撃性、高
耐酸化性セラミックス部材であることを特徴とする溶融
金属めっき浴用浸漬部材。
An immersion member attached to a pot roll device immersed in a molten metal plating bath, wherein the immersion member slides at least a pot roll shaft sleeve member and a bearing member of the pot roll equipment. Substantially β-Si 3 N 4 phase, Si 2 N 2 O, fitted to part or all of the part
A dipped member for a hot-dip metal plating bath, characterized in that the member is a ceramic member having high thermal shock resistance and high oxidation resistance composed of a phase and a Y 2 Si 2 O 7 phase.
【請求項2】 前記浸漬部材が、複数の柱状部材からな
る請求項1記載の溶融金属めっき浴用浸漬部材。
2. The immersion member for a molten metal plating bath according to claim 1, wherein the immersion member comprises a plurality of columnar members.
【請求項3】 前記柱状部材が、前記軸受部の軸方向に
嵌合してなる請求項2記載の溶融金属めっき浴用浸漬部
材。
3. The immersion member for a molten metal plating bath according to claim 2, wherein the columnar member is fitted in an axial direction of the bearing portion.
【請求項4】 前記柱状部材の回転方向の摺動面が、平
面又は前記ポットロール軸部スリーブ部材の曲率半径以
上の円弧状面である請求項3記載の溶融金属めっき浴用
浸漬部材。
4. The immersion member for a molten metal plating bath according to claim 3, wherein the sliding surface of the columnar member in the rotation direction is a flat surface or an arc-shaped surface having a radius of curvature equal to or greater than the radius of curvature of the pot roll shaft sleeve member.
【請求項5】 前記柱状部材が、前記ポットロール軸部
スリーブ部材に軸方向に嵌合してなる請求項2記載の溶
融金属めっき浴用浸漬部材。
5. An immersion member for a molten metal plating bath according to claim 2, wherein said columnar member is fitted in said pot roll shaft portion sleeve member in an axial direction.
【請求項6】 前記柱状部材の摺動面が、前記軸受部材
の曲率半径以下の円弧状面である請求項5記載の溶融金
属めっき浴用浸漬部材。
6. The immersion member for a molten metal plating bath according to claim 5, wherein the sliding surface of the columnar member is an arc-shaped surface having a radius of curvature equal to or less than a radius of curvature of the bearing member.
【請求項7】 前記柱状部材の軸方向の摺動面が、凹凸
状及び/又は波形状で、凸部の摺動面高さが軸方向で揃
った形状である請求項3又は5に記載の溶融金属めっき
浴用浸漬部材。
7. The columnar member according to claim 3, wherein a sliding surface in the axial direction of the columnar member is uneven and / or corrugated, and a height of a sliding surface of the convex portion is uniform in the axial direction. Immersion member for hot-dip metal plating bath.
【請求項8】 前記セラミックス部材が、理論密度の9
5%以上の焼結体密度である請求項1〜7に記載の溶融
金属めっき浴用浸漬部材。
8. The ceramic member having a theoretical density of 9%.
The immersion member for a hot-dip metal plating bath according to any one of claims 1 to 7, having a sintered body density of 5% or more.
【請求項9】 前記セラミックス部材の組成が0.1〜
3.0質量%のSi 22O相、4.9〜12.0質量%
のY2Si27相及び残部がβ−Si34相及び不可避
的不純物相からなる請求項8記載の溶融金属めっき浴用
浸漬部材。
9. The composition of the ceramic member is 0.1 to 0.1.
3.0% by mass of Si TwoNTwoO phase, 4.9 to 12.0 mass%
Of YTwoSiTwoO7Phase and the rest are β-SiThreeNFourPhase and inevitable
9. A hot-dip metal plating bath according to claim 8, which comprises an impurity phase.
Immersion member.
【請求項10】 酸化イットリウム(Y23)3〜10
質量%、酸化珪素(SiO2)1〜5質量%および残部
が窒化珪素(Si34)からなる混合粉末を成形し、該
成形体を窒素ガス雰囲気中にて1700〜2000℃の
温度範囲で焼結し、以下の〜の少なくとも一つの手
段により粒界相としてSi22O相及びY2Si27
を生成させた焼結体を成形加工することを特徴とする溶
融金属めっき浴用浸漬部材の製造方法。 焼結の降温過程における降温速度を5℃/分以下とす
る。 焼結の降温過程において、1350〜1650℃の温
度範囲において2時間以上保持する。 焼結後、窒素雰囲気中、1350〜1650℃の温度
範囲において2時間以上保持の再加熱処理を行う。
10. Yttrium oxide (Y 2 O 3 ) 3-10
%, Silicon oxide (SiO 2 ) 1 to 5% by mass, and the balance being silicon nitride (Si 3 N 4 ), and forming the mixed powder in a temperature range of 1700 to 2000 ° C. in a nitrogen gas atmosphere. And forming a sintered body in which a Si 2 N 2 O phase and a Y 2 Si 2 O 7 phase are generated as a grain boundary phase by at least one of the following means: A method for producing an immersion member for a plating bath. The cooling rate in the cooling step of sintering is set to 5 ° C./min or less. During the cooling process of sintering, the temperature is kept in a temperature range of 1350 to 1650 ° C. for 2 hours or more. After sintering, a reheating treatment is performed in a nitrogen atmosphere at a temperature of 1350 to 1650 ° C. for 2 hours or more.
JP2001001637A 2001-01-09 2001-01-09 Immersion member for molten metal plating bath and manufacturing method Expired - Fee Related JP4499928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001637A JP4499928B2 (en) 2001-01-09 2001-01-09 Immersion member for molten metal plating bath and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001637A JP4499928B2 (en) 2001-01-09 2001-01-09 Immersion member for molten metal plating bath and manufacturing method

Publications (2)

Publication Number Publication Date
JP2002206155A true JP2002206155A (en) 2002-07-26
JP4499928B2 JP4499928B2 (en) 2010-07-14

Family

ID=18870252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001637A Expired - Fee Related JP4499928B2 (en) 2001-01-09 2001-01-09 Immersion member for molten metal plating bath and manufacturing method

Country Status (1)

Country Link
JP (1) JP4499928B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241915A (en) * 2001-02-20 2002-08-28 Hitachi Metals Ltd Bearing unit in molten metal bath
JP2002294419A (en) * 2001-04-02 2002-10-09 Hitachi Metals Ltd Roller bearing used in continuous hot-dip metal plating bath
JP2007039306A (en) * 2005-07-07 2007-02-15 Kyocera Corp Silicon nitride-based sintered compact, method of manufacturing the same, member for semiconductor manufacturing apparatus and member for liquid crystal manufacturing apparatus
JP2007169118A (en) * 2005-12-22 2007-07-05 Kyocera Corp Silicon nitride sintered compact, and member for semiconductor manufacturing unit and member for liquid crystal manufacturing unit using the same
JP2009256696A (en) * 2008-04-11 2009-11-05 Nippon Steel Corp Slide bearing mechanism
JP2012225514A (en) * 2012-08-09 2012-11-15 Nippon Steel Corp Sliding bearing mechanism

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774978U (en) * 1980-10-20 1982-05-08
JPS61142858U (en) * 1985-02-22 1986-09-03
JPS6389428U (en) * 1986-12-01 1988-06-10
JPH01220719A (en) * 1988-07-05 1989-09-04 Koyo Seiko Co Ltd Rolling bearing
JPH0379746A (en) * 1989-08-22 1991-04-04 Hitachi Ltd Roll for continuous hot dip metal coating and apparatus using same
JPH0544002A (en) * 1991-08-12 1993-02-23 Nippon Steel Corp Roll bearing for hot-dip metal coating and its use
JPH0569155U (en) * 1992-02-28 1993-09-17 住友金属工業株式会社 Roller bearing device in molten metal plating bath
JPH05271887A (en) * 1992-03-26 1993-10-19 Hitachi Ltd Continuous hot-dip metal coating roll and plating device using the roll
JPH07138721A (en) * 1993-11-18 1995-05-30 Hitachi Ltd Continuous hot-dip metal plating device and sliding structure used therefor
JPH07151151A (en) * 1993-09-09 1995-06-13 Sumitomo Metal Ind Ltd Rolling bearing used in molten metal
JPH07279968A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Slide structure and continuously molten metal plating device using thereof
JPH1018008A (en) * 1996-07-08 1998-01-20 Nittetsu Hard Kk Mechanical equipment for use in bath, to be disposed in hot-dip metal coating bath
JP2000064007A (en) * 1989-09-20 2000-02-29 Hitachi Ltd Continuous hot dip metal plating device, bearing for continuous hot dip metal plating device and roll for continuous hot dip metal plating device
JP2002180222A (en) * 2000-12-12 2002-06-26 Nippon Steel Corp Immersion member for hot dip metal coating bath

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774978U (en) * 1980-10-20 1982-05-08
JPS61142858U (en) * 1985-02-22 1986-09-03
JPS6389428U (en) * 1986-12-01 1988-06-10
JPH01220719A (en) * 1988-07-05 1989-09-04 Koyo Seiko Co Ltd Rolling bearing
JPH0379746A (en) * 1989-08-22 1991-04-04 Hitachi Ltd Roll for continuous hot dip metal coating and apparatus using same
JP2000064007A (en) * 1989-09-20 2000-02-29 Hitachi Ltd Continuous hot dip metal plating device, bearing for continuous hot dip metal plating device and roll for continuous hot dip metal plating device
JPH0544002A (en) * 1991-08-12 1993-02-23 Nippon Steel Corp Roll bearing for hot-dip metal coating and its use
JPH0569155U (en) * 1992-02-28 1993-09-17 住友金属工業株式会社 Roller bearing device in molten metal plating bath
JPH05271887A (en) * 1992-03-26 1993-10-19 Hitachi Ltd Continuous hot-dip metal coating roll and plating device using the roll
JPH07151151A (en) * 1993-09-09 1995-06-13 Sumitomo Metal Ind Ltd Rolling bearing used in molten metal
JPH07138721A (en) * 1993-11-18 1995-05-30 Hitachi Ltd Continuous hot-dip metal plating device and sliding structure used therefor
JPH07279968A (en) * 1994-04-08 1995-10-27 Hitachi Ltd Slide structure and continuously molten metal plating device using thereof
JPH1018008A (en) * 1996-07-08 1998-01-20 Nittetsu Hard Kk Mechanical equipment for use in bath, to be disposed in hot-dip metal coating bath
JP2002180222A (en) * 2000-12-12 2002-06-26 Nippon Steel Corp Immersion member for hot dip metal coating bath

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241915A (en) * 2001-02-20 2002-08-28 Hitachi Metals Ltd Bearing unit in molten metal bath
JP4725759B2 (en) * 2001-02-20 2011-07-13 日立金属株式会社 Bearing device in molten metal bath
JP2002294419A (en) * 2001-04-02 2002-10-09 Hitachi Metals Ltd Roller bearing used in continuous hot-dip metal plating bath
JP4678565B2 (en) * 2001-04-02 2011-04-27 日立金属株式会社 Roller bearing in continuous molten metal plating bath
JP2007039306A (en) * 2005-07-07 2007-02-15 Kyocera Corp Silicon nitride-based sintered compact, method of manufacturing the same, member for semiconductor manufacturing apparatus and member for liquid crystal manufacturing apparatus
JP2007169118A (en) * 2005-12-22 2007-07-05 Kyocera Corp Silicon nitride sintered compact, and member for semiconductor manufacturing unit and member for liquid crystal manufacturing unit using the same
JP2009256696A (en) * 2008-04-11 2009-11-05 Nippon Steel Corp Slide bearing mechanism
JP2012225514A (en) * 2012-08-09 2012-11-15 Nippon Steel Corp Sliding bearing mechanism

Also Published As

Publication number Publication date
JP4499928B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5047016B2 (en) Diamond-silicon carbide-silicon composite material
KR101407109B1 (en) cBN SINTERED BODY AND CUTTING TOOL MADE OF cBN SINTERED BODY
Rak et al. Manufacture and properties of Al2O3–TiN particulate composites
JP4709223B2 (en) Sintered body, manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die, hot extrusion molding apparatus and hot extrusion using the hot extrusion die Molding method
JP2002206155A (en) Immersion member for hot-dip metal coating bath, and its manufacturing method
JP4953762B2 (en) Hot extrusion dies
JP4460144B2 (en) Immersion member for molten metal plating bath
JP5004145B2 (en) Cermet and coated cermet and methods for producing them
JP3754271B2 (en) Butterfly valve and manufacturing method thereof
JP3709115B2 (en) Immersion member for hot-dip aluminum plating bath
JP2007145642A (en) Immersion member for hot-dip metal plating bath, and manufacturing method of the same
JP5131289B2 (en) Immersion member for molten metal plating bath
Berroth et al. Development and industrial application of silicon nitride based ceramics
JP2007302529A (en) Ceramic sintered compact, roll cleaning equipment, and roll cleaning method
Kopac Advanced tool materials for high-speed machining
CN114763609B (en) Wear-resistant shaft sleeve coating and preparation method thereof
JP2000351671A (en) Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod
JP5157142B2 (en) High corrosion resistance, thermal shock resistance, difficult adhesion ceramics
JP2004183011A (en) Roll for continuous hot dip metal plating
KR100868093B1 (en) Hearth roll manufacture method which uses the centrifugal casting
JP4690553B2 (en) Mating ring for shift side guide roll
JP2004182486A (en) Roll for continuous molten metal plating
JPH06239667A (en) Sintered porous sialon
JP2001335905A (en) Continuous hot dip metal coating apparatus, and roll and bearing therefor
CN111850540A (en) Surface protection layer for hydraulic material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4499928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees