JP2002205069A - Electrodeionization apparatus and operating method thereof - Google Patents

Electrodeionization apparatus and operating method thereof

Info

Publication number
JP2002205069A
JP2002205069A JP2001000678A JP2001000678A JP2002205069A JP 2002205069 A JP2002205069 A JP 2002205069A JP 2001000678 A JP2001000678 A JP 2001000678A JP 2001000678 A JP2001000678 A JP 2001000678A JP 2002205069 A JP2002205069 A JP 2002205069A
Authority
JP
Japan
Prior art keywords
chamber
water
anode
cathode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001000678A
Other languages
Japanese (ja)
Other versions
JP3794268B2 (en
Inventor
Shin Sato
伸 佐藤
Takayuki Moribe
隆行 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001000678A priority Critical patent/JP3794268B2/en
Priority to US10/024,291 priority patent/US6733646B2/en
Priority to EP01310901A priority patent/EP1222954B1/en
Priority to SG200108069A priority patent/SG104954A1/en
Priority to DE60106854T priority patent/DE60106854T2/en
Priority to MYPI20015940A priority patent/MY123871A/en
Priority to KR10-2002-0000386A priority patent/KR100465579B1/en
Publication of JP2002205069A publication Critical patent/JP2002205069A/en
Application granted granted Critical
Publication of JP3794268B2 publication Critical patent/JP3794268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly remove particularly silica and boron in the treatment with an electrodeionization apparatus. SOLUTION: This electrodeionization apparatus is provided with an anode compartment 17 having an anode 11, a cathode compartment 18 having a cathode 12, and a plurality of a concentrating compartments 15 and a plurality of desalting compartments 16, which are alternately formed by alternately arranging a plurality of anion exchange membranes 13 and a plurality of cation exchange membranes 14 between the anode compartment 17 and the cathode compartment 18, the desalting compartments 16 are filled with an ion exchange body, the concentrating compartments 15 are filled with an ion exchange body, activated carbon or an electric conductive body. Deionized water is taken out by passing electrolytic water respectively to the anode compartment 17 and the cathode compartment 18, passing concentrated water to the concentrating compartment 15 and passing raw water to the desalting compartment 16. Water having the concentration of silica or boron, which is lower than that of raw water, is passed into the concentrating compartment 16 as the concentrated water in the direction from the deionizated water take out side toward the raw water flow-in side and at least a part of the concentrated water flowing out from the concentrating compartment 15 is discharged to outside the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気脱イオン装置
及びその運転方法に係り、特に電気脱イオン装置におけ
るシリカやホウ素の除去率を高めるようにした電気脱イ
オン装置及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeionization apparatus and an operation method thereof, and more particularly to an electrodeionization apparatus capable of increasing the removal rate of silica and boron in the electrodeionization apparatus and an operation method thereof.

【0002】[0002]

【従来の技術】従来、半導体製造工場、液晶製造工場、
製薬工業、食品工業、電力工業等の各種の産業又は民生
用ないし研究施設等において使用される脱イオン水の製
造には、図2に示す如く、電極(陽極11、陰極12)
の間に複数のアニオン交換膜(A膜)13及びカチオン
交換膜(C膜)14を交互に配列して濃縮室15と脱塩
室16とを交互に形成し、脱塩室16にイオン交換樹
脂、イオン交換繊維もしくはグラフト交換体等からなる
アニオン交換体及びカチオン交換体を混合もしくは複層
状に充填した電気脱イオン装置が多用されている(特許
第1782943号、特許第2751090号、特許第
2699256号)。なお、図2において、17は陽極
室、18は陰極室である。
2. Description of the Related Art Conventionally, semiconductor manufacturing plants, liquid crystal manufacturing plants,
For the production of deionized water used in various industries such as the pharmaceutical industry, the food industry, the electric power industry, or for consumer or research facilities, as shown in FIG.
In between, a plurality of anion exchange membranes (A membranes) 13 and cation exchange membranes (C membranes) 14 are alternately arranged to form a concentration chamber 15 and a desalination chamber 16 alternately. An electrodeionization apparatus in which an anion exchanger and a cation exchanger composed of a resin, an ion exchange fiber, a graft exchanger or the like are mixed or filled in a multi-layered form has been frequently used (Japanese Patent Nos. 1782943, 27509090, 2699256). issue). In FIG. 2, reference numeral 17 denotes an anode chamber, and 18 denotes a cathode chamber.

【0003】脱塩室16に流入したイオンはその親和
力、濃度及び移動度に基いてイオン交換体と反応し、電
位の傾きの方向にイオン交換体中を移動し、更に膜を横
切って移動し、すべての室において電荷の中和が保たれ
る。そして、膜の半浸透特性のため、及び電位の傾きの
方向性のために、イオンは脱塩室16では減少し、隣り
の濃縮室15では濃縮される。即ち、カチオンはカチオ
ン交換膜14を透過して、また、アニオンはアニオン交
換膜13を透過して、それぞれ濃縮室15内に濃縮され
る。このため、脱塩室16から生産水として脱イオン水
(純水)が回収される。
The ions flowing into the desalting chamber 16 react with the ion exchanger based on their affinity, concentration and mobility, move in the ion exchanger in the direction of the potential gradient, and further across the membrane. , Charge neutralization is maintained in all chambers. Then, due to the semi-osmotic characteristics of the membrane and the direction of the gradient of the potential, ions are reduced in the desalting chamber 16 and concentrated in the adjacent concentrating chamber 15. That is, the cations pass through the cation exchange membrane 14, and the anions pass through the anion exchange membrane 13, and are concentrated in the concentration chamber 15. Therefore, deionized water (pure water) is recovered from the desalination chamber 16 as production water.

【0004】なお、陽極室17及び陰極室18にも電極
水が通液されており、一般に、この電極水としては、電
気伝導度の確保のためにイオン濃度の高い濃縮室15の
流出水(濃縮水)が通液されている。
[0004] Electrode water is also passed through the anode chamber 17 and the cathode chamber 18. Generally, the electrode water is effluent from the concentration chamber 15 having a high ion concentration in order to secure electrical conductivity. Concentrated water).

【0005】即ち、原水は脱塩室16と濃縮室15とに
導入され、脱塩室16からは脱イオン水(純水)が取り
出される。一方、濃縮室15から流出するイオンが濃縮
された濃縮水は、ポンプ(図示せず)により一部が水回
収率の向上のために、濃縮室15の入口側に循環され、
一部が陽極室17の入口側に送給され、残部が系内のイ
オンの濃縮を防止するために排水として系外へ排出され
る。そして、陽極室17の流出水は、陰極室18の入口
側へ送給され、陰極室18の流出水は排水として系外へ
排出される。
That is, raw water is introduced into a desalting chamber 16 and a concentrating chamber 15, and deionized water (pure water) is taken out from the desalting chamber 16. On the other hand, the concentrated water in which the ions flowing out of the concentration chamber 15 are concentrated is partially circulated to the inlet side of the concentration chamber 15 by a pump (not shown) in order to improve the water recovery rate.
A part is fed to the inlet side of the anode chamber 17, and the remaining part is discharged out of the system as wastewater to prevent concentration of ions in the system. Then, the effluent from the anode chamber 17 is supplied to the inlet side of the cathode chamber 18, and the effluent from the cathode chamber 18 is discharged out of the system as wastewater.

【0006】このような電気脱イオン装置にあっては、
陽極室17では、水解離によるHの生成でpHが低下
する。一方、陰極室18ではOHの生成でpHが高く
なる。このため、pHが低下した酸性の陽極室17の流
出水を陰極室18に通液することで、陰極室18におけ
るアルカリを中和してスケール障害を抑制している。
[0006] In such an electrodeionization apparatus,
In the anode chamber 17, the pH decreases due to the generation of H + by water dissociation. On the other hand, in the cathode chamber 18, the pH increases due to the generation of OH . For this reason, by passing the effluent of the acidic anode chamber 17 having a lowered pH through the cathode chamber 18, the alkali in the cathode chamber 18 is neutralized and scale disturbance is suppressed.

【0007】このような電気脱イオン装置にあっては、
濃縮水の影響で電気脱イオン装置の生産水の水質が影響
を受ける可能性があることはこれまでに各種報告されて
いる。また、電極室に活性炭やイオン交換樹脂を充填す
ることは、USP5,868,915に示されている。
[0007] In such an electrodeionization apparatus,
There have been various reports that the quality of the water produced by the electrodeionization apparatus may be affected by the effect of the concentrated water. US Pat. No. 5,868,915 discloses filling an electrode chamber with activated carbon or an ion exchange resin.

【0008】[0008]

【発明が解決しようとする課題】従来の電気脱イオン装
置にあっては、シリカ及びホウ素の除去が若干不十分で
あり、例えば、シリカについては99.9〜99.99
%以上の除去率を得ることは困難であった。
In the conventional electrodeionization apparatus, the removal of silica and boron is somewhat insufficient. For example, silica is in the range of 99.9 to 99.99.
% Was difficult to obtain.

【0009】従来、濃縮水が生産水の水質に影響を及ぼ
すことが報告されているが、シリカ、ホウ素との関係に
ついては言及されていない。また、電極室に活性炭やイ
オン交換樹脂を充填することにより、電気抵抗を低減す
ることはできるが、シリカ、ホウ素の低減は達成されて
いない。
Conventionally, it has been reported that concentrated water affects the quality of product water, but no mention is made of the relationship between silica and boron. Also, by filling the electrode chamber with activated carbon or ion exchange resin, the electrical resistance can be reduced, but the reduction of silica and boron has not been achieved.

【0010】本発明は上記従来の問題点を解決し、電気
脱イオン装置による処理において、特にシリカ及びホウ
素を高度に除去することができる電気脱イオン装置及び
その運転方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide an electrodeionization apparatus capable of removing silica and boron in a high degree in a treatment by an electrodeionization apparatus, and an operation method thereof. I do.

【0011】[0011]

【課題を解決するための手段】本発明の電気脱イオン装
置の運転方法は、陽極を有する陽極室と、陰極を有する
陰極室と、これらの陽極室と陰極室との間に複数のアニ
オン交換膜及びカチオン交換膜を交互に配列することに
より交互に形成された濃縮室及び脱塩室とを備え、該脱
塩室にイオン交換体が充填され、該濃縮室にイオン交換
体、活性炭又は電気導電体が充填されている電気脱イオ
ン装置を運転する方法であって、該陽極室及び陰極室に
それぞれ電極水を通水し、該濃縮室に濃縮水を通水し、
該脱塩室に原水を通水して脱イオン水を取り出す電気脱
イオン装置の運転方法において、該濃縮水として、該原
水よりシリカ又はホウ素濃度の低い水を、脱塩室の脱イ
オン水取り出し口に近い側から該濃縮室内に導入すると
共に、該濃縮室のうち脱塩室の原水入口に近い側から流
出させ、この濃縮室から流出した濃縮水の少なくとも一
部を系外へ排出することを特徴とする。
SUMMARY OF THE INVENTION The method of operating an electrodeionization apparatus of the present invention comprises an anode compartment having an anode, a cathode compartment having a cathode, and a plurality of anion exchanges between the anode compartment and the cathode compartment. A concentration chamber and a desalination chamber formed alternately by alternately arranging a membrane and a cation exchange membrane, wherein the desalination chamber is filled with an ion exchanger, and the concentration chamber is provided with an ion exchanger, activated carbon or electricity. A method for operating an electrodeionization device filled with a conductor, wherein the anode chamber and the cathode chamber are each passed with electrode water, and the concentrated chamber is passed with concentrated water,
In the method for operating an electrodeionization apparatus for extracting deionized water by passing raw water through the desalination chamber, removing water having a silica or boron concentration lower than that of the raw water as deionized water from the desalination chamber as the concentrated water. Introducing into the enrichment chamber from the side near the mouth, flowing out of the enrichment chamber from the side near the raw water inlet of the desalination chamber, and discharging at least a part of the concentrated water flowing out of the enrichment chamber to the outside of the system. It is characterized by.

【0012】本発明の電気脱イオン装置は、陽極を有す
る陽極室と、陰極を有する陰極室と、これらの陽極室と
陰極室との間に複数のアニオン交換膜及びカチオン交換
膜を交互に配列することにより交互に形成された濃縮室
及び脱塩室とを備え、該脱塩室にイオン交換体が充填さ
れ、該濃縮室にイオン交換体、活性炭又は電気導電体が
充填されている電気脱イオン装置であって、該陽極室及
び陰極室にそれぞれ電極水を通水する手段と、該濃縮室
に濃縮水を通水する濃縮水通水手段と、該脱塩室に原水
を通水して脱イオン水を取り出す手段とを有する電気脱
イオン装置において、該濃縮水通水手段が、該原水より
シリカ又はホウ素濃度の低い水を、脱塩室の脱イオン水
取り出し口に近い側から該濃縮室内に導入すると共に、
該濃縮室のうち脱塩室の原水入口に近い側から流出さ
せ、この濃縮室から流出した濃縮水の少なくとも一部を
系外へ排出する手段であることを特徴とする。
In the electrodeionization apparatus of the present invention, an anode chamber having an anode, a cathode chamber having a cathode, and a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the anode chamber and the cathode chamber. The deionization chamber is filled with an ion exchanger, and the concentration chamber is filled with an ion exchanger, activated carbon or an electric conductor. An ion device, means for passing electrode water through the anode chamber and the cathode chamber, concentrated water passing means for passing concentrated water through the concentration chamber, and raw water through the desalination chamber. And a means for removing deionized water by means of the concentrated water flow means, wherein the concentrated water flow means supplies water having a lower silica or boron concentration than the raw water from the side of the deionization chamber near the deionized water removal port. While being introduced into the concentration chamber,
It is characterized in that it is means for discharging the concentrated water flowing out of the concentrating chamber out of the system from the side near the raw water inlet of the desalting chamber in the condensing chamber.

【0013】即ち、本発明者らは、電気脱イオン装置に
よりシリカ及びホウ素を高度に除去して、生産水のシリ
カ、ホウ素濃度を極低濃度にまでに低減すべく鋭意検討
を重ねた結果、生産水のシリカ、ホウ素濃度を大きく低
減させるためには、一定の必要電流を確保するだけでな
く、濃縮室、特に生産水取り出し口の近傍の濃縮室内を
流れる濃縮水のシリカ、ホウ素濃度を小さくする必要が
あることを見出した。特に、濃縮室の生産水取り出し側
に対応する位置を流れる濃縮水のシリカ濃度は低い程好
ましく、目的とする生産水のシリカ濃度の1000倍以
下とすることが望ましい。
That is, the present inventors have conducted intensive studies to remove silica and boron to a high degree by an electrodeionization apparatus and to reduce the concentrations of silica and boron to extremely low concentrations in the produced water. In order to significantly reduce the concentration of silica and boron in the production water, not only should a certain required current be secured, but also the concentration of silica and boron in the concentration chamber, especially the concentration chamber near the production water outlet, should be reduced. I found that I needed to. In particular, the silica concentration of the concentrated water flowing at a position corresponding to the product water take-out side of the concentration chamber is preferably as low as possible, and is desirably 1000 times or less of the silica concentration of the target product water.

【0014】本発明においては、濃縮水として原水より
シリカ又はホウ素濃度の低い水を用い、しかも、このよ
うに水質の良好な水を、脱塩室の脱イオン水(生産水)
取り出し側から原水流入側へ向かう方向に濃縮室に通水
するため、シリカ、ホウ素濃度を極低濃度にまで低減し
た高水質の生産水を得ることができる。
In the present invention, water having a lower silica or boron concentration than the raw water is used as the concentrated water, and water having such a good water quality is deionized water (produced water) in the desalting chamber.
Since water flows through the concentration chamber in the direction from the takeout side to the raw water inflow side, it is possible to obtain high-quality water with reduced silica and boron concentrations to extremely low concentrations.

【0015】ところで、このように水質の良好な水を濃
縮室に通水することによる問題点は、低電気伝導度、高
比抵抗の水を濃縮室に通水すると濃縮室の電気抵抗が高
くなり、電流値を確保し得ないことである。
The problem with passing water of good quality to the concentrating chamber as described above is that when water having low electric conductivity and high specific resistance is passed through the concentrating chamber, the electric resistance of the concentrating chamber becomes high. That is, a current value cannot be secured.

【0016】本発明では、この問題を濃縮室にイオン交
換樹脂等のイオン交換体、活性炭又は電気導電体を充填
して必要電流を確保することで解決する。
In the present invention, this problem is solved by filling the concentration chamber with an ion exchanger such as an ion exchange resin, activated carbon or an electric conductor to secure a necessary current.

【0017】このようにイオン交換樹脂間等で起こる水
解離によって生じたHイオン、OHイオンにより電
気が運ばれ、超純水のような高比抵抗の水を通水しても
消費電圧は一定であり、必要電流が確保できることは従
来知られておらず、本発明者らにより見出された新規事
項である。
As described above, electricity is carried by H + ions and OH ions generated by dissociation of water between ion exchange resins and the like. Is constant, and it is not conventionally known that a required current can be secured, and this is a new matter discovered by the present inventors.

【0018】仮に、濃縮室にスペーサ等を用いた場合
は、通水する濃縮水の電気伝導度が低いほど消費電圧は
二次曲線的に増加し、超純水では全く電流が流れなくな
ってしまうため、電気脱イオン装置に電流を通すことが
できなくなってしまい、シリカ、ホウ素のみならずその
他のイオンの除去も不可能となる。
If a spacer or the like is used in the concentrating chamber, the consumption voltage increases in a quadratic curve as the electric conductivity of the condensed water passing therethrough decreases, and no current flows in ultrapure water at all. Therefore, it becomes impossible to pass a current through the electrodeionization apparatus, and it becomes impossible to remove not only silica and boron but also other ions.

【0019】本発明では、この問題を濃縮室にイオン交
換体、活性炭又は電気導電体を充填することで解決す
る。
In the present invention, this problem is solved by filling the concentration chamber with an ion exchanger, activated carbon or an electric conductor.

【0020】本発明は特に、濃縮水を脱塩室と向流一過
式で濃縮室に通水することが好ましい。
In the present invention, it is particularly preferable that the concentrated water is passed through the concentrating chamber in a countercurrent manner with the desalting chamber.

【0021】また、この濃縮水としては、当該電気脱イ
オン装置の脱塩水(生産水)、この脱塩水をさらにイオ
ン交換装置等で処理した水、又は超純水を用いるのが好
ましい。
It is preferable to use, as the concentrated water, demineralized water (produced water) of the electrodeionization apparatus, water obtained by further processing the demineralized water with an ion exchange apparatus or the like, or ultrapure water.

【0022】また、本発明では、特に電極室にも水質の
良好な水を通水する場合、電極室での電流を確保するた
めに、 陽極室及び陰極室に活性炭、イオン交換体又は電気
導電体を充填する。或いは 陽極が陽極室を区画するカチオン交換膜に接してお
り、陰極が陰極室を区画するアニオン交換膜に接してお
り、陽極及び陰極のうち少なくとも交換膜に接する側が
連続孔を有する多孔質状となっており、この孔を介して
電極水を陽極室及び陰極室にそれぞれ通水可能とする。 ことが好ましい。
In the present invention, in particular, when water having good water quality is passed through the electrode chamber, activated carbon, an ion exchanger or an electric conductive material is supplied to the anode chamber and the cathode chamber in order to secure a current in the electrode chamber. Fill the body. Or, the anode is in contact with the cation exchange membrane that partitions the anode compartment, the cathode is in contact with the anion exchange membrane that partitions the cathode compartment, and at least the side of the anode and the cathode that contacts the exchange membrane has a porous shape having continuous pores. The electrode water is allowed to flow through the holes to the anode chamber and the cathode chamber, respectively. Is preferred.

【0023】[0023]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】図1は本発明の実施の形態を示す電気脱イ
オン装置の模式的な断面図である。この電気脱イオン装
置は、図2に示す従来の電気脱イオン装置と同様、電極
(陽極11、陰極12)の間に複数のアニオン交換膜
(A膜)13及びカチオン交換膜(C膜)14を交互に
配列して濃縮室15と脱塩室16とを交互に形成したも
のであり、脱塩室16には、イオン交換樹脂、イオン交
換繊維もしくはグラフト交換体等からなるアニオン交換
体及びカチオン交換体が混合もしくは複層状に充填され
ている。
FIG. 1 is a schematic sectional view of an electrodeionization apparatus showing an embodiment of the present invention. This electrodeionization apparatus has a plurality of anion exchange membranes (A membranes) 13 and cation exchange membranes (C membranes) 14 between electrodes (anode 11 and cathode 12), similarly to the conventional electrodeionization apparatus shown in FIG. Are alternately arranged to form the concentration chamber 15 and the desalination chamber 16 alternately. The desalination chamber 16 contains an anion exchanger and a cation such as an ion exchange resin, an ion exchange fiber or a graft exchanger. The exchanger is mixed or packed in multiple layers.

【0025】また、濃縮室15と、陽極室17及び陰極
室18にも、イオン交換体、活性炭又は金属等の電気導
電体が充填されている。
The concentrating chamber 15, the anode chamber 17 and the cathode chamber 18 are also filled with an electric conductor such as an ion exchanger, activated carbon or metal.

【0026】原水は脱塩室16に導入され、脱塩室16
からは生産水が取り出される。この生産水の一部は、濃
縮室15に脱塩室16の通水方向とは逆方向に向流一過
式で通水され、濃縮室15の流出水は系外へ排出され
る。即ち、この電気脱イオン装置では、濃縮室15と脱
塩室16とが交互に並設され、脱塩室16の生産水取り
出し側に濃縮室15の流入口が設けられており、脱塩室
16の原水流入側に濃縮室15の流出口が設けられてい
る。また、生産水の一部は陽極室17の入口側に送給さ
れ、そして、陽極室17の流出水は、陰極室18の入口
側へ送給され、陰極室18の流出水は排水として系外へ
排出される。
The raw water is introduced into the desalting chamber 16,
From the production water. A part of the produced water is passed through the concentrating chamber 15 in a countercurrent type in a direction opposite to the flowing direction of the desalting chamber 16, and the effluent from the concentrating chamber 15 is discharged out of the system. That is, in this electrodeionization apparatus, the concentration chambers 15 and the desalination chambers 16 are alternately arranged side by side, and the inlet of the concentration chamber 15 is provided on the production water take-out side of the desalination chamber 16. An outlet of the concentration chamber 15 is provided on the raw water inflow side 16. Further, a part of the produced water is supplied to the inlet side of the anode chamber 17, and the effluent of the anode chamber 17 is supplied to the inlet side of the cathode chamber 18, and the effluent of the cathode chamber 18 is treated as drainage. It is discharged outside.

【0027】このように、濃縮室15に生産水を脱塩室
16と向流一過式で通水することにより、生産水取り出
し側ほど濃縮室15内の濃縮水の濃度が低いものとな
り、濃度拡散による脱塩室16への影響が小さくなり、
イオン除去率、特にシリカ、ホウ素の除去率を飛躍的に
高めることができる。
As described above, by passing the produced water through the concentrating chamber 15 and the desalting chamber 16 in a countercurrent and transient manner, the concentration of the concentrated water in the condensing chamber 15 becomes lower toward the product water take-out side. The influence of the concentration diffusion on the desalination chamber 16 is reduced,
The ion removal rate, particularly the removal rate of silica and boron, can be dramatically increased.

【0028】従来、電気脱イオン装置の濃縮水(濃縮室
の流出水)は、図2に示す如く、水回収率の向上のため
に一部のみを排出した後、濃縮室の入口側に循環してお
り、例えば濃縮室のLVは80m/hr以上とされてい
た。
Conventionally, as shown in FIG. 2, the concentrated water of the electrodeionization apparatus (outflow water from the concentration chamber) is partially discharged to improve the water recovery rate and then circulated to the inlet side of the concentration chamber. For example, the LV of the concentrating chamber was set to 80 m / hr or more.

【0029】本発明では、濃縮室にイオン交換体を充填
することで、濃縮室のLVを20m/hr以下として
も、脱イオン性能を確保することができる。これは、濃
縮室内がスペーサであると、濃縮室膜面におけるシリ
カ、ホウ素の膜面濃縮を水流により拡散させる必要があ
ったのに対し、濃縮室にイオン交換体等を充填すること
で、イオン交換体を通じてイオンが拡散するため、高い
通水速度(LV)を必要としないためと考えられる。
In the present invention, by filling the concentration chamber with the ion exchanger, the deionization performance can be ensured even if the LV of the concentration chamber is set to 20 m / hr or less. This is because, if the enrichment chamber is a spacer, the concentration of silica and boron on the membrane surface of the enrichment chamber had to be diffused by a water flow, whereas the ion exchange was performed by filling the enrichment chamber with an ion exchanger. It is considered that the ion diffusion through the exchanger does not require a high water flow velocity (LV).

【0030】このように通水速度が低くても良いため、
一過式で濃縮水を通水しても、水回収率は従来よりも向
上させることができ、しかも、循環ポンプを用いる必要
もないため、さらに経済的である。
Since the water passing speed may be low as described above,
Even if the concentrated water is passed in a single pass, the water recovery rate can be improved as compared with the conventional case, and furthermore, there is no need to use a circulation pump, so that it is more economical.

【0031】濃縮室充填物は、必要電流確保のためには
活性炭等でも良いが、上記イオン拡散作用の点から、イ
オン交換体を充填することが望ましい。
The filling material in the enrichment chamber may be activated carbon or the like in order to secure a necessary current, but it is desirable to fill the ion exchanger from the viewpoint of the above-mentioned ion diffusion action.

【0032】この図1の電気脱イオン装置では、電極室
17,18にも生産水を供給しているが、電極室17,
18でも濃縮室15と同様に、電流確保のために、イオ
ン交換体や活性炭、又は電気導電体である金属等を充填
することで、水質によらず消費電圧が一定になり、超純
水等の高水質の水を通水しても必要電流を確保すること
が可能となる。
In the electrodeionization apparatus shown in FIG. 1, the production water is also supplied to the electrode chambers 17 and 18.
In the same manner as in the concentration chamber 15, by filling an ion exchanger, activated carbon, or a metal that is an electric conductor, for example, in order to secure a current, the consumption voltage becomes constant regardless of water quality, and ultrapure water or the like can be obtained. The required current can be secured even if high quality water is passed through.

【0033】なお、電極室では、特に陽極室での塩素や
オゾン等の酸化剤の発生が起こるため、充填物として
は、長期的にはイオン交換樹脂等を用いるよりも、活性
炭を用いることが好ましい。また、電極室へ図1のよう
に生産水を供給することは、電極室供給水にClが殆
ど無いため、塩素の発生を防止できるので、充填物や電
極の長期安定化のためには望ましい。
In the electrode chamber, an oxidizing agent such as chlorine or ozone is generated particularly in the anode chamber. Therefore, in the long term, activated carbon should be used rather than an ion exchange resin as the filler. preferable. In addition, supplying the production water to the electrode chamber as shown in FIG. 1 can prevent chlorine from being generated because the water supplied to the electrode chamber hardly contains Cl −. desirable.

【0034】なお、電極室は上記のような充填物を用い
なくても、電極板の通水面側を多孔質状に加工し、その
部分に電極水を通水できるようにしても良く、その場
合、電極板と電極室が一体化できるので、組立等が簡単
になる等のメリットがある。
Even if the electrode chamber does not use the above-mentioned filling material, the water-flowing surface side of the electrode plate may be processed into a porous shape so that the electrode water can flow through that portion. In this case, since the electrode plate and the electrode chamber can be integrated, there is an advantage that assembly and the like are simplified.

【0035】ところで、濃縮水の循環を行う場合、全体
で循環してしまうと濃縮室の、特に生産水流出側でのシ
リカ、ホウ素の温度が上がってしまうので、図3のよう
に濃縮室を分断させ、入口側と出口側で濃度勾配をとる
ようにすれば、生産水質は図1の向流通水と同等のもの
を得ることができる。
By the way, when the concentrated water is circulated, if the whole is circulated, the temperature of the silica and boron in the concentrated chamber, especially on the outflow side of the product water, rises. If the separation is performed and the concentration gradient is taken between the inlet side and the outlet side, the quality of the produced water can be the same as that of the countercurrent water in FIG.

【0036】図3(a)は本発明の電気脱イオン装置の
他の実施の形態を示す概略的な斜視図、図3(b)は同
系統図である。
FIG. 3A is a schematic perspective view showing another embodiment of the electrodeionization apparatus of the present invention, and FIG. 3B is the same system diagram.

【0037】図示の如く、この電気脱イオン装置は、陽
極11と陰極12との間に、カチオン交換膜とアニオン
交換膜とを交互に配列して濃縮室15と脱塩室16とを
交互に形成した点においては従来の電気脱イオン装置と
同様の構成とされているが、濃縮室15が仕切壁15S
により2以上(図3においては2個)の濃縮水流通部1
5A,15Bに区画され、各濃縮水流通部15A,15
Bの濃縮水の通水方向が脱塩室16内の通水方向と交叉
する方向とされている点が従来の電気脱イオン装置と異
なる。
As shown in the drawing, this electrodeionization apparatus comprises a cation exchange membrane and an anion exchange membrane alternately arranged between an anode 11 and a cathode 12, and a concentration chamber 15 and a desalination chamber 16 are alternately arranged. The point of formation is the same as that of the conventional electrodeionization apparatus, but the enrichment chamber 15 is provided with a partition wall 15S.
2 or more (two in FIG. 3) concentrated water circulation units 1
5A, 15B, and each of the concentrated water distribution sections 15A, 15B.
The difference from the conventional electrodeionization apparatus is that the flow direction of the concentrated water of B is set to the direction crossing the water flow direction in the desalting chamber 16.

【0038】即ち、図3において、脱塩室16は、図3
(a)における上側が入口側、下側が出口側であり、脱
塩室16内を水は上から下へ向かって流れる。
That is, in FIG. 3, the desalting chamber 16 is
In (a), the upper side is the inlet side, and the lower side is the outlet side, and water flows in the desalting chamber 16 from top to bottom.

【0039】一方、濃縮室15内には、この脱塩室16
内の通水方向と交叉する方向(図3(a)においては直
交方向(なお、この直交方向とは必ずしも厳密なもので
はなく、80〜100゜程度の範囲を含む)に延在する
仕切壁15Sが設けられ、濃縮室15内は図において上
下に2段に分画され、各濃縮水流通部15A,15Bの
各々に図の手前側から裏側へ通水が行われる。
On the other hand, the desalting chamber 16
The partition wall extends in a direction intersecting with the water flow direction in the inside (in FIG. 3A, an orthogonal direction (the orthogonal direction is not always strict and includes a range of about 80 to 100 °). 15S is provided, and the inside of the concentration chamber 15 is divided into two upper and lower stages in the figure, and water is passed through each of the concentrated water distribution sections 15A and 15B from the near side to the back side in the figure.

【0040】図3(b)に示す如く、脱塩室から取り出
された生産水の一部はポンプにより循環される濃縮水流
通部15Bの循環系に導入され、生産水取り出し側の濃
縮水流通部15Bを循環する。この循環系の循環濃縮水
の一部がポンプにより循環される濃縮水流通部15Aの
循環系に導入され、原水流入側の濃縮水流通部15Aを
循環し、その一部は系外へ排出される。
As shown in FIG. 3 (b), a part of the product water extracted from the desalting chamber is introduced into the circulation system of the concentrated water circulation part 15B circulated by the pump, and the concentrated water circulation on the product water extraction side is performed. Circulates through section 15B A part of the circulating concentrated water of this circulating system is introduced into the circulating system of the concentrated water circulating section 15A circulated by the pump, circulates through the concentrated water circulating section 15A on the raw water inflow side, and a part thereof is discharged outside the system. You.

【0041】この電気脱イオン装置であっても、生産水
が生産水取り出し側の濃縮水流通部15Bを循環した後
原水流入側の濃縮水流通部15Aに流入して循環し、そ
の後系外へ排出されることにより、結果的には、濃縮水
は、生産水の取り出し側から原水流入側へ通水され、そ
の後一部が系外へ排出されたことになり、図1に示す脱
塩室との向流一過式通水の場合と同様の効果が奏され
る。
In this electrodeionization apparatus as well, the produced water circulates through the concentrated water circulation section 15B on the production water take-out side, flows into the concentrated water circulation section 15A on the raw water inflow side, circulates, and then out of the system. As a result, the concentrated water is conveyed from the production water withdrawal side to the raw water inflow side, and then partially discharged outside the system. As a result, the desalination chamber shown in FIG. The same effect as in the case of countercurrent one-time flow through is provided.

【0042】なお、濃縮室を仕切壁で仕切って形成する
濃縮水流通部は3以上であっても良い。ただし、仕切壁
の数を増やすことによる部材数の増加、装置構成の複雑
化等を考慮した場合、濃縮室内を2又は3個の濃縮水流
通部に区画するのが好ましい。
The concentrated water circulation section formed by dividing the concentration chamber with a partition wall may be three or more. However, in consideration of an increase in the number of members due to an increase in the number of partition walls, a complicated configuration of the apparatus, and the like, it is preferable to partition the enrichment chamber into two or three concentrated water circulation sections.

【0043】このような電気脱イオン装置において、シ
リカのみならず特にホウ素をも除去しようとする際に
は、脱塩室の厚さが小さいほど良いことが、鋭意研究の
結果判明している。脱塩室の厚さは5mm以下が良く、
小さいほど良いが、水の通水性や製作時の取り扱い性等
を考慮すると実用上2mm以上とすることが好ましい。
In such an electrodeionization apparatus, as a result of intensive studies, it has been found that when removing not only silica but also boron in particular, the thickness of the desalting chamber should be as small as possible. The thickness of the desalting chamber should be 5 mm or less,
The smaller the better, the better, but it is practically preferable to be 2 mm or more in consideration of water permeability and handleability at the time of production.

【0044】また、電流確保を行い、濃度拡散の影響を
排除することで、シリカ、ホウ素の除去率向上を図るこ
とが本発明の目的であり、電流確保のためには、濃縮
室、更には電極室に先に記したような工夫が必要となる
が、シリカ、ホウ素高除去のための必要電流は、電流効
率として10%以下に相当する電流値、さらに99.9
%以上のシリカ、ホウ素除去率を得るためには望ましく
は電流効率5%以下に相当する電流値が必要となる。な
お、電流効率とは以下の式で示される。 電流効率(%)=1.31×セル当たり流量(L/mi
n)×(原水当量導電率(μS/cm)−処理水当量導
電率(μS/cm))/電流(A)
It is also an object of the present invention to improve the removal rate of silica and boron by securing the current and eliminating the influence of the concentration diffusion. Although the above-described device is required for the electrode chamber, the current required for high removal of silica and boron is a current value corresponding to a current efficiency of 10% or less, and further 99.9.
%, A current value corresponding to a current efficiency of 5% or less is required. The current efficiency is represented by the following equation. Current efficiency (%) = 1.31 x flow rate per cell (L / mi)
n) × (raw water equivalent conductivity (μS / cm) −treated water equivalent conductivity (μS / cm)) / current (A)

【0045】このような本発明の電気脱イオン装置で
は、電気脱イオン装置の原水が高比抵抗であって、この
水のシリカやホウ素のみをさらに低減したい場合であっ
ても、必要電流が確保できるので、濃縮室及び電極室の
いずれか一方にでも電流が流れなければ、電気脱イオン
装置全体の電流が流れなくなるという従来の問題点は解
消される。
In such an electrodeionization apparatus of the present invention, the required current is secured even when the raw water of the electrodeionization apparatus has a high specific resistance and it is desired to further reduce only silica or boron in the water. Therefore, the conventional problem that the current of the entire electrodeionization apparatus does not flow if the current does not flow in either the concentration chamber or the electrode chamber is solved.

【0046】このため、高比抵抗の原水からさらに、シ
リカ、ホウ素を除去しようとする場合にも、電気脱イオ
ン装置を用いることができ、従って、電気脱イオン装置
の適用水質範囲を大きく広げることができるため、その
工業的有用性は極めて大である。
For this reason, even when silica and boron are to be further removed from raw water having a high specific resistance, an electrodeionization apparatus can be used. Therefore, the applicable water quality range of the electrodeionization apparatus can be greatly expanded. Therefore, its industrial utility is extremely large.

【0047】例えば、主として半導体工場の一次純水製
造装置として用いた場合、水使用が少なく、原水に生産
水が戻されて循環しているような場合でも、必要電流を
確保することができ、装置の立ち上げ時等にも安定に起
動させることができる。
For example, when used mainly as a primary pure water production device in a semiconductor factory, the required current can be ensured even when the water used is small and the produced water is returned to the raw water and circulated. The apparatus can be started stably even when the apparatus is started.

【0048】また、電気脱イオン装置を直列で複数段設
置して多段通水するような場合の後段の電気脱イオン装
置においても、必要電流を確保することができる。
Also, in a later stage of the electrodeionization apparatus in which a plurality of electrodeionization apparatuses are installed in series and water is passed in multiple stages, necessary current can be secured.

【0049】また、超純水製造工程の二次純水システム
(サブシステム)において、比抵抗10MΩ・cm以上
の水を原水としても、必要電流が確保できるので、デミ
ナー(非再生式混床イオン交換装置)の代替として用い
ることができる。
Further, in the secondary pure water system (subsystem) of the ultrapure water production process, the required current can be secured even if water having a specific resistance of 10 MΩ · cm or more is used as raw water. Exchange device).

【0050】図4は、本発明の電気脱イオン装置をサブ
システムにおけるデミナーの代替として用いる場合の系
統図を示す。比抵抗10MΩ・cm以上の一次純水は紫
外線酸化装置1を経て電気脱イオン装置2の脱塩室2A
に導入され、電気脱イオン装置2の生産水は限外濾過膜
分離装置3で処理され、超純水が製造される。全体の水
バランスを考えた場合、電気脱イオン装置2の濃縮室2
Bへの供給水は限外濾過膜分離装置3の濃縮水を用いる
ことができ、システム全体における水利用効率が高めら
れる。
FIG. 4 is a system diagram when the electrodeionization apparatus of the present invention is used as a substitute for a deminer in a subsystem. The primary pure water having a specific resistance of 10 MΩ · cm or more passes through the ultraviolet oxidizing device 1 and the desalting chamber 2 A of the electrodeionization device 2.
And the water produced by the electrodeionization device 2 is treated by the ultrafiltration membrane separation device 3 to produce ultrapure water. When considering the overall water balance, the concentration chamber 2 of the electrodeionization apparatus 2
The concentrated water of the ultrafiltration membrane separation device 3 can be used as the supply water to B, and the water use efficiency in the entire system can be increased.

【0051】[0051]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0052】実施例1 水道水を活性炭塔、逆浸透膜分離装置及び膜脱気装置で
順次処理した表1に示す水質の水を原水として、図1に
示す下記仕様の電気脱イオン装置(脱塩室2室,濃縮室
3室)で下記運転条件にて脱イオン処理を行った。 [電気脱イオン装置仕様] 脱塩室高さ:66cm 脱塩室厚さ:2.5cm 濃縮室厚さ:2.5cm 脱塩室充填物:アニオン交換樹脂:カチオン交換樹脂=
7:3(体積比)の混合イオン交換樹脂 濃縮室充填物:アニオン交換樹脂:カチオン交換樹脂=
7:3(体積比)の混合イオン交換樹脂 陽極室及び陰極室充填物:活性炭 [運転条件] 電流:2A(電流効率4%) 脱塩室SV:130hr−1 濃縮室LV:13m/hr 生産水量 :60L/hr 濃縮室水量:9L/hr 電極室水量:5L/hr 水回収率 :81%(=60÷(60+9+5)×10
0)
Example 1 Tap water was supplied to an activated carbon tower, a reverse osmosis membrane separator and a membrane deaerator.
Fig. 1 shows the water of the quality shown in Table 1 which was processed sequentially as raw water.
Electrodeionizer with the following specifications (2 desalination rooms, enrichment room)
3), a deionization treatment was performed under the following operating conditions. [Electric deionizer specifications] Deionization chamber height: 66 cm Deionization chamber thickness: 2.5 cm Concentration chamber thickness: 2.5 cm Deionization chamber filling: anion exchange resin: cation exchange resin =
7: 3 (volume ratio) mixed ion exchange resin Concentration chamber filling: anion exchange resin: cation exchange resin =
7: 3 (volume ratio) mixed ion-exchange resin Anode compartment and cathode compartment filling: activated carbon [Operating conditions] Current: 2 A (current efficiency 4%) Deionization compartment SV: 130 hr-1  Concentration room LV: 13 m / hr Production water amount: 60 L / hr Concentration room water amount: 9 L / hr Electrode room water amount: 5 L / hr Water recovery rate: 81% (= 60 ° (60 + 9 + 5) × 10
0)

【0053】即ち、生産水74L/hr中の9L/hr
を濃縮室に向流一過式で通水し、5L/hrを陽極室に
通水した後陰極室に通水した。
That is, 9 L / hr of 74 L / hr of production water
Was passed through the concentrating chamber in a countercurrent manner, 5 L / hr was passed through the anode chamber, and then through the cathode chamber.

【0054】その結果、得られた生産水は、表1に示す
ように、シリカ、ホウ素共に検出限界以下で高度に除去
された高純度水であった。
As a result, as shown in Table 1, the produced water was high-purity water in which both silica and boron were highly removed below the detection limit.

【0055】このときの消費電圧は、脱塩室1.28V
×2室、濃縮室1.28V×3室、陽極電極室1.4
V、陰極電極室で1.9Vの合計で9.7Vであった。
At this time, the consumption voltage was 1.28 V in the desalination chamber.
× 2 rooms, concentration room 1.28V × 3 rooms, anode electrode room 1.4
V and 1.9 V in the cathode electrode chamber were 9.7 V in total.

【0056】[0056]

【表1】 [Table 1]

【0057】実施例2 実施例1において、超純水にケイ酸ナトリウムを300
ppb(SiO換算)となるように添加した水を原水
としたこと以外は同様にして脱イオン処理を行った。
Example 2 In Example 1, sodium silicate was added to ultrapure water for 300 minutes.
The deionization treatment was performed in the same manner except that water added so as to be ppb (in terms of SiO 2 ) was used as raw water.

【0058】その結果、この様に原水中のイオン量が少
ない(電流を確保しにくい)場合でも生産水としてシリ
カ濃度0.1ppb以下(検出限界以下)の高純度水を
得ることができた。
As a result, even when the amount of ions in the raw water was small (current was difficult to secure), high-purity water having a silica concentration of 0.1 ppb or less (detection limit or less) could be obtained as produced water.

【0059】このときの消費電圧も、脱塩室1.28V
×2室、濃縮室1.28V×3室、陽極電極室1.4
V、陰極電極室1.9Vの合計で9.7Vであった。
The consumption voltage at this time is also 1.28 V in the desalination chamber.
× 2 rooms, concentration room 1.28V × 3 rooms, anode electrode room 1.4
V and 1.9 V in the cathode electrode chamber in total were 9.7 V.

【0060】比較例 図2の装置を用いて、実施例1と同様に通水した。但
し、濃縮水量は60L/hr、濃縮水排水量を9L/h
rとした。
Comparative Example Water was passed in the same manner as in Example 1 using the apparatus shown in FIG. However, the concentrated water amount is 60 L / hr, and the concentrated water drainage amount is 9 L / h
r.

【0061】その結果、得られた生産水は、比抵抗17
MΩ・cm、シリカ濃度は6ppbであった。
As a result, the obtained product water has a specific resistance of 17
MΩ · cm, silica concentration was 6 ppb.

【0062】[0062]

【発明の効果】以上詳述した通り、本発明によれば、従
来の電気脱イオン装置では十分に除去し得ないシリカ、
ホウ素を高度に除去して高純度の生産水を製造すること
ができる。
As described in detail above, according to the present invention, silica which cannot be sufficiently removed by a conventional electrodeionization apparatus,
Highly purified boron can be produced to produce high-purity water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す電気脱イオン装置の
模式的な断面図である。
FIG. 1 is a schematic sectional view of an electrodeionization apparatus according to an embodiment of the present invention.

【図2】従来の電気脱イオン装置を示す模式的な断面図
である。
FIG. 2 is a schematic sectional view showing a conventional electrodeionization apparatus.

【図3】図3(a)は本発明の電気脱イオン装置の実施
の形態を示す概略的な斜視図、図3(b)は同系統図で
ある。
FIG. 3 (a) is a schematic perspective view showing an embodiment of the electrodeionization apparatus of the present invention, and FIG. 3 (b) is the same system diagram.

【図4】本発明の電気脱イオン装置を超純水製造システ
ムに適用する実施の形態を示す系統図である。
FIG. 4 is a system diagram showing an embodiment in which the electrodeionization apparatus of the present invention is applied to an ultrapure water production system.

【符号の説明】[Explanation of symbols]

1 紫外線酸化装置 2 電気脱イオン装置 2A 脱塩室 2B 濃縮室 3 限外濾過膜分離装置 11 陽極 12 陰極 13 アニオン交換膜(A膜) 14 カチオン交換膜(C膜) 15 濃縮室 15A,15B 濃縮水流通部 15S 仕切壁 16 脱塩室 17 陽極室 18 陰極室 DESCRIPTION OF SYMBOLS 1 Ultraviolet oxidation apparatus 2 Electrodeionization apparatus 2A Deionization chamber 2B Concentration chamber 3 Ultrafiltration membrane separation apparatus 11 Anode 12 Cathode 13 Anion exchange membrane (A membrane) 14 Cation exchange membrane (C membrane) 15 Concentration chamber 15A, 15B Concentration Water circulation unit 15S Partition wall 16 Desalination room 17 Anode room 18 Cathode room

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年12月20日(2001.12.
20)
[Submission date] December 20, 2001 (2001.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0052】実施例1 水道水を活性炭塔、逆浸透膜分離装置及び膜脱気装置で
順次処理した表1に示す水質の水を原水として、図1に
示す下記仕様の電気脱イオン装置(脱塩室2室,濃縮室
3室)で下記運転条件にて脱イオン処理を行った。 [電気脱イオン装置仕様] 脱塩室高さ:66cm 脱塩室厚さ:2.5mm 濃縮室厚さ:2.5mm 脱塩室充填物:アニオン交換樹脂:カチオン交換樹脂=
7:3(体積比)の混合イオン交換樹脂 濃縮室充填物:アニオン交換樹脂:カチオン交換樹脂=
7:3(体積比)の混合イオン交換樹脂 陽極室及び陰極室充填物:活性炭 [運転条件] 電流:2A(電流効率4%) 脱塩室SV:130hr−1 濃縮室LV:13m/hr 生産水量 :60L/hr 濃縮室水量:9L/hr 電極室水量:5L/hr 水回収率 :81%(=60÷(60+9+5)×10
0)
Example 1 Tap water was supplied to an activated carbon tower, a reverse osmosis membrane separator and a membrane deaerator.
Fig. 1 shows the water of the quality shown in Table 1 which was processed sequentially as raw water.
Electrodeionizer with the following specifications (2 desalination rooms, enrichment room)
3), a deionization treatment was performed under the following operating conditions. [Electric deionizer specifications] Deionization chamber height: 66cm Deionization chamber thickness: 2.5mm  Concentration chamber thickness: 2.5mm  Desalting chamber filling: anion exchange resin: cation exchange resin =
7: 3 (volume ratio) mixed ion exchange resin Concentration chamber filling: anion exchange resin: cation exchange resin =
7: 3 (volume ratio) mixed ion-exchange resin Anode compartment and cathode compartment filling: activated carbon [Operating conditions] Current: 2 A (current efficiency 4%) Deionization compartment SV: 130 hr-1  Concentration room LV: 13 m / hr Production water amount: 60 L / hr Concentration room water amount: 9 L / hr Electrode room water amount: 5 L / hr Water recovery rate: 81% (= 60 ° (60 + 9 + 5) × 10
0)

フロントページの続き Fターム(参考) 4D006 GA17 JA43C JA44C KB01 KB04 KB11 KB17 MA13 MA14 MB07 PA02 PB06 PB23 PB70 PC01 PC11 PC42 4D025 AA04 AB05 AB17 BA08 BA13 BA25 BA27 DA01 DA04 DA05 DA06 4D061 DA03 DB13 DC13 DC18 EA09 EB13 EB17 EB19 EB22 EB23 EB24 EB37 FA03 FA06 FA08 FA09 GA21 Continued on front page F-term (reference) 4D006 GA17 JA43C JA44C KB01 KB04 KB11 KB17 MA13 MA14 MB07 PA02 PB06 PB23 PB70 PC01 PC11 PC42 4D025 AA04 AB05 AB17 BA08 BA13 BA25 BA27 DA01 DA04 DA05 DA06 4D061 DA03 DB13 DC13 DC18 EB09 EB19 EB19 EB19 EB13 EB24 EB37 FA03 FA06 FA08 FA09 GA21

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 陽極を有する陽極室と、陰極を有する陰
極室と、これらの陽極室と陰極室との間に複数のアニオ
ン交換膜及びカチオン交換膜を交互に配列することによ
り交互に形成された濃縮室及び脱塩室とを備え、 該脱塩室にイオン交換体が充填され、 該濃縮室にイオン交換体、活性炭又は電気導電体が充填
されている電気脱イオン装置を運転する方法であって、 該陽極室及び陰極室にそれぞれ電極水を通水し、 該濃縮室に濃縮水を通水し、 該脱塩室に原水を通水して脱イオン水を取り出す電気脱
イオン装置の運転方法において、 該濃縮水として、該原水よりシリカ又はホウ素濃度の低
い水を、該濃縮室のうち脱塩室の脱イオン水取り出し口
に近い側から該濃縮室内に導入すると共に、 該濃縮室のうち脱塩室の原水入口に近い側から流出さ
せ、 この濃縮室から流出した濃縮水の少なくとも一部を系外
へ排出することを特徴とする電気脱イオン装置の運転方
法。
An anode chamber having an anode, a cathode chamber having a cathode, and a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the anode chamber and the cathode chamber. And a method for operating an electrodeionization apparatus in which the deionization chamber is filled with an ion exchanger, and the concentration chamber is filled with an ion exchanger, activated carbon, or an electric conductor. An electrode deionization apparatus for passing electrode water through the anode chamber and the cathode chamber, passing concentrated water through the concentrating chamber, and passing deionized water through the desalting chamber to extract deionized water. In the operation method, as the concentrated water, water having a lower concentration of silica or boron than the raw water is introduced into the concentration chamber from a side of the concentration chamber that is closer to the deionized water outlet of the deionization chamber. Flow from the side near the raw water inlet of the desalination chamber Is allowed, the method operation of electrodeionization apparatus, characterized in that for discharging at least part of the concentrated water flowing out of the concentrating compartment to the outside of the system.
【請求項2】 請求項1において、濃縮水を脱塩室と向
流一過式で濃縮室に通水することを特徴とする電気脱イ
オン装置の運転方法。
2. The method for operating an electrodeionization apparatus according to claim 1, wherein the concentrated water is passed through the enrichment chamber in a countercurrent manner with the desalination chamber.
【請求項3】 請求項1又は2において、濃縮水とし
て、該電気脱イオン装置の脱塩水、該脱塩水をさらにイ
オン交換装置等で処理した水、又は超純水を濃縮室に通
水することを特徴とする電気脱イオン装置の運転方法。
3. The concentrating chamber according to claim 1 or 2, wherein, as the concentrated water, demineralized water of the electrodeionization device, water obtained by further processing the demineralized water by an ion exchange device, or ultrapure water is passed through the concentration chamber. An operation method for an electrodeionization device, comprising:
【請求項4】 請求項1ないし3のいずれか1項におい
て、該陽極室及び陰極室に活性炭、イオン交換体又は電
気導電体が充填されていることを特徴とする電気脱イオ
ン装置の運転方法。
4. The method for operating an electrodeionization apparatus according to claim 1, wherein the anode chamber and the cathode chamber are filled with activated carbon, an ion exchanger or an electric conductor. .
【請求項5】 請求項1ないし3のいずれか1項におい
て、 該陽極が陽極室を区画するカチオン交換膜に接してお
り、 該陰極が陰極室を区画するアニオン交換膜に接してお
り、 該陽極及び陰極のうち少なくとも該交換膜に接する側が
連続孔を有する多孔質状となっており、該孔を介して電
極水を該陽極室及び陰極室にそれぞれ通水可能となって
いることを特徴とする電気脱イオン装置の運転方法。
5. The method according to claim 1, wherein the anode is in contact with a cation exchange membrane defining an anode compartment, and the cathode is in contact with an anion exchange membrane defining a cathode compartment. At least the side of the anode and the cathode that is in contact with the exchange membrane has a porous shape having continuous holes, and electrode water can be passed through the holes to the anode chamber and the cathode chamber, respectively. Operating method of the electrodeionization apparatus.
【請求項6】 陽極を有する陽極室と、陰極を有する陰
極室と、これらの陽極室と陰極室との間に複数のアニオ
ン交換膜及びカチオン交換膜を交互に配列することによ
り交互に形成された濃縮室及び脱塩室とを備え、 該脱塩室にイオン交換体が充填され、 該濃縮室にイオン交換体、活性炭又は電気導電体が充填
されている電気脱イオン装置であって、 該陽極室及び陰極室にそれぞれ電極水を通水する手段
と、 該濃縮室に濃縮水を通水する濃縮水通水手段と、 該脱塩室に原水を通水して脱イオン水を取り出す手段と
を有する電気脱イオン装置において、 該濃縮水通水手段が、該原水よりシリカ又はホウ素濃度
の低い水を、脱塩室の脱イオン水取り出し口に近い側か
ら該濃縮室内に導入すると共に、該濃縮室のうち脱塩室
の原水入口に近い側から流出させ、この濃縮室から流出
した濃縮水の少なくとも一部を系外へ排出する手段であ
ることを特徴とする電気脱イオン装置。
6. An anode chamber having an anode, a cathode chamber having a cathode, and a plurality of anion exchange membranes and cation exchange membranes alternately arranged between the anode chamber and the cathode chamber. An ion exchanger, wherein the deionization chamber is filled with an ion exchanger, and the concentration chamber is filled with an ion exchanger, activated carbon, or an electric conductor. A means for passing electrode water through the anode chamber and the cathode chamber, a concentrated water passing means for passing concentrated water through the concentration chamber, and a means for passing raw water through the desalination chamber to take out deionized water Wherein the concentrated water flow means introduces water having a lower concentration of silica or boron than the raw water into the concentration chamber from a side near the deionized water outlet of the desalination chamber, Is the side of the enrichment room close to the raw water inlet of the desalination room An electrodeionization apparatus for discharging at least a part of the concentrated water flowing out of the concentration chamber to the outside of the system.
【請求項7】 請求項6において、該濃縮水通水手段
が、濃縮水を脱塩室と向流一過式で濃縮室に通水する手
段であることを特徴とする電気脱イオン装置。
7. The electrodeionization apparatus according to claim 6, wherein the concentrated water passing means is a means for passing the concentrated water to the concentration chamber in a countercurrent manner with the desalination chamber.
【請求項8】 請求項6又は7において、濃縮水とし
て、該電気脱イオン装置の脱塩水、該脱塩水をさらにイ
オン交換装置等で処理した水、又は超純水が濃縮室に通
水されることを特徴とする電気脱イオン装置。
8. The concentrating chamber according to claim 6, wherein the concentrated water is demineralized water of the electrodeionization device, water obtained by further processing the demineralized water by an ion exchange device or the like, or ultrapure water. An electrodeionization device characterized in that:
【請求項9】 請求項6ないし8のいずれか1項におい
て、該陽極室及び陰極室に活性炭、イオン交換体又は電
気導電体が充填されていることを特徴とする電気脱イオ
ン装置。
9. The electrodeionization apparatus according to claim 6, wherein the anode chamber and the cathode chamber are filled with activated carbon, an ion exchanger, or an electric conductor.
【請求項10】 請求項6ないし8のいずれか1項にお
いて、 該陽極が陽極室を区画するカチオン交換膜に接してお
り、 該陰極が陰極室を区画するアニオン交換膜に接してお
り、 該陽極及び陰極のうち少なくとも該交換膜に接する側が
連続孔を有する多孔質状となっており、該孔を介して電
極水を該陽極室及び陰極室にそれぞれ通水可能となって
いることを特徴とする電気脱イオン装置。
10. The method according to claim 6, wherein the anode is in contact with a cation exchange membrane defining an anode chamber, and the cathode is in contact with an anion exchange membrane defining a cathode chamber. At least the side of the anode and the cathode that is in contact with the exchange membrane has a porous shape having continuous holes, and electrode water can be passed through the holes to the anode chamber and the cathode chamber, respectively. Electrodeionization device.
JP2001000678A 2001-01-05 2001-01-05 Electrodeionization apparatus and operation method thereof Expired - Lifetime JP3794268B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001000678A JP3794268B2 (en) 2001-01-05 2001-01-05 Electrodeionization apparatus and operation method thereof
US10/024,291 US6733646B2 (en) 2001-01-05 2001-12-21 Method and apparatus for electrodeionization of water
SG200108069A SG104954A1 (en) 2001-01-05 2001-12-27 Method and apparatus for electrodeionization of water
DE60106854T DE60106854T2 (en) 2001-01-05 2001-12-27 Process and apparatus for the electrodeionization of water
EP01310901A EP1222954B1 (en) 2001-01-05 2001-12-27 Method and apparatus for electrodeionization of water
MYPI20015940A MY123871A (en) 2001-01-05 2001-12-29 Method and apparatus for electrodeionization of water
KR10-2002-0000386A KR100465579B1 (en) 2001-01-05 2002-01-04 Method and apparatus for electrodeionization of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000678A JP3794268B2 (en) 2001-01-05 2001-01-05 Electrodeionization apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002205069A true JP2002205069A (en) 2002-07-23
JP3794268B2 JP3794268B2 (en) 2006-07-05

Family

ID=18869425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000678A Expired - Lifetime JP3794268B2 (en) 2001-01-05 2001-01-05 Electrodeionization apparatus and operation method thereof

Country Status (7)

Country Link
US (1) US6733646B2 (en)
EP (1) EP1222954B1 (en)
JP (1) JP3794268B2 (en)
KR (1) KR100465579B1 (en)
DE (1) DE60106854T2 (en)
MY (1) MY123871A (en)
SG (1) SG104954A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
JP2004216302A (en) * 2003-01-16 2004-08-05 Kurita Water Ind Ltd Electrodeionizing apparatus and water treatment apparatus
WO2004071968A1 (en) 2003-02-14 2004-08-26 Kurita Water Industries Ltd. Electric deionization apparatus and method of operating the same
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device
JP2007511352A (en) * 2003-11-13 2007-05-10 ユーエスフィルター・コーポレイション Water treatment system and method
US7485213B2 (en) 2002-11-15 2009-02-03 Kurita Water Industries Ltd. Electrodeionization apparatus
US7666288B2 (en) 2002-07-08 2010-02-23 Kurita Water Industries Ltd. Apparatus for electrodeionization of water
US7699968B2 (en) 2003-06-12 2010-04-20 Kurita Water Industries Ltd. Water purifying system
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2012040474A (en) * 2010-08-16 2012-03-01 Nomura Micro Sci Co Ltd Method and device for producing pure water
KR101154154B1 (en) 2004-03-18 2012-06-14 에드워즈 리미티드 Electromembrane process and apparatus
JP2018199136A (en) * 2018-10-02 2018-12-20 三菱ケミカルアクア・ソリューションズ株式会社 Pure water production method
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
JP2021037469A (en) * 2019-09-03 2021-03-11 栗田工業株式会社 Electric deionizing device and manufacturing method of deionized water
WO2022118522A1 (en) * 2020-12-04 2022-06-09 栗田工業株式会社 Electric deionization device and method for producing deionized water
WO2023176574A1 (en) * 2022-03-16 2023-09-21 栗田工業株式会社 Method for operating electric deionizer
WO2023199759A1 (en) * 2022-04-11 2023-10-19 栗田工業株式会社 Deionized water production device and method

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649037B2 (en) * 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
EP1436069B1 (en) 2001-10-15 2011-02-09 Siemens Water Technologies Holding Corp. Apparatus and method for fluid purification
DE60202512T2 (en) * 2001-10-31 2005-12-22 Kurita Water Industries, Ltd. Device for electrodeionization
US6896814B2 (en) 2001-12-20 2005-05-24 Aquatech International Corporation Fractional deionization process
JP3864891B2 (en) * 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer
GR1004819B (en) * 2003-08-12 2005-03-28 Κωνσταντινος Ιωαννης Δερμεντζης Cell for continuous electro-de-ionisation without ion exchange membranes
US7846340B2 (en) * 2003-11-13 2010-12-07 Siemens Water Technologies Corp. Water treatment system and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7862700B2 (en) * 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US7582198B2 (en) * 2003-11-13 2009-09-01 Siemens Water Technologies Holding Corp. Water treatment system and method
US7563351B2 (en) 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US20050103717A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US7083733B2 (en) 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US7470366B2 (en) * 2004-05-07 2008-12-30 Ge Mobile Water, Inc. Water purification system and method using reverse osmosis reject stream in an electrodeionization unit
US20060091077A1 (en) * 2004-10-29 2006-05-04 Ecolochem, Inc. Concentrate recycle loop with filtration module
US7658828B2 (en) 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
WO2006130786A2 (en) 2005-06-01 2006-12-07 Siemens Water Technologies Holding Corp. Water treatment system and process
CN100335419C (en) * 2005-09-12 2007-09-05 张贵清 Electric deionisation method and apparatus for producing superpure water using separation bed
KR100649653B1 (en) * 2005-10-07 2006-11-27 한국정수공업 주식회사 Deionization apparatus and method for condensate with electro-deionization equipment without the recycle pump
NO20071748L (en) * 2006-04-06 2007-10-08 Christ Water Technology Ag Device for continuous electrochemical desalination with integrated membrane interval.
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US20080067069A1 (en) * 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
US7820024B2 (en) 2006-06-23 2010-10-26 Siemens Water Technologies Corp. Electrically-driven separation apparatus
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
WO2008048656A2 (en) * 2006-10-18 2008-04-24 Kinetico Incorporated Electroregeneration apparatus and water treatment method
CN101878187B (en) 2007-11-30 2014-12-10 伊沃夸水处理技术有限责任公司 Systems and methods for water treatment
WO2010006310A1 (en) * 2008-07-11 2010-01-14 Antich Peter P Water purification process
US8524062B2 (en) 2010-12-29 2013-09-03 General Electric Company Electrodeionization device and method with improved scaling resistance
US9724645B2 (en) 2012-02-02 2017-08-08 Tangent Company Llc Electrochemically regenerated water deionization
CN105008591A (en) * 2013-02-01 2015-10-28 3M创新有限公司 Rechargeable electrochemical cells
JP6119886B1 (en) * 2016-01-28 2017-04-26 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
IL272679B2 (en) 2017-08-21 2023-09-01 Evoqua Water Tech Llc Treatment of saline water for agricultural and potable use
JP7064304B2 (en) * 2017-09-25 2022-05-10 オルガノ株式会社 Measurement method and measurement system for conductivity of decationized water

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL288721A (en) 1962-02-19
JP2751090B2 (en) 1993-04-21 1998-05-18 日本錬水株式会社 Pure water production equipment
JP2699256B2 (en) 1993-10-05 1998-01-19 株式会社荏原製作所 Electric regeneration type continuous ion exchange device and its use
JP3458430B2 (en) * 1993-12-03 2003-10-20 松下電器産業株式会社 Water conditioner
WO1997046492A1 (en) 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
US5593563A (en) 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
US6248226B1 (en) * 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
US5868915A (en) 1996-09-23 1999-02-09 United States Filter Corporation Electrodeionization apparatus and method
JPH10128338A (en) * 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
US5730779A (en) * 1996-10-31 1998-03-24 Air Products And Chemicals, Inc. Fluorochemical recovery and recycle using membranes
US6296751B1 (en) * 1999-09-13 2001-10-02 Leon Mir Electrodeionization apparatus with scaling control
JP3695338B2 (en) * 2000-03-02 2005-09-14 旭硝子株式会社 Method for producing deionized water

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
US7666288B2 (en) 2002-07-08 2010-02-23 Kurita Water Industries Ltd. Apparatus for electrodeionization of water
US7485213B2 (en) 2002-11-15 2009-02-03 Kurita Water Industries Ltd. Electrodeionization apparatus
JP2004216302A (en) * 2003-01-16 2004-08-05 Kurita Water Ind Ltd Electrodeionizing apparatus and water treatment apparatus
WO2004071968A1 (en) 2003-02-14 2004-08-26 Kurita Water Industries Ltd. Electric deionization apparatus and method of operating the same
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
KR101066939B1 (en) * 2003-02-14 2011-09-23 쿠리타 고교 가부시키가이샤 Electric deionization apparatus and method of operating the same
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
US7699968B2 (en) 2003-06-12 2010-04-20 Kurita Water Industries Ltd. Water purifying system
JP4833077B2 (en) * 2003-11-13 2011-12-07 シ−メンス ウォーター テクノロジーズ ホールディング コープ Water treatment method
JP2007511352A (en) * 2003-11-13 2007-05-10 ユーエスフィルター・コーポレイション Water treatment system and method
KR101154154B1 (en) 2004-03-18 2012-06-14 에드워즈 리미티드 Electromembrane process and apparatus
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2012040474A (en) * 2010-08-16 2012-03-01 Nomura Micro Sci Co Ltd Method and device for producing pure water
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
KR20200020665A (en) 2017-06-23 2020-02-26 쿠리타 고교 가부시키가이샤 Control method and design method of electric deionizer
JPWO2018235366A1 (en) * 2017-06-23 2020-04-23 栗田工業株式会社 Control method and design method of electric deionization apparatus
JP2018199136A (en) * 2018-10-02 2018-12-20 三菱ケミカルアクア・ソリューションズ株式会社 Pure water production method
JP2021037469A (en) * 2019-09-03 2021-03-11 栗田工業株式会社 Electric deionizing device and manufacturing method of deionized water
WO2022118522A1 (en) * 2020-12-04 2022-06-09 栗田工業株式会社 Electric deionization device and method for producing deionized water
JP2022089558A (en) * 2020-12-04 2022-06-16 栗田工業株式会社 Electric deionizer and deionized water production method
WO2023176574A1 (en) * 2022-03-16 2023-09-21 栗田工業株式会社 Method for operating electric deionizer
JP7380730B2 (en) 2022-03-16 2023-11-15 栗田工業株式会社 How to operate an electrodeionization device
WO2023199759A1 (en) * 2022-04-11 2023-10-19 栗田工業株式会社 Deionized water production device and method

Also Published As

Publication number Publication date
EP1222954A1 (en) 2002-07-17
EP1222954B1 (en) 2004-11-03
SG104954A1 (en) 2004-07-27
DE60106854T2 (en) 2005-03-24
KR20020057820A (en) 2002-07-12
DE60106854D1 (en) 2004-12-09
KR100465579B1 (en) 2005-01-13
MY123871A (en) 2006-06-30
US20020125137A1 (en) 2002-09-12
US6733646B2 (en) 2004-05-11
JP3794268B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP2002205069A (en) Electrodeionization apparatus and operating method thereof
TWI241986B (en) Electrodeionization apparatus
KR100465580B1 (en) Electro-deionization device and method for operating the same
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP3969221B2 (en) Method and apparatus for producing deionized water
KR101066939B1 (en) Electric deionization apparatus and method of operating the same
JP2004216302A (en) Electrodeionizing apparatus and water treatment apparatus
JP2004261643A (en) Electrodeionization apparatus, and operating method therefor
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP4250922B2 (en) Ultrapure water production system
JP2003001259A (en) Ultrapure water producing apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP2002011475A (en) Electric deionization device and device for producing pure water
JP2002011476A (en) Method of operating electric deionization device
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same
JP2001170646A (en) Water passing method of electric deionized water production device
JP5058217B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001276836A (en) Production method of deionized water
JP2004033978A (en) Operation method of electrically deionizing apparatus
JP2000263057A (en) Electric desalting apparatus
JP2004009023A (en) Method for producing deionized water by electric regeneration process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3794268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term