JP2002204004A - Magnetoresistance effect element, magnetic memory, magnetic head, and magnetic reproducing apparatus - Google Patents

Magnetoresistance effect element, magnetic memory, magnetic head, and magnetic reproducing apparatus

Info

Publication number
JP2002204004A
JP2002204004A JP2000401185A JP2000401185A JP2002204004A JP 2002204004 A JP2002204004 A JP 2002204004A JP 2000401185 A JP2000401185 A JP 2000401185A JP 2000401185 A JP2000401185 A JP 2000401185A JP 2002204004 A JP2002204004 A JP 2002204004A
Authority
JP
Japan
Prior art keywords
ferromagnetic
ferromagnetic layer
layer
magnetoresistive element
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000401185A
Other languages
Japanese (ja)
Other versions
JP3607609B2 (en
Inventor
Masayuki Sunai
正之 砂井
Yoshiaki Saito
好昭 斉藤
Kentaro Nakajima
健太郎 中島
Minoru Amano
実 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000401185A priority Critical patent/JP3607609B2/en
Publication of JP2002204004A publication Critical patent/JP2002204004A/en
Application granted granted Critical
Publication of JP3607609B2 publication Critical patent/JP3607609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistance effect element, a magnetic memory, a magnetic head, and a magnetic reproducing apparatus capable of maintaining high enough magneto-resistance ratio and preventing increase of inverting magnetic field even for reduced size. SOLUTION: The magnetoresistance effect element 1 comprises: a first ferromagnetic layer 3 for keeping a direction of magnetization prepared for no application of magnetic field in the prescribed magnetic field; a second ferromagnetic layer 4 capable of varying a direction of magnetization prepared for no application of the magnetic field in the prescribed magnetic field; and a first tunnel barrier layer 6 lying between the first ferromagnetic layer 3 and the second ferromagnetic layer 4. The first ferromagnetic layer 3, the first tunnel barrier layer 6, and the second ferromagnetic layer 4 form a ferromagnetic tunnel junction, a composition of the ferromagnetic material included in the second ferromagnetic layer 4 is expressed by a general formula (CoFe)100-xYx or (CoFeNi)100-xYx, and the Y is at least one element selected from the group consisting of B, Si, Zr, P, Mo, Al, an Nb.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果素
子、磁気メモリ、磁気ヘッド、及び磁気再生装置に関す
る。
The present invention relates to a magnetoresistive element, a magnetic memory, a magnetic head, and a magnetic reproducing apparatus.

【0002】[0002]

【従来の技術】強磁性一重トンネル接合は、薄い絶縁体
層を一対の強磁性層で挟持してなる構造を有している。
それら強磁性層を電極として用いてバイアス電圧を印加
すると、強磁性一重トンネル接合にはトンネル電流が流
れる。
2. Description of the Related Art A ferromagnetic single tunnel junction has a structure in which a thin insulator layer is sandwiched between a pair of ferromagnetic layers.
When a bias voltage is applied using these ferromagnetic layers as electrodes, a tunnel current flows through the ferromagnetic single tunnel junction.

【0003】強磁性一重トンネル接合において、トンネ
ル電流が流れる際のトンネル抵抗,すなわちトンネルコ
ンダクタンス,は、一方の強磁性層の磁化方向と他方の
強磁性層の磁化方向とがなす角度に依存して変化する。
換言すれば、強磁性一重トンネル接合で得られる磁気抵
抗効果(magnetoresistance effect)は、強磁性層間で
磁化方向がなす角度に応じてトンネルコンダクタンスが
変化することに基づいている。例えば、一方の強磁性層
の磁化方向が膜面に平行な第1の方向であり且つ他方の
強磁性層の磁化方向が第1の方向とは逆向きの第2の方
向である場合には、トンネルコンダクタンスは最小とな
る。また、それら強磁性層の磁化方向がともに第1の方
向である場合には、トンネルコンダクタンスは最大とな
る。
In a ferromagnetic single tunnel junction, the tunnel resistance when a tunnel current flows, that is, the tunnel conductance, depends on the angle between the magnetization direction of one ferromagnetic layer and the magnetization direction of the other ferromagnetic layer. Change.
In other words, the magnetoresistance effect obtained by the ferromagnetic single tunnel junction is based on the fact that the tunnel conductance changes according to the angle formed by the magnetization direction between the ferromagnetic layers. For example, when the magnetization direction of one ferromagnetic layer is a first direction parallel to the film surface and the magnetization direction of the other ferromagnetic layer is a second direction opposite to the first direction, , The tunnel conductance is minimized. When the magnetization directions of the ferromagnetic layers are both the first direction, the tunnel conductance becomes maximum.

【0004】このような強磁性一重トンネル接合は、様
々なデバイスへの応用が期待されている。例えば、一方
の強磁性層を磁化方向が固定された磁化固着層とし且つ
他方の強磁性層を外部磁場に応じて磁化方向が変化し得
るフリー層とした強磁性一重トンネル接合については、
固体磁気メモリ(或いは、磁気ランダムアクセスメモ
リ:MRAM)のメモリセルとして利用することが提案
されており、このMRAMは、低記憶容量ながら既に試
作されている。
[0004] Such a ferromagnetic single tunnel junction is expected to be applied to various devices. For example, for a ferromagnetic single tunnel junction in which one ferromagnetic layer is a pinned layer having a fixed magnetization direction and the other ferromagnetic layer is a free layer whose magnetization direction can be changed according to an external magnetic field,
It has been proposed to use as a memory cell of a solid-state magnetic memory (or a magnetic random access memory: MRAM), and this MRAM has already been prototyped while having a low storage capacity.

【0005】MRAMは、基本的には不揮発性であり、
高速の書き込み及び読み出しが可能であり、しかも、書
き込み及び読み出しの繰り返しに対する耐疲労特性が高
いなどの優れた特徴を有している。しかしながら、以下
に説明するように、MRAMは、大容量化に伴ってメモ
リセルのサイズを縮小した場合に、フリー層の磁化方向
を反転させるのに必要な磁場,所謂、反転磁場,が大き
くなり、より大きな書き込み電流が必要となるという問
題を有している。
[0005] The MRAM is basically non-volatile,
High-speed writing and reading are possible, and it has excellent features such as high fatigue resistance against repeated writing and reading. However, as described below, in the MRAM, when the size of the memory cell is reduced along with the increase in the capacity, the magnetic field required to reverse the magnetization direction of the free layer, the so-called switching magnetic field, increases. However, there is a problem that a larger write current is required.

【0006】フリー層の反転磁場は1/W(W:セルの
幅)に比例している。また、この反転磁場は、フリー層
の膜厚t及び飽和磁化Msにも比例することが知られて
いる。すなわち、フリー層の反転磁場はt・Ms/Wに
比例している。なお、フリー層の反転磁場が1/Wに比
例しているのは、フリー層の磁化方向を反転させてMR
AMセルに記憶された情報を書き換えるためには、フリ
ー層内部に生じる反磁場を上回る外部磁場を印加する必
要があるが、この反磁場はセルの幅方向に生じる磁極に
よってもたらされるためである。
The switching field of the free layer is proportional to 1 / W (W: cell width). Further, the switching field is known to be proportional to the thickness t and the saturation magnetization M s of the free layer. That is, the switching magnetic field of the free layer is proportional to t · M s / W. The reason why the reversal magnetic field of the free layer is proportional to 1 / W is that the magnetization direction of the free layer is reversed and MR
In order to rewrite the information stored in the AM cell, it is necessary to apply an external magnetic field exceeding the demagnetizing field generated inside the free layer. This demagnetizing field is caused by the magnetic poles generated in the width direction of the cell.

【0007】上記比例関係から明らかなように、メモリ
セルのサイズを縮小した場合に反転磁場が増大するのを
回避するためには、例えば、フリー層の膜厚tを減少さ
せればよい。しかしながら、膜厚tを薄くした場合、本
来、連続膜であるべきフリー層は得られず、下地上に多
数の微粒子を分散させた形態となる。そのような多数の
微粒子が形成する薄膜は、強磁性体ではなく常磁性体と
なるため、磁気抵抗比が著しく減少することとなる。
As is clear from the above proportional relationship, in order to avoid an increase in the switching field when the size of the memory cell is reduced, for example, the thickness t of the free layer may be reduced. However, when the film thickness t is reduced, a free layer which should be a continuous film cannot be obtained, and a large number of fine particles are dispersed on a base. The thin film formed by such a large number of fine particles becomes a paramagnetic material instead of a ferromagnetic material, so that the magnetoresistance ratio is significantly reduced.

【0008】また、メモリセルのサイズを縮小した場合
に反転磁場が増大するのを回避するために飽和磁化Ms
を減少させることもできる。しかしながら、飽和磁化M
sを減少させるためにフリー層を構成する材料に非磁性
材料を添加した場合、往々にして、フェルミ面における
伝導電子のスピン分極度も低下して磁気抵抗比の低下を
招くこととなる。
In order to avoid an increase in the switching field when the size of the memory cell is reduced, the saturation magnetization M s
Can also be reduced. However, the saturation magnetization M
When a non-magnetic material is added to the material forming the free layer in order to reduce s , the degree of spin polarization of conduction electrons on the Fermi surface often decreases, resulting in a decrease in the magnetoresistance ratio.

【0009】すなわち、従来技術では、メモリセルのサ
イズを縮小した場合に、十分に高い磁気抵抗比を維持し
つつフリー層の反転磁界の増大を防止することができな
かった。なお、MRAMに関連して説明した問題は、強
磁性一重トンネル接合を利用した磁気ヘッドにおいても
同様に存在している。また、強磁性一重トンネル接合に
関して上述した問題は、強磁性二重トンネル接合におい
ても同様である。
That is, in the prior art, when the size of the memory cell is reduced, it is not possible to prevent an increase in the switching field of the free layer while maintaining a sufficiently high magnetoresistance ratio. The problem described in relation to the MRAM also exists in a magnetic head using a ferromagnetic single tunnel junction. In addition, the problem described above regarding the ferromagnetic single tunnel junction is the same in the ferromagnetic double tunnel junction.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、サイズを縮小化した場合
においても十分に高い磁気抵抗比を維持し且つ反転磁界
の増大を防止し得る磁気抵抗効果素子、磁気メモリ、磁
気ヘッド、及び磁気再生装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and maintains a sufficiently high magnetoresistance ratio even when the size is reduced, and prevents an increase in the reversal magnetic field. An object of the present invention is to provide a magnetoresistive element, a magnetic memory, a magnetic head, and a magnetic reproducing device that can be obtained.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、所定の外部磁場において前記外部磁場の
非印加時に備える磁化の方向を保持する第1の強磁性層
と、前記外部磁場において前記外部磁場の非印加時に備
える磁化の方向が変化し得る第2の強磁性層と、前記第
1の強磁性層と前記第2の強磁性層との間に介在する第
1のトンネル障壁層とを具備し、前記第1の強磁性層、
前記第1のトンネル障壁層、及び前記第2の強磁性層は
強磁性トンネル接合を形成し、前記第2の強磁性層に含
まれる強磁性材料の組成は一般式(CoFe)100-xx
または一般式(CoFeNi)10 0-xxで表され、前記
YはB、Si、Zr、P、Mo、Al、及びNbからな
る群より選ばれる少なくとも1種の元素であることを特
徴とする磁気抵抗効果素子を提供する。
In order to solve the above-mentioned problems, the present invention provides a first ferromagnetic layer for maintaining a magnetization direction provided when no external magnetic field is applied in a predetermined external magnetic field; A second ferromagnetic layer capable of changing a direction of magnetization provided when no external magnetic field is applied in a magnetic field, and a first tunnel interposed between the first ferromagnetic layer and the second ferromagnetic layer A first ferromagnetic layer, comprising a barrier layer;
The first tunnel barrier layer and the second ferromagnetic layer form a ferromagnetic tunnel junction, and the composition of the ferromagnetic material contained in the second ferromagnetic layer is represented by the general formula (CoFe) 100-x Y x
Or, represented by the general formula (CoFeNi) 100 -x Y x , wherein Y is at least one element selected from the group consisting of B, Si, Zr, P, Mo, Al, and Nb. To provide a magnetoresistive effect element.

【0012】また、本発明は、前記磁気抵抗効果素子
と、前記磁気抵抗効果素子を挟んで交差する第1及び第
2の配線とを具備することを特徴とする磁気メモリを提
供する。
Further, the present invention provides a magnetic memory, comprising: the magnetoresistive element; and first and second wirings intersecting the magnetoresistive element.

【0013】さらに、本発明は、前記磁気抵抗効果素子
と、前記磁気抵抗効果素子を支持する支持体と、前記磁
気抵抗効果素子に接続された一対の電極とを具備するこ
とを特徴とする磁気ヘッドを提供する。
Further, the present invention is characterized in that it comprises the magnetoresistive element, a support for supporting the magnetoresistive element, and a pair of electrodes connected to the magnetoresistive element. Providing head.

【0014】加えて、本発明は、磁気記録媒体、前記磁
気抵抗効果素子と前記磁気抵抗効果素子を支持する支持
体と前記磁気抵抗効果素子に接続された一対の電極とを
具備し且つ前記磁気記録媒体に記録された情報を読み出
す磁気ヘッド、及び、前記磁気ヘッドを前記磁気記録媒
体に対して相対移動させる移動機構を具備することを特
徴とする磁気再生装置を提供する。
In addition, the present invention provides a magnetic recording medium, comprising: a magnetoresistive element; a support for supporting the magnetoresistive element; and a pair of electrodes connected to the magnetoresistive element; A magnetic reproducing apparatus comprising: a magnetic head that reads information recorded on a recording medium; and a moving mechanism that moves the magnetic head relative to the magnetic recording medium.

【0015】本発明において、上記xは不等式3≦x≦
16に示す関係を満足することが好ましい。また、本発
明において、第2の強磁性層の膜厚は0.3nm乃至
2.5nmの範囲内にあることが好ましい。
In the present invention, x is an inequality 3 ≦ x ≦
It is preferable to satisfy the relationship shown in FIG. In the present invention, the thickness of the second ferromagnetic layer is preferably in the range of 0.3 nm to 2.5 nm.

【0016】本発明において、上記強磁性トンネル接合
は、強磁性一重トンネル接合であってもよく、或いは、
強磁性二重トンネル接合であってもよい。後者の場合、
上記磁気抵抗効果素子は、上記外部磁場において外部磁
場の非印加時に備える磁化の方向を保持する第3の強磁
性層と第2のトンネル障壁層とをさらに有し、それら第
3の強磁性層及び第2のトンネル障壁層は、第2の強磁
性層が2つのトンネル障壁層間に介在し且つ第2の強磁
性層及び2つのトンネル障壁層が第1及び第3の強磁性
層間に介在するように配置される。
In the present invention, the ferromagnetic tunnel junction may be a ferromagnetic single tunnel junction, or
It may be a ferromagnetic double tunnel junction. In the latter case,
The magnetoresistance effect element further includes a third ferromagnetic layer and a second tunnel barrier layer that maintain a direction of magnetization provided when no external magnetic field is applied in the external magnetic field, and the third ferromagnetic layer And a second tunnel barrier layer, wherein the second ferromagnetic layer is interposed between the two tunnel barrier layers, and the second ferromagnetic layer and the two tunnel barrier layers are interposed between the first and third ferromagnetic layers. Are arranged as follows.

【0017】[0017]

【発明の実施の形態】以下、本発明について、図面を参
照しながらより詳細に説明する。なお、各図において、
同様または類似する構成要素には同一の参照符号を付
し、重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. In each figure,
The same or similar components are denoted by the same reference numerals, and redundant description will be omitted.

【0018】図1は、本発明の第1の実施形態に係る磁
気抵抗効果素子を概略的に示す断面図である。図1に示
す磁気抵抗効果素子1は、強磁性一重トンネル接合2a
を有している。この強磁性一重トンネル接合2aは、一
対の強磁性層3,4間に絶縁体などからなるトンネル障
壁層6を介在させた構造を有している。この強磁性一重
トンネル接合2aは、それら強磁性層3,4間をトンネ
ル障壁層6を介してトンネル電流が流れるように構成さ
れている。
FIG. 1 is a sectional view schematically showing a magnetoresistive element according to a first embodiment of the present invention. The magnetoresistive element 1 shown in FIG. 1 has a ferromagnetic single tunnel junction 2a.
have. The ferromagnetic single tunnel junction 2a has a structure in which a tunnel barrier layer 6 made of an insulator or the like is interposed between a pair of ferromagnetic layers 3 and 4. The ferromagnetic single tunnel junction 2 a is configured such that a tunnel current flows between the ferromagnetic layers 3 and 4 via the tunnel barrier layer 6.

【0019】強磁性層3のトンネル障壁層6と接する面
の裏面には、反強磁性層8が配置されている。これによ
り、強磁性層3の磁化方向は、外部磁場を作用させても
変化することはない。一方、強磁性層4の磁化方向は、
基本的には、外部磁場に応じて自由に回転し得る。すな
わち、図1に示す磁気抵抗効果素子1において、強磁性
層3は磁化方向が固定された第1の強磁性層,所謂、磁
化固着層,であり、強磁性層4は外部磁場に応じて磁化
方向が変化し得る第2の強磁性層,所謂、フリー層,で
ある。換言すれば、図1に示す磁気抵抗効果素子1は、
強磁性層4の磁化方向を外部磁場によって反転または回
転させて強磁性層3の磁化方向と強磁性層4の磁化方向
とがなす角度を変化させるとトンネル抵抗或いはトンネ
ル電流が変化するという磁気抵抗効果を利用するもので
ある。
An antiferromagnetic layer 8 is disposed on the back surface of the ferromagnetic layer 3 in contact with the tunnel barrier layer 6. Thus, the magnetization direction of the ferromagnetic layer 3 does not change even when an external magnetic field is applied. On the other hand, the magnetization direction of the ferromagnetic layer 4 is
Basically, it can rotate freely according to an external magnetic field. That is, in the magnetoresistive element 1 shown in FIG. 1, the ferromagnetic layer 3 is a first ferromagnetic layer having a fixed magnetization direction, a so-called magnetization fixed layer, and the ferromagnetic layer 4 is formed in accordance with an external magnetic field. This is a second ferromagnetic layer whose magnetization direction can be changed, that is, a so-called free layer. In other words, the magnetoresistive element 1 shown in FIG.
When the angle between the magnetization direction of the ferromagnetic layer 3 and the magnetization direction of the ferromagnetic layer 4 is changed by reversing or rotating the magnetization direction of the ferromagnetic layer 4 by an external magnetic field, the tunnel resistance or the tunnel current changes. It uses the effect.

【0020】上述した強磁性一重トンネル接合2a及び
反強磁性層8は、通常、基板10の一方の主面上に、各
種薄膜を順次成膜することにより形成される。なお、図
1の磁気抵抗効果素子1において、基板10と反強磁性
層8との間には、拡散バリア層11及び配向制御層12
が基板10側から順次積層されており、強磁性層4上に
は、保護層13及び配線層14が順次積層されている。
また、参照番号15は絶縁層である。
The above-described ferromagnetic single tunnel junction 2 a and antiferromagnetic layer 8 are usually formed by sequentially forming various thin films on one main surface of the substrate 10. In the magnetoresistive element 1 of FIG. 1, a diffusion barrier layer 11 and an orientation control layer 12 are provided between the substrate 10 and the antiferromagnetic layer 8.
Are sequentially laminated from the substrate 10 side, and a protective layer 13 and a wiring layer 14 are sequentially laminated on the ferromagnetic layer 4.
Reference numeral 15 denotes an insulating layer.

【0021】図2は、本発明の第2の実施形態に係る磁
気抵抗効果素子を概略的に示す断面図である。図2に示
す磁気抵抗効果素子1は、強磁性一重ンネル接合2aの
代わりに強磁性二重トンネル接合2bを有しており且つ
強磁性二重トンネル接合2bと保護層13との間にさら
に反強磁性層9を有していること以外は図1に示す磁気
抵抗効果素子1とほぼ同様の構造を有している。
FIG. 2 is a sectional view schematically showing a magnetoresistive element according to a second embodiment of the present invention. The magnetoresistance effect element 1 shown in FIG. 2 has a ferromagnetic double tunnel junction 2b instead of the ferromagnetic single tunnel junction 2a. Except for having the ferromagnetic layer 9, it has substantially the same structure as the magnetoresistive element 1 shown in FIG.

【0022】図2に示す磁気抵抗効果素子1において、
強磁性二重トンネル接合2bは、強磁性層3,4間にト
ンネル障壁層6を介在させ、強磁性層4,5間にトンネ
ル障壁層7を介在させた構造を有している。この強磁性
二重トンネル接合2bは、強磁性層3,4間及び強磁性
層4,5間をトンネル障壁層6,7を介してトンネル電
流が流れるように構成されている。
In the magnetoresistive element 1 shown in FIG.
The ferromagnetic double tunnel junction 2b has a structure in which a tunnel barrier layer 6 is interposed between the ferromagnetic layers 3 and 4, and a tunnel barrier layer 7 is interposed between the ferromagnetic layers 4 and 5. The ferromagnetic double tunnel junction 2b is configured such that a tunnel current flows between the ferromagnetic layers 3 and 4 and between the ferromagnetic layers 4 and 5 via the tunnel barrier layers 6 and 7.

【0023】また、図2に示す磁気抵抗効果素子1にお
いて、強磁性層3に関して説明したのと同様に、強磁性
層5も反強磁性層9の存在によって磁化方向が固定され
た磁化固着層である。図2に示す磁気抵抗効果素子1
は、強磁性層4の磁化方向を外部磁場によって反転また
は回転させて強磁性層3,5の磁化方向と強磁性層4の
磁化方向とがなす角度を変化させるとトンネル抵抗或い
はトンネル電流が変化するという磁気抵抗効果を利用す
るものである。
In the magnetoresistive element 1 shown in FIG. 2, the ferromagnetic layer 5 is also a magnetization fixed layer whose magnetization direction is fixed by the presence of the antiferromagnetic layer 9 as described for the ferromagnetic layer 3. It is. Magnetoresistance effect element 1 shown in FIG.
When the angle between the magnetization directions of the ferromagnetic layers 3 and 5 and the magnetization direction of the ferromagnetic layer 4 is changed by reversing or rotating the magnetization direction of the ferromagnetic layer 4 by an external magnetic field, the tunnel resistance or tunnel current changes. This utilizes the magnetoresistive effect.

【0024】さて、上述した第1及び第2の実施形態に
係る磁気抵抗効果素子1は、強磁性層4を以下に説明す
る材料で構成したことを特徴としている。すなわち、図
1及び図2に示す磁気抵抗効果素子1において、強磁性
層4の組成は、一般式(CoFe)100-xxまたは一般
式(CoFeNi)100-xxで表される。なお、それら
一般式において、YはB、Si、Zr、P、Mo、A
l、及びNbからなる群より選ばれる少なくとも1種の
元素である。また、xは不等式0<x<100を満足す
る数値であり、好ましくは、不等式3<x<16を満足
する数値である。
The magnetoresistive element 1 according to the first and second embodiments is characterized in that the ferromagnetic layer 4 is made of a material described below. That is, in the magnetoresistive element 1 shown in FIGS. 1 and 2, the composition of the ferromagnetic layer 4 is represented by the general formula (CoFe) 100-x Y x or the general formula (CoFeNi) 100-x Y x . In these general formulas, Y is B, Si, Zr, P, Mo, A
l and at least one element selected from the group consisting of Nb. Further, x is a numerical value satisfying the inequality expression 0 <x <100, and is preferably a numerical value satisfying the inequality expression 3 <x <16.

【0025】これら一般式に示す材料は、元素Yを含有
していないこと以外は同様の組成を有する材料に比べて
飽和磁化Msが小さく、したがって、磁気抵抗効果素子
1のサイズを縮小化した場合(或いは、強磁性層4の幅
Wを狭めた場合)においても、反転磁界が過剰に大きく
なることがない。また、強磁性層4の膜厚tを減少させ
た場合においても、元素Yを含有する上記材料によると
結晶化が抑制されるため、強磁性層4を連続膜として形
成することができる。すなわち、磁気抵抗効果素子1の
サイズを縮小化した場合であっても、上記一般式に示す
材料を用いることにより、式t・Ms/Wに比例する強
磁性層4の反転磁界を十分に小さな値に維持することが
可能となる。
The materials shown in these general formulas, except that does not contain the element Y is small saturation magnetization M s, as compared to the material having the same composition, it was therefore reduced the size of the magnetoresistive element 1 In this case (or when the width W of the ferromagnetic layer 4 is reduced), the reversal magnetic field does not become excessively large. Even when the thickness t of the ferromagnetic layer 4 is reduced, crystallization is suppressed by the above-described material containing the element Y, so that the ferromagnetic layer 4 can be formed as a continuous film. In other words, even when the size of the magnetoresistive element 1 is reduced, the switching field of the ferromagnetic layer 4 proportional to the expression t · M s / W can be sufficiently increased by using the material represented by the above general formula. It is possible to maintain a small value.

【0026】図3は、本発明の第1及び第2の実施形態
に係る磁気抵抗効果素子1の強磁性層4の組成とその磁
気抵抗変化率との関係の一例を示すグラフである。この
グラフは、一般式(Co9Fe)100-xxに示す組成を
有し且つ厚さが1nmの強磁性層4を用いた磁気抵抗効
果素子1について得られたデータに基づいて描かれてお
り、横軸は強磁性層4中のBの濃度に相当する上記一般
式中のxを示し、縦軸は磁気抵抗変化率(%)を示して
いる。
FIG. 3 is a graph showing an example of the relationship between the composition of the ferromagnetic layer 4 of the magnetoresistive element 1 according to the first and second embodiments of the present invention and the rate of change in magnetoresistance. This graph is drawn based on the data obtained for the magnetoresistive element 1 using the ferromagnetic layer 4 having the composition represented by the general formula (Co 9 Fe) 100-x B x and having a thickness of 1 nm. The abscissa indicates x in the above general formula corresponding to the concentration of B in the ferromagnetic layer 4, and the ordinate indicates the magnetoresistance change rate (%).

【0027】室温下での通常の成膜方法では、Bを含有
しないCo9Fe膜を連続膜として成膜可能な膜厚の下
限はせいぜい1.5nm程度である。Co9Fe膜が不
連続膜として形成された場合、その不連続膜は数nm径
の微粒子の集合体で構成される。これら微粒子のそれぞ
れは室温下における強磁性を失い、磁化方向が定まらな
くなって、所謂、超常磁性となる。その結果、実用的な
磁界強度の範囲内においては、磁気抵抗変化率は顕著に
低下する。
In a normal film forming method at room temperature, the lower limit of the film thickness that can be formed as a continuous film of a Co 9 Fe film containing no B is at most about 1.5 nm. When the Co 9 Fe film is formed as a discontinuous film, the discontinuous film is composed of an aggregate of fine particles having a diameter of several nm. Each of these fine particles loses ferromagnetism at room temperature, and the magnetization direction is no longer determined, and becomes so-called superparamagnetism. As a result, within the range of practical magnetic field strength, the rate of change in magnetoresistance significantly decreases.

【0028】それに対し、Co9FeにBを添加する
と、膜厚0.5nm程度までは連続膜を形成することが
でき、例えば、膜厚が1nmである場合には、図3に示
すように、xを3乃至16とすることにより10%以上
と十分に高い磁気抵抗変化率を得ることができ、xを5
程度とすることにより20%以上もの磁気抵抗変化率を
得ることができる。
On the other hand, when B is added to Co 9 Fe, a continuous film can be formed up to a film thickness of about 0.5 nm. For example, when the film thickness is 1 nm, as shown in FIG. , X from 3 to 16, a sufficiently high magnetoresistance change rate of 10% or more can be obtained.
By setting the degree, a magnetoresistance change rate of 20% or more can be obtained.

【0029】なお、図3に示すデータは、元素Yとして
Bを添加した場合に得られたものであるが、元素Yとし
てSi、Zr、P、Mo、Al、及びNbを添加した場
合においても同様の傾向が観測される。
The data shown in FIG. 3 was obtained when B was added as the element Y. However, even when Si, Zr, P, Mo, Al, and Nb were added as the element Y, the data shown in FIG. A similar trend is observed.

【0030】元素Yを添加した場合に極めて薄い連続膜
を形成可能となる理由は、元素Yの添加によって、成膜
過程で成膜面上に到達した原子の拡散或いは移動が抑制
されるため、結晶化が抑制されるからである。逆に言え
ば、元素Yを添加しない場合、成膜面上に到達した原子
の拡散或いは移動は比較的自由に行われるため結晶化が
生じ易い。そのため、従来技術では、膜厚を薄くした場
合に個々の島の径が数nm程度の島状構造が形成され、
各島は強磁性体であるにも関わらずその磁化方向が揺ら
いでしまう超常磁性を示すこととなり、その結果、磁気
抵抗変化率が著しく低くなるのである。
The reason that an extremely thin continuous film can be formed when the element Y is added is that the addition or the addition of the element Y suppresses the diffusion or movement of atoms reaching the film formation surface during the film formation process. This is because crystallization is suppressed. Conversely, when the element Y is not added, the diffusion or movement of the atoms reaching the film formation surface is performed relatively freely, so that crystallization easily occurs. Therefore, in the prior art, when the film thickness is reduced, an island-like structure in which the diameter of each island is about several nm is formed,
Each island exhibits superparamagnetism in which the magnetization direction fluctuates in spite of being a ferromagnetic material, and as a result, the magnetoresistance ratio becomes extremely low.

【0031】また、図3では、xが5を超えて増加する
と磁気抵抗変化率が低下している。その理由は必ずしも
明らかとされている訳ではないが、元素Yの濃度が高く
なると伝導電子の散乱が多くなり、フェルミレベルの伝
導電子のスピン分極度が著しく低下するためであると考
えられる。
In FIG. 3, when x exceeds 5, the rate of change in magnetoresistance decreases. Although the reason is not necessarily clear, it is considered that when the concentration of the element Y increases, the scattering of conduction electrons increases, and the degree of spin polarization of the conduction electrons at the Fermi level significantly decreases.

【0032】以上説明したように、上記一般式に示す材
料によると、極めて薄い連続膜を形成可能であり、しか
も、非磁性材料である元素Yを含有しているにも関わら
ず十分に高い磁気抵抗変化率を得ることができる。すな
わち、強磁性層4を上記一般式に示す材料で構成するこ
とにより、磁気抵抗効果素子1のサイズを縮小化した場
合においても、十分に高い磁気抵抗比を維持し且つ反転
磁界の増大を防止することができる。
As described above, according to the material represented by the above general formula, it is possible to form an extremely thin continuous film and to obtain a sufficiently high magnetic property despite containing the element Y which is a nonmagnetic material. The resistance change rate can be obtained. That is, by configuring the ferromagnetic layer 4 with the material represented by the above general formula, even when the size of the magnetoresistive element 1 is reduced, a sufficiently high magnetoresistance ratio is maintained and an increase in the reversal magnetic field is prevented. can do.

【0033】上述した磁気抵抗効果素子1において、強
磁性層3,5を構成する材料は特に制限されるものでは
なく、例えば、パーマロイに代表されるNiFe合金、
Fe、Co、Ni、及びそれらを含む合金、NiMnS
b、PtMnSbのようなホイスラー合金などのハーフ
メタル、CrO2、マグネタイト、Mnペロブスカイト
などの酸化物系のハーフメタル、アモルファス合金など
の種々の軟磁性材料から、CoPt合金、FePt合
金、遷移金属−希土類合金などの硬質磁性材料まで、種
々の強磁性材料を使用することができる。
In the above-described magnetoresistive effect element 1, the material forming the ferromagnetic layers 3 and 5 is not particularly limited. For example, a NiFe alloy represented by permalloy,
Fe, Co, Ni, and alloys containing them, NiMnS
b, various soft magnetic materials such as half metal such as Heusler alloy such as PtMnSb, oxide half metal such as CrO 2 , magnetite and Mn perovskite, amorphous alloy, CoPt alloy, FePt alloy, transition metal-rare earth Various ferromagnetic materials can be used, up to hard magnetic materials such as alloys.

【0034】また、上述した磁気抵抗効果素子1におい
て、反強磁性層8,9は、それぞれ、強磁性層3,5と
の交換結合によりそれらの磁化方向を固定するために設
けられている。これら反強磁性層8,9としては、例え
ば、FeMn、IrMn、PtMn、NiMnなどの反
強磁性合金やNiO、Fe23などの反強磁性材料から
なる薄膜に加え、Co/Ru/Co、Co/Au/Co
などの反強磁***換結合膜を用いてもよい。
In the magnetoresistive element 1 described above, the antiferromagnetic layers 8 and 9 are provided to fix their magnetization directions by exchange coupling with the ferromagnetic layers 3 and 5, respectively. Examples of the antiferromagnetic layers 8 and 9 include a thin film made of an antiferromagnetic alloy such as FeMn, IrMn, PtMn, and NiMn, and a thin film made of an antiferromagnetic material such as NiO and Fe 2 O 3. , Co / Au / Co
For example, an antiferromagnetic exchange coupling film may be used.

【0035】トンネル障壁層6,7は、それぞれ、強磁
性層3,4間及び強磁性層4,5間にトンネル電流を流
し得る範囲のポテンシャル高さと厚さを有するものであ
ればよい。トンネル障壁層6,7の材料としては、例え
ば、Al、Si、Mg、希土類元素、及びこれらの元素
を含む合金の酸化物または窒化物などを用いることがで
きる。但し、酸化物絶縁体からなる薄膜は、その作製条
件等によってポテンシャル障壁が大きく変化する。磁気
抵抗効果素子1の特性は、ポテンシャル障壁の幅及び高
さに応じて大きく変化するので、そのような酸化物絶縁
体を用いる場合、素子特性の設定の自由度が高くなる反
面、素子サイズに応じて種類や作製条件等を適宜設定す
る必要がある。
The tunnel barrier layers 6 and 7 only need to have a potential height and a thickness that allow a tunnel current to flow between the ferromagnetic layers 3 and 4 and between the ferromagnetic layers 4 and 5, respectively. As the material of the tunnel barrier layers 6 and 7, for example, Al, Si, Mg, rare earth elements, and oxides or nitrides of alloys containing these elements can be used. However, the potential barrier of a thin film made of an oxide insulator greatly changes depending on manufacturing conditions and the like. Since the characteristics of the magnetoresistive effect element 1 greatly change according to the width and height of the potential barrier, when such an oxide insulator is used, the degree of freedom in setting the element characteristics increases, but the size of the element increases. It is necessary to appropriately set the type, manufacturing conditions, and the like accordingly.

【0036】上記磁気抵抗効果素子1において、基板1
0としては、例えば、表面にSiO 2酸化膜が形成され
たシリコン単結晶基板を用いることができる。基板10
上に形成する拡散バリア層11は拡散を防ぐためのもの
であり、その材料としては、例えば、Ta、TaPt、
Ti、TiNx、及びCoSi2等を用いることができ
る。拡散バリア層上に形成する配向制御層12は、所望
の結晶配向性を有する反強磁性層8を形成するための下
地層であり、例えば、NiFe、Cu、Ag、及びAu
などの材料で構成され得る。また、保護層13の材料と
しては、例えば、TaやAu等を使用することができ、
配線層14の材料としては、例えば、Al、Cu、A
g、及びAu等を使用することができる。
In the magnetoresistive element 1, the substrate 1
As 0, for example, SiO TwoOxide film is formed
A silicon single crystal substrate can be used. Substrate 10
The diffusion barrier layer 11 formed thereon is for preventing diffusion
The material is, for example, Ta, TaPt,
Ti, TiNx, And CoSiTwoEtc. can be used
You. The orientation control layer 12 formed on the diffusion barrier layer is
For forming the antiferromagnetic layer 8 having the following crystal orientation.
Formation, for example, NiFe, Cu, Ag, and Au
And the like. Further, the material of the protective layer 13 and
For example, for example, Ta or Au can be used,
As a material of the wiring layer 14, for example, Al, Cu, A
g, Au and the like can be used.

【0037】次に、第1及び第2の実施形態に係る磁気
抵抗効果素子1を用いた磁気メモリについて説明する。
Next, a magnetic memory using the magnetoresistive element 1 according to the first and second embodiments will be described.

【0038】図4は、本発明の第1及び第2の実施形態
に係る磁気抵抗効果素子1を用いた磁気メモリ(MRA
M)を概略的に示す断面図である。また、図5は、図4
に示すMRAMの等価回路図である。
FIG. 4 shows a magnetic memory (MRA) using the magnetoresistive element 1 according to the first and second embodiments of the present invention.
(M) is a cross-sectional view schematically showing the structure. FIG. 5 is similar to FIG.
3 is an equivalent circuit diagram of the MRAM shown in FIG.

【0039】図4に示すMRAM21はシリコン基板2
2を有している。このシリコン基板上にはゲート電極2
4が形成されており、シリコン基板22の表面領域に
は、このゲート電極24を挟むようにしてソース・ドレ
イン領域25,26が形成されている。これにより、M
OSトランジスタ23が構成されている。なお、ゲート
電極24は、読み出し用のワードライン(WL1)を構
成している。また、ワードライン(WL1)24上に
は、絶縁膜27を介して書き込み用のワードライン(W
L2)28が形成されている。
The MRAM 21 shown in FIG.
Two. A gate electrode 2 is formed on this silicon substrate.
In the surface region of the silicon substrate 22, source / drain regions 25 and 26 are formed so as to sandwich the gate electrode 24. This gives M
An OS transistor 23 is configured. The gate electrode 24 constitutes a read word line (WL1). On the word line (WL1) 24, a write word line (W
L2) 28 are formed.

【0040】MOSトランジスタ23のドレイン領域2
6にはコンタクトメタル29の一端が接続されており、
コンタクトメタル29の他端には下地層30が接続され
ている。この下地層30上のワードライン(WL2)2
8に対応する位置には強磁性トンネル接合素子(TM
R)31が形成されており、さらに、TMR31上には
ビットライン32が形成されている。
Drain region 2 of MOS transistor 23
6, one end of a contact metal 29 is connected.
An underlayer 30 is connected to the other end of the contact metal 29. Word line (WL2) 2 on this underlayer 30
In the position corresponding to No. 8, a ferromagnetic tunnel junction device (TM
R) 31 are formed, and a bit line 32 is formed on the TMR 31.

【0041】MRAM21のセルは、以上のようにして
構成されている。なお、図4に示すTMR31及び下地
層30は、例えば、図1及び図2に示す磁気抵抗効果素
子1から、基板10、保護層13、配線層14、及び絶
縁層15などを除いた構造に相当する。
The cells of the MRAM 21 are configured as described above. The TMR 31 and the underlayer 30 shown in FIG. 4 have, for example, a structure in which the substrate 10, the protective layer 13, the wiring layer 14, the insulating layer 15, and the like are removed from the magnetoresistive element 1 shown in FIGS. Equivalent to.

【0042】上述したMOSトランジスタ23とTMR
31とで構成されるメモリセルは、図5に示すように、
アレイ状に配列されている。トランジスタ23のゲート
電極である読み出し用のワードライン(WL1)24
と、書き込み用のワードライン(WL2)28とは平行
に配置されている。また、TMR31の上部に接続され
たビットライン(BL)32は、ワードライン(WL
1)24及びワードライン(WL2)28と直交するよ
うに配置されている。
The aforementioned MOS transistor 23 and TMR
As shown in FIG. 5, the memory cell composed of
They are arranged in an array. Read word line (WL1) 24 which is the gate electrode of transistor 23
And the write word line (WL2) 28 are arranged in parallel. The bit line (BL) 32 connected to the upper part of the TMR 31 is connected to the word line (WL).
1) It is arranged so as to be orthogonal to 24 and the word line (WL2) 28.

【0043】このMRAM21は、第1及び第2の実施
形態に係る磁気抵抗効果素子1を用いているので、メモ
リセルのサイズを縮小した場合においても、十分に高い
磁気抵抗比を維持しつつフリー層の反転磁界の増大を防
止することができる。すなわち、このMRAM21で
は、メモリセルのサイズを縮小した場合においても、十
分に電流で情報の書き込みが可能である。
Since the MRAM 21 uses the magnetoresistive effect element 1 according to the first and second embodiments, even when the size of the memory cell is reduced, the MRAM 21 maintains a sufficiently high magnetoresistance ratio and is free. An increase in the switching field of the layer can be prevented. That is, in the MRAM 21, even when the size of the memory cell is reduced, information can be written with a sufficient current.

【0044】なお、MRAM21においては、トランジ
スタ23の代わりに、ダイオードを使用してもよい。例
えば、ワードライン24上にダイオードとTMR31と
の積層体からなるメモリセルを形成し、TMR31上に
ワードライン24と直交するようにビットライン32を
形成してもMRAM21を得ることができる。
In the MRAM 21, a diode may be used instead of the transistor 23. For example, the MRAM 21 can be obtained by forming a memory cell made of a stacked body of the diode and the TMR 31 on the word line 24 and forming the bit line 32 on the TMR 31 so as to be orthogonal to the word line 24.

【0045】次に、第1及び第2の実施形態に係る磁気
抵抗効果素子1を用いた磁気ヘッドについて説明する。
図6は、本発明の第1及び第2の実施形態に係る磁気抵
抗効果素子1を用いた磁気ヘッドを有する磁気ヘッドア
センブリを概略的に示す斜視図である。図6に示す磁気
ヘッドアセンブリ41は、例えば、駆動コイルを保持す
るボビン部などを備えたアクチュエータアーム42を有
している。このアクチュエータアーム42にはサスペン
ション43の一端が取り付けられており、サスペンショ
ン43の他端にはヘッドスライダ44が取り付けられて
いる。上述した第1及び第2の実施形態に係る磁気抵抗
効果素子1は、このヘッドスライダ44に組み込まれた
磁気再生ヘッドに利用されている。
Next, a magnetic head using the magnetoresistive element 1 according to the first and second embodiments will be described.
FIG. 6 is a perspective view schematically showing a magnetic head assembly having a magnetic head using the magnetoresistive element 1 according to the first and second embodiments of the present invention. The magnetic head assembly 41 shown in FIG. 6 has, for example, an actuator arm 42 having a bobbin for holding a drive coil. One end of a suspension 43 is attached to the actuator arm 42, and a head slider 44 is attached to the other end of the suspension 43. The magnetoresistive elements 1 according to the first and second embodiments described above are used for a magnetic reproducing head incorporated in the head slider 44.

【0046】サスペンション43上には信号の書き込み
及び読み取り用のリード線45が形成されており、これ
らリード線45はヘッドスライダ44に組み込まれた磁
気再生ヘッドの電極にそれぞれ電気的に接続されてい
る。なお、図6において、参照番号46は、磁気ヘッド
アセンブリ41の電極パッドを示している。
Lead wires 45 for writing and reading signals are formed on the suspension 43, and these lead wires 45 are electrically connected to electrodes of a magnetic reproducing head incorporated in a head slider 44. . In FIG. 6, reference numeral 46 denotes an electrode pad of the magnetic head assembly 41.

【0047】この磁気ヘッドアセンブリ41は、例え
ば、以下に説明するような磁気記録再生装置に搭載され
得る。図7は、図6に示す磁気ヘッドアセンブリ41を
搭載した磁気記録再生装置を概略的に示す斜視図であ
る。図7に示す磁気記録再生装置51において、磁気記
録媒体である磁気ディスク52はスピンドル53に回転
可能に支持されている。スピンドル53には、制御部
(図示せず)からの制御信号に応じて動作するモータ
(図示せず)が接続されており、これにより、磁気ディ
スク52の回転を制御可能としている。
The magnetic head assembly 41 can be mounted on, for example, a magnetic recording / reproducing apparatus as described below. FIG. 7 is a perspective view schematically showing a magnetic recording / reproducing apparatus equipped with the magnetic head assembly 41 shown in FIG. In the magnetic recording / reproducing apparatus 51 shown in FIG. 7, a magnetic disk 52 as a magnetic recording medium is rotatably supported by a spindle 53. A motor (not shown) that operates according to a control signal from a control unit (not shown) is connected to the spindle 53, whereby the rotation of the magnetic disk 52 can be controlled.

【0048】磁気ディスク52の円周部近傍には固定軸
54が配置されており、この固定軸54は、その上下2
ヶ所に配置されたボールベアリング(図示せず)を介し
て図6に示す磁気ヘッドアセンブリ41を揺動可能に支
持している。磁気ヘッドアセンブリ41のボビン部には
コイル(図示せず)が巻きつけられており、このコイル
とそれを挟んで対向して配置された永久磁石と対向ヨー
クとは磁気回路を形成するのとともにボイスコイルモー
タ55を構成している。このボイスコイルモータ55に
よって、磁気ヘッドアセンブリ41の先端のヘッドスラ
イダ44を、磁気ディスク52の所望のトラック上へと
位置させることを可能としている。なお、この磁気記録
再生装置51において、情報の記録及び再生は、磁気デ
ィスク52を回転させて、ヘッドスライダ44を磁気デ
ィスク52から浮上させた状態で行う。
A fixed shaft 54 is arranged near the circumference of the magnetic disk 52.
The magnetic head assembly 41 shown in FIG. 6 is swingably supported via ball bearings (not shown) arranged at various places. A coil (not shown) is wound around the bobbin portion of the magnetic head assembly 41. The coil, the permanent magnet and the opposing yoke which are arranged to face each other with the coil interposed therebetween form a magnetic circuit and a voice. The coil motor 55 is configured. With the voice coil motor 55, the head slider 44 at the tip of the magnetic head assembly 41 can be positioned on a desired track of the magnetic disk 52. In the magnetic recording / reproducing apparatus 51, information is recorded and reproduced in a state where the magnetic disk 52 is rotated and the head slider 44 is floated from the magnetic disk 52.

【0049】以上のように、第1及び第2の実施形態に
係る磁気抵抗効果素子1は、磁気メモリ、磁気ヘッド、
磁気再生装置、及び磁気記録再生装置に利用することが
できる。また、第1及び第2の実施形態に係る磁気抵抗
効果素子1は、磁気センサ及びそれを用いた磁界検出装
置などに利用することも可能である。
As described above, the magnetoresistive element 1 according to the first and second embodiments includes a magnetic memory, a magnetic head,
The present invention can be used for a magnetic reproducing apparatus and a magnetic recording / reproducing apparatus. Further, the magnetoresistive element 1 according to the first and second embodiments can be used for a magnetic sensor and a magnetic field detecting device using the same.

【0050】[0050]

【実施例】以下、本発明の実施例について説明する。 (実施例)図2に示す磁気抵抗効果素子1を以下に説明
する方法により作製した。まず、Si/SiO2基板1
0をスパッタリング装置内に搬入した。次に、装置内の
初期真空度を2×10-7Torr以下に設定し、その
後、装置内にArを導入して圧力を2×10-3とした。
次いで、Si/SiO2基板10の一方の主面上に、厚
さ5nmのTaからなる拡散バリア層11、厚さ15n
mのNiFeからなる配向制御層12、厚さ17nmの
Ir22Mn78からなる反強磁性層8、及び厚さ3nmの
CoFeからなる強磁性層3を連続的に順次成膜した。
Embodiments of the present invention will be described below. (Example) The magnetoresistive element 1 shown in FIG. 2 was manufactured by the method described below. First, the Si / SiO 2 substrate 1
0 was carried into the sputtering apparatus. Next, the initial degree of vacuum in the apparatus was set to 2 × 10 −7 Torr or less, and then, the pressure was set to 2 × 10 −3 by introducing Ar into the apparatus.
Next, on one main surface of the Si / SiO 2 substrate 10, a diffusion barrier layer 11 made of Ta having a thickness of 5 nm and a thickness of 15 n
orientation control layer 12 made of NiFe of m, were continuously sequentially formed ferromagnetic layer 3 formed of antiferromagnetic layer 8, and the thickness 3nm of CoFe consisting Ir 22 Mn 78 having a thickness of 17 nm.

【0051】次に、Arガス中でAl23ターゲットを
スパッタリングすることにより、強磁性層3上に厚さ
1.5nmのAl2x層を成膜した。次いで、真空破壊
することなく装置内に純酸素を導入するのとともにグロ
ー放電させることにより酸素プラズマを発生させ、この
酸素プラズマを利用してAl2xをAl23へと酸化す
ることによりトンネル障壁層6を得た。このとき、Al
2xからAl23への変換度合の調節は、グロー放電時
のパワー及び酸化時間を制御することにより行った。
Next, a 1.5 nm thick Al 2 O x layer was formed on the ferromagnetic layer 3 by sputtering an Al 2 O 3 target in Ar gas. Next, oxygen plasma is generated by introducing pure oxygen into the apparatus and performing glow discharge without breaking the vacuum, and oxidizing Al 2 O x to Al 2 O 3 using the oxygen plasma. A tunnel barrier layer 6 was obtained. At this time, Al
The degree of conversion from 2 O x to Al 2 O 3 was adjusted by controlling the power and oxidation time during glow discharge.

【0052】装置から純酸素を排気した後、上述したの
と同様の条件下でスパッタリングを行うことにより、ト
ンネル障壁層6上に厚さ1.5nmの(Co9Fe)
0.950 .5からなる強磁性層4を成膜した。次いで、A
rガス中にて、上述したのと同様の条件下でスパッタリ
ングを行って強磁性層4上にAl2x層を成膜し、この
Al2x層を酸素プラズマ処理することによりAl23
からなるトンネル障壁層7を得た。さらに、上述したの
と同様の条件下でスパッタリングを行うことにより、ト
ンネル障壁層7上に、厚さ5nmのCoFeからなる強
磁性層5、厚さ17nmのIr22Mn78からなる反強磁
性層9、及び厚さ5nmのTaからなる保護膜13を順
次成膜した。
After exhausting pure oxygen from the apparatus, sputtering is performed under the same conditions as described above to form a 1.5 nm thick (Co 9 Fe) on the tunnel barrier layer 6.
The ferromagnetic layer 4 made of 0.95 B 0 .5 was formed. Then A
at r gas, depositing the Al 2 O x layer by performing sputtering on the ferromagnetic layer 4 under similar conditions to those described above, Al 2 by the Al 2 O x layer to oxygen plasma treatment O 3
Was obtained. Further, by performing sputtering under the same conditions as described above, a ferromagnetic layer 5 made of CoFe having a thickness of 5 nm and an antiferromagnetic layer made of Ir 22 Mn 78 having a thickness of 17 nm are formed on the tunnel barrier layer 7. 9, and a protective film 13 made of Ta having a thickness of 5 nm was sequentially formed.

【0053】その後、通常のフォトリソグラフィ技術と
イオンミリング技術とを用いて、これら薄膜を幅Wが2
〜0.25μmであり且つ長さLが幅Wの3倍となるよ
うにパターニングすることにより二重トンネル接合部を
規定した。以上のようにして、図2に示す磁気抵抗効果
素子1を得た。
Thereafter, these thin films are formed to have a width W of 2 by using a normal photolithography technique and an ion milling technique.
The double tunnel junction was defined by patterning so as to be .about.0.25 μm and the length L was three times the width W. As described above, the magnetoresistance effect element 1 shown in FIG. 2 was obtained.

【0054】なお、強磁性層3の磁化方向と強磁性層5
の磁化方向とは、反強磁性層8,9によって基板面に平
行な同一方向に固定した。このような構成によると、強
磁性層3,5の磁化方向は数100Oe程度の弱い外部
磁場によって変化することはなく、強磁性層4の磁化方
向は外部磁場に対応して変化する。また、この磁気抵抗
効果素子1において、強磁性二重トンネル接合2bの抵
抗は、強磁性層3,5の磁化方向と強磁性層4の磁化方
向とが同一である場合に最も低く、強磁性層3,5の磁
化方向と強磁性層4の磁化方向とが反対である場合に最
も高い値をとる。
The magnetization direction of the ferromagnetic layer 3 and the ferromagnetic layer 5
Are fixed in the same direction parallel to the substrate surface by the antiferromagnetic layers 8 and 9. According to such a configuration, the magnetization direction of the ferromagnetic layers 3 and 5 does not change due to a weak external magnetic field of about several hundred Oe, and the magnetization direction of the ferromagnetic layer 4 changes according to the external magnetic field. In this magnetoresistive effect element 1, the resistance of the ferromagnetic double tunnel junction 2b is lowest when the magnetization directions of the ferromagnetic layers 3 and 5 and the ferromagnetic layer 4 are the same, and It takes the highest value when the magnetization directions of the layers 3 and 5 and the ferromagnetic layer 4 are opposite.

【0055】(比較例)強磁性層4として厚さ1.5n
mの(Co9Fe)0.950.5膜を形成する代わりに厚さ
3nmのCo9Fe膜を形成したこと以外は上記実施例
で説明したのと同様の方法により図2に示す磁気抵抗効
果素子1を作製した。
(Comparative Example) The ferromagnetic layer 4 has a thickness of 1.5 n
The magnetoresistive element shown in FIG. 2 was formed by the same method as that described in the above embodiment except that a 3 nm thick Co 9 Fe film was formed instead of forming the (Co 9 Fe) 0.95 B 0.5 film. 1 was produced.

【0056】次に、上記実施例及び比較例で作製した磁
気抵抗効果素子1の磁気抵抗比(TMR)を調べた。な
お、TMRは、強磁性二重トンネル接合2bの抵抗の最
小値をRminとし且つ最大値をRmaxとした場合に、下記
等式: TMR(%)=[(Rmax−Rmin)/Rmin]/100 で定義される。
Next, the magnetoresistance ratio (TMR) of each of the magnetoresistance effect elements 1 manufactured in the above Examples and Comparative Examples was examined. Incidentally, TMR, when a and maximum value the minimum value as the R min of the resistance of the ferromagnetic double tunnel junction 2b was R max, the following equation: TMR (%) = [( R max -R min) / R min ] / 100.

【0057】図8は、本発明の実施例及び比較例に係る
磁気抵抗効果素子1の磁気抵抗比を示すグラフである。
図中、横軸はトンネル接合部の幅Wの逆数1/W(μm
-1)を示し、縦軸は強磁性層4の磁化方向を反転させる
のに必要な磁場の強さHc(Oe)を示している。ま
た、図中、曲線61は本発明の実施例に係る磁気抵抗効
果素子1について得られたデータを示し、曲線62は比
較例に係る磁気抵抗効果素子1について得られたデータ
を示している。
FIG. 8 is a graph showing the magnetoresistance ratio of the magnetoresistance effect element 1 according to the example of the present invention and the comparative example.
In the figure, the horizontal axis represents the reciprocal 1 / W (μm) of the width W of the tunnel junction.
-1 ), and the vertical axis indicates the magnetic field strength H c (Oe) required to reverse the magnetization direction of the ferromagnetic layer 4. In the drawing, a curve 61 indicates data obtained for the magnetoresistive element 1 according to the example of the present invention, and a curve 62 indicates data obtained for the magnetoresistive element 1 according to the comparative example.

【0058】図8に示すように、本発明の実施例に係る
磁気抵抗効果素子1では、トンネル接合部の幅Wを0.
25μm程度に小さくしても、強磁性層4の磁化方向を
反転させるのに必要な磁場の強さHcは40Oe以下と
十分に小さい。しかも、磁場の強さHcの幅Wに対する
変化率は小さいので、さらなる微細化にも対応可能であ
ることが分かる。
As shown in FIG. 8, in the magnetoresistive element 1 according to the embodiment of the present invention, the width W of the tunnel junction is set to 0.1 mm.
Even if it is reduced to about 25 μm, the strength H c of the magnetic field required to reverse the magnetization direction of the ferromagnetic layer 4 is sufficiently small at 40 Oe or less. Moreover, since the rate of change with respect to the width W of the strength H c of the magnetic field is small, it can be seen is adaptable to further miniaturization.

【0059】それに対し、比較例に係る磁気抵抗効果素
子1では、トンネル接合部の幅Wを0.25μm程度と
すると、強磁性層4の磁化方向を反転させるのに必要な
磁場の強さHcは100Oeを超え、実用上、強磁性層
4の磁化方向を反転させるのが困難となった。
On the other hand, in the magnetoresistive element 1 according to the comparative example, when the width W of the tunnel junction is about 0.25 μm, the strength H of the magnetic field required to reverse the magnetization direction of the ferromagnetic layer 4 is obtained. c exceeded 100 Oe, and it was practically difficult to reverse the magnetization direction of the ferromagnetic layer 4.

【0060】なお、元素YとしてBの代わりにSi、Z
r、P、Mo、Al、及びNbを用いたこと以外は上述
したのと同様の方法により実施例及び比較例に係る磁気
抵抗効果素子1を作製し、それらの比較を行ったとこ
ろ、元素YとしてBを用いた場合と同様の傾向が見られ
た。また、強磁性層4の材料として一般式(CoFe)
100-xxで表される材料の代わりに一般式(CoFeN
i)100-xxで表される材料を用いて同様の比較を行っ
たところ、上述したのと同様の傾向が見られた。
The element Y is replaced with Si, Z instead of B.
Above except that r, P, Mo, Al, and Nb were used.
According to the same method as that of
The resistance effect element 1 was fabricated and compared.
Of course, the same tendency as in the case of using B as the element Y is observed.
Was. The material of the ferromagnetic layer 4 has the general formula (CoFe)
100-xYxInstead of the material represented by the general formula (CoFeN
i)100-xYxA similar comparison was made using the material represented by
As a result, the same tendency as described above was observed.

【0061】[0061]

【発明の効果】以上説明したように、本発明では、外部
磁場に応じて磁化方向が変化し得る強磁性層に、極めて
薄い連続膜を形成可能であり且つ十分に高い磁気抵抗変
化率を得ることが可能な所定の材料を使用する。そのた
め、サイズを縮小化した場合においても、十分に高い磁
気抵抗比を維持し且つ反転磁界の増大を防止することが
できる。すなわち、本発明によると、サイズを縮小化し
た場合においても十分に高い磁気抵抗比を維持し且つ反
転磁界の増大を防止し得る磁気抵抗効果素子、磁気メモ
リ、磁気ヘッド、及び磁気再生装置が提供される。
As described above, according to the present invention, an extremely thin continuous film can be formed on a ferromagnetic layer whose magnetization direction can be changed according to an external magnetic field, and a sufficiently high magnetoresistance ratio can be obtained. Use certain materials that can. Therefore, even when the size is reduced, it is possible to maintain a sufficiently high magnetoresistance ratio and prevent an increase in the reversal magnetic field. That is, according to the present invention, there is provided a magnetoresistive element, a magnetic memory, a magnetic head, and a magnetic reproducing device capable of maintaining a sufficiently high magnetoresistance ratio and preventing an increase in reversal magnetic field even when the size is reduced. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る磁気抵抗効果素
子を概略的に示す断面図。
FIG. 1 is a sectional view schematically showing a magnetoresistive element according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る磁気抵抗効果素
子を概略的に示す断面図。
FIG. 2 is a sectional view schematically showing a magnetoresistive element according to a second embodiment of the invention.

【図3】本発明の第1及び第2の実施形態に係る磁気抵
抗効果素子の強磁性層の組成とその磁気抵抗変化率との
関係の一例を示すグラフ。
FIG. 3 is a graph showing an example of the relationship between the composition of a ferromagnetic layer of the magnetoresistive element according to the first and second embodiments of the present invention and the rate of change in magnetoresistance.

【図4】本発明の第1及び第2の実施形態に係る磁気抵
抗効果素子を用いた磁気メモリを概略的に示す断面図。
FIG. 4 is a sectional view schematically showing a magnetic memory using the magnetoresistive element according to the first and second embodiments of the present invention.

【図5】図4に示す磁気メモリの等価回路図。5 is an equivalent circuit diagram of the magnetic memory shown in FIG.

【図6】本発明の第1及び第2の実施形態に係る磁気抵
抗効果素子を用いた磁気ヘッドを有する磁気ヘッドアセ
ンブリを概略的に示す斜視図。
FIG. 6 is a perspective view schematically showing a magnetic head assembly having a magnetic head using a magnetoresistive element according to the first and second embodiments of the present invention.

【図7】図6に示す磁気ヘッドアセンブリを搭載した磁
気記録再生装置を概略的に示す斜視図。
FIG. 7 is a perspective view schematically showing a magnetic recording / reproducing apparatus equipped with the magnetic head assembly shown in FIG. 6;

【図8】本発明の実施例及び比較例に係る磁気抵抗効果
素子の磁気抵抗比を示すグラフ。
FIG. 8 is a graph showing the magnetoresistance ratio of the magnetoresistance effect element according to the example of the present invention and the comparative example.

【符号の説明】[Explanation of symbols]

1…磁気抵抗効果素子 2a…強磁性一重トンネル接合 2b…強磁性二重トンネル接合 3〜5…強磁性層 6,7…トンネル障壁層 8,9…反強磁性層 10…基板 11…拡散バリア層 12…配向制御層 13…保護層 14…配線層 15…絶縁層 DESCRIPTION OF SYMBOLS 1 ... Magnetoresistance effect element 2a ... ferromagnetic single tunnel junction 2b ... ferromagnetic double tunnel junction 3-5 ... ferromagnetic layer 6,7 ... tunnel barrier layer 8,9 ... antiferromagnetic layer 10 ... substrate 11 ... diffusion barrier Layer 12: orientation control layer 13: protective layer 14: wiring layer 15: insulating layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11C 11/15 H01F 10/16 H01F 10/16 G01R 33/06 R H01L 27/105 H01L 27/10 447 (72)発明者 中島 健太郎 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 天野 実 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 2G017 AA01 AB07 AD55 AD65 5D034 BA03 BA08 BA15 CA00 5E049 AA04 AA09 AC05 BA06 BA12 BA16 5F083 FZ10 KA01 KA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G11C 11/15 H01F 10/16 H01F 10/16 G01R 33/06 R H01L 27/105 H01L 27/10 447 ( 72) Inventor Kentaro Nakajima 1st Toshiba R & D Center, Komukai Toshiba-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture F-term in development center (reference) 2G017 AA01 AB07 AD55 AD65 5D034 BA03 BA08 BA15 CA00 5E049 AA04 AA09 AC05 BA06 BA12 BA16 5F083 FZ10 KA01 KA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定の外部磁場において前記外部磁場の
非印加時に備える磁化の方向を保持する第1の強磁性層
と、前記外部磁場において前記外部磁場の非印加時に備
える磁化の方向が変化し得る第2の強磁性層と、前記第
1の強磁性層と前記第2の強磁性層との間に介在する第
1のトンネル障壁層とを具備し、前記第1の強磁性層、
前記第1のトンネル障壁層、及び前記第2の強磁性層は
強磁性トンネル接合を形成し、 前記第2の強磁性層に含まれる強磁性材料の組成は一般
式(CoFe)100-xxまたは一般式(CoFeNi)
100-xxで表され、前記YはB、Si、Zr、P、M
o、Al、及びNbからなる群より選ばれる少なくとも
1種の元素であることを特徴とする磁気抵抗効果素子。
A first ferromagnetic layer that maintains a direction of magnetization provided when no external magnetic field is applied in a predetermined external magnetic field; and a direction of magnetization provided when no external magnetic field is applied in the external magnetic field changes. Comprising: a second ferromagnetic layer to be obtained; and a first tunnel barrier layer interposed between the first ferromagnetic layer and the second ferromagnetic layer;
The first tunnel barrier layer and the second ferromagnetic layer form a ferromagnetic tunnel junction, and the composition of the ferromagnetic material contained in the second ferromagnetic layer is represented by the general formula (CoFe) 100-x Y x or general formula (CoFeNi)
Represented by 100-x Y x, wherein Y is B, Si, Zr, P, M
A magnetoresistive element comprising at least one element selected from the group consisting of o, Al, and Nb.
【請求項2】 前記xは不等式3≦x≦16に示す関係
を満足することを特徴とする請求項1に記載の磁気抵抗
効果素子。
2. The magnetoresistance effect element according to claim 1, wherein said x satisfies a relationship represented by an inequality 3 ≦ x ≦ 16.
【請求項3】 前記第2の強磁性層の膜厚は0.3nm
乃至2.5nmの範囲内にあることを特徴とする請求項
1または請求項2に記載の磁気抵抗効果素子。
3. The thickness of the second ferromagnetic layer is 0.3 nm.
The magnetoresistive element according to claim 1, wherein the magnetoresistance effect element is within a range of from 2.5 to 2.5 nm.
【請求項4】 前記外部磁場において前記外部磁場の非
印加時に備える磁化の方向を保持する第3の強磁性層と
第2のトンネル障壁層とをさらに具備し、前記第3の強
磁性層及び前記第2のトンネル障壁層は前記第2の強磁
性層が前記第1のトンネル障壁層と前記第2のトンネル
障壁層との間に介在し且つ前記第2の強磁性層並びに前
記第1及び第2のトンネル障壁層が前記第1の強磁性層
と前記第3の強磁性層との間に介在するように配置さ
れ、前記第3の強磁性層、前記第2のトンネル障壁層、
及び前記第2の強磁性層は強磁性トンネル接合を形成し
たことを特徴とする請求項1乃至請求項4のいずれか1
項に記載の磁気抵抗効果素子。
4. The semiconductor device according to claim 1, further comprising: a third ferromagnetic layer and a second tunnel barrier layer that maintain a magnetization direction provided when the external magnetic field is not applied in the external magnetic field. The second tunnel barrier layer is such that the second ferromagnetic layer is interposed between the first tunnel barrier layer and the second tunnel barrier layer, and the second ferromagnetic layer, A second tunnel barrier layer interposed between the first ferromagnetic layer and the third ferromagnetic layer, wherein the third ferromagnetic layer, the second tunnel barrier layer,
5. The semiconductor device according to claim 1, wherein said second ferromagnetic layer forms a ferromagnetic tunnel junction.
Item 7. The magnetoresistive element according to item 1.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載の磁気抵抗効果素子と、前記磁気抵抗効果素子を挟
んで交差する第1及び第2の配線とを具備することを特
徴とする磁気メモリ。
5. A device comprising: the magnetoresistive element according to claim 1; and first and second wirings that intersect with the magnetoresistive effect element interposed therebetween. Magnetic memory.
【請求項6】 請求項1乃至請求項4のいずれか1項に
記載の磁気抵抗効果素子と、前記磁気抵抗効果素子を支
持する支持体と、前記磁気抵抗効果素子に接続された一
対の電極とを具備することを特徴とする磁気ヘッド。
6. A magnetoresistive element according to claim 1, a support for supporting said magnetoresistive element, and a pair of electrodes connected to said magnetoresistive element. A magnetic head comprising:
【請求項7】 磁気記録媒体、 請求項1乃至請求項4のいずれか1項に記載の磁気抵抗
効果素子と前記磁気抵抗効果素子を支持する支持体と前
記磁気抵抗効果素子に接続された一対の電極とを具備し
且つ前記磁気記録媒体に記録された情報を読み出す磁気
ヘッド、及び、 前記磁気ヘッドを前記磁気記録媒体に対して相対移動さ
せる移動機構を具備することを特徴とする磁気再生装
置。
7. A magnetic recording medium, a magnetoresistive element according to claim 1, a support for supporting the magnetoresistive element, and a pair connected to the magnetoresistive element. And a magnetic head for reading information recorded on the magnetic recording medium, and a moving mechanism for moving the magnetic head relative to the magnetic recording medium. .
JP2000401185A 2000-12-28 2000-12-28 Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus Expired - Fee Related JP3607609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401185A JP3607609B2 (en) 2000-12-28 2000-12-28 Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401185A JP3607609B2 (en) 2000-12-28 2000-12-28 Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus

Publications (2)

Publication Number Publication Date
JP2002204004A true JP2002204004A (en) 2002-07-19
JP3607609B2 JP3607609B2 (en) 2005-01-05

Family

ID=18865661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401185A Expired - Fee Related JP3607609B2 (en) 2000-12-28 2000-12-28 Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus

Country Status (1)

Country Link
JP (1) JP3607609B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013919A1 (en) * 2002-08-02 2004-02-12 Sony Corporation Magnetoresistance effect element and magnetic memory unit
JP2005203701A (en) * 2004-01-19 2005-07-28 Sony Corp Magnetoresistive effect element and magnetic memory device
WO2003036734A3 (en) * 2001-10-12 2005-08-04 Sony Corp Magnetoresistance effect element, magetic memory element, magnetic memory device, and their manufacturing method
US6943041B2 (en) 2002-04-23 2005-09-13 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element and method for producing the same, as well as magnetic head, magnetic memory and magnetic recording device using the same
WO2005088745A1 (en) * 2004-03-12 2005-09-22 Japan Science And Technology Agency Magnetoresistive element and its manufacturing method
US7079361B2 (en) 2001-04-24 2006-07-18 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element and magnetoresistive magnetic head, magnetic recording apparatus and magnetoresistive memory device using the same
EP1724760A1 (en) * 2005-05-16 2006-11-22 Fujitsu Limited Ferromagnetic tunnel junction, magnetic head using the same, magnetic recording device, and magnetic memory device
JP2008283173A (en) * 2008-04-07 2008-11-20 Sony Corp Magnetoresistance effect element, and magnetic memory device
JP2009294222A (en) * 2002-12-21 2009-12-17 Hynix Semiconductor Inc Sensing cell array utilizing biosensor
US7813088B2 (en) 2005-09-27 2010-10-12 Canon Anelva Corporation Magnetoresistance effect device
KR101055595B1 (en) 2002-09-30 2011-08-10 소니 주식회사 Magnetoresistive element and magnetic memory device
JP2012054576A (en) * 2011-10-12 2012-03-15 Sony Corp Magnetoresistance effect element and magnetic memory device
JP2013232661A (en) * 2013-06-19 2013-11-14 Sony Corp Magnetic resistance effect element and magnetic memory device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079361B2 (en) 2001-04-24 2006-07-18 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element and magnetoresistive magnetic head, magnetic recording apparatus and magnetoresistive memory device using the same
WO2003036734A3 (en) * 2001-10-12 2005-08-04 Sony Corp Magnetoresistance effect element, magetic memory element, magnetic memory device, and their manufacturing method
US7262064B2 (en) 2001-10-12 2007-08-28 Sony Corporation Magnetoresistive effect element, magnetic memory element magnetic memory device and manufacturing methods thereof
US6943041B2 (en) 2002-04-23 2005-09-13 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element and method for producing the same, as well as magnetic head, magnetic memory and magnetic recording device using the same
US7034348B2 (en) 2002-08-02 2006-04-25 Sony Corporation Magnetoresistive effect element and magnetic memory device
WO2004013919A1 (en) * 2002-08-02 2004-02-12 Sony Corporation Magnetoresistance effect element and magnetic memory unit
KR101055595B1 (en) 2002-09-30 2011-08-10 소니 주식회사 Magnetoresistive element and magnetic memory device
JP2009294222A (en) * 2002-12-21 2009-12-17 Hynix Semiconductor Inc Sensing cell array utilizing biosensor
JP2009294223A (en) * 2002-12-21 2009-12-17 Hynix Semiconductor Inc Biosensor
JP2005203701A (en) * 2004-01-19 2005-07-28 Sony Corp Magnetoresistive effect element and magnetic memory device
US11968909B2 (en) 2004-03-12 2024-04-23 Godo Kaisha Ip Bridge 1 Method of manufacturing a magnetoresistive random access memory (MRAM)
US11737372B2 (en) 2004-03-12 2023-08-22 Godo Kaisha Ip Bridge 1 Method of manufacturing a magnetoresistive random access memory (MRAM)
US9608198B2 (en) 2004-03-12 2017-03-28 Japan Science And Technology Agency Magnetic tunnel junction device
KR100867662B1 (en) * 2004-03-12 2008-11-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Magnetoresistive element, tunnel barrier layer and method of manufacturing the magnetoresistive element
US11233193B2 (en) 2004-03-12 2022-01-25 Japan Science And Technology Agency Method of manufacturing a magnetorestive random access memeory (MRAM)
US7884403B2 (en) 2004-03-12 2011-02-08 Japan Science And Technology Agency Magnetic tunnel junction device and memory device including the same
WO2005088745A1 (en) * 2004-03-12 2005-09-22 Japan Science And Technology Agency Magnetoresistive element and its manufacturing method
US10680167B2 (en) 2004-03-12 2020-06-09 Japan Science And Technology Agency Magnetic tunnel junction device
US8319263B2 (en) 2004-03-12 2012-11-27 Japan Science And Technology Agency Magnetic tunnel junction device
US8405134B2 (en) 2004-03-12 2013-03-26 Japan Science And Technology Agency Magnetic tunnel junction device
US10367138B2 (en) 2004-03-12 2019-07-30 Japan Science And Technology Agency Magnetic tunnel junction device
US9123463B2 (en) 2004-03-12 2015-09-01 Japan Science And Technology Agency Magnetic tunnel junction device
EP1724760A1 (en) * 2005-05-16 2006-11-22 Fujitsu Limited Ferromagnetic tunnel junction, magnetic head using the same, magnetic recording device, and magnetic memory device
US7466526B2 (en) 2005-05-16 2008-12-16 Fujitsu Limited Ferromagnetic tunnel junction, magnetic head using the same, magnetic recording device, and magnetic memory device
US7813088B2 (en) 2005-09-27 2010-10-12 Canon Anelva Corporation Magnetoresistance effect device
JP2008283173A (en) * 2008-04-07 2008-11-20 Sony Corp Magnetoresistance effect element, and magnetic memory device
JP2012054576A (en) * 2011-10-12 2012-03-15 Sony Corp Magnetoresistance effect element and magnetic memory device
JP2013232661A (en) * 2013-06-19 2013-11-14 Sony Corp Magnetic resistance effect element and magnetic memory device

Also Published As

Publication number Publication date
JP3607609B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP3576111B2 (en) Magnetoresistance effect element
KR100439288B1 (en) Method for writing information to or reading information from a magnetic-resistive effect memory cell
US6956765B2 (en) Magneto-resistance effect element, magnetic memory and magnetic head
US7245464B2 (en) Magnetic memory having a ferromagnetic tunneling junction
JP4594679B2 (en) Magnetoresistive element, magnetic head, magnetic recording / reproducing apparatus, and magnetic memory
KR100989792B1 (en) Magnetoresistance effect element and magnetic memory device
KR101055595B1 (en) Magnetoresistive element and magnetic memory device
US20060114716A1 (en) Magnetoresistance element, magnetic memory, and magnetic head
US20060146451A1 (en) Magnetoresistive element and magnetic memory device
JP2001156357A (en) Magneto-resistance effect element and magnetic recording element
JP2002280637A (en) Magnetoresistive effect element and its manufacturing method, magnetic random access memory, portable terminal apparatus, magnetic head, and magnetic reproduction apparatus
JP2003281705A (en) Magnetic head, magnetic head gimbal assembly, magnetic recording/reproducing device and magnetic memory
JP4076197B2 (en) Magnetic element, storage device, magnetic reproducing head, three-terminal element, and magnetic disk device
JP3607609B2 (en) Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus
JP3977576B2 (en) Magnetic memory device
JP3472207B2 (en) Method of manufacturing magnetoresistive element
JP4660512B2 (en) Method for writing to magnetic recording element and magnetic recording element
JP3872962B2 (en) Magnetoresistive element and magnetic storage device
JP4136028B2 (en) Magnetic thin film memory element, magnetic thin film memory using the same, and recording / reproducing method thereof
JP4615797B2 (en) Magnetoresistive element, manufacturing apparatus thereof, and magnetic memory device
JP2002280642A (en) Magnetoresistive effect element, magnetic storage, portable terminal apparatus, magnetoresistive effect head, and magnetic reproduction apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R151 Written notification of patent or utility model registration

Ref document number: 3607609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees