JP2002202104A - Face shape measuring device and optical member measured thereby - Google Patents

Face shape measuring device and optical member measured thereby

Info

Publication number
JP2002202104A
JP2002202104A JP2000398968A JP2000398968A JP2002202104A JP 2002202104 A JP2002202104 A JP 2002202104A JP 2000398968 A JP2000398968 A JP 2000398968A JP 2000398968 A JP2000398968 A JP 2000398968A JP 2002202104 A JP2002202104 A JP 2002202104A
Authority
JP
Japan
Prior art keywords
shape measuring
surface shape
light
measuring device
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000398968A
Other languages
Japanese (ja)
Inventor
Shigeru Nakayama
繁 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000398968A priority Critical patent/JP2002202104A/en
Priority to US10/024,145 priority patent/US20020080366A1/en
Publication of JP2002202104A publication Critical patent/JP2002202104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a face shape measuring device or the like capable of highly accurately measuring the face shape of an optical element such as a lens and a mirror. SOLUTION: On light emitted from a light source, mutually interfering measuring reflection light from a face 8a to be inspected and reference light of reflection light from a reference face 7a and in a face shape measuring device for measuring the face shape of the face 8a to be inspected by detecting a phase difference due to the interference, a diaphragm 3 is provided at a position conjugated with the face 8a to be inspected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、ミラーな
どの光学素子の面形状を、高精度に測定するための面形
状測定装置及び該装置により測定された光学部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring device for measuring the surface shape of an optical element such as a lens or a mirror with high accuracy, and an optical member measured by the device.

【0002】[0002]

【従来の技術】近年、高精度な光学機器の需要に伴い、
その機器を構成するレンズやミラー等の光学素子は高精
度化する傾向にある。そのため、光学素子の面形状を測
定する面形状測定装置にも高い精度が求められている。
2. Description of the Related Art In recent years, with the demand for high-precision optical instruments,
Optical elements such as lenses and mirrors that constitute such equipment tend to be highly accurate. Therefore, high accuracy is also required for a surface shape measuring device that measures the surface shape of an optical element.

【0003】高精度な面形状測定を実現するものとして
光の干渉を利用した光波干渉計がある。特に、共通光路
干渉計であり、高い安定性が得られるフィゾー型の干渉
計が多く用いられている。
There is a light wave interferometer that utilizes light interference to realize highly accurate surface shape measurement. In particular, a Fizeau-type interferometer, which is a common optical path interferometer and provides high stability, is widely used.

【0004】フィゾー干渉計は、まず、光源から射出さ
れた光束を2つの光束に分割する。次に、一方の光束を
被検面へ入射、反射させて測定用光束とする。測定用光
束は被検面の面形状に応じて位相が変化している。ま
た、他方の光束は参照面で反射され参照用光束とする。
そして、測定用光束と参照用光束とを互いに干渉させて
干渉縞を形成する。最後に、この干渉縞に基づいて所定
の解析、演算を行って被検面の面形状を測定する。
[0004] The Fizeau interferometer first splits a light beam emitted from a light source into two light beams. Next, one of the light beams enters the surface to be measured and is reflected to be a measurement light beam. The phase of the measurement light beam changes according to the shape of the surface to be measured. Further, the other light beam is reflected on the reference surface to be a reference light beam.
Then, the measurement light beam and the reference light beam are caused to interfere with each other to form interference fringes. Finally, predetermined analysis and calculation are performed based on the interference fringes to measure the surface shape of the test surface.

【0005】従来の上記フィゾー干渉計では、参照面
(フィゾー面)を有するフィゾーレンズに径の大きい光
束を入射させて、実質的にフィゾーレンズ自身が絞りの
役割を兼用する構成とする場合が多い。さらには、フィ
ゾー干渉計における絞りの位置が全く考慮されず、任意
の位置に絞りを設ける場合も多い。
In the conventional Fizeau interferometer, a large-diameter light beam is incident on a Fizeau lens having a reference surface (Fizeau surface), and the Fizeau lens itself often serves also as a diaphragm. . Further, the position of the diaphragm in the Fizeau interferometer is not considered at all, and the diaphragm is often provided at an arbitrary position.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述のように
フィゾーレンズ自身が絞りの役割を兼用する場合、又は
フィゾー干渉計における絞りの位置が全く考慮されず、
任意の位置に絞りを設けた場合は、この絞りに起因する
回折現象による波面の乱れが、絞りを通過した光束の周
辺部に生じてしまう。特に、被検面周辺部においてフレ
ネル回折による波面の乱れが観察される干渉縞に重畳し
てしまう。このため、高精度に面形状測定を行うことが
困難になり問題である。従来は、絞りによる回折の影響
を避けるため、被検面の周辺部の測定データを切り捨て
ることも行われている。この場合、被検面周辺部の形状
を測定することが不可能となってしまう。このことは、
特に曲率半径の小さな被検面の測定を行う際に深刻な問
題となるものである。
However, as described above, when the Fizeau lens itself also serves as the stop, or the position of the stop in the Fizeau interferometer is not considered at all,
When a stop is provided at an arbitrary position, a wavefront disturbance due to a diffraction phenomenon caused by the stop occurs in a peripheral portion of a light beam passing through the stop. In particular, disturbance of the wavefront due to Fresnel diffraction is superimposed on the observed interference fringes in the periphery of the test surface. For this reason, it is difficult to measure the surface shape with high accuracy, which is a problem. Conventionally, in order to avoid the influence of diffraction caused by a diaphragm, measurement data of a peripheral portion of a surface to be measured has been cut off. In this case, it becomes impossible to measure the shape of the periphery of the test surface. This means
This is a serious problem particularly when measuring a test surface having a small radius of curvature.

【0007】本発明は上記問題に鑑みてなされたもので
あり、レンズ、ミラーなどの光学素子の面形状を高精度
に測定できる面形状測定装置等を提供することを目的と
する。
The present invention has been made in view of the above problems, and has as its object to provide a surface shape measuring apparatus and the like capable of measuring the surface shape of an optical element such as a lens or a mirror with high accuracy.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、光源から出射された光であって、被検面
8aからの反射光である測定光と、参照面7aからの反
射光である参照光とを互いに干渉させ、該干渉による位
相差を検出することにより、前記被検面8aの面形状を
測定する面形状測定装置において、前記被検面8aと共
役な位置に絞り3が設けられていることを特徴とする面
形状測定装置を提供する。
In order to solve the above-mentioned problems, the present invention relates to a measuring light which is a light emitted from a light source and which is a reflected light from a test surface 8a and a light which is reflected from a reference surface 7a. In a surface shape measuring apparatus for measuring the surface shape of the test surface 8a by causing the reference light, which is the reflected light, to interfere with each other and detecting a phase difference due to the interference, at a position conjugate with the test surface 8a. Provided is a surface shape measuring device provided with an aperture 3.

【0009】また、本発明の好ましい態様では、前記絞
り3は、調整部材30を備えていることが望ましい。
Further, in a preferred embodiment of the present invention, it is desirable that the diaphragm 3 has an adjusting member 30.

【0010】また、本発明の好ましい態様では、前記調
整部材30は、前記被検面8aと共役な位置へ前記絞り
3を移動する絞り移動部30であることが望ましい。
In a preferred aspect of the present invention, it is desirable that the adjusting member 30 is a diaphragm moving unit 30 that moves the diaphragm 3 to a position conjugate with the surface 8a to be inspected.

【0011】また、本発明の好ましい態様では、前記調
整部材30は、複数の反射ミラー部12と、前記絞り3
と前記被検面8aとが共役となるように該反射ミラー部
12を移動するミラー移動部50とからなることが望ま
しい。
In a preferred embodiment of the present invention, the adjusting member 30 includes a plurality of reflecting mirrors 12 and the diaphragm 3.
And a mirror moving unit 50 that moves the reflection mirror unit 12 so that the surface 8a is conjugate with the surface 8a.

【0012】また、本発明は、請求項1乃至4の何れか
1項に記載の面形状測定装置を用いて測定されたことを
特徴とする光学部材を提供する。
Further, the present invention provides an optical member characterized by being measured by using the surface shape measuring device according to any one of claims 1 to 4.

【0013】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が実施の形態に限定されるものではない。
In the meantime, in the section of the means for solving the above-mentioned problem which explains the constitution of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to this.

【0014】[0014]

【発明の実施の形態】以下、添付図面に基づいて本発明
の各実施形態について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】(第1の実施形態)図1は、本発明の第1
の実施形態に係る面形状測定装置の概略構成図である。
レーザ光源1は、直線偏光された光ビームLを射出す
る。ビームエキスパンダ2は、光ビームLのビーム径を
変換する。この光ビームLは、絞り3を通過し、その光
束径を制限される。絞り3は、移動機構30により光軸
AX方向に移動可能である。後述するように、移動機構
30によって絞り3は被検面8aと共役となるような位
置に調整されている。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
It is a schematic structure figure of a surface profile measuring device concerning an embodiment.
The laser light source 1 emits a linearly polarized light beam L. The beam expander 2 converts the beam diameter of the light beam L. This light beam L passes through the stop 3 and its beam diameter is restricted. The diaphragm 3 is movable in the optical axis AX direction by the moving mechanism 30. As will be described later, the diaphragm 3 is adjusted to a position conjugate with the surface 8a to be measured by the moving mechanism 30.

【0016】絞り3によって光束径を制限された光ビー
ムLは、偏光ビームスプリッター(以下、「PBS」と
いう。)4に入射する。光ビームLの偏光面はPBS4
で反射されるように選択されている。PBS4で反射さ
れた光ビームLは、1/4波長板5及びビームエキスパ
ンダ6を経てフィゾーレンズ7へ入射する。フィゾーレ
ンズ7のフィゾー面(参照面)7aからの反射光は参照
用光束LRとして用いられる。また、フィゾー面7aを
透過した光は測定用光束LMとして、被検物8に入射す
る。
The light beam L whose light beam diameter is limited by the stop 3 is incident on a polarizing beam splitter (hereinafter, referred to as “PBS”) 4. The polarization plane of the light beam L is PBS4
Is selected to be reflected by The light beam L reflected by the PBS 4 enters the Fizeau lens 7 via the quarter-wave plate 5 and the beam expander 6. The reflected light from the Fizeau surface (reference surface) 7a of the Fizeau lens 7 is used as a reference light beam LR. The light transmitted through the Fizeau surface 7a enters the test object 8 as a measurement light beam LM.

【0017】まず、参照用光束LRについて説明する。
参照用光束LRは、フィゾー面7aで反射した後、再び
ビームエキスパンダ6と1/4波長板5とを経てPBS
4に入射する。参照用光束LRは、往復で1/4波長板
5を2度通過することによって偏光面が90度回転する
ので、復路でPBS4を透過する。次に、ビーム径変換
光学系9でビーム径を変換され、2次元画像検出器10
に入射する。
First, the reference light beam LR will be described.
After being reflected by the Fizeau surface 7a, the reference light beam LR passes through the beam expander 6 and the quarter-wave plate 5 again, and the PBS.
4 is incident. The reference light beam LR passes through the quarter-wave plate 5 twice in a reciprocating manner, so that the polarization plane is rotated by 90 degrees. Therefore, the reference light beam LR passes through the PBS 4 on the return path. Next, the beam diameter is converted by the beam diameter conversion optical system 9 and the two-dimensional image detector 10
Incident on.

【0018】一方、フィゾー面7aの透過光は測定用光
束LMとして用いられる。測定用光束LMは、所定の位
置に配置された被検物8の被検面8aに入射する。そし
て、被検面8aの面形状に対応して測定用光束LMの位
相が変化し、反射される。被検面8aから反射してきた
測定用光束LMは、再びフィゾーレンズ7、ビームエキ
スパンダ6,1/4波長板5を経てPBS4へ入射す
る。この測定用光束LMは、参照用光束LRと同様に、
往復で1/4波長板5を2度通過することによって偏光
面が90度回転するので、復路でPBS4を透過する。
そして、ビーム径変換光学系9でビーム径を変換され
る。最後に、2次元画像検出器10に入射する。2次元
画像検出器10の撮像面10a上では、参照用光束LR
と測定用光束LMとの干渉縞が検出される。
On the other hand, the light transmitted through the Fizeau surface 7a is used as a measuring light beam LM. The measurement light beam LM is incident on a test surface 8a of the test object 8 arranged at a predetermined position. Then, the phase of the measurement light beam LM changes according to the surface shape of the test surface 8a and is reflected. The measurement light beam LM reflected from the test surface 8a is incident on the PBS 4 again through the Fizeau lens 7, the beam expander 6, and the quarter-wave plate 5. This measurement light beam LM is similar to the reference light beam LR,
The polarization plane is rotated 90 degrees by passing through the quarter-wave plate 5 twice in a reciprocating manner, so that the light passes through the PBS 4 on the return path.
Then, the beam diameter is converted by the beam diameter conversion optical system 9. Finally, the light enters the two-dimensional image detector 10. On the imaging surface 10a of the two-dimensional image detector 10, the reference light beam LR
An interference fringe between the light beam and the measuring light beam LM is detected.

【0019】なお、ビーム径変換光学系9は、移動部9
0により光軸AX方向に移動可能である。移動部90
は、コンピュータPCからの信号に基づいて、被検面8
aの像が2次元画像検出器10の撮像面10aに結像す
る位置へビーム径変換光学系9を移動する。即ち、ビー
ム径変換光学系9は、ビーム径を変換する役割に加え
て、被検面8aの像を2次元画像検出器10の撮像面1
0a上に結像させる役割をも有している。
Note that the beam diameter conversion optical system 9 includes a moving unit 9.
By 0, it can be moved in the optical axis AX direction. Moving unit 90
Is based on a signal from the computer PC.
The beam diameter conversion optical system 9 is moved to a position where the image a is formed on the imaging surface 10a of the two-dimensional image detector 10. That is, the beam diameter conversion optical system 9 not only serves to convert the beam diameter, but also converts the image of the test surface 8a to the image pickup surface 1 of the two-dimensional image detector 10.
Also, it has a role of forming an image on 0a.

【0020】2次元画像検出器10からの出力は、コン
ピュータPCに取り込まれて解析され、干渉縞の位相分
布が算出される。その演算結果はメモリMRに記憶され
る。
The output from the two-dimensional image detector 10 is taken into a computer PC and analyzed, and the phase distribution of interference fringes is calculated. The operation result is stored in the memory MR.

【0021】なお、本実施形態の面形状測定装置では、
被検物8をピエゾ素子PZTで光軸AX方向に微小に移
動させ、周知の位相シフト干渉法を用いて干渉縞の位相
分布を高精度に求めることが望ましい。
In the surface shape measuring apparatus of this embodiment,
It is desirable that the test object 8 be minutely moved in the direction of the optical axis AX by the piezo element PZT, and the phase distribution of the interference fringes be determined with high precision using a well-known phase shift interferometry.

【0022】上述したように、絞り3は、移動機構30
によって被検面8aと共役となるような位置に調整され
ている。この調整の手順としては、例えば、以下の
(1)又は(2)の手順を挙げることができる。 (1)コンピュータPCは、被検面8aの曲率半径等の
データから被検面8aの位置を算出する。次に、光線追
跡により被検面8aと共役になる絞り3の所定位置を算
出する。そして、移動機構30は、コンピュータPCか
らの信号に従い、絞り3を所定位置へ移動させる。 (2)測定位置に置かれた被検面8aにマスクを設け
る。そして、ビーム径変換光学系9は、撮像部10の撮
像面10aにおいて該マスクにピントが合うようレンズ
群が移動する。次に、マスクを被検面8aから取り除
く。移動機構30は、被検面8aと絞り3とが共役とな
るように、即ち被検面8aの像と絞り3の像とが撮像面
10aに結像するように絞り3を移動する。
As described above, the stop 3 is moved by the moving mechanism 30.
Is adjusted to a position conjugate with the surface 8a to be inspected. As the procedure for this adjustment, for example, the following procedure (1) or (2) can be mentioned. (1) The computer PC calculates the position of the test surface 8a from data such as the radius of curvature of the test surface 8a. Next, a predetermined position of the stop 3 which is conjugate with the surface 8a to be detected is calculated by ray tracing. Then, the moving mechanism 30 moves the diaphragm 3 to a predetermined position according to a signal from the computer PC. (2) A mask is provided on the test surface 8a placed at the measurement position. Then, in the beam diameter conversion optical system 9, the lens group moves so that the mask is focused on the imaging surface 10a of the imaging unit 10. Next, the mask is removed from the test surface 8a. The moving mechanism 30 moves the diaphragm 3 so that the surface 8a to be measured and the diaphragm 3 are conjugate, that is, the image of the surface 8a to be measured and the image of the diaphragm 3 are formed on the imaging surface 10a.

【0023】以上に述べたように、絞り3と被検面8a
とが共役である構成とすることによって絞り3の像が被
検面8aに形成される。また、被検面8aの像は2次元
画像検出器10の撮像面10aに形成される。あたかも
被検面8a上に絞りがあるかのように周辺部の波面の乱
れの領域を最小にすることができる。このため、本実施
形態に係る面形状測定装置は、絞り3での回折現象、特
にフレネル回折による波面の乱れを最小限に抑えること
ができるという効果が得られる。その結果、参照用光束
と測定用光束との干渉縞の位相分布を高精度に求めるこ
とが可能となるので高精度に面形状を測定することがで
きる。 (第2の実施形態)図2は、本発明の第2の実施形態に
係る面形状測定装置の概略構成図である。本実施形態に
係る面形状測定装置は、第1の実施形態における絞り3
をPBS4とビームエキスパンダ6との間に配置したも
のである。その他の構成は上記第1実施形態と同様であ
るので同一部分には同じ符号を付し、重複する説明は省
略する。
As described above, the stop 3 and the test surface 8a
Is conjugated, an image of the stop 3 is formed on the surface 8a to be inspected. Further, an image of the test surface 8a is formed on the imaging surface 10a of the two-dimensional image detector 10. It is possible to minimize the disturbance area of the wavefront in the peripheral portion as if there is a stop on the test surface 8a. For this reason, the surface shape measuring apparatus according to the present embodiment has an effect that the diffraction phenomenon at the diaphragm 3, in particular, the disturbance of the wavefront due to Fresnel diffraction can be minimized. As a result, the phase distribution of the interference fringes between the reference light beam and the measurement light beam can be obtained with high accuracy, so that the surface shape can be measured with high accuracy. (Second Embodiment) FIG. 2 is a schematic configuration diagram of a surface shape measuring apparatus according to a second embodiment of the present invention. The surface shape measuring apparatus according to the present embodiment is the same as the stop 3 in the first embodiment.
Are arranged between the PBS 4 and the beam expander 6. Other configurations are the same as those of the first embodiment, and thus the same portions are denoted by the same reference numerals, and overlapping description will be omitted.

【0024】上記第1実施形態に述べた手順と同様に、
移動機構30は絞り3を光軸AX方向に移動することが
できる。そして、絞り3は、移動機構30により被検面
8aと共役となる位置に調整されている。 (第3の実施形態)図3は、本発明の第3の実施形態に
係る面形状測定装置の概略構成図である。本実施形態に
係る面形状測定装置では、上記第2の実施形態と同様の
位置に絞り3が固定して設けられている。更に、該絞り
3とビームエキスパンダ6との間に、反射ミラー11
a,11bと、2枚の反射面どうしが略90度をなすよ
うに構成された2枚反射ミラー部12とから成る反射ミ
ラー光学系MMが設けられている。その他の構成は上記
第1,2の実施形態と同様であるので同一部分には同じ
符号を付し、重複する説明は省略する。
Similar to the procedure described in the first embodiment,
The moving mechanism 30 can move the stop 3 in the optical axis AX direction. The diaphragm 3 is adjusted by the moving mechanism 30 to a position conjugate with the surface 8a to be inspected. (Third Embodiment) FIG. 3 is a schematic configuration diagram of a surface shape measuring apparatus according to a third embodiment of the present invention. In the surface shape measuring device according to the present embodiment, the stop 3 is fixedly provided at the same position as in the second embodiment. Further, a reflection mirror 11 is provided between the stop 3 and the beam expander 6.
There is provided a reflection mirror optical system MM including the reflection mirrors a and 11b and two reflection mirror portions 12 configured such that two reflection surfaces form substantially 90 degrees. Other configurations are the same as those of the first and second embodiments, and thus the same portions are denoted by the same reference numerals, and overlapping description will be omitted.

【0025】反射ミラー光学系MMのうち、2枚反射ミ
ラー部12は移動機構50により、図3中の矢印方向に
移動可能である。コンピュータPCは、上記第1の実施
形態において述べた絞り3と被検面8aとを共役な位置
にする手順(1)又は(2)に従って、絞り3と被検面
8aとが共役になるように2枚反射ミラー部12を移動
させる。これにより、被検面8aと絞り3との間の光路
長を変化させることができる。
The two-reflection mirror section 12 of the reflection mirror optical system MM can be moved in the direction of the arrow in FIG. According to the procedure (1) or (2) for setting the stop 3 and the surface 8a to be conjugate to each other as described in the first embodiment, the computer PC causes the stop 3 and the surface 8a to be conjugated. Then, the two-reflection mirror section 12 is moved. Thereby, the optical path length between the test surface 8a and the stop 3 can be changed.

【0026】また、リレーレンズ系13が、ビームエキ
スパンダ6と反射ミラー光学系MMとの間に配置されて
いる。このリレーレンズ系13は、反射ミラー光学系M
Mを光路中に設けた状態で像の共役位置をリレーする役
割を有する。
A relay lens system 13 is provided between the beam expander 6 and the reflection mirror optical system MM. The relay lens system 13 includes a reflecting mirror optical system M
It has the role of relaying the conjugate position of the image with M provided in the optical path.

【0027】ここで、上述したように上記第1,2実施
形態におけるビーム径変換光学系9は、被検面8aの像
を2次元画像検出器10の撮像面10aに結像する役割
も兼ねている。一方、本実施形態では絞り3をPBS4
とビームエキスパンダ6との間に固定配置している。こ
のため、ビーム径変換光学系9は、絞り3と2次元画像
検出器10の撮像面10aとを共役にする位置に固定す
ることができる。これにより上記第1,2実施形態に係
る面形状測定装置の効果に加え、ビーム径変換光学系9
を可動にする必要がないので、可動部分を少なくできる
という効果を奏する。
Here, as described above, the beam diameter converting optical system 9 in the first and second embodiments also has a role of forming an image of the test surface 8a on the imaging surface 10a of the two-dimensional image detector 10. ing. On the other hand, in this embodiment, the diaphragm 3 is
And a beam expander 6. For this reason, the beam diameter conversion optical system 9 can be fixed at a position where the stop 3 and the imaging surface 10a of the two-dimensional image detector 10 are conjugate. Accordingly, in addition to the effects of the surface shape measuring devices according to the first and second embodiments, the beam diameter conversion optical system 9
Since it is not necessary to make the movable part movable, the effect that the movable part can be reduced can be achieved.

【0028】さらに、ビーム変換光学系9が移動可能な
場合は、その移動に応じて被検面8aの横座標と、撮像
面10aの横座標との対応関係が変化してしまうおそれ
がある。本実施形態では、ビーム変換光学系9が固定で
あるので、この対応関係を常に一定にできるという効果
が得られる。
Further, when the beam conversion optical system 9 is movable, the correspondence between the abscissa of the test surface 8a and the abscissa of the imaging surface 10a may change in accordance with the movement. In the present embodiment, since the beam conversion optical system 9 is fixed, an effect is obtained that this correspondence can be always kept constant.

【0029】なお、本実施形態において、反射ミラー光
学系MMはPBS4とビームエキスパンダ6との間に設
置している。しかし、これに限られるものではなく、反
射ミラー光学系MMは、第1実施形態の構成にも適用で
きる。この場合、絞り3とPBS4との間に反射ミラー
光学系MMを配置し、絞り3を固定する構成にしてもよ
い。
In this embodiment, the reflection mirror optical system MM is installed between the PBS 4 and the beam expander 6. However, the present invention is not limited to this, and the reflection mirror optical system MM can be applied to the configuration of the first embodiment. In this case, the reflection mirror optical system MM may be arranged between the stop 3 and the PBS 4 to fix the stop 3.

【0030】さらに、上記第1〜第3の実施形態では、
本発明をフィゾー干渉計へ適用した例を示しているが、
本発明はトワイマングリーン干渉計等、他の方式の干渉
計にも適用できるものである。
Further, in the first to third embodiments,
Although an example in which the present invention is applied to a Fizeau interferometer is shown,
The present invention can also be applied to other types of interferometers, such as the Twyman Green interferometer.

【0031】また、本発明によれば、上記各実施形態に
かかる面形状測定装置を用いて光学部材、例えば投影露
光装置に用いられる投影レンズ系に組み込まれる投影レ
ンズを製造できる。これにより高精度な光学部材を提供
できるという効果を奏する。
Further, according to the present invention, an optical member, for example, a projection lens incorporated in a projection lens system used in a projection exposure apparatus can be manufactured using the surface shape measuring apparatus according to each of the above embodiments. This produces an effect that a highly accurate optical member can be provided.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、絞
りでの回折による波面の乱れを最小限に抑えることがで
きる。その結果、参照用光束と測定用光束との干渉縞の
位相分布を高精度に求めることが可能となる。これによ
り、レンズ、ミラーなどの光学素子の面形状を高精度に
測定できる面形状測定装置等を提供できる。特に、回折
の影響を受けやすかった曲率半径の小さな被検面を高精
度に測定できる面形状測定装置を提供できる。
As described above, according to the present invention, disturbance of the wavefront due to diffraction at the stop can be minimized. As a result, the phase distribution of the interference fringes between the reference light beam and the measurement light beam can be obtained with high accuracy. This makes it possible to provide a surface shape measuring device or the like capable of measuring the surface shape of an optical element such as a lens or a mirror with high accuracy. In particular, it is possible to provide a surface shape measuring apparatus capable of measuring a test surface having a small radius of curvature, which is easily affected by diffraction, with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る面形状測定装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a surface shape measuring device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る面形状測定装置の
概略構成図である。
FIG. 2 is a schematic configuration diagram of a surface shape measuring device according to a second embodiment of the present invention.

【図3】本発明の第3実施形態に係る面形状測定装置の
概略構成図である。
FIG. 3 is a schematic configuration diagram of a surface shape measuring device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザ光源 2,6…ビームエキスパンダ 3…絞り 4…PBS 5…λ/4板 7…フィゾーレンズ 7a…フィゾー面 8…被検物 8a…被検面 9…ビーム径変換光学系 10…2次元画像検出器 10a…撮像面 11a,11b…反射ミラー 12…2枚反射ミラー部 13…リレーレンズ系 30,50,90…移動機構 AX…光軸 L…光ビーム LM…測定用光束 LR…参照用光束 PZT…ピエゾ素子 PC…コンピュータ MR…メモリ MM…反射ミラー部 DESCRIPTION OF SYMBOLS 1 ... Laser light source 2, 6 ... Beam expander 3 ... Aperture 4 ... PBS 5 ... λ / 4 plate 7 ... Fizeau lens 7a ... Fizeau surface 8 ... Test object 8a ... Test surface 9 ... Beam diameter conversion optical system 10 ... Two-dimensional image detector 10a Image pickup surface 11a, 11b Reflective mirror 12 Two-reflective mirror unit 13 Relay lens system 30, 50, 90 Moving mechanism AX Optical axis L Light beam LM Measurement light flux LR Reference beam PZT: Piezo element PC: Computer MR: Memory MM: Reflection mirror

フロントページの続き Fターム(参考) 2F064 AA09 BB05 CC04 EE05 FF01 GG00 GG23 GG38 GG44 GG58 GG68 JJ01 KK01 2F065 AA53 BB25 CC22 DD03 FF42 GG04 JJ03 JJ26 LL04 LL09 LL30 LL36 LL37 LL57 MM02 PP12 UU07 2G086 FF01 GG01 Continued on the front page F term (reference) 2F064 AA09 BB05 CC04 EE05 FF01 GG00 GG23 GG38 GG44 GG58 GG68 JJ01 KK01 2F065 AA53 BB25 CC22 DD03 FF42 GG04 JJ03 JJ26 LL04 LL09 LL30 LL36 LL37 LL37 LL37 LL37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源から出射された光であって、被検面か
らの反射光である測定光と、参照面からの反射光である
参照光とを互いに干渉させ、該干渉による位相差を検出
することにより、前記被検面の面形状を測定する面形状
測定装置において、 前記被検面と共役な位置に絞りが設けられていることを
特徴とする面形状測定装置。
1. A light emitted from a light source, the measurement light being reflected light from a surface to be measured and the reference light being reflected light from a reference surface are caused to interfere with each other, and a phase difference caused by the interference is reduced. A surface shape measuring device for measuring the surface shape of the surface to be detected by detecting, wherein an aperture is provided at a position conjugate with the surface to be measured.
【請求項2】前記絞りは、調整部材を備えていることを
特徴とする請求項1に記載の面形状測定装置。
2. The surface shape measuring apparatus according to claim 1, wherein said stop has an adjusting member.
【請求項3】前記調整部材は、前記被検面と共役な位置
へ前記絞りを移動する絞り移動部であることを特徴とす
る請求項2に記載の面形状測定装置。
3. The surface shape measuring apparatus according to claim 2, wherein the adjustment member is a diaphragm moving unit that moves the diaphragm to a position conjugate with the surface to be inspected.
【請求項4】前記調整部材は、複数の反射ミラー部と、
前記絞りと前記被検面とが共役となるように該反射ミラ
ー部を移動するミラー移動部とからなることを特徴とす
る請求項2に記載の面形状測定装置。
4. An adjusting member comprising: a plurality of reflecting mirrors;
The surface shape measuring apparatus according to claim 2, further comprising a mirror moving unit that moves the reflection mirror unit so that the stop and the surface to be measured are conjugate.
【請求項5】請求項1乃至4の何れか1項に記載の面形
状測定装置を用いて測定されたことを特徴とする光学部
材。
5. An optical member measured using the surface shape measuring device according to claim 1. Description:
JP2000398968A 2000-12-27 2000-12-27 Face shape measuring device and optical member measured thereby Withdrawn JP2002202104A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000398968A JP2002202104A (en) 2000-12-27 2000-12-27 Face shape measuring device and optical member measured thereby
US10/024,145 US20020080366A1 (en) 2000-12-27 2001-12-21 Apparatus for measuring surface shape, lateral coordinate calibration method therefor, and optical member having been measured with said apparatus or method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398968A JP2002202104A (en) 2000-12-27 2000-12-27 Face shape measuring device and optical member measured thereby

Publications (1)

Publication Number Publication Date
JP2002202104A true JP2002202104A (en) 2002-07-19

Family

ID=18863824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398968A Withdrawn JP2002202104A (en) 2000-12-27 2000-12-27 Face shape measuring device and optical member measured thereby

Country Status (1)

Country Link
JP (1) JP2002202104A (en)

Similar Documents

Publication Publication Date Title
JP4880232B2 (en) System and method for obtaining location information
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US6762845B2 (en) Multiple-pass interferometry
US6757066B2 (en) Multiple degree of freedom interferometer
US6819434B2 (en) Multi-axis interferometer
US6912054B2 (en) Interferometric stage system
KR102061632B1 (en) Grid measuring device
EP1454112A2 (en) Interferometry system having a dynamic beam-steering assembly for measuring angle and distance
US20070041022A1 (en) Interferometer for measuring perpendicular translations
JPH0712535A (en) Interferometer
US8400641B2 (en) Interferometer for aspherical or spherical surface measurements
JP2000097616A (en) Interferometer
JPH0145842B2 (en)
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JP2002202104A (en) Face shape measuring device and optical member measured thereby
JPH095018A (en) Device for measuring moving quantity
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2000097622A (en) Interferometer
JPH11325848A (en) Aspherical surface shape measurement device
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JP2000097650A (en) Device for measuring shape of aspheric surface
JP2003083846A (en) Interferometer and highly precise projection lens
JPH10260020A (en) Aspherical shape measuring device and method
JPH02259512A (en) Integrated interference measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304