JP2002201218A - Tetrafluoroethylene polymer for stretching - Google Patents

Tetrafluoroethylene polymer for stretching

Info

Publication number
JP2002201218A
JP2002201218A JP2001226179A JP2001226179A JP2002201218A JP 2002201218 A JP2002201218 A JP 2002201218A JP 2001226179 A JP2001226179 A JP 2001226179A JP 2001226179 A JP2001226179 A JP 2001226179A JP 2002201218 A JP2002201218 A JP 2002201218A
Authority
JP
Japan
Prior art keywords
ptfe
polymerization
tetrafluoroethylene polymer
stretching
tfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001226179A
Other languages
Japanese (ja)
Other versions
JP3552686B2 (en
Inventor
Shigeki Kobayashi
茂樹 小林
Jun Hoshikawa
潤 星川
Kazuo Kato
一雄 加藤
Hiroki Kamiya
浩樹 神谷
Hiroyuki Hirai
浩之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Asahi Glass Fluoropolymers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Asahi Glass Fluoropolymers Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001226179A priority Critical patent/JP3552686B2/en
Priority to EP20010123224 priority patent/EP1201689B1/en
Priority to DE60135894T priority patent/DE60135894D1/en
Priority to US09/970,674 priority patent/US6518381B2/en
Priority to RU2001129148/04A priority patent/RU2271367C2/en
Priority to CNB011377550A priority patent/CN100478367C/en
Publication of JP2002201218A publication Critical patent/JP2002201218A/en
Application granted granted Critical
Publication of JP3552686B2 publication Critical patent/JP3552686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tetrafluoroethylene polymer suited in the stretching operation after paste extrusion molding. SOLUTION: The tetrafluoroethylene polymer has a stretchability, fibrillation properties, and non-melting fabricability, and a standard specific gravity of <=2.160 and an endothermic ratio calculated from the measurement of differential thermal analysis of <=0.15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、延伸用テトラフル
オロエチレン重合体(以下、PTFEという)に関す
る。詳しくは、ペースト押出成形後の延伸操作に好適に
使用できる延伸用PTFEに関する。
TECHNICAL FIELD The present invention relates to a tetrafluoroethylene polymer for stretching (hereinafter referred to as PTFE). More specifically, the present invention relates to PTFE for stretching that can be suitably used for a stretching operation after paste extrusion.

【0002】[0002]

【従来の技術】従来、PTFEは、テトラフルオロエチ
レン(以下、TFEという)を単独で重合することによ
り、または必要に応じて改質モノマーと共に重合するこ
とにより得られ、種々の用途に使用されている。PTF
Eは、水性分散重合により製造することができ、重合体
粒子が分散した水性分散液の状態で得ることもできる
し、水性分散重合液を凝固、乾燥させてファインパウダ
ーとして得ることもできる。従来のPTFEファインパ
ウダーは、高い溶融粘度を有しており、溶融温度では容
易に流動しないため、非溶融二次加工性を有する。その
ため、PTFEファインパウダーは、一般的には、PT
FEファインパウダーを潤滑剤とブレンドし、潤滑化P
TFEを押出し法により造形し、次いで潤滑剤を除去し
て得られる押出し物を、通常はPTFEの融点より高い
温度で融合(燒結)させて、最終製品形状にするペース
ト押出し成形が行われている。
2. Description of the Related Art Conventionally, PTFE has been obtained by polymerizing tetrafluoroethylene (hereinafter referred to as TFE) alone or, if necessary, with a modifying monomer, and has been used for various purposes. I have. PTF
E can be produced by aqueous dispersion polymerization, can be obtained in the form of an aqueous dispersion in which polymer particles are dispersed, or can be obtained as a fine powder by coagulating and drying the aqueous dispersion polymerization solution. Conventional PTFE fine powder has a high melt viscosity and does not easily flow at the melting temperature, and therefore has non-melt secondary workability. Therefore, PTFE fine powder is generally
Blending FE fine powder with lubricant
Extrusion obtained by shaping TFE by an extrusion method and then removing a lubricant is usually fused (sintered) at a temperature higher than the melting point of PTFE, and paste extrusion molding is performed into a final product shape. .

【0003】一方、PTFEファインパウダーから得ら
れる重要な他の製品としては、衣服、テント、分離膜等
の製品用の通気性布材料が挙げられる。これらの製品
は、PTFEファインパウダーをペースト押出し成形し
て得られる押出し物を、未燒結状態において急速に延伸
させ、水蒸気は透過できるが、凝縮水は透過できない性
質を付与することにより得ることができる。米国特許第
4,654,406号明細書および米国特許4,576,8
69号明細書には、延伸性PTFEファインパウダーの
技術を改善し、17質量%の潤滑剤を添加して得られた
押出し物を、10%/秒〜100%/秒の速度で少なく
とも1000%延伸することにより、少なくとも75%
の延伸均一性が達成されることが記載されている。しか
しながら、PTFEを延伸して得た延伸製品に対する要
求物性は年々高くなっており、この改良PTFEから得
た延伸製品でも、強度が充分でないという問題点を有し
ている。
On the other hand, other important products obtained from PTFE fine powder include breathable cloth materials for products such as clothes, tents and separation membranes. These products can be obtained by rapidly stretching an extrudate obtained by paste extrusion of PTFE fine powder in an unsintered state, and imparting a property that allows water vapor to pass through but not condensed water. . U.S. Pat. No. 4,654,406 and U.S. Pat. No. 4,576,8
No. 69 describes an improvement in the technology of extensible PTFE fine powder, in which an extrudate obtained by adding 17% by weight of a lubricant is produced at a speed of 10% / sec to 100% / sec at least 1000%. At least 75% by stretching
It is described that stretching uniformity is achieved. However, the required physical properties of a stretched product obtained by stretching PTFE are increasing year by year, and the stretched product obtained from the improved PTFE has a problem that the strength is not sufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、延伸性、フ
ィブリル化性および非溶融二次加工性を有するPTFE
であって、ペースト押出成形後の延伸操作に好適に使用
でき、得られた多孔体製品の強度を高くすることができ
るPTFEを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to PTFE having stretchability, fibrillation and non-melt fabrication properties.
It is an object of the present invention to provide PTFE which can be suitably used for a stretching operation after paste extrusion molding and can increase the strength of the obtained porous product.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来技術
の状況に鑑みてなされたものであり、延伸製品の強度を
高めることができるPTFEを鋭意検討した結果、示差
熱分析(以下、DSCともいう)測定から算出される吸
熱比が特定の範囲であり、標準比重が特定の範囲である
PTFEが上記延伸製品の強度を高めることができるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は、延伸性、フィブリル化性および非溶融二次加工
性を有するテトラフルオロエチレン重合体であって、該
重合体が2.160以下の標準比重を有し、示差熱分析
測定から算出される吸熱比が0.15以下であることを
特徴とするPTFEを提供する。また、本発明は、上記
PTFEにおいて、吸熱比が0.13以下であるPTF
Eを提供する。また、本発明は、上記PTFEにおい
て、吸熱比が0.10以下であるPTFEを提供する。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned state of the art. As a result of intensive studies on PTFE capable of increasing the strength of a stretched product, a differential thermal analysis (hereinafter, referred to as DSC) has been made. It has been found that the endothermic ratio calculated from the measurement is within a specific range, and that PTFE having a standard specific gravity within a specific range can enhance the strength of the stretched product, thereby completing the present invention. That is, the present invention relates to a tetrafluoroethylene polymer having stretchability, fibrillation property and non-melt secondary workability, wherein the polymer has a standard specific gravity of 2.160 or less, and from differential thermal analysis measurement. PTFE characterized in that the calculated endothermic ratio is 0.15 or less. Further, the present invention relates to the PTFE having an endothermic ratio of 0.13 or less.
Provide E. The present invention also provides the PTFE having an endothermic ratio of 0.10 or less.

【0006】また、本発明は、上記PTFEにおいて、
標準比重が2.157以下であるPTFEを提供する。
ここで、標準比重とは、JIS K6935−2に従っ
て測定した値をいう。また、本発明は、上記PTFEに
おいて、応力緩和時間が、少なくとも650秒であるP
TFEを提供する。また、本発明は、上記PTFEにお
いて、PTFEがファインパウダーであるPTFEを提
供する。また、本発明は、上記PTFEにおいて、PT
FEが水性分散液の分散固体成分であるPTFEを提供
する。さらに、本発明は、上記の特性を有するPTFE
からなる多孔体およびその物品を提供する。
Further, the present invention relates to the above PTFE,
A PTFE having a standard specific gravity of 2.157 or less is provided.
Here, the standard specific gravity refers to a value measured according to JIS K6935-2. Further, the present invention provides the PTFE, wherein the stress relaxation time is at least 650 seconds.
Provide TFE. Further, the present invention provides the PTFE, wherein the PTFE is a fine powder. Further, the present invention relates to the PTFE,
FE provides PTFE, which is the dispersed solid component of the aqueous dispersion. Further, the present invention provides a PTFE having the above-mentioned properties.
And a porous body comprising the same.

【0007】[0007]

【発明の実施の形態】本発明のPTFEは、TFEの単
独重合体であってもよいし、TFE以外のエチレン性不
飽和基を有する含フッ素モノマーなどの改質モノマーと
の共重合体であってもよい。エチレン性不飽和基を有す
る含フッ素モノマーとしては、例えば、ヘキサフルオロ
プロピレン、パーフルオロブテン−1、パーフルオロへ
キセン−1、パーフルオロノネン−1、パーフルオロ
(メチルビニルエーテル)、パーフルオロ(エチルビニ
ルエーテル)、パーフルオロ(プロピルビニルエーテ
ル)、パーフルオロ(ヘプチルビニルエーテル)、(パ
ーフルオロメチル)エチレン、(パーフルオロブチル)
エチレン、クロロトリフルオロエチレン等が挙げられ
る。これらの含フッ素モノマーは単独で用いてもよい
し、2種以上を併用してもよい。改質モノマーは、通常
1質量%以下であることが好ましく、より好ましくは
0.5質量%以下である。本発明のPTFEは、延伸
性、フィブリル化性、非溶融二次加工性を有する。これ
らの性質は、ペースト押出し成形に通常要求される性質
である。
BEST MODE FOR CARRYING OUT THE INVENTION The PTFE of the present invention may be a homopolymer of TFE or a copolymer with a modifying monomer other than TFE, such as a fluorine-containing monomer having an ethylenically unsaturated group. You may. Examples of the fluorine-containing monomer having an ethylenically unsaturated group include hexafluoropropylene, perfluorobutene-1, perfluorohexene-1, perfluorononene-1, perfluoro (methyl vinyl ether), and perfluoro (ethyl vinyl ether) ), Perfluoro (propyl vinyl ether), perfluoro (heptyl vinyl ether), (perfluoromethyl) ethylene, (perfluorobutyl)
Examples include ethylene and chlorotrifluoroethylene. These fluorinated monomers may be used alone or in combination of two or more. The content of the modifying monomer is usually preferably 1% by mass or less, more preferably 0.5% by mass or less. The PTFE of the present invention has stretchability, fibrillation, and non-melt secondary workability. These properties are those normally required for paste extrusion.

【0008】また、本発明のPTFEは、標準比重、吸
熱比が特定の範囲にあるものであり、これにより特徴付
けられる。本発明のPTFEの標準比重(以下、SSG
という)は、2.160以下であり、好ましくは2.1
57以下である。このSSG値は、低い値であるといえ
る。SSGは、平均分子量の増大に伴い、減少する傾向
がある。すなわち、本発明のPTFEは、SSG値が小
さいので、その平均分子量がかなり高いものであること
が予測できる。SSG値が2.160以下のPTFE
は、押出し物の延伸倍率が3000%を超え、延伸均一
性にも優れる。本発明のPTFEの吸熱比は、0.15
以下であり、0.13以下がより好ましく、0.10以
下が特に好ましい。この吸熱比は、後述する吸熱比の測
定において定義されるものである。一般にPTFEの示
差熱分析による結晶融解挙動は複数のピークが観察され
る。これは、それぞれに対応した結晶構造などの違いが
あると推測されるが、延伸加工においては、その構造が
なくべく同一のものが多いほうが、均一な延伸が可能
で、得られる多孔体の特性に優れるといえる。吸熱比
は、その構造の均一性を示す指標であり、吸熱比が小さ
いほど、PTFE中の構造の乱れが小さいとを示してい
る。吸熱比が0.15を超えると、高倍率延伸が困難と
なったり、破断強度も小さくなる傾向となる。
The PTFE of the present invention has a standard specific gravity and an endothermic ratio in a specific range, and is characterized by this. The standard specific gravity of the PTFE of the present invention (hereinafter referred to as SSG)
) Is 2.160 or less, preferably 2.1.
57 or less. This SSG value can be said to be a low value. SSG tends to decrease with increasing average molecular weight. That is, since the PTFE of the present invention has a small SSG value, it can be predicted that the average molecular weight is considerably high. PTFE with SSG value of 2.160 or less
The extruded product has a stretch ratio of more than 3000% and is excellent in stretch uniformity. The endothermic ratio of the PTFE of the present invention is 0.15
Or less, more preferably 0.13 or less, particularly preferably 0.10 or less. This endothermic ratio is defined in the measurement of the endothermic ratio described later. Generally, a plurality of peaks are observed in the crystal melting behavior of PTFE by differential thermal analysis. It is presumed that there is a difference in the crystal structure and the like corresponding to each, but in the stretching process, it is possible to achieve uniform stretching if there are many identical materials without the structure, and the characteristics of the obtained porous body It can be said that it is excellent. The endothermic ratio is an index indicating the uniformity of the structure, and indicates that the smaller the endothermic ratio is, the smaller the turbulence of the structure in PTFE is. When the endothermic ratio exceeds 0.15, high-magnification stretching becomes difficult and the breaking strength tends to decrease.

【0009】本発明のPTFEの延伸物の破断強度は、
19.6N(2.0kgf)〜49.0N(5.0kg
f)の範囲が好ましく、29.4N(3.0kgf)〜
49.0N(5.0kgf)の範囲がより好ましく、特
に好ましくは34.3N(3.5kgf)〜49.0N
(5.0kgf)の範囲である。破断強度は、大きいほ
ど耐久性に等に優れるので好ましい。一方、破断強度が
5.0kgfを超えるPTFEは、製造が非常に困難と
なる傾向がある。また、本発明のPTFEは、応力緩和
時間が、少なくとも650秒であるものが好ましく、少
なくとも700秒であるものがより好ましく、少なくと
も730秒であるものが特に好ましい。本発明のPTF
Eは、水性分散重合により製造することができる。水性
分散重合は、TFE単独、またはTFEと改質モノマー
とを用いて、分散剤および重合開始剤を含有する水系媒
体中で、行うことができる。重合温度は、通常50〜1
20℃の範囲であり、好ましくは60〜100℃の範囲
である。重合圧力は、適宜選定すればよいが、0.5〜
4.0MPaの範囲になるようにすればよく、好ましく
は1.0〜2.5MPaの範囲である。
The breaking strength of the expanded PTFE of the present invention is as follows:
19.6 N (2.0 kgf) to 49.0 N (5.0 kg
The range of f) is preferable, and 29.4 N (3.0 kgf) to
The range of 49.0 N (5.0 kgf) is more preferable, and particularly preferably 34.3 N (3.5 kgf) to 49.0 N.
(5.0 kgf). The larger the breaking strength, the better the durability and the like. On the other hand, PTFE having a breaking strength exceeding 5.0 kgf tends to be very difficult to manufacture. Further, the PTFE of the present invention preferably has a stress relaxation time of at least 650 seconds, more preferably at least 700 seconds, and particularly preferably at least 730 seconds. PTF of the present invention
E can be produced by aqueous dispersion polymerization. The aqueous dispersion polymerization can be performed using TFE alone or using TFE and a modifying monomer in an aqueous medium containing a dispersant and a polymerization initiator. The polymerization temperature is usually 50 to 1
It is in the range of 20C, preferably in the range of 60-100C. The polymerization pressure may be appropriately selected, but is preferably 0.5 to
The pressure may be in the range of 4.0 MPa, preferably in the range of 1.0 to 2.5 MPa.

【0010】分散剤としては、連鎖移動性の少ないアニ
オン系界面活性剤がより好ましく、フルオロカーボン系
の界面活性剤が特に好ましい。具体例としては、XC
COOM(ここで、Xは水素、塩素、フッ素、
(CFCFを、Mは水素、NH、アルカリ金属
を、nは6〜12の整数を示す。)、C2m+1
(CF(CF)CFO)CF(CF)COOM
(ここで、Mは水素、NH、アルカリ金属を、mは1
〜12の整数を、pは0〜5の整数を示す。)、C
2n+1SOM、C2n+1CHCHSO
M等が挙げられる。パーフルオロカーボン系の界面活性
剤がより好ましく、C15COONH 4、
17COONH、C19COONH、C10
21COONH、C15COONa17
COONa、C19COONa、C15COO
17COOK、C19COOK、C
O(CF(CF)CFO)CF(CF)CO
ONH等が挙げられる。これらは、単独で又は2種以
上を組み合わせて用いてもよい。分散剤の量は、使用さ
れる水の質量基準で、250〜5000ppmの範囲に
することが好ましい。この範囲にすることで水性分散液
の安定性が向上し、得られるPTFEの破断強度が高く
なる。また、水性分散液の安定性をさらに向上するため
に重合中に分散剤を追加添加することも好ましい。
As a dispersant, an anion having a low chain transfer property is used.
On-surfactants are more preferred, and fluorocarbon
Are particularly preferred. As a specific example, XCn
F2 nCOOM (where X is hydrogen, chlorine, fluorine,
(CF3)2CF, M is hydrogen, NH4, Alkali metal
And n represents an integer of 6 to 12. ), CmF2m + 1O
(CF (CF3) CF2O)pCF (CF3) COOM
(Where M is hydrogen, NH4, An alkali metal, m is 1
And p represents an integer of 0 to 5. ), CnF
2n + 1SO3M, CnF2n + 1CH2CH2SO3
M and the like. Surface activity of perfluorocarbon system
Agents are more preferred and C7FFifteenCOONH 4,C8F
17COONH4, C9F19COONH4, C10F
21COONH4, C7FFifteenCOONa,C8F17
COONa, C9F19COONa, C7FFifteenCOO
K,C8F17COOK, C9F19COOK, C3F
7O (CF (CF3) CF2O)2CF (CF3) CO
ONH4And the like. These may be used alone or in combination of two or more.
The above may be used in combination. The amount of dispersant used
Water in the range of 250-5000 ppm
Is preferred. Aqueous dispersions in this range
Stability is improved, and the breaking strength of the obtained PTFE is high.
Become. Also, to further improve the stability of the aqueous dispersion
It is also preferable to additionally add a dispersant during the polymerization.

【0011】重合開始剤としては、水溶性ラジカル重合
開始剤や水溶性レドックス系重合開始剤が好ましい。水
溶性ラジカル重合開始剤としては、過硫酸アンモニウ
ム、過硫酸カリウム等の過硫酸塩、ビスコハク酸パーオ
キシド、ビスグルタル酸パーオキシド、tert−ブチ
ルヒドロパーオキシド等の水溶性有機過酸化物が好まし
い。これらは、単独で又は2種以上を組み合わせて用い
てもよい。特に、レドックス系重合開始剤を用いるとS
SGが低く、吸熱比が小さく、押出し圧力が低く、破断
強度が大きいPTFEが得られるので好ましい。レドッ
クス系重合開始剤としては、過硫酸塩、臭素酸塩等の水
溶性酸化剤と亜硫酸塩やジイミン等の還元剤の組合せが
好ましい。特に、レドックス系重合開始剤として、臭素
酸塩と亜硫酸塩の組み合わせがより好ましく、臭素酸カ
リウムと亜硫酸アンモニウムの組合せが最も好ましい。
臭素酸塩と亜硫酸塩を用いる場合には、どちらかをあら
かじめ重合槽に仕込み、ついでもう一方を連続的または
断続的に加えて重合を開始させることが好ましく、臭素
酸塩をあらかじめ重合槽に仕込み、ついで亜硫酸塩を連
続的または断続的に加えることがより好ましい。重合開
始剤の量は、適宜選定すればよいが、水の質量基準で2
〜600ppmが好ましく、臭素酸塩と亜硫酸塩の組合
せの場合にはそれぞれ5〜300ppmが好ましい。ま
た、あらかじめ臭素酸塩を重合槽に仕込む場合は、臭素
酸塩濃度を高くすることにより水性分散液の安定性がさ
らに向上する。重合開始剤の量は、少ないほど吸熱比が
小さいPTFEが得られる傾向となるので好ましい。ま
た、重合開始剤の量は、あまりに少ないと重合速度が遅
くなりすぎる傾向となり、あまりに多いと生成するPT
FEのSSGが高くなる傾向となる。
As the polymerization initiator, a water-soluble radical polymerization initiator and a water-soluble redox polymerization initiator are preferable. As the water-soluble radical polymerization initiator, persulfates such as ammonium persulfate and potassium persulfate, and water-soluble organic peroxides such as bissuccinic peroxide, bisglutaric peroxide and tert-butyl hydroperoxide are preferable. These may be used alone or in combination of two or more. In particular, when a redox polymerization initiator is used, S
This is preferable because PTFE having low SG, low heat absorption ratio, low extrusion pressure, and high breaking strength can be obtained. As the redox polymerization initiator, a combination of a water-soluble oxidizing agent such as persulfate and bromate and a reducing agent such as sulfite and diimine is preferable. In particular, a combination of a bromate and a sulfite is more preferable as the redox polymerization initiator, and a combination of potassium bromate and ammonium sulfite is most preferable.
When using a bromate and a sulfite, it is preferable to charge one of them in a polymerization tank in advance, and then add the other continuously or intermittently to start the polymerization. More preferably, the sulfite is added continuously or intermittently. The amount of the polymerization initiator may be appropriately selected, but may be 2 based on the mass of water.
-600 ppm is preferable, and in the case of a combination of bromate and sulfite, 5-300 ppm is preferable respectively. When the bromate is previously charged into the polymerization tank, the stability of the aqueous dispersion is further improved by increasing the bromate concentration. It is preferable that the amount of the polymerization initiator be smaller, since PTFE having a smaller endothermic ratio tends to be obtained. If the amount of the polymerization initiator is too small, the polymerization rate tends to be too slow, and if the amount is too large, the PT
The SSG of the FE tends to increase.

【0012】水性分散重合は、安定化助剤の存在下に実
施することが好ましい。安定化助剤としては、パラフィ
ンワックス、フッ素系オイル、フッ素系溶剤、シリコー
ンオイル等が好ましい。これらは、単独で又は2種以上
を組み合わせて用いてもよい。特に、パラフィンワック
スの存在下に行うことが好ましい。パラフィンワックス
としては、室温で液体でも、半固体でも、固体であって
もよいが、炭素数12以上の飽和炭化水素が好ましい。
パラフィンワックスの融点は、通常40〜65℃が好ま
しく、50〜65℃がより好ましい。パラフィンワック
スの量は、使用される水の質量基準で0.1〜12質量
%が好ましく、0.1〜8質量%がより好ましい。水性
分散重合は、通常、水系重合混合物を穏やかに撹拌する
ことにより行われる。生成した水性分散液中のPTFE
微粒子が凝集しないように撹拌条件が制御される。水性
分散重合は、通常、水性分散液中のPTFE微粒子の濃
度が15〜40質量%になるまで行われる。水性分散重
合は、酸を添加して酸性状態で行うことが水性分散液の
安定化のために好ましい。酸としては、硫酸、塩酸、硝
酸等の酸が好ましく、硝酸がより好ましい。硝酸を加え
ることにより水性分散液の安定性がさらに向上する。水
性分散重合によりPTFE微粒子が分散した水性分散液
が得られるが、水性分散液中のPTFE微粒子の粒径
は、通常0.02〜1.0μmと広い分布を有し、平均
粒子径は0.1〜0.4μm程度である。得られた水性
分散重合液からPTFE微粒子を凝集し、乾燥させてP
TFEファインパウダーを得る。凝集方法としては、水
性分散液を高速撹拌することによってPTFE微粒子を
凝集させることが好ましい。このとき、凝析剤を添加す
ることが好ましい。凝析剤としては、炭酸アンモニウム
や多価無機塩類、鉱酸類、陽イオン界面活性剤、アルコ
ール等が好ましく、炭酸アンモニウムがより好ましい。
The aqueous dispersion polymerization is preferably carried out in the presence of a stabilizing aid. As the stabilizing aid, paraffin wax, fluorine-based oil, fluorine-based solvent, silicone oil and the like are preferable. These may be used alone or in combination of two or more. In particular, it is preferable to carry out in the presence of paraffin wax. The paraffin wax may be liquid, semi-solid, or solid at room temperature, but is preferably a saturated hydrocarbon having 12 or more carbon atoms.
The melting point of paraffin wax is usually preferably from 40 to 65 ° C, more preferably from 50 to 65 ° C. The amount of paraffin wax is preferably from 0.1 to 12% by mass, more preferably from 0.1 to 8% by mass, based on the mass of water used. The aqueous dispersion polymerization is usually performed by gently stirring the aqueous polymerization mixture. PTFE in the resulting aqueous dispersion
The stirring conditions are controlled so that the fine particles do not aggregate. The aqueous dispersion polymerization is usually performed until the concentration of the PTFE fine particles in the aqueous dispersion becomes 15 to 40% by mass. The aqueous dispersion polymerization is preferably performed in an acidic state by adding an acid for stabilizing the aqueous dispersion. As the acid, acids such as sulfuric acid, hydrochloric acid, and nitric acid are preferable, and nitric acid is more preferable. Addition of nitric acid further improves the stability of the aqueous dispersion. An aqueous dispersion in which the PTFE fine particles are dispersed is obtained by the aqueous dispersion polymerization, and the particle diameter of the PTFE fine particles in the aqueous dispersion generally has a wide distribution of 0.02 to 1.0 μm, and the average particle diameter is 0. It is about 1 to 0.4 μm. PTFE fine particles are agglomerated from the obtained aqueous dispersion polymerization solution and dried to form P
Obtain TFE fine powder. As the aggregating method, it is preferable that the PTFE fine particles are agglomerated by stirring the aqueous dispersion at a high speed. At this time, it is preferable to add a coagulant. As the coagulant, ammonium carbonate, polyvalent inorganic salts, mineral acids, cationic surfactants, alcohols and the like are preferable, and ammonium carbonate is more preferable.

【0013】凝集により湿潤状態で得られるPTFEの
乾燥は、任意の温度で行うことができるが、100〜2
50℃の範囲で行うことが好ましく、130〜200℃
の範囲で行うことが特に好ましい。乾燥によって、本発
明のPTFEァインパウダーを得ることができる。この
PTFEファインパウダーは、その平均粒径が100〜
800μmの範囲のものが好ましく、400〜600μ
mの範囲のものが特に好ましい。また、本発明は、上記
の特性を有するPTFEからなる多孔体およびその物品
を提供する。多孔体は、種々の方法により製造したもの
が挙げられるが、例えば、ペースト押出し成形後に延伸
を施すことにより得られる多孔体および多孔体からなる
フィルム、チューブなどが挙げられる。ペースト押出し
成形とは、PTFEファインパウダーを潤滑剤と混合し
て、PTFEファインパウダーに流動性を持たせてフィ
ルム、チューブ等の成形物を成形するものである。潤滑
剤の混合割合は、PTFEファインパウダーに流動性を
持たせるように、適宜選定すればよく、通常10〜30
質量%にすればよい。潤滑剤としては、ナフサ、沸点が
200℃以上の石油系炭化水素が好ましく用いられる。
また、延伸は、適当な速度、例えば5%/秒〜1000
%/秒の速度で、適当な延伸倍率、例えば500%以上
の延伸倍率になるように施せばよい。多孔体の空孔率は
特に制限ないが、通常空孔率が50〜97%の範囲が好
ましく、70〜95%の範囲が特に好ましい。多孔体で
構成される物品の形状は、シート状、フィルム状、繊維
状など種々の形状にすることができる。
Drying of PTFE obtained in a wet state by agglomeration can be performed at any temperature.
It is preferably performed in the range of 50 ° C, and 130 to 200 ° C
It is particularly preferable to perform the reaction in the range described above. By drying, the PTFE fine powder of the present invention can be obtained. This PTFE fine powder has an average particle size of 100 to
It is preferably in the range of 800 μm,
Those having a range of m are particularly preferred. Further, the present invention provides a porous body made of PTFE having the above-mentioned properties and an article thereof. Examples of the porous body include those manufactured by various methods. Examples of the porous body include a porous body obtained by performing stretching after paste extrusion, and a film and a tube made of the porous body. Paste extrusion molding refers to mixing PTFE fine powder with a lubricant to give fluidity to PTFE fine powder to form a molded product such as a film or a tube. The mixing ratio of the lubricant may be appropriately selected so that the PTFE fine powder has fluidity.
What is necessary is just to mass%. As the lubricant, naphtha or a petroleum hydrocarbon having a boiling point of 200 ° C. or more is preferably used.
The stretching is performed at an appropriate speed, for example, 5% / sec to 1000%.
The stretching may be performed at a rate of% / sec so as to obtain an appropriate stretching ratio, for example, a stretching ratio of 500% or more. The porosity of the porous body is not particularly limited, but usually the porosity is preferably in the range of 50 to 97%, particularly preferably in the range of 70 to 95%. The shape of the article formed of the porous body can be various shapes such as a sheet shape, a film shape, and a fiber shape.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本願発明はこれらに限定されない。以下におい
て、部は質量部を示す。例1〜3が実施例であり、例4
が比較例である。なお、実施例において、延伸性の評
価、破断強度、応力緩和時間の測定は、以下に示す方法
により行った。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. In the following, “parts” indicates “parts by mass”. Examples 1 to 3 are working examples, and Example 4
Is a comparative example. In the examples, evaluation of stretchability, measurement of breaking strength, and measurement of stress relaxation time were performed by the following methods.

【0015】(1)吸熱比の測定 示差熱分析計(DSC−7、PERKIN ELMER
社製)を用いて測定した。サンプルの10.0mgを用
い、初期温度200℃で1分間保持した後、10℃/分
で380℃まで昇温して、示差熱曲線を得た。得られた
示差熱曲線上の310℃の点と350℃の点を結んでベ
ースラインとした。示差熱曲線上の最も高いピークから
ベースラインに向けて下した長さをAとする。最も高い
ピークからベースラインに下した交点より10℃低温側
のベースライン上の点から示差熱曲線までの長さをBと
する。B/Aの値を吸熱比とした。
(1) Measurement of endothermic ratio Differential thermal analyzer (DSC-7, PERKIN ELMER)
(Manufactured by the company). Using 10.0 mg of the sample, the sample was kept at an initial temperature of 200 ° C. for 1 minute, and then heated at a rate of 10 ° C./minute to 380 ° C. to obtain a differential heat curve. A point at 310 ° C. and a point at 350 ° C. on the obtained differential heat curve were connected to each other to obtain a baseline. Let A be the length from the highest peak on the differential thermal curve toward the baseline. Let B be the length from the point on the baseline 10 ° C. lower than the intersection from the highest peak to the baseline to the differential heat curve. The value of B / A was taken as the endothermic ratio.

【0016】(2)延伸性の評価 室温で2時間以上放置されたPTFEのファインパウダ
ー100gを内容量900ccのガラス瓶に入れ、アイ
ソパーH(登録商標、エクソン社製)潤滑剤21.7g
を添加し、3分間混合してPTFE混合物を得た。得ら
れたPTFE混合物を25℃恒温槽に2時間放置した後
に、リダクションレシオ(ダイスの入り口の断面積と出
口の断面積の比)100、押出し速度51cm/分の条
件で、25℃にて、直径2.5cm、ランド長1.1c
m、導入角30°のオリフィスを通して、ペースト押出
ししビードを得た。得られたビードを230℃で30分
間乾燥し、潤滑剤を除去した。次いで、ビードの長さを
適当な長さに切断し、クランプ間が3.8cmまたは
5.1cmのいずれかの間隔となるよう、各末端を固定
し、空気循環炉中で300℃に加熱した。次いで、クラ
ンプが所定の間隔になるまで所定の速度で延伸した。こ
の延伸方法は、押出しスピード(51cm/分)が異な
ることを除いて、本質的に米国特許第4,576,869
号明細書に開示された方法に従った。「延伸」とは、長
さの増加であり、通常元の長さと関連して表わされる。
(2) Evaluation of stretchability 100 g of PTFE fine powder left at room temperature for 2 hours or more was put into a glass bottle having a content of 900 cc, and 21.7 g of Isopar H (registered trademark, manufactured by Exxon) lubricant was added.
Was added and mixed for 3 minutes to obtain a PTFE mixture. After leaving the obtained PTFE mixture in a constant temperature bath at 25 ° C. for 2 hours, a reduction ratio (the ratio of the cross-sectional area of the entrance of the die to the cross-sectional area of the exit) of 100 and an extrusion speed of 51 cm / min at 25 ° C. 2.5cm in diameter, land length 1.1c
m, and a paste extruded bead was obtained through an orifice having an introduction angle of 30 °. The obtained bead was dried at 230 ° C. for 30 minutes to remove the lubricant. The length of the bead was then cut to a suitable length, each end was fixed such that the gap between the clamps was either 3.8 cm or 5.1 cm, and heated to 300 ° C. in a circulating air oven. . Then, the clamp was stretched at a predetermined speed until a predetermined interval was reached. This stretching method is essentially U.S. Pat. No. 4,576,869 except that the extrusion speed (51 cm / min) is different.
According to the method disclosed in the above specification. "Stretching" is an increase in length, usually expressed in relation to the original length.

【0017】(3)応力緩和時間の測定 応力緩和時間の測定用のサンプルは、クランプ間隔3.
8cm、延伸速度1000%/秒、総延伸2400%を
用い、延伸性の評価のように、ビードを延伸することに
より、作製する。この延伸ビードのサンプルの両方の末
端は、固定具につなげることにより、ぴんと張られた全
長25cmの延伸ビードである。応力緩和時間とは、こ
のサンプルが390℃、すなわち、米国特許第5,47
0,655号明細書に開示されている延長鎖形状の溶け
る380℃より高い温度でオーブン中に放置した後に破
断するのに要する時間である。固定具におけるサンプル
は、オーブンの側部にある(覆われた)スロットを通し
てオーブンに挿入されるので、サンプルを配置する間に
温度は下降することがなく、それゆえに米国特許第4,
576,869号明細書に開示されたように回復にしば
しの時間を必要としない。
(3) Measurement of stress relaxation time The sample for measuring the stress relaxation time has a clamp interval of 3.
It is produced by stretching a bead as in the evaluation of stretchability using 8 cm, a stretching speed of 1000% / sec, and a total stretching of 2400%. At both ends of the stretch bead sample are stretch beads of 25 cm overall length that are taut by connecting to a fixture. The stress relaxation time is defined as 390 ° C., ie, US Pat.
No. 0,655, the time required to break after standing in an oven at a temperature above 380 ° C. at which the extended chain melts, which melts. Since the sample in the fixture is inserted into the oven through a (covered) slot on the side of the oven, the temperature does not drop during sample placement, and therefore, US Pat.
Recovery does not require a brief period of time as disclosed in 576,869.

【0018】[例1]100Lの重合槽に、パラフィンワ
ックスの928g、超純水の55L、パーフルオロオク
タン酸アンモニウムの36g、コハク酸の1g、1Nの
硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込
んだ。窒素パージ、脱気を行った後に、65℃に昇温し
た。温度が安定した後にTFEを導入し、1.9MPa
の圧力とした。内容物を撹拌下に、亜硫酸アンモニウム
140ppm水溶液1Lを60分連続添加して重合を開
始した。重合が進行すると共にTFEが消費されて重合
槽内の圧力が低下したので、圧力を一定に保つようにT
FEを連続的に供給した。亜硫酸アンモニウムの添加終
了後にパーフルオロオクタン酸アンモニウムの11.1
質量%水溶液1Lを添加した。重合開始から270分経
過した時点で、撹拌およびTFEの供給を停止し、重合
槽内のTFEをパージし、ついで気相を窒素で置換し
た。得られた固形分28.9質量%のPTFE水性分散
液を炭酸アンモニウム存在下で凝集し、湿潤状態のPT
FEを分離した。得られた湿潤状態のPTFEを160
℃で乾燥して、PTFEファインパウダーを得た。そし
て、得られたPTFEファインパウダーのSSG、吸熱
比および平均粒径を測定した。また、得られたPTFE
ファインパウダーをクランプ間隔5.1cm、延伸速度
100%/秒、総延伸2400%を用い、延伸性の評価
と同様にして、ビードを延伸することにより、破断強度
試験測定用サンプルを作製した。破断強度は、延伸ビー
ドから得られる3つのサンプル、延伸ビードの各末端か
ら1つ(クランプの範囲においてネックダウンがあれば
それを除く)、およびその中心から1つ、の最小引張り
破断負荷(力)として、測定した。5.0cmのゲージ
長である、ジョーにおいてサンプルを挟んで固定し、可
動ジョー300mm/分のスピードで駆動させ、引張り
試験機(エーアンドディ社製)を用いて、室温で測定し
た。破断強度は、37.3Nであり、多孔体として有用
な非常に高い破断強度を示した。応力緩和時間は前述の
方法に従い測定した。ついで、PTFEファインパウダ
ー600gをガラス製のボトルに20重量%の割合で潤
滑剤であるアイソパーG(Exxon社製)を加え、1
00rpmで30分間回転させることにより混合した。
ブレンドした樹脂を室温で24時間熟成させた。この樹
脂を0.2MPaの圧力を120秒間プレスして直径6
8mmのプレフォームを得た。このプレフォームを直径
11mmのオリフィスを通して押出しを行い、押出し物
を厚さ0.1mmまで圧延した。該圧延シートを長さ5
cm、幅2cmの短冊状とし、300℃の温度下、10
0%/秒の速度で10倍に延伸した。得られたフィルム
の空孔率は、90%であった。
Example 1 In a 100 L polymerization tank, 928 g of paraffin wax, 55 L of ultrapure water, 36 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N aqueous nitric acid, and 0.1 ml of potassium bromate. 4 g were charged. After nitrogen purging and degassing, the temperature was raised to 65 ° C. After the temperature was stabilized, TFE was introduced and 1.9 MPa
Pressure. While stirring the contents, 1 L of a 140 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization progressed, TFE was consumed and the pressure in the polymerization tank decreased.
FE was fed continuously. After completion of the addition of ammonium sulfite, 11.1 of ammonium perfluorooctanoate was added.
1 L of a 1% by weight aqueous solution was added. When 270 minutes had elapsed from the start of the polymerization, the stirring and the supply of TFE were stopped, TFE in the polymerization tank was purged, and then the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 28.9% by mass is aggregated in the presence of ammonium carbonate to form a wet state of PT.
The FE was separated. 160 of the obtained wet PTFE
Drying at ℃ yielded PTFE fine powder. Then, SSG, endothermic ratio and average particle size of the obtained PTFE fine powder were measured. In addition, the obtained PTFE
Using a fine powder with a clamp interval of 5.1 cm, a stretching speed of 100% / sec, and a total stretching of 2400%, a bead was stretched in the same manner as in the evaluation of stretchability to prepare a sample for measuring a breaking strength test. The breaking strength was the minimum tensile breaking load (force) of the three samples obtained from the stretched bead, one from each end of the stretched bead (excluding any neckdown in the range of the clamp) and one from its center. ) Was measured. A sample having a gauge length of 5.0 cm was sandwiched between jaws and fixed. The movable jaw was driven at a speed of 300 mm / min, and measured at room temperature using a tensile tester (manufactured by A & D Corporation). The breaking strength was 37.3N, which showed a very high breaking strength useful as a porous body. The stress relaxation time was measured according to the method described above. Then, Isopar G (manufactured by Exxon), which is a lubricant, was added to a glass bottle containing 600 g of PTFE fine powder at a ratio of 20% by weight.
Mix by rotating at 00 rpm for 30 minutes.
The blended resin was aged at room temperature for 24 hours. This resin is pressed at a pressure of 0.2 MPa for 120 seconds to obtain a resin having a diameter of 6 mm.
An 8 mm preform was obtained. The preform was extruded through an orifice having a diameter of 11 mm, and the extruded product was rolled to a thickness of 0.1 mm. The rolled sheet has a length of 5
cm, 2 cm width, at a temperature of 300 ° C.
The film was stretched 10 times at a rate of 0% / sec. The porosity of the obtained film was 90%.

【0019】[例2]100Lの重合槽に、パラフィンワ
ックスの928g、超純水の55L、パーフルオロオク
タン酸アンモニウムの25g、コハク酸の1g、1Nの
硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込
んだ。窒素パージ、脱気を行った後に、85℃に昇温し
た。温度が安定した後にTFEを導入し、1.9MPa
の圧力とした。内容物を撹拌下に、亜硫酸アンモニウム
140ppm水溶液1Lを60分連続添加して重合を開
始した。重合が進行すると共にTFEが消費されて重合
槽内の圧力が低下したので、圧力を一定に保つようにT
FEを連続的に供給した。亜硫酸アンモニウムの添加終
了後にパーフルオロオクタン酸アンモニウムの11.1
質量%水溶液1Lを添加した。重合開始から250分経
過した時点で、撹拌およびTFEの供給を停止し、重合
槽内のTFEをパージし、ついで気相を窒素で置換し
た。得られた固形分24.1質量%のPTFE水性分散
液を炭酸アンモニウム存在下で凝集し、湿潤状態のPT
FEを分離した。得られた湿潤状態のPTFEを140
℃で乾燥して、PTFEファインパウダーを得た。例1
と同様にして、PTFEファインパウダーのSSG、吸
熱比および平均粒径、延伸ビードの破断強度、応力緩和
時間を測定した。例1と同様に、多孔体の破断強度を測
定したところ、34.8Nであり、多孔体として有用な
非常に高い破断強度を示した。
Example 2 In a 100 L polymerization vessel, 928 g of paraffin wax, 55 L of ultrapure water, 25 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N aqueous nitric acid, and 0.1 ml of potassium bromate. 4 g were charged. After nitrogen purging and degassing, the temperature was raised to 85 ° C. After the temperature was stabilized, TFE was introduced and 1.9 MPa
Pressure. While stirring the contents, 1 L of a 140 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization progressed, TFE was consumed and the pressure in the polymerization tank decreased.
FE was fed continuously. After completion of the addition of ammonium sulfite, 11.1 of ammonium perfluorooctanoate was added.
1 L of a 1% by weight aqueous solution was added. When 250 minutes had passed from the start of the polymerization, stirring and the supply of TFE were stopped, TFE in the polymerization tank was purged, and then the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 24.1% by mass was aggregated in the presence of ammonium carbonate to form a wet PT
The FE was separated. 140 of the obtained wet PTFE
Drying at ℃ yielded PTFE fine powder. Example 1
In the same manner as in the above, the SSG of the PTFE fine powder, the endothermic ratio and the average particle size, the breaking strength of the stretched bead, and the stress relaxation time were measured. When the breaking strength of the porous body was measured in the same manner as in Example 1, it was 34.8 N, indicating a very high breaking strength useful as a porous body.

【0020】[例3]100Lの重合槽に、パラフィンワ
ックスの928g、超純水の55L、パーフルオロオク
タン酸アンモニウムの36g、コハク酸の1g、1Nの
硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込
んだ。窒素パージ、脱気を行った後に、85℃に昇温し
た。温度が安定した後にTFEを導入し、1.9MPa
の圧力とした。内容物を撹拌下に、亜硫酸アンモニウム
180ppm水溶液1Lを60分連続添加して重合を開
始した。重合が進行すると共にTFEが消費されて重合
槽内の圧力が低下したので、圧力を一定に保つようにT
FEを連続的に供給した。重合開始40分から60分の
間に連続的にパーフルオロオクタン酸アンモニウムの
3.6質量%水溶液1Lを添加した。亜硫酸アンモニウ
ムの添加終了後にパーフルオロオクタン酸アンモニウム
の8.1質量%水溶液1Lを添加した。重合開始から2
50分経過した時点で、撹拌およびTFEの供給を停止
し、重合槽内のTFEをパージし、ついで気相を窒素で
置換した。得られた固形分29.9質量%のPTFE水
性分散液を炭酸アンモニウム存在下で凝集し、湿潤状態
のPTFEを分離した。得られた湿潤状態のPTFEを
160℃で乾燥して、PTFEファインパウダーを得
た。例1と同様にして、PTFEファインパウダーのS
SG、吸熱比および平均粒径、延伸ビードの破断強度、
応力緩和時間を測定した。
Example 3 In a 100 L polymerization vessel, 928 g of paraffin wax, 55 L of ultrapure water, 36 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N aqueous nitric acid, and 0.1 ml of potassium bromate. 4 g were charged. After nitrogen purging and degassing, the temperature was raised to 85 ° C. After the temperature was stabilized, TFE was introduced and 1.9 MPa
Pressure. While stirring the content, 1 L of a 180 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization progressed, TFE was consumed and the pressure in the polymerization tank decreased.
FE was fed continuously. One liter of a 3.6% by mass aqueous solution of ammonium perfluorooctanoate was continuously added from 40 minutes to 60 minutes after the start of the polymerization. After the completion of the addition of ammonium sulfite, 1 L of an 8.1% by mass aqueous solution of ammonium perfluorooctanoate was added. 2 from the start of polymerization
After the elapse of 50 minutes, the stirring and the supply of TFE were stopped, TFE in the polymerization tank was purged, and the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 29.9% by mass was coagulated in the presence of ammonium carbonate to separate wet PTFE. The obtained wet PTFE was dried at 160 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, PTFE fine powder S
SG, endothermic ratio and average particle size, breaking strength of stretched bead,
The stress relaxation time was measured.

【0021】[例4]100Lの重合槽に、パラフィンワ
ックスの736g、超純水の59L、パーフルオロオク
タン酸アンモニウムの33gを仕込んだ。70℃に昇温
し、窒素パージ、脱気を行った後、TFEを導入し、
1.9MPaの圧力とした。撹拌下に、ジコハク酸パー
オキサイドの0.5質量%水溶液1Lを圧入して重合を
開始した。重合の進行に伴いTFEが消費されて重合槽
内の圧力が低下したので、圧力を一定に保つように重合
中はTFEを連続的に供給した。重合開始から45分後
から6℃/時で90℃まで昇温した。また、TFEの供
給量が6.6kgとなった時点で、パーフルオロオクタ
ン酸アンモニウムの5.6質量%水溶液1Lを添加し
た。重合開始から160分経過した時点で、撹拌および
TFEの供給を停止し、重合槽内のTFEをパージして
重合を停止した。得られた固形分24.3質量%のPT
FE水性分散液を凝集し、湿潤状態のPTFEを分離し
た。得られた湿潤状態のPTFEを205℃で乾燥し
て、PTFEファインパウダーを得た。例1と同様にし
て、PTFEファインパウダーのSSG、吸熱比および
平均粒径、ペースト押出し時の押出し圧力、応力緩和時
間を測定した。例1と同様に、多孔体の破断強度を測定
したところ、9.8Nであり、非常に低いものであっ
た。
Example 4 A 100 L polymerization tank was charged with 736 g of paraffin wax, 59 L of ultrapure water, and 33 g of ammonium perfluorooctanoate. After the temperature was raised to 70 ° C., nitrogen purge and degassing were performed, TFE was introduced,
The pressure was set to 1.9 MPa. Under stirring, 1 L of a 0.5% by mass aqueous solution of disuccinic acid peroxide was injected under pressure to initiate polymerization. Since TFE was consumed with the progress of polymerization and the pressure in the polymerization tank decreased, TFE was continuously supplied during polymerization so as to keep the pressure constant. After 45 minutes from the start of the polymerization, the temperature was raised to 90 ° C. at 6 ° C./hour. When the supply amount of TFE reached 6.6 kg, 1 L of a 5.6% by mass aqueous solution of ammonium perfluorooctanoate was added. When 160 minutes had elapsed from the start of the polymerization, the stirring and the supply of TFE were stopped, and TFE in the polymerization tank was purged to stop the polymerization. The obtained PT having a solid content of 24.3% by mass.
The FE aqueous dispersion was agglomerated to separate wet PTFE. The obtained wet PTFE was dried at 205 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, the SSG of the PTFE fine powder, the endothermic ratio, the average particle size, the extrusion pressure during paste extrusion, and the stress relaxation time were measured. When the breaking strength of the porous body was measured in the same manner as in Example 1, it was 9.8 N, which was extremely low.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明のPTFEは、標準比重が低く、
吸熱比が低く、ペースト押出成形後の延伸操作に好適に
使用できる。
The PTFE of the present invention has a low standard specific gravity,
It has a low heat absorption ratio and can be suitably used for a stretching operation after paste extrusion molding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星川 潤 千葉県市原市五井海岸10番地 旭硝子フロ ロポリマーズ株式会社内 (72)発明者 加藤 一雄 千葉県市原市五井海岸10番地 旭硝子フロ ロポリマーズ株式会社内 (72)発明者 神谷 浩樹 千葉県市原市五井海岸10番地 旭硝子株式 会社内 (72)発明者 平井 浩之 千葉県市原市五井海岸10番地 旭硝子株式 会社内 Fターム(参考) 4F074 AA39 AB02 CA01 CC02Y CC04Y DA02 4J100 AC26P AC27Q AC29Q AC31Q AC34Q AC42Q AE39Q CA01 CA04 DA11 DA22 EA06  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Jun Hoshikawa 10 Asahi Glass Fluoropolymers Co., Ltd., Ichihara City, Chiba Prefecture (72) Inventor Kazuo Kato 10 Asahi Glass Fluoropolymers Co., Ltd., Ichihara City, Chiba Prefecture ( 72) Inventor Hiroki Kamiya 10 Asahi Glass Co., Ltd., Ichihara City, Chiba Prefecture (72) Inventor Hiroyuki Hirai 10 Asahi Glass Co., Ltd., 10 Asahi Glass Co., Ltd. AC26P AC27Q AC29Q AC31Q AC34Q AC42Q AE39Q CA01 CA04 DA11 DA22 EA06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】延伸性、フィブリル化性および非溶融二次
加工性を有するテトラフルオロエチレン重合体であっ
て、該重合体が2.160以下の標準比重を有し、示差
熱分析測定から算出される吸熱比が0.15以下である
ことを特徴とするテトラフルオロエチレン重合体。
1. A tetrafluoroethylene polymer having stretchability, fibrillation property and non-melt secondary workability, wherein the polymer has a standard specific gravity of 2.160 or less and is calculated from a differential thermal analysis measurement. Wherein the endothermic ratio is 0.15 or less.
【請求項2】吸熱比が0.13以下である請求項1に記
載のテトラフルオロエチレン重合体。
2. The tetrafluoroethylene polymer according to claim 1, which has an endothermic ratio of 0.13 or less.
【請求項3】吸熱比が0.10以下である請求項1また
は2に記載のテトラフルオロエチレン重合体。
3. The tetrafluoroethylene polymer according to claim 1, which has an endothermic ratio of 0.10 or less.
【請求項4】標準比重が2.157以下である請求項1
〜3のいずれかに記載のテトラフルオロエチレン重合
体。
4. The method according to claim 1, wherein the standard specific gravity is 2.157 or less.
4. The tetrafluoroethylene polymer according to any one of items 1 to 3.
【請求項5】応力緩和時間が、少なくとも650秒であ
る請求項1〜4のいずれかに記載のテトラフルオロエチ
レン重合体。
5. The tetrafluoroethylene polymer according to claim 1, wherein the stress relaxation time is at least 650 seconds.
【請求項6】テトラフルオロエチレン重合体がファイン
パウダーである請求項1〜5のいずれかに記載のテトラ
フルオロエチレン重合体。
6. The tetrafluoroethylene polymer according to claim 1, wherein the tetrafluoroethylene polymer is a fine powder.
【請求項7】テトラフルオロエチレン重合体が水性分散
液の分散固体成分である請求項1〜5のいずれかに記載
のテトラフルオロエチレン重合体。
7. The tetrafluoroethylene polymer according to claim 1, wherein the tetrafluoroethylene polymer is a solid component dispersed in an aqueous dispersion.
【請求項8】請求項1〜5のテトラフルオロエチレン重
合体からなる多孔体およびその物品。
8. A porous body comprising the tetrafluoroethylene polymer according to claim 1 and an article thereof.
JP2001226179A 2000-10-30 2001-07-26 Porous film made of tetrafluoroethylene polymer for stretching Expired - Fee Related JP3552686B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001226179A JP3552686B2 (en) 2000-10-30 2001-07-26 Porous film made of tetrafluoroethylene polymer for stretching
EP20010123224 EP1201689B1 (en) 2000-10-30 2001-10-02 Tetrafluoroethylene polymer for stretching
DE60135894T DE60135894D1 (en) 2000-10-30 2001-10-02 Tetrafluoroethylene polymer for elongation
US09/970,674 US6518381B2 (en) 2000-10-30 2001-10-05 Tetrafluoroethylene polymer for stretching
RU2001129148/04A RU2271367C2 (en) 2000-10-30 2001-10-29 Stretchable tetrafluoroethylene polymer
CNB011377550A CN100478367C (en) 2000-10-30 2001-10-30 Tetrafluoroethylene polymer for expansion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000331278 2000-10-30
JP2000-331278 2000-10-30
JP2001226179A JP3552686B2 (en) 2000-10-30 2001-07-26 Porous film made of tetrafluoroethylene polymer for stretching

Publications (2)

Publication Number Publication Date
JP2002201218A true JP2002201218A (en) 2002-07-19
JP3552686B2 JP3552686B2 (en) 2004-08-11

Family

ID=26603075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226179A Expired - Fee Related JP3552686B2 (en) 2000-10-30 2001-07-26 Porous film made of tetrafluoroethylene polymer for stretching

Country Status (1)

Country Link
JP (1) JP3552686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005061567A1 (en) * 2003-12-22 2007-07-12 ダイキン工業株式会社 Non-melt processable polytetrafluoroethylene and its fine powder
WO2007119829A1 (en) * 2006-04-13 2007-10-25 Daikin Industries, Ltd. Tetrafluoroethylene polymer and aqueous dispersion thereof
JP2010221219A (en) * 2010-06-28 2010-10-07 Asahi Glass Co Ltd Gas-liquid mixing apparatus and gas-liquid mixing method, method for manufacturing polymer
JP2012144717A (en) * 2010-12-21 2012-08-02 Daikin Industries Ltd Polytetrafluoroethylene mixture
JP5732850B2 (en) * 2008-05-21 2015-06-10 旭硝子株式会社 Method for producing polytetrafluoroethylene fine powder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794031B (en) 2013-11-29 2019-01-29 旭化成株式会社 Polyelectrolyte membrane
TWI586689B (en) 2013-11-29 2017-06-11 Daikin Ind Ltd Modified polytetrafluoroethylene powder and uniaxially stretched porous body
WO2015080292A1 (en) 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 Polymer electrolyte film
JP6218723B2 (en) * 2013-11-29 2017-10-25 ダイキン工業株式会社 Biaxially stretched porous membrane
US10688448B2 (en) 2013-11-29 2020-06-23 Daikin Industries, Ltd. Porous body, polymer electrolyte membrane, filter material for filter, and filter unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005061567A1 (en) * 2003-12-22 2007-07-12 ダイキン工業株式会社 Non-melt processable polytetrafluoroethylene and its fine powder
JP4951970B2 (en) * 2003-12-22 2012-06-13 ダイキン工業株式会社 Non-melt processable polytetrafluoroethylene and its fine powder
WO2007119829A1 (en) * 2006-04-13 2007-10-25 Daikin Industries, Ltd. Tetrafluoroethylene polymer and aqueous dispersion thereof
US7820775B2 (en) 2006-04-13 2010-10-26 Daikin Industries, Ltd. Tetrafluoroethylene polymer and aqueous dispersion thereof
JP5444712B2 (en) * 2006-04-13 2014-03-19 ダイキン工業株式会社 Tetrafluoroethylene polymer and aqueous dispersion thereof
JP5732850B2 (en) * 2008-05-21 2015-06-10 旭硝子株式会社 Method for producing polytetrafluoroethylene fine powder
JP2010221219A (en) * 2010-06-28 2010-10-07 Asahi Glass Co Ltd Gas-liquid mixing apparatus and gas-liquid mixing method, method for manufacturing polymer
JP2012144717A (en) * 2010-12-21 2012-08-02 Daikin Industries Ltd Polytetrafluoroethylene mixture

Also Published As

Publication number Publication date
JP3552686B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP3552685B2 (en) Tetrafluoroethylene polymer with excellent strength
JP5907228B2 (en) Polytetrafluoroethylene and method for producing the same
US6518381B2 (en) Tetrafluoroethylene polymer for stretching
JP5141255B2 (en) Polytetrafluoroethylene aqueous emulsion, polytetrafluoroethylene fine powder and porous body obtained therefrom
JP5444712B2 (en) Tetrafluoroethylene polymer and aqueous dispersion thereof
TWI586689B (en) Modified polytetrafluoroethylene powder and uniaxially stretched porous body
JP7088202B2 (en) Method for producing modified polytetrafluoroethylene, method for producing modified polytetrafluoroethylene powder, method for producing stretched porous body
JP7031679B2 (en) Method for producing modified polytetrafluoroethylene, molded product, stretched porous body
JP3552686B2 (en) Porous film made of tetrafluoroethylene polymer for stretching
JP4042390B2 (en) Method for producing tetrafluoroethylene polymer having excellent strength
JPH11240918A (en) Tetrafluoroethylene-based copolymer, its production and its use
JP5652484B2 (en) Polytetrafluoroethylene mixture
JP2002187911A (en) Method for producing paraffin wax for aqueous dispersion polymerization of tetrafluoroethylene and method for producing tetrafluoroethylene polymer by using the paraffin wax
US6794470B2 (en) Process for producing a tetrafluoroethylene polymer
RU2271367C2 (en) Stretchable tetrafluoroethylene polymer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Ref document number: 3552686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees