JP2002188947A - 流量測定装置 - Google Patents

流量測定装置

Info

Publication number
JP2002188947A
JP2002188947A JP2000386850A JP2000386850A JP2002188947A JP 2002188947 A JP2002188947 A JP 2002188947A JP 2000386850 A JP2000386850 A JP 2000386850A JP 2000386850 A JP2000386850 A JP 2000386850A JP 2002188947 A JP2002188947 A JP 2002188947A
Authority
JP
Japan
Prior art keywords
temperature
resistor
flow rate
flow
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000386850A
Other languages
English (en)
Other versions
JP4474771B2 (ja
Inventor
Yasushi Kono
泰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000386850A priority Critical patent/JP4474771B2/ja
Priority to US09/994,051 priority patent/US6629456B2/en
Priority to DE10162592A priority patent/DE10162592A1/de
Publication of JP2002188947A publication Critical patent/JP2002188947A/ja
Application granted granted Critical
Publication of JP4474771B2 publication Critical patent/JP4474771B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

(57)【要約】 【課題】 流体の流れ方向に関わらず高精度に流量を検
出し、かつ出力特性の経年変化が小さい流量測定装置を
提供する。 【解決手段】 発熱抵抗体30が吸気流れ方向に対し所
定の幅を有するため、発熱抵抗体30の吸気流れ上流部
が吸気流れにより冷却され吸気流れ上流部の温度が基準
温度より低下し、基準温度を保持するために発熱抵抗体
30の吸気流れ下流部の温度が基準温度より上昇する
と、その状態が維持される。発熱抵抗体30の一方の側
に配設した流量検出抵抗体21の温度と基準温度とを比
較することにより吸気流量及び吸気流れの方向を検出す
る。また、発熱温度検出抵抗体23が発熱抵抗体30の
近傍に設けられ、発熱温度検出抵抗体23が検出する発
熱抵抗体30の温度と基準温度とが直接比較されるた
め、発熱抵抗体30の抵抗値が変動したとしても、吸気
温を基準に設定される基準温度が設計値からずれること
がない。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、流体流量を測定す
る流量測定装置に関するものである。
【0002】
【従来の技術】流体流量を測定する流量測定装置とし
て、例えば自動車等の内燃機関(以下、「内燃機関」を
エンジンという)の吸気流量を測定する熱式流量計が知
られている。自動車等の吸気系統では、エンジンが低回
転かつ高負荷のときに吸気脈動が大きくなり、吸気弁と
排気弁との開弁期間が吸気流れの脈動時に重なると、ピ
ストン上昇時に吸気弁から吸気が逆流することがある。
特開平6−160142号公報には、吸気量に加え、吸
気流れの方向をも検出する熱式流量計が開示されてい
る。この公報で開示された熱式流量計では、発熱抵抗体
の上流側及び下流側に流量検出用の抵抗体を配設し、2
つの流量検出抵抗体により検出する温度の差から吸気流
量及び吸気流れ方向を検出する構成が採用されている。
【0003】
【発明が解決しようとする課題】発熱抵抗体の上流側及
び下流側に流量検出抵抗体を配設すると、吸気、発熱抵
抗体及び流量検出抵抗体の間の熱交換を仲介するSi3
4薄膜等の熱導体の面積を大きくしなければならず、
このような熱導体の熱容量が大きくなることで吸気流量
の検出感度及び応答性が低下する。また、発熱抵抗体の
下流側に配設される流量検出抵抗体の周辺には発熱抵抗
体によって加熱された吸気が分布し、吸気及び熱導体に
よる流量検出抵抗体の熱変化はわずかであるため、吸気
流量の検出感度が低下する。
【0004】特開2000−193505号公報には、
発熱抵抗体の上流側にのみ流量検出用の抵抗体を設け、
発熱抵抗体に発生する温度分布を利用することで吸気流
量及び吸気流れ方向を検出する構成を採用した熱式流量
計が開示されている。このような熱式流量計によれば、
発熱抵抗体下流側に流量検出用の抵抗体を設ける必要が
ないことから熱導体の熱容量を小さくすることができ、
検出感度及び応答性を向上させることができる。しか
し、発熱抵抗体の抵抗値がマイグレーション等により変
化すると、熱式流量計の出力特性にその影響が反映され
やすいため、特開2000−193505号公報に開示
される流量測定装置では、出力特性の経年変化が問題と
なる。また、発熱抵抗体に大電流を流すとその抵抗値が
変動してしまうため、装置に付着する塵や汚れを加熱し
て除去することができず、塵や汚れの堆積による経年変
化が問題となる。
【0005】本発明は、流体の流れ方向に関わらず高精
度に流量を検出し、かつ出力特性の経年変化が小さい流
量測定装置を提供することを目的とする。また、本発明
は、装置に付着する塵や汚れを加熱して除去することの
できる流量測定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明の請求項1又は5
記載の流量測定装置によると、発熱抵抗体の温度を検出
する発熱温度検出手段を備え、流体温度検出手段で検出
した温度により規定される基準温度が発熱温度検出手段
により検出されるように発熱抵抗体の温度を制御する制
御手段を備える。このため、発熱抵抗体の抵抗値がマイ
グレーション等により経年変化したとしても発熱抵抗体
の温度を目標値に維持することができる。また、発熱抵
抗体の抵抗値の変化に関わらず、発熱抵抗体の温度を目
標値に維持することができるため、発熱抵抗体に大電流
を流し、装置に付着する塵や汚れを加熱して除去するこ
とができる。したがって出力特性の経年変化を小さくで
きる。
【0007】さらに、本発明の請求項1又は5記載の流
量測定装置によると、流体流れの一方向、つまり順方向
か逆方向に対し、発熱抵抗体の上流側又は下流側の一方
にのみ流量検出抵抗体を配設し、流量検出抵抗体の温度
により流体流量と流体の流れ方向を検出する。流体流れ
の上流側(上流部)及び流体流れの下流側(下流部)
は、流体流れの方向によりその位置が決定されるので、
流体流れの方向が逆転すれば位置が逆転する。つまり、
順方向の上流側は、逆方向の下流側になる。発熱抵抗体
の一方の側に配設した流量検出抵抗体により流体流量及
び流体流れの方向を検出するので、流体と熱交換する部
分を小型化できる。これにより、僅かな温度変化、流量
変化及び流体流れ方向の変化に対しても感度及び応答性
が良くなるので、流体流れの方向に関わらず流量を高精
度に測定できる。
【0008】発熱抵抗体の基準温度は流体温度検出手段
で検出した流体温度に基づき変化するように規定され
る。流体流れに対し発熱抵抗体の上流側又は下流側に配
置される流量検出抵抗体の温度は基準温度により変化す
る。そこで請求項1又は5記載の流量測定装置の構成に
おいて、発熱抵抗体と流量検出抵抗体との間に存在する
流体、あるいは発熱抵抗体及び流量検出抵抗体を保持し
ている保持部材(熱導体)等の流体温度の変動に伴う熱
伝導率の変動を考慮し、流体温度検出手段で検出した温
度に基づき発熱抵抗体の基準温度を最適に設定すれば、
発熱抵抗体と流量検出抵抗体との間の流体温度の変動に
伴う熱伝導率の変動と発熱抵抗体の温度変化とを相殺
し、流体温度の変化に関わらず流量検出抵抗体で検出し
た温度だけで流体流量及び流体の流れ方向を検出でき
る。
【0009】また、流体流れの上流部で前記基準温度よ
り温度が低く流体流れの下流部で前記基準温度より温度
が高く維持されるように、かつ、流体の流れ方向の逆転
に起因する温度分布の逆転により前記流量検出抵抗体の
温度が実質的に変化するように、発熱抵抗体に流体の流
れ方向に所定の幅をもたせることにより、流体の流れ方
向が逆転すれば流量検出抵抗体で検出する温度が変化す
ることになるため、請求項2記載の流量測定装置による
と流量検出抵抗体で検出した温度だけで流体流量及び流
体の流れ方向を検出できる。
【0010】また、請求項3に記載した流量測定装置の
ように、発熱抵抗体に温度差が大きい温度分布を形成し
それを維持できるように、連続する己またはSの字のよ
うに蛇行する細線状に発熱抵抗体を形成し、発熱抵抗体
に流体の流れ方向の幅をもたせることが望ましい。ま
た、請求項4に記載した流量測定装置のように、発熱抵
抗体の温度を目標値に正確に維持するため、発熱温度検
出手段を発熱抵抗体に沿って蛇行する細線状の抵抗体と
することが望ましい。また、請求項6に記載した流量測
定装置のように、流量検出抵抗体の温度と基準温度又は
流体温度検出手段で検出した温度とを比較することによ
り、流体温度の変化に関わらず流体流量及び流体の流れ
方向を検出することができる。
【0011】
【発明の実施の形態】以下、本発明の実施の形態を示す
複数の実施例を図に基づいて説明する。 (第1実施例)本発明の第1実施例による流量測定装置
をエンジンの吸気流量計に用いた一例を図1及び図2に
示す。図1及び図2は本実施例による流量測定装置のセ
ンサ部を示している。
【0012】センサ部10の半導体基板11はシリコン
等で形成されている。後述する流量検出抵抗体21、発
熱抵抗体30及び発熱温度検出抵抗体23と対応する半
導体基板11の位置に空洞11aが形成されており、空
洞11aを含む半導体基板11上を絶縁膜12が覆って
いる。空洞11aは後述するように図1の(B)に示す
半導体基板11の下面側から絶縁膜12との境界面まで
異方向性エッチングにより形成されている。吸気温度検
出抵抗体20、流量検出抵抗体21、発熱抵抗体30は
吸気流れの順方向に対し、上流側からこの順で絶縁膜1
2上に形成されている。流体温度検出手段としての吸気
温度検出抵抗体20は吸気温を検出する抵抗体であり、
発熱抵抗体30は図4に示すブリッジ回路及び比較器4
3により吸気温度検出抵抗体20より一定温度高い基準
温度に制御されている。吸気温度検出抵抗体20は、発
熱抵抗体30の熱が温度検出に影響を及ぼさないように
発熱抵抗体30から十分離れた位置に配設されている。
流量検出抵抗体21は、吸気流れの順方向に対し発熱抵
抗体30の上流側に配設されている。
【0013】図1(A)及び図2(A)に示すように、
発熱抵抗体30は吸気流れ方向に対し直交する長辺をも
つように複数回折れ曲がって連続して己の字を形成する
ように蛇行して形成されており、曲折している部分全体
として吸気流れ方向に所定幅を有している。発熱温度検
出抵抗体23は、発熱抵抗体30の近傍に発熱抵抗体3
0に沿って蛇行して形成されている。発熱温度検出抵抗
体23が検出する温度は発熱抵抗体30の温度にほぼ等
しい。端子35は吸気温度検出抵抗体20、流量検出抵
抗体21、発熱抵抗体30及び発熱温度検出抵抗体23
と外部回路とを電気的に接続するためのものである。図
1(B)及び図2(B)に示すように、吸気温度検出抵
抗体20、流量検出抵抗体21、発熱抵抗体30及び発
熱温度検出抵抗体23は絶縁膜12、13に覆われてい
る。絶縁膜12、13は、吸気、発熱抵抗体30、流量
検出抵抗体21及び発熱温度検出抵抗体23の間の熱交
換を仲介する。
【0014】センサ部の製造プロセスについて図3に基
づき説明する。図3(A)に示す工程では、シリコンか
らなる半導体基板11の表面にSi34膜とSiO2
とを組み合わせ、下部絶縁膜12を形成する。このよう
に絶縁膜に2層膜を用いるのは、圧縮応力膜と引っ張り
応力膜とを組み合わせることにより、抵抗体に生ずる応
力を緩和させるためである。次に、発熱抵抗体30、流
量検出抵抗体21、吸気温度検出抵抗体20、22、発
熱温度検出抵抗体23及び端子35を形成するため、P
t膜を200℃で真空蒸着機により2000Å堆積させ
る。このとき接着層として50ÅのTi層を用いる。
尚、発熱抵抗体30の材料としてポリシリコン、NiC
r、TaN、SiC、W等の発熱抵抗体として機能する
ものであればPt以外を用いても良い。蒸着後、発熱抵
抗体30、流量検出抵抗体21、吸気温度検出抵抗体2
0、22、発熱温度検出抵抗体23及び端子35が所定
の形状となるようにPt膜をエッチングして不要な部分
を除去する。
【0015】図3(B)に示す工程では、下部絶縁膜1
2と同様に、Si34膜とSiO2膜とを組み合わせ、
上部絶縁膜13を形成する。後述の図3(C)に示す工
程で形成予定の空洞11aを覆う絶縁膜12、13の部
分のほぼ中央に発熱抵抗体30を位置させ、発熱抵抗体
30の上下層に対称的に下部絶縁膜12及び上部絶縁膜
13を形成することにより、温度変化による反り変動が
生じず、熱ストレスに対して強い構造を実現することが
できる。また、発熱抵抗体30の保護膜として作用する
ものであれば、TlO2、Al23、Ta25、MgO
等からなる単一膜又は多層膜でも良い。次に、上部絶縁
膜13を堆積させた後、端子35の一部を露出させるた
めに上部絶縁膜13を部分的にエッチングする。
【0016】図3(C)に示す工程では空洞部11aを
形成する。はじめに、基板11の裏面に堆積させたSi
4膜14を部分的にエッチングし、基板11の裏面の
一部を露出させる。基板11はSiN4膜14が除去さ
れた部分以外はSi34膜又はSiO2膜により覆われ
ているため、TMAH溶液により基板11の裏側から異
方性エッチングを実施することにより、空洞部11aを
形成することができる。尚、空洞部11aを形成する手
段は、TMAH溶液による異方性エッチングに限られな
い。空洞部11aが形成されるとフローセンサが形成さ
れる。
【0017】センサ部10及び外部回路からなる流量測
定装置の概略等価回路を図4に示す。吸気温度検出抵抗
体20、発熱温度検出抵抗体23、固定値の抵抗体4
1、42、60はブリッジ回路を構成しており、発熱温
度検出抵抗体23で検出する温度が吸気温度検出抵抗体
20で検出する温度よりも一定温度高い基準温度になる
ように、ブリッジ回路を構成する各素子及び発熱抵抗体
30の抵抗値が設定されている。ブリッジ回路、比較器
43、トランジスタ44等からなる回路は、特許請求の
範囲に記載された制御手段を構成している。抵抗体60
は、抵抗温度係数が極めて小さい抵抗体であって、吸気
温度検出抵抗体20及び抵抗体60の全体の抵抗温度係
数を設定するために設けている。基準温度は吸気温度検
出抵抗体20で検出する温度により増減する。
【0018】発熱温度検出抵抗体23で検出する温度が
基準温度より低くなり、発熱温度検出抵抗体23の抵抗
値が低下すると、ブリッジ回路の中点50、51の間に
電位差が生じ、比較器43の出力によりトランジスタ4
4がオンになり、発熱抵抗体30に電流が流れ、発熱抵
抗体30の温度が上昇する。発熱抵抗体30の温度が上
昇することにより発熱温度検出抵抗体23で検出される
温度が基準温度に達し発熱温度検出抵抗体23の抵抗値
が上昇すると、比較器43の出力によりトランジスタ4
4はオフされ、発熱抵抗体30への電流供給は遮断され
る。このように構成されたブリッジ回路により発熱温度
検出抵抗体23が検出する発熱抵抗体30の温度は吸気
温度検出抵抗体20で検出する温度よりも一定温度高い
基準温度に制御される。
【0019】図4において流量検出抵抗体21、吸気温
度検出抵抗体22、固定値の抵抗体62、増幅器46等
からなる回路は検出手段を構成する。抵抗体62は、抵
抗温度係数が極めて小さい抵抗体であって、吸気温度検
出抵抗体22及び抵抗体62の全体の抵抗温度係数を設
定するために設けている。検出手段を構成するこの回路
は、流量検出抵抗体21と吸気温度検出抵抗体22及び
抵抗体62全体との抵抗値の比により変動する電位を増
幅して出力する。流量検出抵抗体21は吸気流量及び吸
気流れ方向により温度、つまり抵抗値が変化するので、
増幅器46の出力も変化する。吸気温度検出抵抗体22
は、流量検出抵抗体21が検出する温度に含まれる吸気
温及び吸気流量の情報から吸気温の情報を取り除くため
に設けたものである。
【0020】図5に、発熱抵抗体30の温度分布と、流
量検出抵抗体21の検出温度と、基準温度との関係を示
す。発熱抵抗体30の吸気流れ上流部は吸気流れ下流部
より吸気流れにより冷却されるので、吸気流れ上流部の
温度は基準温度より低下する。発熱抵抗体30の上流部
の温度が低下すると、これに伴い発熱温度検出抵抗体2
3の上流部の温度が低下しその部分の抵抗値が低下する
ので発熱温度検出抵抗体23全体の抵抗値が低下する。
すると、トランジスタ44がオンになって発熱抵抗体3
0に供給される電流値が上昇し、発熱抵抗体30の吸気
流れ下流部の温度が基準温度よりも上昇する。発熱抵抗
体30の吸気流れ上流部は吸気流れに冷却されているの
で、基準温度を下回ったままである。発熱抵抗体30の
下流部の温度が上昇すると、これに伴い発熱温度検出抵
抗体23の下流部の温度が上昇しその部分の抵抗値が上
昇するので発熱温度検出抵抗体23全体の抵抗値が上昇
する。発熱抵抗体30の吸気流れ下流部から吸気流れ上
流部に熱が伝わる伝熱長は長く、吸気流れ下流部から吸
気流れ上流部に熱が伝わりにくいので、発熱抵抗体30
の吸気流れ上流部の温度は基準温度よりも低く、吸気流
れ下流部の温度は基準温度よりも高い状態が維持され
る。
【0021】流量検出抵抗体21は吸気流れの順方向に
おいて発熱抵抗体30の吸気流れ上流部近傍に配置され
るので、流量検出抵抗体21で検出する温度は発熱抵抗
体30の吸気流れ上流部とほぼ等しい温度になる。つま
り、流量検出抵抗体21の検出温度は吸気流れが順方向
のとき基準温度よりも低くなり、逆方向のとき基準温度
よりも高くなる。吸気流れ方向及び吸気流量に対する流
量検出抵抗体21の検出温度の変化を図6に示す。図6
は、流量検出抵抗体21の検出温度と基準温度との差が
大きくなるほど、吸気流れ方向に関わらず吸気流量が多
いことを表している。
【0022】ここで、基準温度は、吸気温度検出抵抗体
20、22の検出温度、つまり吸気温度により変動する
ので、図6に示す流量検出抵抗体21の検出温度の変化
を示すグラフも吸気温により変動する。基準温度は吸気
温度検出抵抗体20の検出温度よりも一定温度高くなる
ように設定されているので、吸気温度検出抵抗体20又
は発熱温度検出抵抗体23のいずれの検出温度と流量検
出抵抗体21の検出温度とを比較しても吸気流れの方向
と吸気流量とを測定できる。また、中点50、52の電
位信号をECUに送出し、ECUでマップ検索をするこ
とにより吸気流れの方向と吸気流量とを測定してもよ
い。
【0023】第1実施例では、発熱抵抗体30が吸気流
れに対し直交する方向に複数回折れ曲がり、吸気流れ方
向に対し所定の幅を有し、吸気流れ方向への伝熱長が長
くなっている。したがって、発熱抵抗体30の吸気流れ
上流部が吸気流れにより冷却され吸気流れ上流部の温度
が基準温度より低下し、基準温度を保持するために発熱
抵抗体30の吸気流れ下流部の温度が基準温度より上昇
すると、その状態が維持される。発熱抵抗体30の一方
の側に配設した流量検出抵抗体21の温度と基準温度と
を比較することにより吸気流量及び吸気流れの方向を検
出するので、センサ部10が小型化され熱容量が小さく
なる。しかも、流量検出抵抗体21の検出温度と基準温
度との差を大きくすることができるので、僅かな温度変
化及び流量変化にも好感度にかつ高い応答性で吸気流量
及び吸気流れの方向を検出することができる。
【0024】また、第1実施例では、発熱温度検出抵抗
体23が発熱抵抗体30の近傍に設けられ、発熱温度検
出抵抗体23が検出する発熱抵抗体30の温度と、基準
温度とが直接比較されるため、発熱抵抗体30の抵抗値
がマイグレーション等により変動したとしても、吸気温
を基準に設定される基準温度が設計値からずれることが
ない。したがって、第1実施例によれば出力特性の経年
変化が小さい流量測定装置を実現することができる。し
かも、発熱抵抗体30の抵抗値の変化に関わらず、基準
温度が適正値に維持されるため、発熱抵抗体30に大電
流を流し、センサ部10に付着する塵や汚れを加熱して
除去することができる。図7に発熱温度検出抵抗体23
を備えていない従来の流量測定装置の出力特性と対比し
て、第1実施例による流量測定装置の出力特性と吸入空
気流量の関係を示した。
【0025】(第2実施例)本発明の第2実施例を図8
に示す。第1実施例と実質的に同一構成部分に同一符号
を付し、説明を省略する。発熱抵抗体31は、吸気流れ
方向に対し平行な長辺をもつように複数回折れ曲がって
連続して己の字を形成するように蛇行して形成されてお
り、曲折している部分全体として吸気流れ方向に所定幅
を有している。この発熱抵抗体31の構成によっても、
発熱抵抗体31の吸気流れ上流部の温度が基準温度より
も低下し、吸気流れ下流部の温度が基準温度よりも上昇
する。したがって、流量検出抵抗体21で温度を検出す
ることにより、吸気流れ方向及び吸気流量を検出するこ
とができる。
【0026】(第3実施例)本発明の第3実施例を図9
に示す。第1実施例と実質的に同一構成部分に同一符号
を付し、説明を省略する。発熱温度検出抵抗体23は上
部絶縁膜13の上層に形成される。発熱温度検出抵抗体
23の上層には最上部絶縁膜15が形成される。この発
熱温度検出抵抗体23の構成によっても、発熱温度検出
抵抗体23は発熱抵抗体30の温度を検出することがで
きる。第3実施例のように発熱温度検出抵抗体23を上
部絶縁膜13の上層に形成することにより、図9に示す
ように発熱温度検出抵抗体23と発熱抵抗体30との距
離を第1実施例に比べて近づけ発熱温度検出抵抗体23
を発熱抵抗体30に完全に沿わせることができるため、
発熱抵抗体30の温度を第1実施例に比べて正確に検出
することができる。また、発熱温度検出抵抗体23と発
熱抵抗体30の成膜構成の上下を逆にしても同等の効果
がある。
【0027】以上説明した本発明の実施の形態を示す上
記複数の実施例では、流量検出抵抗体21で検出する温
度が基準温度より高いか低いかを判定することにより、
吸気流量と吸気流れの方向を検出した。しかし、流量検
出抵抗体21と発熱抵抗体30との距離が変化すると、
流量検出抵抗体21で検出する温度も変化する。例えば
流量検出抵抗体21が発熱抵抗体30からある程度以上
離れると、順方向の吸気流れに対し発熱抵抗体の下流側
に流量検出抵抗体21を配設しても、流量検出抵抗体2
1で検出する温度が基準温度より低くなることがある。
したがって、流量検出抵抗体21と発熱抵抗体との距離
に応じ、基準温度を元に決定され基準温度と異なる温度
と、流量検出抵抗体21で検出する温度との大小を比較
することもある。上記複数の実施例では、エンジンの吸
気流量を測定する装置について説明したが、空気以外の
気体の流量を測定する装置に本発明を用いてもよい。
【図面の簡単な説明】
【図1】(A)は本発明の第1実施例による流量測定装
置を示す平面図であり、(B)は(A)のB−B線断面
図である。
【図2】(A)は図1(A)の部分拡大図、(B)は図
1(B)の部分拡大図である。
【図3】製造プロセスを示す工程図である。
【図4】第1実施例による流量測定装置の等価回路図で
ある。
【図5】第1実施例による空気流の順流時及び逆流時に
おける温度分布を示す説明図である。
【図6】第1実施例による空気流の順流時及び逆流時に
おける空気流量と流量検出抵抗体温度との関係を示す特
性図である。
【図7】第1実施例による空気流量と出力特性変化との
関係を示す特性図である。
【図8】本発明の第2実施例による流量測定装置を示す
平面図である。
【図9】本発明の第3実施例による流量測定装置を示す
断面図である。
【符号の説明】
10 流量検出部(流量測定装置) 20 吸気温度検出抵抗体(流体温度検出
手段) 22 吸気温度検出抵抗体(検出手段) 21 流量検出抵抗体 23 発熱温度検出抵抗体(発熱温度検出
手段) 30 発熱抵抗体 41、42、60 抵抗(制御手段) 43 比較器(制御手段) 44 トランジスタ(制御手段) 46 増幅器(検出手段) 62 抵抗(検出手段)

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 流体温度を検出する流体温度検出手段
    と、 発熱抵抗体と、 前記発熱抵抗体の温度を検出する発熱温度検出手段と、 前記流体温度検出手段で検出した温度により規定される
    基準温度が前記発熱温度検出手段により検出されるよう
    に前記発熱抵抗体の温度を制御する制御手段と、 流体流れの一方向に対し前記発熱抵抗体の上流側又は下
    流側のいずれか一方に配設され、流体流量及び流体の流
    れ方向により温度が変化する流量検出抵抗体と、 前記流量検出抵抗体の温度により流体流量及び流体の流
    れ方向を検出する検出手段と、 を備えることを特徴とする流量測定装置。
  2. 【請求項2】 前記発熱抵抗体は、流体流れの上流部で
    前記基準温度より温度が低く流体流れの下流部で前記基
    準温度より温度が高く維持されるように、かつ、流体の
    流れ方向の逆転に起因する温度分布の逆転により前記流
    量検出抵抗体の温度が実質的に変化するように流体の流
    れ方向に所定の幅を有することを特徴とする請求項1記
    載の流量測定装置。
  3. 【請求項3】 前記発熱抵抗体は、連続して己の字を形
    成するように蛇行する細線状に形成されていることを特
    徴とする請求項2記載の流量測定装置。
  4. 【請求項4】 前記発熱温度検出手段は、前記発熱抵抗
    体に沿って蛇行する細線状の抵抗体であることを特徴と
    する請求項3記載の流量測定装置。
  5. 【請求項5】 前記流量検出抵抗体は、前記流量検出抵
    抗体から前記発熱抵抗体の方向に流体が流れるとき前記
    基準温度より低い温度になる位置であって、前記発熱抵
    抗体から前記流量検出抵抗体の方向に流体が流れるとき
    前記基準温度より高い温度になる位置に配置されている
    ことを特徴とする請求項1〜4のいずれか一項に記載の
    流量測定装置。
  6. 【請求項6】 前記検出手段は、前記流量検出抵抗体の
    温度と前記基準温度又は前記流体温度検出手段で検出し
    た温度とを比較することにより流体流量及び流体の流れ
    方向を検出することを特徴とする請求項1〜5のいずれ
    か一項に記載の流量測定装置。
JP2000386850A 2000-12-20 2000-12-20 流量測定装置 Expired - Lifetime JP4474771B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000386850A JP4474771B2 (ja) 2000-12-20 2000-12-20 流量測定装置
US09/994,051 US6629456B2 (en) 2000-12-20 2001-11-27 Thermal flowmeter for detecting rate and direction of fluid flow
DE10162592A DE10162592A1 (de) 2000-12-20 2001-12-19 Thermische Durchflussmessvorrichtung zur Erfassung einer Geschwindigkeit und Richtung eines Fluidflusses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386850A JP4474771B2 (ja) 2000-12-20 2000-12-20 流量測定装置

Publications (2)

Publication Number Publication Date
JP2002188947A true JP2002188947A (ja) 2002-07-05
JP4474771B2 JP4474771B2 (ja) 2010-06-09

Family

ID=18853888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386850A Expired - Lifetime JP4474771B2 (ja) 2000-12-20 2000-12-20 流量測定装置

Country Status (3)

Country Link
US (1) US6629456B2 (ja)
JP (1) JP4474771B2 (ja)
DE (1) DE10162592A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010175A (ko) * 2002-07-15 2004-01-31 로베르트 보쉬 게엠베하 가스 흐름에 의해 환류되는 측정 요소의 세척 방법
JP2008170382A (ja) * 2007-01-15 2008-07-24 Hitachi Ltd 熱式流体流量センサ及びその製造方法
WO2012014956A1 (ja) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 熱式流量計
JP2014032040A (ja) * 2012-08-01 2014-02-20 Keumyang Ind Co Ltd 船舶用内燃機関のピストン冷却オイルの流量及び温度感知のための熱量式流量感知及び温度計測システム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796172B2 (en) * 2002-07-31 2004-09-28 Hewlett-Packard Development Company, L.P. Flow sensor
US6990856B2 (en) * 2003-06-13 2006-01-31 General Motors Corporation Method and apparatus for determining mass of engine intake air with reversion compensation
CN100408981C (zh) * 2003-11-20 2008-08-06 株式会社日立制作所 热式流体流量计
US7467630B2 (en) * 2004-02-11 2008-12-23 Hewlett-Packard Development Company, L.P. Medicament dispenser
US7481213B2 (en) * 2004-02-11 2009-01-27 Hewlett-Packard Development Company, L.P. Medicament dispenser
DE102006012230B3 (de) 2006-03-16 2007-06-14 Siemens Ag Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung
DE102006012229B3 (de) * 2006-03-16 2007-06-14 Siemens Ag Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung
JP4850105B2 (ja) * 2007-03-23 2012-01-11 日立オートモティブシステムズ株式会社 熱式流量計
JP4836864B2 (ja) * 2007-05-16 2011-12-14 日立オートモティブシステムズ株式会社 熱式流量計
JP2009171754A (ja) * 2008-01-17 2009-07-30 Seiko Instruments Inc 過熱保護回路
NL2006895C2 (nl) * 2011-06-03 2012-12-04 Berkin Bv Stromingsmeetapparaat en gebruik daarvan voor het bepalen van een stroming van een medium, alsmede werkwijze daarvoor.
AU2012340150A1 (en) * 2011-11-17 2014-06-12 J. Clair Batty Thermal pulse flow meter
DE102013106863A1 (de) 2013-07-01 2015-01-08 Aixtron Se Vorrichtung zum Bestimmen des Massenflusses eines in einem Trägergas transportierten Dampfs
DE102014101792A1 (de) 2014-02-13 2015-08-13 Aixtron Se Vorrichtung zum Bestimmen des Massenflusses eines Gases beziehungsweise Gasgemisches mit ineinandergeschachtelten rohrförmigen Filamentanordnungen
MY187706A (en) * 2014-04-11 2021-10-13 Nissan Motor Control device and control method for controlling internal combustion engine
US20170188486A1 (en) * 2015-12-29 2017-06-29 Schneider Electric It Corporation Rack airflow monitoring system and method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162014A (en) 1980-05-16 1981-12-12 Nippon Denso Co Ltd Measuring device for flow rate of gas
US4501144A (en) 1982-09-30 1985-02-26 Honeywell Inc. Flow sensor
JPS601525A (ja) 1983-06-20 1985-01-07 Nippon Soken Inc 半導体式流量検出装置
JPS60142268A (ja) 1983-12-27 1985-07-27 株式会社山武 流速センサ
DE3509118C2 (de) 1985-03-14 1994-03-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Messung des Durchsatzes eines ein Rohr durchströmenden Mediums
JPS6214705A (ja) 1985-07-12 1987-01-23 山本 博康 苗移植具
JPH0810231B2 (ja) 1987-03-31 1996-01-31 シャープ株式会社 フローセンサ
US4884443A (en) 1987-12-23 1989-12-05 Siemens-Bendix Automotive Electronics L. P. Control and detection circuitry for mass airflow sensors
JPH01185416A (ja) 1988-01-20 1989-07-25 Mitsubishi Electric Corp 内燃機関用熱式流量計
US5369994A (en) 1992-07-21 1994-12-06 Robert Bosch Gmbh Flow sensor
JPH06265385A (ja) 1993-03-15 1994-09-20 Hitachi Ltd 空気流量測定装置
DE4308227C2 (de) 1993-03-16 1996-02-01 Bosch Gmbh Robert Vorrichtung zur Bestimmung der Masse eines strömenden Mediums
WO1995014215A1 (fr) 1993-11-18 1995-05-26 Unisia Jecs Corporation Procede et dispositif destines a detecter le debit d'air d'aspiration pour un moteur
DE4342481C2 (de) 1993-12-13 1996-09-05 Siemens Ag Verfahren zum Messen der angesaugten Luftmasse
JP3184401B2 (ja) 1994-02-28 2001-07-09 株式会社ユニシアジェックス 熱式空気流量検出装置
JPH0814978A (ja) 1994-07-05 1996-01-19 Hitachi Ltd 熱式空気流量計
JPH1062220A (ja) 1996-08-26 1998-03-06 Hitachi Ltd 熱式空気流量計
JP3333712B2 (ja) * 1997-06-19 2002-10-15 三菱電機株式会社 流量検出素子およびそれを用いた流量センサ
JP3981907B2 (ja) 1998-10-21 2007-09-26 株式会社デンソー 流量測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010175A (ko) * 2002-07-15 2004-01-31 로베르트 보쉬 게엠베하 가스 흐름에 의해 환류되는 측정 요소의 세척 방법
JP2008170382A (ja) * 2007-01-15 2008-07-24 Hitachi Ltd 熱式流体流量センサ及びその製造方法
WO2012014956A1 (ja) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 熱式流量計
JP2012032247A (ja) * 2010-07-30 2012-02-16 Hitachi Automotive Systems Ltd 熱式流量計
CN103026181A (zh) * 2010-07-30 2013-04-03 日立汽车***株式会社 热式流量计
CN103026181B (zh) * 2010-07-30 2015-08-05 日立汽车***株式会社 热式流量计
EP2600121A4 (en) * 2010-07-30 2017-08-02 Hitachi Automotive Systems, Ltd. Thermal flow meter
JP2014032040A (ja) * 2012-08-01 2014-02-20 Keumyang Ind Co Ltd 船舶用内燃機関のピストン冷却オイルの流量及び温度感知のための熱量式流量感知及び温度計測システム

Also Published As

Publication number Publication date
JP4474771B2 (ja) 2010-06-09
DE10162592A1 (de) 2002-06-27
US20020073774A1 (en) 2002-06-20
US6629456B2 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP4474771B2 (ja) 流量測定装置
US6889545B2 (en) Flow rate sensor
JP4608843B2 (ja) 流量測定装置
JP2008170382A (ja) 熱式流体流量センサ及びその製造方法
JPH1123338A (ja) 感熱式流量検出素子およびそれを用いた流量センサ
WO2004113848A1 (ja) 熱式空気流量計
JP3455473B2 (ja) 感熱式流量センサ
EP1298420A1 (en) Thermal mass flow sensor
JP3513048B2 (ja) 感熱式流量センサおよびその製造方法
US7426857B2 (en) Flow detector element of thermosensible flow sensor
US6684693B2 (en) Heat generation type flow sensor
JP3706358B2 (ja) 気体流量・温度測定素子
JP2005024400A (ja) 感熱式流量検出素子およびその製造方法
US20020172255A1 (en) Microstructured thermosensor
US7472591B2 (en) Thermal gas flow and control device for internal-combustion engine using the same
JPH10197304A (ja) 空気流量計測装置用測定素子及びそれを備えた空気流量計測装置
JP4258084B2 (ja) フローセンサおよびその製造方法
JP2003021547A (ja) 薄膜式センサならびにフローセンサおよびその製造方法
JP3668921B2 (ja) 流量検出素子
JP3638786B2 (ja) 流量検出素子及び流量センサ
JPWO2003102974A1 (ja) 白金薄膜および熱式センサ
JP2000146656A (ja) フロ―センサおよびその製造方法
JP4258080B2 (ja) フローセンサ
KR100559129B1 (ko) 감열식 공기유량센서
JP4253976B2 (ja) フローセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R151 Written notification of patent or utility model registration

Ref document number: 4474771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term