JP2002185210A - Low-pass filter element - Google Patents

Low-pass filter element

Info

Publication number
JP2002185210A
JP2002185210A JP2000385673A JP2000385673A JP2002185210A JP 2002185210 A JP2002185210 A JP 2002185210A JP 2000385673 A JP2000385673 A JP 2000385673A JP 2000385673 A JP2000385673 A JP 2000385673A JP 2002185210 A JP2002185210 A JP 2002185210A
Authority
JP
Japan
Prior art keywords
filter element
low
pass filter
open stubs
ghz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000385673A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
良一 伊藤
Hidekazu Hase
英一 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000385673A priority Critical patent/JP2002185210A/en
Publication of JP2002185210A publication Critical patent/JP2002185210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the filter characteristic of a low-pass filter element by improving the deterioration of the insertion loss of the filter element in a non- passing high frequency band. SOLUTION: In this low-pass filter element, open stubs composed of microstrip lines constituting the filter element are alternately arranged on both sides in the signal transmitting direction of the element. Consequently, the intervals between the open stubs composed of the microstrip lines can be expanded as compared with the case where the stubs are only arranged on one side in the signal transmitting direction and, the coupling among the open stubs is reduced and the deterioration of the insertion loss of this filter element is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ストリップ線路も
しくはマイクロストリップ線路で構成されたローパス・
フィルタ素子のパターン形状に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-pass circuit comprising a strip line or a microstrip line.
It relates to the pattern shape of the filter element.

【0002】[0002]

【従来の技術】従来のマイクロ波、ミリ波周波数帯回路
に使用するマイクロストリップ線路で構成されるローパ
ス・フィルタ素子(以降、LPF素子と略す)のパターン
形状例を図3(a)に示す。 また、その等価回路を図
3(b)に示す。図3(a)のLPF素子は、アルミナ
等の誘電体基板1上に、特性インピーダンスが50Ωの
マイクロストリップ線路2の伝送主線路間にマイクロス
トリップ線路2よりも細いマイクロストリップ線路21
の主線路を接続し、さらにマイクロストリップ線路によ
る複数(この例では3つ)のオープンスタブ5,6,7
を、それぞれマイクロストリップ線路21の信号伝送方
向10(矢印)に対して、片側(図の下方向)のみに接続し
たものである。 ここで、通過帯域が28GHz以下の
ミリ波帯用のLPF素子は、アルミナ等の誘電体基板1
の比誘電率が9.8の場合、前記オープンスタブ5,
6,7の長さLFは0.95mm、またオープンスタブ
5,6,7の間隔LSは0.5mmである。図3(a)
のLPF素子の周波数特性のシミュレーション結果を図
6に示す。図6からも分かる通り、LPF素子に必要な
周波数28GHz以上の高周波非通過帯域の挿入損失
が、32GHz程度までは−20dB以下が得られてい
るが、40GHz付近になると、−10dB以上へと、
挿入損失の劣化が生じることが分かる。 このため、L
PF素子として充分なフィルタ特性が得られない。これ
は、図3(b)に示す通り、LPF素子を構成するマイ
クロストリップ線路によるオープンスタブ5,6,7が
近接するために、オープンスタブ5,6,7間で結合を
起こすことによるものである。また、実際に前述の従来
例に示すLPF素子を試作し、周波数特性を測定した結
果を図8に示す。 ここで、測定周波数は、4GHzか
ら44GHzである。図8から分かる通り、−20dB
以下の挿入損失が得られる周波数帯域は、27GHzか
ら29GHz程度であり、32GHz以上の帯域では挿
入損失が−10dB以上と劣化しており、図6のシミュ
レーション結果をほぼ裏付ける、周波数特性になってい
ることが分かる。
2. Description of the Related Art FIG. 3A shows an example of a pattern shape of a low-pass filter element (hereinafter abbreviated as an LPF element) composed of a microstrip line used in a conventional microwave or millimeter wave frequency band circuit. FIG. 3B shows an equivalent circuit thereof. The LPF element shown in FIG. 3A has a microstrip line 21 thinner than the microstrip line 2 between transmission main lines of the microstrip line 2 having a characteristic impedance of 50Ω on a dielectric substrate 1 such as alumina.
And a plurality (three in this example) of open stubs 5, 6 and 7 by microstrip lines.
Are connected to only one side (downward in the figure) of the microstrip line 21 with respect to the signal transmission direction 10 (arrow). Here, the LPF element for the millimeter wave band having a pass band of 28 GHz or less is a dielectric substrate 1 made of alumina or the like.
Is 9.8, the open stub 5,
The length LF of 6,7 is 0.95 mm, and the interval LS between the open stubs 5,6,7 is 0.5 mm. FIG. 3 (a)
FIG. 6 shows a simulation result of the frequency characteristic of the LPF element of FIG. As can be seen from FIG. 6, the insertion loss of the high-frequency non-pass band of the frequency of 28 GHz or more required for the LPF element is -20 dB or less up to about 32 GHz, but it becomes -10 dB or more at about 40 GHz.
It can be seen that the insertion loss deteriorates. Therefore, L
Sufficient filter characteristics cannot be obtained as a PF element. This is because, as shown in FIG. 3B, the open stubs 5, 6, and 7 formed by the microstrip lines constituting the LPF element are close to each other, so that coupling occurs between the open stubs 5, 6, and 7. is there. FIG. 8 shows the result of actually producing the LPF element shown in the above-mentioned conventional example and measuring the frequency characteristics. Here, the measurement frequency is from 4 GHz to 44 GHz. As can be seen from FIG. 8, -20 dB
The frequency band in which the following insertion loss can be obtained is from about 27 GHz to about 29 GHz, and in the band of 32 GHz or more, the insertion loss is degraded to -10 dB or more, which is a frequency characteristic substantially supporting the simulation result of FIG. You can see that.

【0003】[0003]

【発明が解決しようとする課題】図3(a)に示した従
来のLPF素子には、以下に述べるような欠点がある。
図6の周波数特性に示す通り、LPF素子に必要な周波
数28GHz以上の高周波非通過帯域の挿入損失が、3
2GHz程度までは−20dB以下が得られているが、
40GHz付近になると−10dB以上と挿入損失の劣
化が生じており、LPF素子として充分な特性が得られ
ていない。この原因は、図3の(b)からも分かる通
り、LPF素子を構成するマイクロストリップ線路によ
るオープンスタブ5,6,7が近接するために、40G
Hz以上の高い周波数帯域では、各オープンスタブ間で
結合を起こしてフィルタ特性が劣化することによる。本
発明はこれらの欠点を除去し、LPF素子の高周波非通
過帯域での挿入損失劣化を改善することを目的とする。
The conventional LPF element shown in FIG. 3A has the following disadvantages.
As shown in the frequency characteristics of FIG. 6, the insertion loss of the high-frequency non-pass band of 28 GHz or higher required for the LPF element is 3
Up to about 2 GHz, -20 dB or less is obtained,
In the vicinity of 40 GHz, the insertion loss deteriorates to -10 dB or more, and sufficient characteristics as an LPF element cannot be obtained. As can be seen from FIG. 3B, the cause of this is that the open stubs 5, 6, and 7 formed by the microstrip lines constituting the LPF element are close to each other, and the
In a high frequency band of not less than Hz, coupling occurs between the open stubs, and the filter characteristics are deteriorated. An object of the present invention is to eliminate these drawbacks and improve the insertion loss deterioration in the high-frequency non-pass band of the LPF element.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、LPF素子を構成するマイクロストリッ
プ線路によるオープンスタブをLPF素子の信号伝送方
向に対して両側に交互に配置するものである。また、オ
ープンスタブが前記ローパス・フィルタ素子の主伝送線
路の信号伝送方向の両側に複数ある場合、前記片側もし
くは両側におけるオープンスタブ同士の先端の間隔を拡
げる構成としたローパス・フィルタ素子である。その結
果、従来の信号伝送方向に対し片側のみの配置の場合と
比較して、マイクロストリップ線路によるオープンスタ
ブ同士の間隔を広くすることができる。これにより、オ
ープンスタブ間の結合が減少し、LPF素子の高周波非
通過帯域の挿入損失劣化を改善することができる。
According to the present invention, in order to achieve the above object, open stubs composed of microstrip lines constituting an LPF element are alternately arranged on both sides in the signal transmission direction of the LPF element. is there. Further, when there are a plurality of open stubs on both sides of the main transmission line of the low-pass filter element in the signal transmission direction, the low-pass filter element is configured to increase the interval between the tips of the open stubs on one or both sides. As a result, the distance between the open stubs formed by the microstrip lines can be increased as compared with the conventional arrangement in which only one side is arranged in the signal transmission direction. Thereby, the coupling between the open stubs is reduced, and the deterioration of the insertion loss in the high-frequency non-pass band of the LPF element can be improved.

【0005】[0005]

【発明の実施の形態】以下に、本発明による実施例を、
図1(a)および図2(a)のLPF素子のパターン形
状を例にして説明する。 また、各の等価回路を、図1
(b)および図2(b)に示す。 ここで、従来例と同
様、オープンスタブ寸法は、通過帯域が28GHz以下
のミリ波帯用LPF素子を例にして示す。 なお、この
実施例では、3つのオープンスタブによるLPF素子を
例にしたが、3つに限定されるものではなく、複数のオ
ープンスタブを信号伝送方向に対して両側に交互に配置
した構成であればよい。まず、図1(a)のLPF素子
は、図3(a)の従来例と同様、アルミナ等の誘電体基
板1上に、特性インピーダンスが50Ωのマイクロスト
リップ線路2の信号伝送主線路間に、マイクロストリッ
プ線路2よりも細いマイクロストリップ線路21の主線
路を接続し、さらにマイクロストリップ線路によるオー
プンスタブ5,61,7を、それぞれ、マイクロストリ
ップ線路21の信号伝送方向10(矢印)に対して両側に
交互に接続し、オープンスタブ5,7のみ、同方向の片
側(図の下方向)に配置したものである。 なお、図1
(b)に示すように、オープンスタブ5,7間で結合が
生じるが、従来例に比べるとオープンスタブ5,7間の
距離が拡がるため、その結合の度合いは低下する。ここ
で、各オープンスタブの長さLFは、従来例と同様、ア
ルミナ等の誘電体基板1の比誘電率が9.8の場合、
0.95mmとなり、オープンスタブ5,7の間隔LS
1は、従来例の間隔LSの0.5mmに比べて拡がり、
1.2mmとなる。
Embodiments of the present invention will be described below.
1A and 2A will be described as an example of the pattern shape of the LPF element. Each equivalent circuit is shown in FIG.
(B) and FIG. 2 (b). Here, as in the conventional example, the dimensions of the open stub are shown using an LPF element for a millimeter wave band having a pass band of 28 GHz or less as an example. In this embodiment, an LPF element having three open stubs has been described as an example. However, the number of the open stubs is not limited to three, and a configuration in which a plurality of open stubs are alternately arranged on both sides in the signal transmission direction. I just need. First, the LPF element of FIG. 1A is, like the conventional example of FIG. 3A, provided on a dielectric substrate 1 of alumina or the like between signal transmission main lines of a microstrip line 2 having a characteristic impedance of 50Ω. The main line of the microstrip line 21 which is thinner than the microstrip line 2 is connected, and the open stubs 5, 61, 7 formed by the microstrip line are respectively connected to both sides with respect to the signal transmission direction 10 (arrow) of the microstrip line 21. , And only the open stubs 5 and 7 are arranged on one side in the same direction (downward in the figure). FIG.
As shown in (b), the connection occurs between the open stubs 5 and 7, but the degree of the connection is reduced because the distance between the open stubs 5 and 7 is wider than in the conventional example. Here, the length LF of each open stub is, as in the conventional example, when the relative permittivity of the dielectric substrate 1 such as alumina is 9.8.
0.95mm, the distance LS between open stubs 5 and 7
1 is wider than the conventional interval LS of 0.5 mm,
1.2 mm.

【0006】また、図2(a)のLPF素子は、図1
(a)の実施例と同様であるが、図1(a)のオープン
スタブ5,7の先端の間隔LS2が、マイクロストリッ
プ線路21の接続位置の間隔から更に拡がる配置のオー
プンスタブ51,71としたものである。 この場合
も、図2(b)に示すように、オープンスタブ51,7
1間で結合が生じるが、図1(b)に比べてオープンス
タブ51,71の先端間の距離が拡がるため、その結合
の度合いはさらに低下する。ここで、図1(a)に示す
LPF素子の周波数特性のシミュレーション結果を図4
に示す。 図4からも分かる通り、LPF素子に必要な
周波数28GHz以上での挿入損失は、35GHz程度
まで−20dB以下が得られている。 また40GHz
付近でも−10dB程度と、図6の従来例のシミュレー
ション結果に比べて、挿入損失の劣化が改善されている
ことがわかる。また、図2(a)の周波数特性シミュレ
ーション結果を図5に示す。 図5の場合は、図2
(a)のオープンスタブ51,71の先端の間隔LS2
を、1.5mm,2.0mm,2.5mmと拡げていく
ことにより、図4以上に、挿入損失劣化が改善されてい
ることがわかる。ここで図2(a)の実施例の場合、オ
ープンスタブ51,71の形状は、直線パターンである
が、曲線パターンでも良いことは言うまでもない。
Further, the LPF element shown in FIG.
1 (a), except that the distance LS2 between the distal ends of the open stubs 5 and 7 in FIG. 1A is larger than the distance between the connection positions of the microstrip lines 21 and the open stubs 51 and 71. It was done. Also in this case, as shown in FIG.
1, the distance between the distal ends of the open stubs 51 and 71 is increased as compared with FIG. 1B, so that the degree of the coupling is further reduced. Here, the simulation result of the frequency characteristic of the LPF element shown in FIG.
Shown in As can be seen from FIG. 4, the insertion loss at a frequency of 28 GHz or more required for the LPF element is -20 dB or less up to about 35 GHz. Also 40GHz
It can be seen that even in the vicinity, the deterioration of the insertion loss is improved as compared with the simulation result of the conventional example of FIG. FIG. 5 shows the result of the frequency characteristic simulation shown in FIG. In the case of FIG. 5, FIG.
The interval LS2 between the tips of the open stubs 51 and 71 in FIG.
Is increased to 1.5 mm, 2.0 mm and 2.5 mm, it can be understood that the insertion loss deterioration is improved more than in FIG. Here, in the case of the embodiment of FIG. 2A, the shapes of the open stubs 51 and 71 are linear patterns, but needless to say, they may be curved patterns.

【0007】実際に、本発明の実施例(図2)のLPF素
子を試作し、周波数特性を測定した結果を図8に示す。
この場合のオープンスタブ51,71の先端の間隔L
S2は、2.5mmである。 また、測定周波数は4G
Hzから44GHzである。図8からも分かるように、
−20dB以下の挿入損失が得られる周波数帯域は、2
5GHzから33GHz程度となり、高域側について見
れば、図7の従来例の試作特性の29GHzに比べ、4
GHz程度拡がり改善されたことがわかる。また、33
GHz以上の帯域についても、38GHz程度までは挿
入損失特性が、従来例の試作特性に比べて向上し、−2
0dBから−10dBの値が得られている。 さらに、
38GHzから44GHzの帯域でも挿入損失特性が改
善されている。 以上の測定結果は、図6のオープンス
タブ51,71の先端の間隔LS2:2.5mmの挿入
損失特性シミュレーション結果に近い結果が得られてお
り、本発明の効果を充分に示すものといえる。
Actually, an LPF element according to the embodiment of the present invention (FIG. 2) was experimentally manufactured, and the frequency characteristics were measured. FIG. 8 shows the result.
In this case, the distance L between the tips of the open stubs 51 and 71
S2 is 2.5 mm. The measurement frequency is 4G
Hz to 44 GHz. As can be seen from FIG.
The frequency band in which the insertion loss of −20 dB or less is obtained is 2
From 5 GHz to about 33 GHz, when viewed from the high frequency side, compared to the 29 GHz of the prototype characteristics of the conventional example of FIG.
It can be seen that the frequency range has been improved by about GHz. Also, 33
Even in the band above GHz, the insertion loss characteristics up to about 38 GHz are improved as compared with the prototype characteristics of the conventional example, and -2.
Values from 0 dB to -10 dB are obtained. further,
The insertion loss characteristics are improved even in the band from 38 GHz to 44 GHz. The above measurement results are close to the simulation results of the insertion loss characteristics when the distance LS2 between the tips of the open stubs 51 and 71 in FIG. 6 is 2.5 mm, and it can be said that the effects of the present invention are sufficiently shown.

【0008】[0008]

【発明の効果】以上説明したように、本発明では、LP
F素子を構成するマイクロストリップ線路によるオープ
ンスタブを、LPF素子の信号伝送方向に対して両側に
交互に配置する。 そのため、従来のオープンスタブを
信号伝送方向に対し片側のみに配置した場合と比較し
て、マイクロストリップ線路によるオープンスタブ同士
の間隔を拡げることができる。 これにより、オープン
スタブ間の結合が減少し、LPF素子の高周波非通過帯
域の挿入損失劣化が改善され、LPF素子のフィルタ特
性の向上が可能となる。
As described above, according to the present invention, LP
Open stubs composed of microstrip lines constituting the F element are alternately arranged on both sides in the signal transmission direction of the LPF element. Therefore, the interval between the open stubs by the microstrip line can be increased as compared with the case where the conventional open stub is arranged only on one side in the signal transmission direction. Thereby, the coupling between the open stubs is reduced, the insertion loss deterioration in the high-frequency non-pass band of the LPF element is improved, and the filter characteristic of the LPF element can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるLPF素子のパターン形状の一実
施例を示す模式図と等価回路
FIG. 1 is a schematic diagram and an equivalent circuit showing one embodiment of a pattern shape of an LPF element according to the present invention.

【図2】本発明によるLPF素子のパターン形状の他の
実施例を示す模式図と等価回路
FIG. 2 is a schematic diagram and an equivalent circuit showing another embodiment of the pattern shape of the LPF element according to the present invention.

【図3】従来技術によるLPF素子のパターン形状を示
す模式図と等価回路
FIG. 3 is a schematic diagram and an equivalent circuit showing a pattern shape of an LPF element according to the related art.

【図4】本発明のLPF素子の一実施例の周波数特性シ
ミュレーション結果を示す図
FIG. 4 is a diagram showing a frequency characteristic simulation result of one embodiment of the LPF element of the present invention.

【図5】本発明のLPF素子の他実施例の周波数特性シ
ミュレーション結果を示す図
FIG. 5 is a diagram showing a frequency characteristic simulation result of another example of the LPF element of the present invention.

【図6】従来技術によるLPF素子の周波数特性シミュ
レーション結果を示す図
FIG. 6 is a diagram showing a simulation result of a frequency characteristic of an LPF element according to the related art.

【図7】本発明により試作したLPF素子の周波数特性
の測定結果を示す図
FIG. 7 is a diagram showing a measurement result of a frequency characteristic of an LPF element prototyped according to the present invention;

【図8】従来技術により試作したLPF素子の周波数特
性の測定結果を示す図
FIG. 8 is a diagram showing a measurement result of a frequency characteristic of an LPF element prototyped by a conventional technique;

【符号の説明】[Explanation of symbols]

1:誘電体基板、2,21:マイクロストリップ線路
(主線路)、5,51,6,61,7,71:オープンス
タブ(ローパスフィルタ部)、10:信号伝送方向(主線
路)、LF:マイクロストリップ線路によるオープンス
タブの長さ、LS1,LS2:マイクロストリップ線路
によるオープンスタブ同士の間隔。
1: dielectric substrate, 2, 21: microstrip line
(Main line), 5, 51, 6, 61, 7, 71: open stub (low-pass filter section), 10: signal transmission direction (main line), LF: length of open stub by microstrip line, LS1, LS2 : Distance between open stubs by a microstrip line.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ストリップ線路もしくはマイクロストリ
ップ線路により構成されるローパス・フィルタ素子にお
いて、該ローパス・フィルタ素子のオープンスタブを、
該ローパス・フィルタ素子の主伝送線路の信号伝送方向
に対し、左右両側に配置する構成としたことを特徴とす
るローパス・フィルタ素子。
1. A low-pass filter element comprising a stripline or a microstrip line, wherein an open stub of the low-pass filter element is
A low-pass filter element, wherein the low-pass filter element is arranged on both left and right sides with respect to a signal transmission direction of a main transmission line of the low-pass filter element.
【請求項2】 請求項1において、前記オープンスタブ
が、前記ローパス・フィルタ素子の主伝送線路の信号伝
送方向の両側に複数ある場合、前記オープンスタブを、
前記主伝送線路の信号伝送方向に対し左右両側に交互に
配置することを特徴とするローパス・フィルタ素子。
2. The method according to claim 1, wherein the plurality of open stubs are provided on both sides of the main transmission line of the low-pass filter element in the signal transmission direction.
A low-pass filter element, which is arranged alternately on both left and right sides with respect to a signal transmission direction of the main transmission line.
【請求項3】 請求項1または2において、前記オープ
ンスタブが前記ローパス・フィルタ素子の主伝送線路の
信号伝送方向の両側に複数ある場合、前記片側もしくは
両側におけるオープンスタブ同士の先端の間隔を拡げる
構成としたことを特徴とするローパス・フィルタ素子。
3. The device according to claim 1, wherein, when the plurality of open stubs are provided on both sides of the main transmission line of the low-pass filter element in the signal transmission direction, the distance between the ends of the open stubs on one or both sides is increased. A low-pass filter element having a configuration.
JP2000385673A 2000-12-19 2000-12-19 Low-pass filter element Pending JP2002185210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385673A JP2002185210A (en) 2000-12-19 2000-12-19 Low-pass filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385673A JP2002185210A (en) 2000-12-19 2000-12-19 Low-pass filter element

Publications (1)

Publication Number Publication Date
JP2002185210A true JP2002185210A (en) 2002-06-28

Family

ID=18852897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385673A Pending JP2002185210A (en) 2000-12-19 2000-12-19 Low-pass filter element

Country Status (1)

Country Link
JP (1) JP2002185210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067281A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Antenna switch module
JP2011205343A (en) * 2010-03-25 2011-10-13 Furuno Electric Co Ltd Phase shifter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067281A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Antenna switch module
JP2011205343A (en) * 2010-03-25 2011-10-13 Furuno Electric Co Ltd Phase shifter

Similar Documents

Publication Publication Date Title
US6677837B2 (en) Dielectric waveguide filter and mounting structure thereof
JP3650957B2 (en) Transmission line, filter, duplexer and communication device
JP3610861B2 (en) Low pass filter
US5977847A (en) Microstrip band elimination filter
US9660315B2 (en) Ground structures between resonators for distributed electromagnetic wave filters
JP2002135003A (en) Waveguide-type dielectric filter
JP3582350B2 (en) Dielectric filter, duplexer and communication device
CN112768854B (en) High-selectivity differential dual-passband microstrip filter based on stepped impedance resonator
KR20090032187A (en) Broadband filter with suspended substrate structure
JP2002185210A (en) Low-pass filter element
US6762660B2 (en) Compact edge coupled filter
US7436274B2 (en) Band-pass filter
US10673111B2 (en) Filtering unit and filter
KR20210021736A (en) Low pass filter with transmission zero
KR100521895B1 (en) Lowpass Filter Using CPW Structure with Inductive Etched Hole
JP3008939B1 (en) High frequency circuit board
CN111628255B (en) Compact wide-stop-band-pass filter based on packaging defected ground structure
JP2005094314A (en) Transmission line
JP3379430B2 (en) Ridge waveguide
US6885264B1 (en) Meandered-line bandpass filter
CN112670690B (en) High-temperature ceramic transition circuit based on resonant mode
JP3351366B2 (en) High frequency transmission line and method of manufacturing the same
RU2178934C1 (en) Strip line crossing
JPH11355009A (en) Strip line resonator, strip line filter, strip line duplexer and communication equipment
JPH05335817A (en) Directional coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127