JP2002183941A - Magnetic recording medium and magnetic memory device - Google Patents

Magnetic recording medium and magnetic memory device

Info

Publication number
JP2002183941A
JP2002183941A JP2000381692A JP2000381692A JP2002183941A JP 2002183941 A JP2002183941 A JP 2002183941A JP 2000381692 A JP2000381692 A JP 2000381692A JP 2000381692 A JP2000381692 A JP 2000381692A JP 2002183941 A JP2002183941 A JP 2002183941A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000381692A
Other languages
Japanese (ja)
Inventor
Koji Sakamoto
浩二 阪本
Yoshifumi Matsuda
好文 松田
Tetsuya Kanbe
哲也 神邊
Yotsuo Yaku
四男 屋久
Yuzuru Inagaki
譲 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000381692A priority Critical patent/JP2002183941A/en
Priority to US09/888,523 priority patent/US6623874B2/en
Publication of JP2002183941A publication Critical patent/JP2002183941A/en
Priority to US10/631,768 priority patent/US7005202B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable magnetic recording medium with which high-density recording the reproduction of information is possible and to provide a magnetic memory device composed of the magnetic recording medium. SOLUTION: The magnetic recording medium has a seed layer having an amorphous or fin crystalline structure, a base layer having a body-centered cubic structure, a matching layer having a hexagonal close-packed structure, a magnetic layer having a hexagonal close-packed structure, and a protective layer essentially composed of C successively formed on a nonmagnetic substrate. The base layer consists of an alloy containing Cr and Ti and further containing Mo or W. The matching layer consists of an alloy containing Co-Ru.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度記録が可能
で、且つ磁気緩和による再生出力の減衰が制御された高
い安定性を有する磁気記録媒体、及びこれを用いた磁気
記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-stability magnetic recording medium capable of high-density recording and having a controlled reproduction output attenuation due to magnetic relaxation, and a magnetic recording apparatus using the same.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置に対する大容量
化の要求は益々高まりつつある。このため、磁気ヘッド
には一層の高感度化が、記録媒体には更なる高保磁力
化、高S/N化が求められている。
2. Description of the Related Art In recent years, demands for increasing the capacity of magnetic disk drives have been increasing. For this reason, the magnetic head is required to have higher sensitivity, and the recording medium is required to have higher coercive force and higher S / N.

【0003】磁気ヘッドには記録用の電磁誘導型ヘッド
と再生用のスピンバルブ型ヘッドを併せ持つ複合型ヘッ
ドが使用されている。スピンバルブ型ヘッドは、互いの
磁化方向が外部磁界によって相対的に変化することによ
って大きな抵抗変化を生じる複数の導電性磁性層と、該
導電性磁性層の間に配置された導電性非磁性層を含む磁
気抵抗センサによって構成された再生ヘッドである。
As a magnetic head, a composite type head having both an electromagnetic induction type head for recording and a spin valve type head for reproduction is used. The spin-valve type head includes a plurality of conductive magnetic layers that generate a large resistance change when their magnetization directions are relatively changed by an external magnetic field, and a conductive non-magnetic layer disposed between the conductive magnetic layers. Is a reproducing head constituted by a magnetoresistive sensor including:

【0004】磁気記録媒体は、基板上に形成されたシー
ド層、Cr合金からなる体心立方構造(以下b.c.c.構造
と記す)の下地層、Co合金からなる六方稠密構造(以
下h.c.p.構造と記す)の磁性層、及びカーボン保護層か
ら構成される。面内記録媒体では強い面内磁気異方性
(高い面内保磁力)を得るために、磁性層の磁化容易軸
であるc軸が膜面内を向いていることが望ましい。この
ため、磁性層のCo合金は(11.0)面を基板面と平行
とした配向(以下、(11.0)配向と記す)、もしくは
(10.0)面を基板面と平行とした配向(以下、(10.
0)配向と記す)をとっている。
A magnetic recording medium includes a seed layer formed on a substrate, an underlayer of a body-centered cubic structure (hereinafter referred to as a bcc structure) made of a Cr alloy, and a hexagonal close-packed structure (hereinafter referred to as an hcp structure) made of a Co alloy. , And a carbon protective layer. In the in-plane recording medium, in order to obtain strong in-plane magnetic anisotropy (high in-plane coercive force), it is desirable that the c-axis, which is the axis of easy magnetization of the magnetic layer, be oriented in the film plane. For this reason, the Co alloy of the magnetic layer is oriented so that the (11.0) plane is parallel to the substrate surface (hereinafter, referred to as (11.0) orientation), or
Orientation with the (10.0) plane parallel to the substrate surface (hereinafter referred to as (10.
0) orientation).

【0005】そこで、磁性層の配向性を高めるため、C
r合金からなる下地層とCo合金磁性層の間にh.c.p.構
造の非磁性Co合金を整合層として形成することが検討
されている。これは、b.c.c.構造のCr合金下地層上
よりも、磁性層と同じh.c.p.構造のCo合金下地層上の
方が、磁性層が初期段階から良好に結晶成長することに
着目したものである。このような例として、Co-Cr
合金(特開平10-233014号)やCo-Cr-Ru
合金(特開2000-113445号)等が報告されて
いる。
Therefore, in order to improve the orientation of the magnetic layer, C
It has been studied to form a nonmagnetic Co alloy having an hcp structure as a matching layer between a base layer made of an r alloy and a Co alloy magnetic layer. This focuses on the fact that the magnetic layer grows better from the initial stage on the Co alloy underlayer with the same hcp structure as the magnetic layer than on the Cr alloy underlayer with the b.cc structure. . As such an example, Co-Cr
Alloy (JP-A-10-233014) or Co-Cr-Ru
Alloys (JP-A-2000-113445) and the like have been reported.

【0006】[0006]

【発明が解決しようとする課題】本発明の第一の目的
は、高S/N、かつ高保磁力で、熱揺らぎに対しても十
分に安定な磁気記録媒体を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic recording medium having a high S / N, a high coercive force, and sufficiently stable against thermal fluctuations.

【0007】第二の目的は、このような磁気記録媒体と
高感度な磁気ヘッドと組み合わせ、記録再生条件を最適
化することにより、1平方ミリメートル当たり35メガ
ビット以上の面記録密度を持った信頼性の高い磁気記憶
装置を提供することである。
A second object is to combine such a magnetic recording medium with a high-sensitivity magnetic head and optimize the recording and reproducing conditions to thereby achieve a reliability having an areal recording density of 35 megabits per square millimeter or more per square millimeter. To provide a magnetic storage device with high performance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する為
に、基板上に形成した非晶質または微結晶構造のシード
層と磁性膜の間に、結晶配向性を制御する膜として、C
rを主成分としてTiを含有して、かつMo又はWを含
有する合金からなる下地層と、Co-Ru合金からなる
整合層を順次形成し、さらに磁性膜上にCを主成分とす
る保護膜を形成したことを特徴とする磁気記録媒体を用
いることにより良好な結果が得られることを見出した。
In order to achieve the above object, a film for controlling the crystal orientation is provided between a magnetic layer and an amorphous or microcrystalline seed layer formed on a substrate.
An underlayer made of an alloy containing Ti and Mo or W containing r as a main component and a matching layer made of a Co-Ru alloy are sequentially formed, and a protection layer containing C as a main component is formed on the magnetic film. It has been found that good results can be obtained by using a magnetic recording medium characterized by forming a film.

【0009】図1に本発明媒体の断面構造の一例を示
す。非磁性基板10上に非晶質のシード層11、Crを
主成分としたb.c.c.構造の下地層12、Coを主成分と
したh.c.p.構造の整合層13を介してh.c.p.構造の磁性
層14、Cを主成分とした保護層15が形成されてお
り、潤滑剤16が塗布されている。ここで、非晶質とは
X線回折スペクトラムに於いて、明瞭な回折ピークを示
さないこと、もしくは高分解能電子顕微鏡にて撮影した
格子像から得られた平均粒径が5nm以下であることを
指す。上記断面構造の目的は、上記下地層のb.c.c. 構
造の(200) 面、上記整合層のh.c.p. 構造の(11.0)
面および上記磁性層のh.c.p. 構造の(11.0)面をそれ
ぞれの層の界面で格子整合させてエピタキシャル的に成
長させることである。
FIG. 1 shows an example of the cross-sectional structure of the medium of the present invention. On a non-magnetic substrate 10, an amorphous seed layer 11, an underlayer 12 of a bcc structure mainly composed of Cr, a matching layer 13 of an hcp structure mainly composed of Co, and a magnetic layer 14 of an hcp structure. Is formed, and a lubricant 16 is applied. Here, the term “amorphous” means that no clear diffraction peak is shown in the X-ray diffraction spectrum, or that the average particle size obtained from a lattice image taken with a high-resolution electron microscope is 5 nm or less. Point. The purpose of the cross-sectional structure is (200) plane of the bcc structure of the underlayer, and (11.0) plane of the hcp structure of the matching layer.
The surface and the (11.0) plane of the hcp structure of the magnetic layer are lattice-matched at the interface of each layer and epitaxially grown.

【0010】上記磁性層にCo-Cr-Pt-B合金と上
記整合層にCo-Ru合金を用いた場合、Moあるいは
Wを含有しないCr-Ti合金下地層では該下地層の格
子定数が該整合層の格子定数より小さいため、該下地層
上に該整合層がエピタキシャル的に成長し難い。そのた
め、十分な該磁性層の(11.0) 配向が得られない。ま
た、Cr-Ti合金膜は、Tiの含有量を約20at.%に
することで結晶粒を微細化できるため、本発明の第一の
目的を得るためには、重要な要素となる下地層である。
(J. Appl. Pys. 79, pp5351〜5353 (1996))しかし、
Ti含有量を増やすと格子定数は大きくなるものの、2
0%〜25%程度を越えると結晶粒径の増大により媒体
ノイズが増加するため、Cr-Ti合金下地層では本発
明の第一の目的を十分に達成することができなかった。
When a Co—Cr—Pt—B alloy is used for the magnetic layer and a Co—Ru alloy is used for the matching layer, the lattice constant of the Cr—Ti alloy underlayer that does not contain Mo or W is Since the lattice constant of the matching layer is smaller than that of the matching layer, it is difficult for the matching layer to grow epitaxially on the base layer. Therefore, a sufficient (11.0) orientation of the magnetic layer cannot be obtained. In addition, since the Cr-Ti alloy film can make the crystal grains fine by setting the content of Ti to about 20 at.%, The underlayer which is an important element to obtain the first object of the present invention is obtained. It is.
(J. Appl. Pys. 79, pp 5351-5353 (1996))
As the Ti content increases, the lattice constant increases,
When the content exceeds about 0% to 25%, the medium noise increases due to the increase in the crystal grain size. Therefore, the first object of the present invention cannot be sufficiently achieved with the Cr-Ti alloy underlayer.

【0011】そこで、Cr-Ti合金にMoまたはWを
添加することで格子定数を大きくし、Co-Ru整合層
との格子整合性を高める方法を考案した。その結果、実
際にCr-Ti-Mo合金下地層上にCo-Ru合金整合
層の積層またはCr-Ti-W合金下地層とCo-Ru合
金整合層の積層により磁性層の(11.0)配向を向上
することができ、特に高保磁力や高S/N等の特性向上
が顕著であることを見出した。
Therefore, a method has been devised in which the lattice constant is increased by adding Mo or W to the Cr—Ti alloy to increase the lattice matching with the Co—Ru matching layer. As a result, the magnetic layer (11.0) is actually formed by stacking a Co—Ru alloy matching layer on the Cr—Ti—Mo alloy base layer or by stacking a Cr—Ti—W alloy base layer and a Co—Ru alloy matching layer. It has been found that the orientation can be improved, and that the characteristics such as high coercive force and high S / N are remarkably improved.

【0012】前記非磁性基板10としては化学強化した
アルミノシリケートの他に、ソーダライムガラス、シリ
コン、硼珪酸ガラス等からなるセラミックス、あるいは
Ni-Pを無電解メッキしたAl-Mg合金基板、あるい
はNi-Pを無電解メッキしたガラス等からなる剛体基
板等を用いることが出来る。
As the non-magnetic substrate 10, besides chemically strengthened aluminosilicate, ceramics made of soda lime glass, silicon, borosilicate glass, or the like, an Al—Mg alloy substrate electrolessly plated with Ni—P, or Ni A rigid substrate or the like made of glass or the like obtained by electroless plating of -P can be used.

【0013】上記b.c.c.構造の下地層に(200)配向を
とらせ、かつ、平均結晶粒径を微細化するには、シード
層にCoを主成分とし、CrおよびZrの元素を含有し
た非晶質合金を用いるとよい。この時、Cr添加量が3
0at.%未満では磁化が十分に消失せず、また、60at.
%を上回ると非晶質化が困難となるので好ましくない。
また、Zr添加量は5at.%〜15at.%で非晶質となり
上記の下地層の(200)配向や平均結晶粒径の微細化の
効果を確認できた。上記シード層に用いる非晶質Co合
金としては、他に同様な組成比領域のCo-Cr-Ta合
金Co-Cr-W合金が有効である。また、上記シード層
がNiを主成分とし、Cr及びZrの元素を含有した非
晶質合金を用いることもできる。この時、Cr添加量が
20at.%未満では磁化が十分に消失せず、また、60a
t.%を上回ると非晶質化が困難となるので好ましくな
い。また、Zr添加量は5at.%〜15at.%で非晶質と
なり上記の下地層の(200)配向や平均結晶粒径の微細
化の効果を確認できた。該非晶質Ni合金としてはNi
-Ta合金(Ta含有量は35〜40at.%)、Ni-T
a-Zr合金(Ta含有量35〜40at.%、Zr含有量
5〜15at.%)、Ni-NB-Zr合金(NB含有量2
0〜40at.%、Zr含有量5〜15at.%)等を用いる
こともできる。更に、上記非晶質Co合金膜と上記非晶
質Ni合金膜を積層したシード層を形成して、膜全体の
硬度やヤング率の調整しても上記効果に実質的に問題な
い。
In order to make the underlayer of the bcc structure have a (200) orientation and to reduce the average crystal grain size, an amorphous layer containing Co as a main component and Cr and Zr in the seed layer is used. It is preferable to use a quality alloy. At this time, the amount of Cr added was 3
If it is less than 0 at.%, The magnetization does not disappear sufficiently, and if it is less than 60 at.
%, It is not preferable because it becomes difficult to form an amorphous state.
Further, the Zr addition amount became amorphous at 5 at. As the amorphous Co alloy used for the seed layer, a Co-Cr-Ta alloy Co-Cr-W alloy having a similar composition ratio region is effective. Further, the seed layer may be made of an amorphous alloy containing Ni as a main component and containing elements of Cr and Zr. At this time, if the amount of added Cr is less than 20 at.%, The magnetization does not disappear sufficiently,
If it exceeds t.%, it becomes difficult to make the film amorphous, which is not preferable. Further, the Zr addition amount became amorphous at 5 at. As the amorphous Ni alloy, Ni
-Ta alloy (Ta content is 35-40at.%), Ni-T
a-Zr alloy (Ta content 35-40 at.%, Zr content 5-15 at.%), Ni-NB-Zr alloy (NB content 2
0 to 40 at.%, Zr content 5 to 15 at.%) And the like. Furthermore, even if a seed layer in which the amorphous Co alloy film and the amorphous Ni alloy film are laminated and the hardness and the Young's modulus of the entire film are adjusted, there is substantially no problem in the above effect.

【0014】ここで、シード層は非磁性であることが望
ましいが、該シード層の残留磁束密度Br1と膜厚t1の積
Br1・t1が上記磁性層の残留磁束密度Brと膜厚tma
gの積Br・tmagの2〜3%以下であれば、若干の
磁化を有していても実質的に問題ない。
Here, the seed layer is desirably non-magnetic, but the product Br1 · t1 of the residual magnetic flux density Br1 of the seed layer and the film thickness t1 is equal to the residual magnetic flux density Br of the magnetic layer and the film thickness tma.
As long as the product of g is not more than 2 to 3% of Br · tmag, there is substantially no problem even if it has a slight magnetization.

【0015】また、上記シード層を形成し、200〜3
00℃に加熱しながら、もしくは加熱後、アルゴンに酸
素を1〜10%添加した混合ガス雰囲気中で数秒間暴露
させて表面を人工的に酸化させると、下地層の粒径を更
に微細化することができる。この場合、磁性層の粒径も
微細化され、より低ノイズな媒体が得られる。前記酸化
プロセスの導入はベースの真空度が概ね7×10-5
a以下のスパッタ装置等で成膜する場合、特に有効であ
る。また、シード層を成膜する時の基板温度は室温が望
ましいが、100〜200℃以下であれば上記合金材料
は非晶質となるため、基板の脱ガス等の目的で基板加熱
を行ってもよい。シード層の膜厚も特に制限はないが、
基板の均一加熱と、膜厚増加に伴う結晶質化を考慮する
と、10nm〜50nm程度が望ましい。
Further, the seed layer is formed, and
When the surface is artificially oxidized by heating for several seconds in a mixed gas atmosphere in which oxygen is added to oxygen at 1 to 10% while or after heating to 00 ° C., the particle size of the underlayer is further reduced. be able to. In this case, the particle size of the magnetic layer is also reduced, and a medium with lower noise can be obtained. When the oxidation process is introduced, the degree of vacuum of the base is approximately 7 × 10 -5 P
This is particularly effective when a film is formed by a sputtering apparatus or the like below a. The substrate temperature at the time of forming the seed layer is preferably room temperature. However, if the temperature is 100 to 200 ° C. or lower, the alloy material becomes amorphous. Therefore, the substrate is heated for the purpose of degassing the substrate. Is also good. The thickness of the seed layer is not particularly limited, either.
Considering uniform heating of the substrate and crystallization accompanying an increase in the film thickness, the thickness is preferably about 10 nm to 50 nm.

【0016】上記下地層にはCrを主成分とし、Tiを
10〜25at.%含有し、更にMoもしくはWを2〜2
0at.%含有した合金を用いることが出来る。Ti含有
量が10at.%未満ではその上に形成するCo-Ru合金
による整合層との結晶整合性が低下し、それに伴って磁
性層の配向性が劣化するので好ましくない。一方、25
at.%を上回ると該下地層の結晶粒径が増大するため媒
体ノイズが増加するため好ましくない。また、下地層に
添加するMo又はWの含有量は2〜20at.%であるこ
とが結晶整合性を良好とし好ましい。また、下地層にB
を1〜10at.%添加することにより、下地層の粒径を
均一化できるので好ましい。
The underlayer contains Cr as a main component, 10 to 25 at.% Of Ti, and Mo or W of 2 to 2 at.
An alloy containing 0 at.% Can be used. If the Ti content is less than 10 at.%, The crystal matching with the matching layer due to the Co-Ru alloy formed thereon is lowered, and the orientation of the magnetic layer is undesirably deteriorated. On the other hand, 25
If it exceeds at.%, the crystal grain size of the underlayer increases, and the medium noise increases, which is not preferable. In addition, the content of Mo or W added to the underlayer is preferably 2 to 20 at. In addition, B
Is preferably added at 1 to 10 at.% Since the particle size of the underlayer can be made uniform.

【0017】整合層には、Ruを35〜60at.%含有
するCo合金材料を用いることができる。Ru含有量が
35at.%未満では磁化が十分に低減されず、60at.%
を上回ると磁性層との結晶整合性が低下するので好まし
くない。整合層は非磁性であることが望ましいが、該整
合層の残留磁束密度Br2と膜厚t2の積Br2・t2が磁性層
の残留磁束密度Brと膜厚tmagの積Br・tmagの
23%以下であれば、若干の磁化を有していても実用上
問題ない。
For the matching layer, a Co alloy material containing 35 to 60 at.% Of Ru can be used. If the Ru content is less than 35 at.%, The magnetization is not sufficiently reduced, and the Ru content is 60 at.
Exceeding the range is not preferred because the crystal matching with the magnetic layer deteriorates. The matching layer is preferably non-magnetic, but the product Br2 · t2 of the residual magnetic flux density Br2 of the matching layer and the film thickness t2 is 23% or less of the product Br · tmag of the magnetic layer's residual magnetic flux density Br and the film thickness tmag. If so, there is no practical problem even if it has some magnetization.

【0018】磁性層はCoを主成分としたCo-Cr-P
t-B合金で組成がCr濃度16〜22at.%、Pt濃度
12〜18at.%、B濃度4〜12at.%、残部がCoで
ある合金を用いることができる。磁性粒子間の交換相互
作用を低減し、かつ、高い再生出力を得るため、Cr含
有量は16at.%以上、22at.%以下が好ましい。ま
た、高い結晶磁気異方性と良好なオーバーライト特性を
得るため、Pt含有量は12at.%以上、18at.%以下
が好ましい。更に磁性粒径を微細化して媒体ノイズを低
減させるため、4at.%以上、12at.%以下のBを含有
することが好ましい。B含有量が12at.%を上回ると
磁性層のh.c.p.構造が崩れるので好ましくない。
The magnetic layer is made of Co-Cr-P containing Co as a main component.
An alloy having a composition of 16 to 22 at.% of Cr, a concentration of 12 to 18 at.% of Pt, a concentration of 4 to 12 at. In order to reduce the exchange interaction between the magnetic particles and obtain a high reproduction output, the Cr content is preferably 16 at.% Or more and 22 at.% Or less. Further, in order to obtain high crystal magnetic anisotropy and good overwrite characteristics, the Pt content is preferably from 12 at.% To 18 at.%. In order to further reduce the magnetic noise by reducing the magnetic particle size, it is preferable to contain B at 4 at.% Or more and 12 at.% Or less. If the B content exceeds 12 at.%, The hcp structure of the magnetic layer is undesirably destroyed.

【0019】磁性層の磁気特性としては保磁力が300
KA/m(3,770エルステッド)以上、370KA/
m(4,650エルステッド)以下、残留磁束密度Brと
磁性層の膜厚tmagの積Br・tmagが3.0Tnm
(30Gμm)以上、7.0Tnm(70Gμm)以下
であることが望ましい。保磁力が300KA/mに満た
ないと記録分解能が低下し、370KA/mを上回ると
オーバーライト特性が劣下するので望ましくない。ま
た、Br・tmagが3.0Tnm未満では再生出力が低
下し、7.0Tnmを上回ると分解能が低下するので好
ましくない。また、熱揺らぎに対して十分に安定である
ために熱安定度因子KuV/kT(Ku:結晶磁気異方
性定数、V:磁性粒子体積、k:ボルツマン定数、T:
絶対温度)を大きくすることが望ましい。該熱安定度因
子は種々の測定方法により値が異なるが、例えば、J Ma
gn. Magn. Mater.127, pp.233 (1993) に示されている
ように残留保磁力の時間依存性をSharrockの式にフィッ
ティングすることにより測定することができる。筆者ら
の検討では、この手法により求めた室温でのKuV/k
Tが100以上であれば、5年後の再生出力の減衰は1
0%以下と見積もられ、信頼性上問題はないという結論
を得た。また、磁性層は(11.0)配向をとっているこ
とが望ましいが、他の結晶配向をとる結晶粒が存在して
いても、X線回折スペクトラムにおける該結晶配向面か
らの回折ピーク強度が、(11.0)回折ピーク強度より
も低ければ特に問題はない。
As a magnetic characteristic of the magnetic layer, the coercive force is 300
KA / m (3,770 Oersted) or more, 370KA /
m (4,650 Oersteds) or less, the product Br · tmag of the residual magnetic flux density Br and the thickness tmag of the magnetic layer is 3.0 Tnm.
(30 Gm) or more and 7.0 Tnm (70 Gm) or less. If the coercive force is less than 300 KA / m, the recording resolution is lowered, and if it is more than 370 KA / m, the overwrite characteristics deteriorate, which is not desirable. If Br · tmag is less than 3.0 Tnm, the reproduction output decreases, and if Br · tmag exceeds 7.0 Tnm, the resolution decreases. In addition, since it is sufficiently stable against thermal fluctuation, the thermal stability factor KuV / kT (Ku: crystal magnetic anisotropy constant, V: magnetic particle volume, k: Boltzmann constant, T:
(Absolute temperature) is desirable. The value of the thermal stability factor varies depending on various measurement methods.
As shown in gn. Magn. Mater. 127, pp. 233 (1993), it can be measured by fitting the time dependence of the residual coercive force to Sharrock's equation. In our study, we found that KuV / k at room temperature obtained by this method
If T is 100 or more, the reproduction output attenuation after 5 years is 1
It was estimated to be 0% or less, and it was concluded that there was no problem in reliability. The magnetic layer preferably has a (11.0) orientation, but even if crystal grains having other crystal orientations are present, the diffraction peak intensity from the crystal orientation plane in the X-ray diffraction spectrum is low. , (11.0) diffraction peak intensity is not a problem.

【0020】更に、保護層として窒素を添加したカーボ
ンを厚さ3nm〜6nm形成し、さらに吸着性のパーフ
ルオロアルキルポリエーテル等の潤滑層を厚さ1nm〜
2nm設けることにより信頼性が高く、高密度記録が可
能な磁気記録媒体が得られる。また、保護層として水素
を添加したカーボン膜、或いは、炭化シリコン等の化合
物から成る膜、或いは、これらの化合物とカーボンの混
合膜を用いると耐摺動性、耐食性を向上出来るので好ま
しい。
Further, as a protective layer, carbon to which nitrogen is added is formed in a thickness of 3 nm to 6 nm, and a lubricating layer of an adsorbing perfluoroalkyl polyether or the like is formed in a thickness of 1 nm to 6 nm.
By providing 2 nm, a highly reliable magnetic recording medium capable of high-density recording can be obtained. It is preferable to use a carbon film to which hydrogen is added, a film made of a compound such as silicon carbide, or a mixed film of these compounds and carbon as the protective layer because sliding resistance and corrosion resistance can be improved.

【0021】本発明の第二の目的は、磁気記録媒体と、
該磁気記録媒体を駆動する駆動部と、記録部と再生部か
ら成る磁気ヘッドと、該磁気ヘッドを該磁気記録媒体に
対して相対運動させる手段と、該磁気ヘッドへの信号入
力と該磁気ヘッドからの出力信号再生を行うための記録
再生信号処理手段を有する磁気記憶装置において、磁気
記録媒体に上記いずれかの媒体を用いることにより、1
平方ミリメートル当たり35メガビット以上の面記録密
度を持った信頼性の高い磁気記憶装置を提供することで
ある。該磁気ヘッドの再生部は、互いの磁化方向が外部
磁界によって相対的に変化することによって大きな抵抗
変化を生じる複数の導電性磁性層と、その導電性磁性層
の間に配置された導電性非磁性層を含むスピンバルブ型
のセンサによって構成されている。センサ部は0.1μ
m以下の距離だけ隔てられた軟磁性体からなる2枚のシ
ールド層間に形成されていることが望ましい。これは、
シールド間隔が0.1μm以上になると分解能が低下
し、信号の位相ジッターが大きくなってしまうためであ
る。記憶装置を上記構成とすることにより、信号強度を
さらに高めることができ、1平方ミリメートル当たり3
5メガビット以上の記録密度を持った信頼性の高い磁気
記憶装置の実現が可能となる。
A second object of the present invention is to provide a magnetic recording medium,
A drive unit for driving the magnetic recording medium, a magnetic head including a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, signal input to the magnetic head, and the magnetic head In a magnetic storage device having a recording / reproducing signal processing means for reproducing an output signal from
An object of the present invention is to provide a highly reliable magnetic storage device having an areal recording density of 35 megabits per square millimeter or more. The reproducing section of the magnetic head includes a plurality of conductive magnetic layers that generate a large resistance change when their magnetization directions relatively change due to an external magnetic field, and a conductive non-magnetic layer disposed between the conductive magnetic layers. It is constituted by a spin valve type sensor including a magnetic layer. The sensor is 0.1μ
It is preferable that the shield layer is formed between two shield layers made of a soft magnetic material separated by a distance of m or less. this is,
This is because when the shield interval is 0.1 μm or more, the resolution is reduced and the phase jitter of the signal is increased. With the above-described structure of the storage device, the signal strength can be further increased, and 3
A highly reliable magnetic storage device having a recording density of 5 megabits or more can be realized.

【0022】[0022]

【発明の実施の形態】<実施例1>実施例1.1とし
て、直径64mm、厚さ0.635mmのアルミノシリ
ケート系の強化ガラス基板をアルカリ洗浄して乾燥させ
た後、複数の独立した成膜室を有する枚葉式成膜装置
(インテバック社製mdp250B)に搬入し、タクト7.5
秒で以下の多層膜を形成した。シード層にはNi-20a
t.%Cr-15at.%Zr合金を40nm、Co-30at.
%Cr-10at.%Zr合金を10nm順次積層した。シ
ード層を順次成膜後、基板を加熱室に搬送し、ランプヒ
ーターにより230℃まで加熱すると同時に、加熱室が
1.4Paとなるようにアルゴンに酸素を1vol.%添
加した混合ガスを5.0秒導入しシード層の表面を酸化
処理した。その後、下地層としてCr-20at.%Ti-
10at.%Mo合金を20nm、整合層としてCo-40
at.%Ru合金を5nm形成し、Co-22at.%Cr-1
4at.%Pt-4at.%B合金からなる磁性層を12〜1
4nm、更に、保護層を4nm順次形成した。その後、
基板を成膜装置から取り出し、保護層上にパーフルオロ
アルキルポリエーテルを主成分とする潤滑剤を塗布して
厚さ2nmの潤滑層を形成した。上記のシード層、下地
層、整合層、及び磁性層はすべてDCマグネトロンスパ
ッタ法により、0.9Paのアルゴンガス雰囲気中で形
成した。Cを主成分とする上記保護層の形成には放電ガ
スとして窒素を含有したアルゴンを1.3Paのガス圧
で用い、DCマグネトロンスパッタ法により形成した。
磁性層の膜厚は残留磁束密度Brと磁性層膜厚tmag
の積Br・tmagが5Tnm付近になるよう調節した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <Example 1> In Example 1.1, a tempered aluminosilicate glass substrate having a diameter of 64 mm and a thickness of 0.635 mm was washed with alkali and dried, and then a plurality of independent components were formed. It is carried into a single-wafer type film forming apparatus (mdp250B manufactured by Intevac) having a film chamber, and has a tact of 7.5.
The following multilayer film was formed in seconds. Ni-20a for the seed layer
t.% Cr-15at.% Zr alloy 40nm, Co-30at.
% Cr-10 at.% Zr alloy was sequentially laminated in a thickness of 10 nm. After sequentially forming the seed layer, the substrate is transferred to a heating chamber and heated to 230 ° C. by a lamp heater, and at the same time, a mixed gas obtained by adding 1 vol.% Of oxygen to argon so that the heating chamber becomes 1.4 Pa is used. The surface of the seed layer was oxidized by introducing 0 second. Then, Cr-20at.% Ti-
10 at.% Mo alloy of 20 nm, Co-40 as a matching layer
5% at.% Ru alloy, Co-22 at.% Cr-1
The magnetic layer made of a 4 at.% Pt-4 at.
4 nm, and further a protective layer of 4 nm was sequentially formed. afterwards,
The substrate was taken out of the film forming apparatus, and a lubricant containing perfluoroalkyl polyether as a main component was applied on the protective layer to form a 2 nm-thick lubricating layer. The above seed layer, underlayer, matching layer, and magnetic layer were all formed in a 0.9 Pa argon gas atmosphere by DC magnetron sputtering. The protective layer containing C as a main component was formed by a DC magnetron sputtering method using argon containing nitrogen as a discharge gas at a gas pressure of 1.3 Pa.
The thickness of the magnetic layer is determined by the residual magnetic flux density Br and the thickness of the magnetic layer tmag.
Was adjusted so that the product Br · tmag of the product was approximately 5 Tnm.

【0023】実施例1.2として下地層をCr-20at.
%Ti-10at.%W合金としたこと以外は実施例1.1
と同一条件で記録媒体を作成した。
In Example 1.2, the underlayer was made of Cr-20at.
Example 1.1 except that the alloy was a Ti-10 at.% W alloy.
A recording medium was prepared under the same conditions as described above.

【0024】<比較例1>比較例1として下地層をCr
-20at.%Ti合金としたこと以外は実施例1.1と同
一条件で記録媒体を作成した。
<Comparative Example 1> As Comparative Example 1, the underlayer was made of Cr.
A recording medium was prepared under the same conditions as in Example 1.1, except that a -20 at.% Ti alloy was used.

【0025】本実施例のシード層として用いたNi-2
0at.%Cr-15at.%Zr合金とCo-30at.%Cr-
10at.%Zr合金の積層膜を、上記成膜条件でガラス
基板上に順次40nm、10nm形成した膜のX線回折
パターンを観察した。尚、本測定ではX線源にモノクロ
メーターで単色化したCuKα1線を用いた。観察した
回折パターンに明瞭な回折ピークはみられず、2θ=4
0〜43°付近にブロードなハローパターンのみが観察
された。よって、本実施例のシード層は非晶質、または
微結晶構造になっていることがわかる。
Ni-2 used as a seed layer in this embodiment
0at.% Cr-15at.% Zr alloy and Co-30at.% Cr-
An X-ray diffraction pattern of a film in which a laminated film of 10 at.% Zr alloy was sequentially formed at 40 nm and 10 nm on a glass substrate under the above-described film forming conditions was observed. In this measurement, a CuKα1 ray monochromatized by a monochromator was used as an X-ray source. No clear diffraction peak was observed in the observed diffraction pattern, and 2θ = 4
Only a broad halo pattern was observed around 0 to 43 °. Therefore, it can be seen that the seed layer of this example has an amorphous or microcrystalline structure.

【0026】図2に本実施例のX線回折パターンを示
す。比較例1に対し実施例1.1及び実施例1.2による
回折パターンは、下地層による(200)面の回折ピー
クが強くなり、(200)面の配向性が向上している。
また、本実施例の下地層による(200)面の回折ピー
クが低角度側にずれることが確認でき、(200)面の
面間隔が大きくなっていることが分かる。また同様に、
Co-Ru合金層とCo-Cr-Pt-B合金層による(0
0.2)面の回折ピークが減少し、(11.0)面の強い
回折ピークが確認でき、強い面内配向媒体を実現出来て
いることが分かる。この(11.0)面の配向性の向上
は、下地層にCr-Ti-Mo合金層又はCr-Ti-W合
金層を採用することにより(200)面の配向性が向上
し、その上層であるCo-Ru合金層の(11.0)面の
良好なエピタキシャル成長が成され、それに伴って磁性
層の(11.0)配向が成された結果である。また、整
合層にCo-35at.%Ru、Co-50at.%Ru、Co
-55at.%Ru合金を用いたこと以外は実施例1.1と
同様に作成した媒体では同様の結果を示したが、整合層
にCo-20at.%Cr-40at.%Ru合金層を用いたこ
と以外は実施例1.1と同様に作成した媒体では、上記
のような強い(11.0)配向を確認することは出来な
かった。
FIG. 2 shows an X-ray diffraction pattern of this embodiment. Compared with Comparative Example 1, the diffraction patterns of Examples 1.1 and 1.2 show that the diffraction peak of the (200) plane due to the underlayer is stronger and the orientation of the (200) plane is improved.
In addition, it can be confirmed that the diffraction peak of the (200) plane due to the underlayer of the present example is shifted to the lower angle side, and it is understood that the plane interval of the (200) plane is large. Similarly,
By the Co-Ru alloy layer and the Co-Cr-Pt-B alloy layer (0
The diffraction peak on the (0.2) plane is reduced, and a strong diffraction peak on the (11.0) plane can be confirmed, indicating that a strong in-plane oriented medium has been realized. The orientation of the (11.0) plane is improved by adopting a Cr-Ti-Mo alloy layer or a Cr-Ti-W alloy layer as an underlayer to improve the orientation of the (200) plane, This is the result of good epitaxial growth of the (11.0) plane of the Co—Ru alloy layer, which was followed by the (11.0) orientation of the magnetic layer. In addition, Co-35 at.% Ru, Co-50 at.% Ru, Co
Except that a -55 at.% Ru alloy was used, a medium prepared in the same manner as in Example 1.1 showed similar results, but a Co-20 at.% Cr-40 at.% Ru alloy layer was used for the matching layer. With the medium prepared in the same manner as in Example 1.1 except for the above, no strong (11.0) orientation as described above could be confirmed.

【0027】表1に本実施例媒体の静磁気特性、熱安定
度因子KuV/kT、及び前記X線回折パターンより導
いた下地層の(200)面間隔を示す。
Table 1 shows the magnetostatic characteristics, the thermal stability factor KuV / kT of the medium of this example, and the (200) plane spacing of the underlayer derived from the X-ray diffraction pattern.

【0028】[0028]

【表1】 [Table 1]

【0029】静磁気特性は振動試料型磁力計により、7
96kA/m(10,000エルステッド)の最大磁界を
印加して測定し、熱安定度因子KuV/kTは室温にお
ける7.5秒から240秒迄の残留保磁力Hcrの時間
依存性をSharrockの式にフィッティングして求めた。ま
た、格子面間隔はBraggの条件より算出した。
The static magnetic characteristics were measured using a vibrating sample magnetometer.
The thermal stability factor KuV / kT was measured by applying a maximum magnetic field of 96 kA / m (10,000 Oe), and the time dependence of the residual coercive force Hcr from 7.5 seconds to 240 seconds at room temperature was determined by Sharrock's equation. Was determined by fitting. The lattice spacing was calculated from Bragg conditions.

【0030】本実施例は何れも318kA/m(4,00
0エルステッド)以上の高い保磁力を示した。また、比
較例に対し保磁力を50〜76kA/m(628〜95
5エルステッド)、保磁力角形比を0.2〜0.3向上す
ることが出来た。更に、いずれの実施例媒体も熱安定度
因子KuV/kTは100以上であり、熱揺らぎに対し
て十分に安定であることを示した。
In each of the present embodiments, 318 kA / m (4,000
(0 Oersteds) or higher. Further, the coercive force was set to 50 to 76 kA / m (628 to 95
5 Oersted), and the coercive force squareness ratio could be improved by 0.2 to 0.3. Furthermore, the thermal stability factor KuV / kT was 100 or more in all the examples, indicating that the medium was sufficiently stable against thermal fluctuation.

【0031】<実施例2>実施例2.1として、直径6
4mm、厚さ0.635mmのアルミノシリケート系の
強化ガラス基板をアルカリ洗浄して乾燥させた後、複数
の独立した成膜室を有する枚葉式成膜装置(インテバッ
ク社製mdp250B)に搬入し、タクト6.5秒で以下の多
層膜を形成した。シード層にはCo-30at.%Cr-1
0at.%Zr合金を30nm形成した。シード層を成膜
後、基板を加熱室に搬送し、ランプヒーターにより23
0℃まで加熱すると同時に、加熱室が2.4Paとなる
ようにアルゴンに酸素を1.0vol.%添加した混合ガ
スを4.0秒導入しシード層の表面を酸化処理した。そ
の後、下地層としてCr-20at.%Ti-10at.%Mo
合金を20nm、整合層としてCo-40at.%Ru合金
を5nm形成し、Co-20at.%Cr-14at.%Pt-
6at.%B合金からなる磁性層を13〜15nm、更
に、保護層を4nm順次形成した。その後、基板を成膜
装置から取り出し、保護層上にパーフルオロアルキルポ
リエーテルを主成分とする潤滑剤を塗布して厚さ2nm
の潤滑層を形成した。上記のシード層、下地層、整合
層、及び磁性層はすべてDCスパッタ法により、0.9
Paのアルゴンガス雰囲気中で形成した。炭素からなる
上記保護層の形成には放電ガスとしてエチレンとアルゴ
ンの混合ガスを0.5Paのガス圧で用い、CVD法に
より形成した。磁性層の膜厚は残留磁束密度Brと磁性
層膜厚tmagの積Br・tmagが5Tnm付近になる
よう調節した。
<Example 2> As Example 2.1, the diameter 6
After washing and drying a 4 mm, 0.635 mm thick aluminosilicate-based tempered glass substrate with an alkali, the substrate is carried into a single-wafer type film forming apparatus (mdp250B manufactured by Intevac) having a plurality of independent film forming chambers, and tact is performed. The following multilayer film was formed in 6.5 seconds. Co-30at.% Cr-1 for the seed layer
A 0 at.% Zr alloy was formed to a thickness of 30 nm. After forming the seed layer, the substrate is transferred to a heating chamber, and the substrate is heated by a lamp heater.
At the same time as heating to 0 ° C., a mixed gas obtained by adding 1.0 vol.% Of oxygen to argon was introduced for 4.0 seconds so that the heating chamber became 2.4 Pa, and the surface of the seed layer was oxidized. Then, Cr-20at.% Ti-10at.% Mo is used as an underlayer.
The alloy was formed to have a thickness of 20 nm and the matching layer was formed of a Co-40 at.% Ru alloy having a thickness of 5 nm.
A magnetic layer made of a 6 at.% B alloy was formed in order of 13 to 15 nm, and a protective layer was formed in order of 4 nm. Thereafter, the substrate is taken out of the film forming apparatus, and a lubricant containing perfluoroalkyl polyether as a main component is applied on the protective layer to a thickness of 2 nm.
Was formed. The seed layer, the underlayer, the matching layer, and the magnetic layer are all formed by a DC sputtering method at 0.9.
It was formed in an argon gas atmosphere of Pa. The protective layer made of carbon was formed by a CVD method using a mixed gas of ethylene and argon at a gas pressure of 0.5 Pa as a discharge gas. The thickness of the magnetic layer was adjusted so that the product Br · tmag of the residual magnetic flux density Br and the thickness of the magnetic layer tmag was around 5 Tnm.

【0032】実施例2.2として下地層をCr-20at.
%Ti-5at.%Mo合金としたこと以外は実施例2.1
と同一条件で記録媒体を作成した。
In Example 2.2, the underlayer was made of Cr-20at.
Example 2.1 Except that the alloy was a Ti-5 at.% Mo alloy.
A recording medium was prepared under the same conditions as described above.

【0033】実施例2.3として下地層をCr-20at.
%Ti-5at.%Mo-3at.%B合金としたこと以外は実
施例2.1と同一条件で記録媒体を作成した。
In Example 2.3, the underlayer was made of Cr-20at.
A recording medium was prepared under the same conditions as in Example 2.1, except that the alloy was a Ti-5at.% Mo-3at.% B alloy.

【0034】実施例2.4として下地層をCr-15at.
%Ti-5at.%Mo-3at.%B合金としたこと以外は実
施例2.1と同一条件で記録媒体を作成した。
In Example 2.4, the underlayer was made of Cr-15at.
A recording medium was prepared under the same conditions as in Example 2.1, except that the alloy was a Ti-5at.% Mo-3at.% B alloy.

【0035】比較例2として下地層をCr-20at.%T
i合金としたこと以外は実施例2.1と同一条件で記録
媒体を作成した。
As Comparative Example 2, the underlayer was made of Cr-20 at.
A recording medium was prepared under the same conditions as in Example 2.1 except that the alloy was i.

【0036】X線回折パターンを観察したところ、実施
例1の媒体と同様、下地層からの(200)回折ピークと
Co-Ru合金下地層、及びCo-Cr-Pt-B磁性層か
らの混合の(11.0)回折ピークのみが観察された。
When the X-ray diffraction pattern was observed, the (200) diffraction peak from the underlayer and the mixture from the Co-Ru alloy underlayer and the Co-Cr-Pt-B magnetic layer were observed as in the medium of Example 1. Only the (11.0) diffraction peak was observed.

【0037】表2に本実施例媒体の静磁気特性、熱安定
度因子KuV/kT、S/N、及び出力分解能を示す。
Table 2 shows the magnetostatic characteristics, thermal stability factors KuV / kT, S / N, and output resolution of the medium of this embodiment.

【0038】[0038]

【表2】 [Table 2]

【0039】ここで、S/Nは線記録密度11,900
fr/mm(302kFCI)で記録したときの再生出
力EMF(mVpp)を用いて、S/N=20・log
(EMF/√(Nd2+Nha2))(dB)と定義した。こ
こで、Nd(μVrms)は線記録密度23,800f
r/mm(604kFCI)で記録したときの媒体ノイ
ズ、Nha(μVrms)はヘッド-アンプノイズであ
る。出力分解能は線記録密度11,900fr/mm(3
02kFCI)で記録した時の再生出力EMF(mVp
p)と孤立再生波出力ELF(mVpp)を用いてEM
F/ELF×100(%)と定義した値である。S/N
の評価はトラック幅0.5μm、ギャップ長0.15μm
の記録ヘッドとトラック幅0.35μm、ギャップ長0.
1μmのスピンバルブ型再生ヘッドを有する複合ヘッド
を用いて行った。この時磁気的スペーシングは23nm
とした。その他の値は実施例1と同様な方法で測定し
た。
Here, the S / N is a linear recording density of 11,900.
Using the reproduction output EMF (mVpp) when recording at fr / mm (302 kFCI), S / N = 20 · log
(EMF / √ (Nd 2 + Nha 2 )) (dB). Here, Nd (μVrms) is the linear recording density of 23,800 f
Medium noise when recording at r / mm (604 kFCI) and Nha (μVrms) are head-amplifier noise. The output resolution is a linear recording density of 11,900 fr / mm (3
02kFCI) and the reproduction output EMF (mVp
p) and the isolated reproduction wave output ELF (mVpp)
It is a value defined as F / ELF × 100 (%). S / N
Was evaluated with a track width of 0.5 μm and a gap length of 0.15 μm
Recording head, track width 0.35 μm, gap length 0.3
This was performed using a composite head having a 1 μm spin-valve reproducing head. At this time, the magnetic spacing is 23 nm
And Other values were measured in the same manner as in Example 1.

【0040】本実施例媒体の保磁力及び保磁力角形比は
全て比較例に対し良好であり、保磁力で13〜51kA
/m(163〜641エルステッド)程度、保磁力角形
比で0.1〜0.2程度向上することが出来た。また、K
uV/kTは本実施例の媒体全て100以上であり、熱
安定性も良好であることを示した。更に全ての実施例
で、S/Nは比較例以上となり、出力分解能は3〜5ポ
イント程度向上することが出来た。
The coercive force and the coercive force squareness ratio of the medium of this embodiment are all better than those of the comparative example, and the coercive force is 13 to 51 kA.
/ m (163 to 641 Oe), and the coercive force squareness ratio can be improved by about 0.1 to 0.2. Also, K
uV / kT was 100 or more in all of the media of this example, indicating that the thermal stability was also good. Further, in all the examples, the S / N was higher than that of the comparative example, and the output resolution could be improved by about 3 to 5 points.

【0041】<実施例3>実施例2.1に示した媒体を
図3に示す磁気記憶装置に組み込んだ。該記憶装置は、
記録媒体20とこれを駆動する駆動部21と、記録用の
電磁誘導型ヘッドと再生用のスピンバルブ型ヘッドを併
せ持つ複合型磁気ヘッド22と、該磁気ヘッドを媒体に
対して相対運動させる手段23と、該磁気ヘッドの記録
再生信号処理手段24を有する磁気記憶装置である。
<Embodiment 3> The medium shown in Embodiment 2.1 was incorporated in a magnetic storage device shown in FIG. The storage device is
A recording medium 20, a driving unit 21 for driving the recording medium 20, a composite magnetic head 22 having both an electromagnetic induction type head for recording and a spin valve type head for reproduction, and means 23 for moving the magnetic head relative to the medium And a magnetic storage device having recording / reproducing signal processing means 24 for the magnetic head.

【0042】本実施例で用いた磁気ヘッドの構造を図4
に示す。この磁気ヘッドは基体上に形成された記録用の
電磁誘導型ヘッドと再生用のスピンバルブ型ヘッドを併
せ持つ複合型ヘッドである。該記録用ヘッドはコイル3
0を挟む上部記録磁極31と下部記録磁極兼上部シール
ド層32からなり,記録磁極間のギャップ層厚は0.1
4μmとした。また、該コイルには厚さ3μmのCuを
用いた。該再生用ヘッドはスピンバルブセンサ部33と
その両端の電極パタン34からなり、該センサは共に1
μmの下部記録磁極兼上部シールド層と下部シールド層
35まれ、該シールド層間距離は0.09μmである。
FIG. 4 shows the structure of the magnetic head used in this embodiment.
Shown in This magnetic head is a composite type head having both an electromagnetic induction type head for recording and a spin valve type head for reproduction formed on a substrate. The recording head is a coil 3
The upper write pole 31 and the lower write pole / upper shield layer 32 sandwiching a zero are sandwiched between the write poles.
4 μm. In addition, Cu having a thickness of 3 μm was used for the coil. The reproducing head comprises a spin valve sensor section 33 and electrode patterns 34 at both ends thereof.
The μm lower write pole / upper shield layer and the lower shield layer 35 are provided, and the distance between the shield layers is 0.09 μm.

【0043】上記スピンバルブセンサ部は、5nmのT
aバッファ層上に、7nmのNi-20at.%Fe合金か
らなる第一の磁性層として、1.5nmのCu中間層、
3nmのCoからなる第二の磁性層、10nmのFe-
50at.%Mn反強磁性合金層が順次形成された構造で
ある。
The spin valve sensor section has a 5 nm T
a 1.5 nm Cu intermediate layer as a first magnetic layer made of a 7 nm Ni-20 at.% Fe alloy on a buffer layer;
3 nm Co second magnetic layer, 10 nm Fe-
It has a structure in which 50 at.% Mn antiferromagnetic alloy layers are sequentially formed.

【0044】本装置を用いて面記録密度38.5メガビ
ット/平方ミリメートル(25ギガビット/平方インチ)
の条件(線記録密度20.8kビット/mm(529kB
pi)、トラック密度1.85kトラック/mm(47k
tpi))で、磁気的スペーシングを23nmとして記
録再生特性を評価したところ、ビットエラーレートは1
×10-7以下であった。これによって、面記録密度3
8.5メガビット/平方ミリメートルでの記録再生が可能
な磁気記憶装置を実現することが出来た。また、磁気記
録媒体の内周から外周までのヘッドシーク試験5万回後
のビットエラー数は10ビット/面以下であり、平均故
障時間間隔(MTBF)で30万時間以上が達成出来
た。
Using this apparatus, the areal recording density is 38.5 megabits / square millimeter (25 gigabits / square inch).
Condition (linear recording density 20.8 kbit / mm (529 kB
pi), track density 1.85k tracks / mm (47k
tpi)), when the recording / reproducing characteristics were evaluated with the magnetic spacing set to 23 nm, the bit error rate was 1
× 10 -7 or less. Thereby, the areal recording density 3
A magnetic storage device capable of recording and reproducing data at 8.5 megabits / square millimeter was realized. The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the magnetic recording medium was 10 bits / plane or less, and 300,000 hours or more in mean time between failures (MTBF) could be achieved.

【0045】[0045]

【発明の効果】本発明の磁気記録媒体は、媒体S/Nの
向上の効果、または熱ゆらぎに対する安定性向上の効果
を持つ。
The magnetic recording medium of the present invention has the effect of improving the medium S / N or the effect of improving the stability against thermal fluctuation.

【0046】本発明の磁気記録媒体と磁気抵抗効果型ヘ
ッドを用いることにより、35メガビット/平方ミリメ
ートル以上の面記録密度を有する磁気記憶装置の実現が
可能となる。
By using the magnetic recording medium and the magnetoresistive head of the present invention, it is possible to realize a magnetic storage device having a surface recording density of 35 megabits / square millimeter or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体媒体の一例を示す断面模
式図である。
FIG. 1 is a schematic sectional view showing an example of a magnetic recording medium according to the present invention.

【図2】本発明の実施例媒体、及び比較例媒体のX線回
折パターンを示す図である。
FIG. 2 is a diagram showing X-ray diffraction patterns of an example medium of the present invention and a comparative example medium.

【図3】本発明の磁気記憶装置の一例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of the magnetic storage device of the present invention.

【図4】本発明の磁気記憶装置における、磁気ヘッドの
断面構造の一例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a cross-sectional structure of a magnetic head in the magnetic storage device of the present invention.

【符号の説明】[Explanation of symbols]

10...基板、11...シード層、12...下地層、1
3...整合層、14...磁性層、15...保護層、16...
潤滑層、20...磁気記録媒体、21...磁気記録媒体駆
動部、22...磁気ヘッド、23...磁気ヘッド駆動部、
24...記録再生信号処理系、30...コイル、31...
上部記録磁極、32...下部記録磁極兼上部シールド
層、33...磁気抵抗センサ、34...電極パターン、3
5...下部シールド層、
10 ... substrate, 11 ... seed layer, 12 ... underlayer, 1
3 ... matching layer, 14 ... magnetic layer, 15 ... protective layer, 16 ...
Lubricating layer, 20 ... magnetic recording medium, 21 ... magnetic recording medium drive, 22 ... magnetic head, 23 ... magnetic head drive,
24 ... recording / reproduction signal processing system, 30 ... coil, 31 ...
Upper recording magnetic pole, 32 ... Lower recording magnetic pole and upper shield layer, 33 ... Magnetic resistance sensor, 34 ... Electrode pattern, 3
5 ... Lower shield layer,

フロントページの続き (72)発明者 神邊 哲也 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 屋久 四男 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 稲垣 譲 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 Fターム(参考) 5D006 BB02 BB07 CA01 CA06 5D034 BA03 BB12 CA06 Continued on the front page (72) Inventor Tetsuya Kanbe 2880 Kozu, Kozuhara-shi, Kanagawa Pref.Hitachi, Ltd. Storage System Division, Hitachi, Ltd. Within the Business Unit (72) Inventor Jozou Inagaki 2880 Kozu, Odawara City, Kanagawa Prefecture F-term in the Storage Systems Division, Hitachi, Ltd. (Reference) 5D006 BB02 BB07 CA01 CA06 5D034 BA03 BB12 CA06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に非晶質または微結晶構造の
シード層、体心立方構造の下地層、六方稠密構造の整合
層、六方稠密構造の磁性層、Cを主成分とする保護層が
順次形成されており、該下地層が、CrとTiを含有
し、かつMo又はWを含有する合金からなり、該整合層
がCo-Ruを含有する合金からなることを特徴とする
磁気記録媒体。
An amorphous or microcrystalline seed layer, a body-centered cubic underlayer, a hexagonal close-packed matching layer, a hexagonal close-packed magnetic layer on a non-magnetic substrate, and a protection containing C as a main component. A magnetic layer, wherein the underlayer is made of an alloy containing Cr and Ti and containing Mo or W, and the matching layer is made of an alloy containing Co-Ru. recoding media.
【請求項2】前記下地層が、Crを主成分とし、Tiを
10〜25at.%含有して、かつMo又はWを2〜20a
t.%含有することを特徴とする請求項1に記載の磁気記
録媒体。
2. The underlayer according to claim 1, wherein the underlayer contains Cr as a main component, contains 10 to 25 at.% Of Ti, and contains Mo or W of 2 to 20 a.
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium contains t.%.
【請求項3】前記下地層が、更に、Bを含有することを
特徴とする請求項1または2に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the underlayer further contains B.
【請求項4】前記シード層がCo-Cr-Zr合金である
ことを特徴とする請求項1に記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein said seed layer is made of a Co—Cr—Zr alloy.
【請求項5】前記磁性層がCo-Cr-Pt-B合金から
なることを特徴とする請求項1に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein said magnetic layer is made of a Co—Cr—Pt—B alloy.
【請求項6】非磁性基板上に非晶質または微結晶構造の
シード層、体心立方構造の下地層、六方稠密構造の整合
層、六方稠密構造の磁性層、Cを主成分とする保護層が
順次形成されており、該下地層が、CrとTiを含有
し、かつMo又はWを含有する合金からなり、該整合層
がCo-Ruを含有する合金からなり、該磁性層がCo-
Cr-Pt-B合金からなることを特徴とする磁気記録媒
体。
6. A seed layer having an amorphous or microcrystalline structure, a base layer having a body-centered cubic structure, a matching layer having a hexagonal close-packed structure, a magnetic layer having a hexagonal close-packed structure, and a protection layer containing C as a main component. Layers are sequentially formed, the underlayer is made of an alloy containing Cr and Ti and containing Mo or W, the matching layer is made of an alloy containing Co-Ru, and the magnetic layer is made of Co. -
A magnetic recording medium comprising a Cr-Pt-B alloy.
【請求項7】前記下地層が、Crを主成分とし、Tiを
10〜25at.%含有して、かつMo又はWを2〜20a
t.%含有することを特徴とする請求項6に記載の磁気記
録媒体。
7. The underlayer according to claim 1, wherein the underlayer contains Cr as a main component, contains 10 to 25 at.% Of Ti, and contains Mo or W in an amount of 2 to 20 at.
The magnetic recording medium according to claim 6, wherein the magnetic recording medium contains t.%.
【請求項8】前記下地層が、更に、Bを含有することを
特徴とする請求項6または7に記載の磁気記録媒体。
8. The magnetic recording medium according to claim 6, wherein the underlayer further contains B.
【請求項9】前記シード層がCo-Cr-Zr合金である
ことを特徴とする請求項6に記載の磁気記録媒体。
9. The magnetic recording medium according to claim 6, wherein the seed layer is made of a Co—Cr—Zr alloy.
【請求項10】前記磁性層を構成する結晶粒の(11.
0)面が基板面と略平行となる配向をとっていることを
特徴とする請求項6に記載の磁気記録媒体。
10. The magnetic layer according to claim 11, wherein (11.
7. The magnetic recording medium according to claim 6, wherein the (0) plane is oriented substantially parallel to the substrate surface.
【請求項11】磁気記録媒体と該磁気記録媒体を駆動す
る駆動部と、記録部と再生部からなる磁気ヘッドと、該
磁気ヘッドを上記磁気記録媒体に対して相対運動させる
手段と、該磁気ヘッドへの信号入力手段と該磁気ヘッド
からの出力信号の再生を行う記録再生信号処理手段とを
有する磁気記録装置において、該磁気ヘッドの再生部が
互いの磁化方向が外部磁界によって相対的に変化をする
ことにより大きな抵抗変化を生じる複数の導電性磁性層
と、該導電性磁性層の間に配置された導電性非磁性層を
含む磁気抵抗センサで構成され、かつ該磁気記録媒体が
請求項1から10までのいずれか1つの磁気記録媒体で
構成されることを特徴とする磁気記憶装置。
11. A magnetic recording medium, a driving unit for driving the magnetic recording medium, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic recording apparatus having a signal input unit to a head and a recording / reproducing signal processing unit for reproducing an output signal from the magnetic head, the reproducing units of the magnetic head change their magnetization directions relatively by an external magnetic field. The magnetic recording medium comprises a magnetoresistive sensor including a plurality of conductive magnetic layers that generate a large resistance change by performing the method, and a conductive nonmagnetic layer disposed between the conductive magnetic layers. A magnetic storage device comprising any one of magnetic recording media from 1 to 10.
JP2000381692A 2000-10-06 2000-12-11 Magnetic recording medium and magnetic memory device Pending JP2002183941A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000381692A JP2002183941A (en) 2000-12-11 2000-12-11 Magnetic recording medium and magnetic memory device
US09/888,523 US6623874B2 (en) 2000-10-06 2001-06-26 Magnetic recording medium and magnetic recording apparatus
US10/631,768 US7005202B2 (en) 2000-10-06 2003-08-01 Magnetic recording medium and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381692A JP2002183941A (en) 2000-12-11 2000-12-11 Magnetic recording medium and magnetic memory device

Publications (1)

Publication Number Publication Date
JP2002183941A true JP2002183941A (en) 2002-06-28

Family

ID=18849653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381692A Pending JP2002183941A (en) 2000-10-06 2000-12-11 Magnetic recording medium and magnetic memory device

Country Status (1)

Country Link
JP (1) JP2002183941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238360A (en) * 2011-05-12 2012-12-06 Fuji Electric Co Ltd Perpendicular magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238360A (en) * 2011-05-12 2012-12-06 Fuji Electric Co Ltd Perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US6623874B2 (en) Magnetic recording medium and magnetic recording apparatus
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US6537684B1 (en) Antiferromagnetically coupled magnetic recording media with boron-free first ferromagnetic film as nucleation layer
US10424329B2 (en) Magnetic recording medium
JP2005044464A (en) Perpendicular magnetic recording medium
US7592081B2 (en) Magnetic recording medium and magnetic storage device
JP2006313584A (en) Manufacturing method of magnetic recording medium
JP2007317304A (en) Magnetic recording medium and magnetic recording system
US6623875B2 (en) Magnetic recording medium and magnetic storage apparatus
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
US6221481B1 (en) High Cr, low saturation magnetization intermediate magnetic layer for high coercivity and low medium noise
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2005004945A (en) Perpendicular magnetic recording medium and its manufacturing method
US6544667B1 (en) Magnetic recording medium, producing method of the same and magnetic recording system
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
US20030219627A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP2001189005A (en) Magnetic recording medium, method of producing the same and magnetic memory device
JP2002183941A (en) Magnetic recording medium and magnetic memory device
US6835476B2 (en) Antiferromagnetically coupled magnetic recording media with CoCrFe alloy first ferromagnetic film
US20060280972A1 (en) Magnetic recording medium and magnetic storage
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2005093016A (en) Magnetic recording medium
JP2002117531A (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708